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<Abstract >
TERM RANK INEQUALITIES OF BOOLEAN

MATRICES AND LINEAR PRESERVERS

In this thesis, we research three topics on linear preserver
problems, which have been researched in the international linear
algebra society during last 100 years.

The first topic 1s to research the term ranks and their preservers of
nonbinary Boolean matrices. We characterize the linear operators that
preserve the sets of matrix pairs over nonbinary Boolean algebra
which satisfy the extreme cases for certain term rank inequalities. We
obtain these linear operators as 7T(X)=PXQ or T(X)=PXP" with
invertible Boolean matrices P and Q.

The second topic 1s to research the zero-term rank of nonbinary
Boolean matrices. We characterize the linear operators that preserve
the sets of matrix pairs over nonbinary Boolean algebra which satisfy
the extreme cases for certain zero—term rank inequalities. We obtain
those linear operators as T(X)=PXQ or T(X)=PXP' with invertible
Boolean matrices P and Q.

The third topic is to characterize the linear operators that preserve
the regularity of nonbinary Boolean matrices. We obtain that a linear

operator T strongly preserves regularity of nonbinary Boolean matrices
k

if and only if 7 has the forms that T(X)=UXV or T(X)= U(ZUPY;))V
p=1

with invertible matrices U and V.
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1 Introduction

One of the most active and fertile subjects in matrix theory during the past
one hundred years is the linear preserver problem, which concerns the char-
acterization of linear operators on matrix spaces that leave certain functions,
subsets, relations, etc., invariant([24]). We call such a topic of research “Lin-
ear Preserver Problems”. In 1887, Frobenius characterized the linear opera-
tors that preserve determinant of matrices over real field, which was the first
results on linear preserver problems. After his result, many researchers have
studied the linear operators that preserve some matrix functions, say, rank
and permanent of matrices and so on([24]).

Recently, many researchers begin to research the matrices over semirings
instead of fields([9] -[13]). There are many semirings such that (non)binary
Boolean algebra, nonnegative integers, nonnegative reals, fuzzy semirings,
max-algebra and so on([13]).

The results on linear preserver problems over semirigs are more applicable
to linear preserver problems and combinatorics than those results over fields.
The researches over a semiring are not easy to generalize those results over
field since the system of semiring does not assume the additive inverse element
for any element in the semiring. So we have to define many concepts for the
properties of matrices over semirings to generalize the known definitions over
fields.

Beasley and Guterman([2]) investigated rank inequalities of matrices over
semirings. And they characterized the equality cases for some inequalities in

[3]. These characterization problems are open even over fields( see [4]). The



structure of matrix varieties which arise as extremal cases in these inequalities
is far from being understood over fields, as well as over semirings. A usual
way to generate elements of such a variety is to find a pair of matrices which
belongs to it and to act on this pair by various linear operators that preserve
this variety. The investigation of the corresponding problems over semirings
for the column rank function was done in [4]. The complete classification
of linear operators that preserve equality cases in matrix inequalities over
fields was obtained in [7]. For details on linear operators preserving matrix
invariants one can see [22] and [24]. Almost all researches on linear preserver
problems over semirings have dealt with those semirings without zero-divisors
to avoid the difficulties of multiplication arithmetic for the elements in those
semirings([3]-[18]). But nonbinary Boolean algebra is not the case. That is,
all elements except 0 and 1 in most nonbinary Boolean algebras are zero-
divisors. So there are few results on the linear preserver problems for the
matrices over nonbinary Boolean algebra([19], [20], [29] ). Kirkland and
Pullman characterized the linear operators that preserve rank of matrices
over nonbinary Boolean algebra in [20].

Although there are many arithmetic difficulties of matrices over nonbi-
nary Boolean algebra, we study the Boolean rank of matrices over nonbinary
Boolean algebra and we characterize the linear operators that preserve pairs
of matrices over nonbinary Boolean algebra which satisfy some term rank
inequalities and zero-term rank inequalities.

In this thesis, we research three topics on the linear preserver problems.



The first topic is to characterize the linear operators that preserve the
sets of matrix pairs over nonbinary Boolean algebra which satisfy the ex-
treme cases for certain term rank inequalities. For this purpose, we study
the inequalities of term rank for the sum or multiplication of matrices over
nonbinary Boolean algebra. We also construct the sets of matrix pairs that
satisfy the equalities for those term rank inequalities.

The second topic is to characterize the linear operators that preserve the
sets of matrix pairs over nonbinary Boolean algebra which satisfy the extreme
cases for certain zero-term rank inequalities. For this purpose, we also study
the inequalities of zero-term rank for the sum or multiplication of matrices
over nonbinary Boolean algebra. We also construct the sets of matrix pairs
that satisfy the equalities for those zero-term rank inequalities.

The third topic is to characterize the linear operators that preserve regular
matrices over nonbinary Boolean algebras.

The contents of this thesis are as follows:

In Chapter 2, we give some preliminaries and basic results for our purpose.

In Chapter 3, we study the extreme sets of matrix pairs for the term
rank inequalities over nonbinary Boolean algebra and characterize the linear
operators that preserve those extreme sets of matrix pairs.

In Chapter 4, we study the extreme sets of matrix pairs for the zero-term
rank inequalities over nonbinary Boolean algebra and characterize the linear
operators that preserve those extreme sets of matrix pairs.

In Chapter 5, we study the regular matrices over nonbinary Boolean alge-

bra and characterize the linear operators that preserve those regular matrices.



2 Preliminaries and basic results

In this section, we give some definitions and construct sets of matrix pairs
that arise as extremal cases in the term (and zero-term) rank inequalities of

Boolean matrix sums and multiplications.

Definition 2.1. A semiring S consists of a set S and two binary operations,

addition and multiplication, such that:

e S is an Abelian monoid under addition (identity denoted by 0);
e S is a semigroup under multiplication (identity, if any, denoted by 1);
e multiplication is distributive over addition on both sides;

e s0=0s=0forall seS.

In this thesis we will always assume that there is a multiplicative identity 1

in S which is different from 0.

Definition 2.2. A semiring is called antinegative if the zero element is the

only element with an additive inverse.

Definition 2.3. A semiring S is called a Boolean algebra if S is equivalent to
a set of subsets of a given set M, the sum of two subsets is their union, and
the product is their intersection. The zero element is the empty set and the

identity element is the whole set M. That is, we denote ¢ =0 and M = 1.

Let Sk = {ay, a9, -+ ,ax} be a set of k-elements, P(S) be the set of all
subsets of Sy and By, be a Boolean algebra of subsets of S, = {a1,as, - -+ , ax},

which is a subset of P(Sy).



Example 2.4. Let S3 = {aj,a2,a3} be a set of 3-elements. Then,
IB%3 = {gbv {al}v {a2}7 {a3}7 {ala a2}a {ala Cl,g}, {a'27 CL3}, {ah a2, CL3}}
is a Boolean algebra of subsets of S3 = {ay, as,ar}. Then {ai,as}-{as} =0.

That is, all elements, except ¢ and S3, are zero-divisors. [ |

It is straightforward to see that a Boolean algebra By is a commutative
and antinegative semiring. If By consists of only the empty subset and M
then it is called a binary Boolean algebra, which we denote By = {0,1} . If By
is not binary Boolean algebra then it is called a nonbinary Boolean algebra.
Then all elements, except 0 and 1, are zero-divisors. Let M, ,(Bx) denote
the set of m xn matrices with entries from the Boolean algebra By. If m = n,

we use the notation M, (By) instead of M, ,,(By).

Throughout the thesis, we assume that m < n and B denotes the nonbi-
nary Boolean algebra, which contains at least 3 elements. The matrix [, is
the n x n identity matrix, J,, is the m x n matrix of all ones and O,,, ,, is the
m X n zero matrix. We omit the subscripts when the order is obvious from
the context and we write I, J and O, respectively. The matrix E; ;, which is
called a cell, denotes the matrix with exactly one nonzero entry, that being
)th

a one in the (i, 7)™ entry. A weighted cell is any nonzero scalar multiple of

a cell, that is, a; ; is a weighted cell for any 0 # o € B;. Let R; denote

the matrix whose ‘"

row is all ones and is zero elsewhere, and C; denote the
matrix whose j column is all ones and is zero elsewhere. We denote by |A|
the number of nonzero entries in the matrix A. We denote by Ali,j|r,s] the

2 x 2 submatrix of A which lies in the intersection of the i** and j** rows



with the 7" and st* columns.

Definition 2.5. ([4]) Let B; be a nonbinary Boolean algebra. An opera-
tor T : M, ,,(Bx) — M, ,(By) is called linear if it satisfies T(X +Y) =
T(X)+T(Y) and T'(aX) = oT(X) for all X, Y € M,,,(Bx) and o € By.

Definition 2.6. A line of a matrix A is a row or a column of the matrix A.

Definition 2.7. The matrix A € M, ,(By) is said to be of term rank k
(t(A) = k) if the least number of lines needed to include all nonzero elements
of A is equal to k. Let us denote by c(A) the least number of columns
needed to include all nonzero elements of A and by 7(A) the least number of

rows needed to include all nonzero elements of A.

Definition 2.8. The matrix A € M, ,,(By) is said to be of zero-term rank
k (z(A) = k) if the least number of lines needed to include all zero elements

of A is equal to k.

The following rank functions are usual in the semiring context.

Definition 2.9. The matrix A € M,,,(B) is said to be of factor rank k
(rank(A) = k) if there exist matrices B € M, x(Bx) and C' € My, (By)
such that A = BC' and k is the smallest positive integer such that such a
factorization exists. By definition the only matrix with factor rank equal to

0 is the zero matrix, O.



1 00 1 00
Example 2.10. Consider matrices A= |1 1 1| and B= |1 0 0] over
1 00 100
Br . Then we can easily show that t(A) = 2, 2(A) = 2, rank(A) =
2, t(B)=1, z(B)=2,and rank(B) = 1. n

If S is a subsemiring of a certain field then there is a usual rank function
p(A) for any matrix A € M, ,,(S). It is easy to see that these functions are
not equal in general but the inequality rank(A) > p(A) always holds.

The behaviour of the function p with respect to matrix multiplication
and addition is given by the following inequalities:

The rank-sum tnequalities:
| p(A) = p(B) |< p(A+ B) < p(A) + p(B);
Sylvester’s laws:
p(A) + p(B) —n < p(AB) < min{p(A), p(B)}
and the Frobenius inequality:
p(AB) + p(BC) < p(ABC) + p(B),

where A, B, C' are conformal matrices with coefficients from a field.
Arithmetic properties of term rank and zero-term rank of Boolean matri-

ces are restricted by the following list of inequalities established in [2]:
1. t(A+ B) <t(A)+t(B);

2. t(A+ B) > max{t(A),t(B)};



3. (AB) < min(c(A), (B))

4. t(AB) > t(A) + t(B) — m;

5. If S is a subsemiring of positive reals then p(AB)+p(BC) < t(ABC)+
t(B);

6. 2(A+ B) > 0;

7. 2(A+ B) < min{z(A), 2(B)};

8. 2(AB) > 0;

9. 2(AB) < z(A) + 2(B).

Below, we use the following notations in order to denote sets of Boolean

matrices that arise as extremal cases in the inequalities listed above:
Tsa(Bk) = {(X7 Y) € Mm,n(Bk)2|t(X + Y) - t(X) + t(Y)},

Ton(Br) = {(X,Y) € My (Bi)*[t(X +Y) = max(t(X), ¢(Y) };

Ty (By) = { (X, V) € My (B 2It(XY) = min{r(X), e(Y)} }:
Tna(Bi) = {(X,Y) € M, (By)*[t(XY) = t(X) + ¢(Y) — n};
Toui(Br) = {(X,Y, Z) € M,(B,)*[t(XY Z)+t(Y) = rank(XY)+rank(Y Z)};
Zsn(Br) = {(X,Y) € Mu(Br)*|2(X +Y) = min{z(X), 2(Y)} 1
Z..By) = {(X,Y) € M, n(Bg)?|2(X +Y) = 0};

Zpn:(Bi) = {(XY) € M (By)[2(XY) = 0}

Zyns(Bi) = {(X,Y) € M, (By)*[2(XY) = 2(X) + 2(Y)}.

8



Definition 2.11. We say an operator, T', preserves a set P if X € P implies
that T'(X) € P, or, if P is a set of ordered pairs, provided that (X,Y) € P
implies (T'(X),T(Y)) € P, or, if P is a set of ordered triples, provided that
(X,Y,Z) € Pimplies (T(X),T(Y), T(Z)) € P.

Definition 2.12. The matrix X oY denotes the Hadamard or Schur product,

i.e., the (7, ) entry of X oY is z; jy; ;.

Definition 2.13. An operator T strongly preserves the set P if X € P if and
only if T(X) € P, or, if P is a set of ordered pairs, provided that (X,Y) € P
if and only if (T'(X),T(Y)) € P, or, if P is a set of ordered triples, provided
that (X,Y, Z) € P if and only if (T'(X),T(Y),T(Z)) € P.

Definition 2.14. An operator T is called a (P, Q), B)-operator if there exist
permutation matrices P and @), and a matrix B with no zero entries, such
that T(X) = P(X o B)Q for all X € M,,,(S), or, if m = n, T(X) =
P(X o B)!Q for all X € M,,,,(F). A (P,Q, B)-operator is called a (P,Q)-

operator if B = J, the matrix of all ones.

It was shown in [1, 5, 7, 15] that linear preservers for extremal cases of
classical matrix inequalities over fields are types of (U, V')-operators where U
and V' are arbitrary invertible matrices. On the other side, linear preservers
for various rank functions over semirings have been the object of much study
during the last years, see for example [10, 11, 12, 24|, in particular term rank
and zero term rank were investigated in the last years, see for example [8].
The aim of the present paper is to classify linear operators that preserve pairs

of matrices that attain extreme cases in the inequalities 1 — 9.

9



Definition 2.15. We say that the matrix A dominates the matrix B if and
only if b; ; # 0 implies that a; ; # 0, and we write A > B or B < A.

Definition 2.16. If A and B are matrices and A > B we let A\ B denote

the matrix C' where

0 ifby; #0
C’i,j = a;

,;j otherwise

We begin with some basic results.

Theorem 2.17. Let T : M, ,(Bx) — M, ,,(Bx) be a linear operator. Then
the following conditions are equivalent:

(a) T is bijective;

(b) T is surjective;

(c) T is injective;

(d) there exists a permutation o on {(i,7)]i =1,2,...,m;7=1,2,...,n}

such that T(E; ;) = Eyqj) for all1 <i<m and 1 < j < n.

Proof. (a), (b) and (c) are equivalent since M, ,(By) is a finite set.
(d)=(b) For any D € M, (By), we may write
D=Y"> di,E
i=1 j=1
Since o is a permutation, there exist o~1(4, j) and
D'=3 > doijBoiiig)
i=1 j=1

such that

m n m n

T(D’) = T(Z Z dafl(i’j)Eo-fl(iJ‘)) = Z Z d0071(i7j)E0071(i7j)

i=1 j=1 i=1 j=1

10



m n

== Zdi’jEi’j == D

i=1 j=1

(a)=(d) We assume that T is bijective. Suppose that T'(E; ;) # Eyg ;)
where o be a permutation on {(7,7)|i = 1,2,...,m;j = 1,2,...,n}. Then
there exist some pairs (i,7j) and (r,s) such that T(E;;) = aFE. (o # 1)
or some pairs (7,7),(r,s) and (u,v) ((r,s) # (u,v)) such that T(E;;) =
aFE, s+ BEu, + Z(a # 0,8 # 0,Z € M,,,(By)), where the (r,s)" and
(u, )" entries of Z are zeros.

Case 1) Suppose that there exist some pairs (i,7) and (r,s) such that
T(E;;) = ab,s(o # 1). Since T is bijective, there exist X, , € M, ,(By)
such that T'(X, ;) = E, 5. Then oT(X, ) = aE, s =T(E;;), and T'(aX, ;) =
T(E; ;). Hence a X, ; = E; j, which contradicts the fact that a # 1.

Case 2) Suppose that there exist some pairs (i, j), (r,s) and (u,v) such
that T'(E; ;) = aE,.s + BE,, + Z(a # 0,6 # 0,Z € M,,,(Bx)), where
the (r,s)™ and (u,v)™ entries of Z are zeros. Since T is bijective, there
exist X, 5, Xy and Z' € M, ,(By) such that T'(X,5) = aFE, s, T(X,,) =
BEy, and T(Z') = Z. Thus T(E;;) = aE, s+ fE,, + Z = T(X,,) +
T(Xuw)+T(Z)=T(X, s+ Xuw+2'). S0 E;j = X, s+ Xy + Z', a contra-

diction. -

Remark 2.18. One can easily verify that if m = 1 or n = 1, then all
operators under consideration are (P, @, B)-operators and if m = n = 1,

then all operators under consideration are (P, PT, B)-operators.

11



Henceforth we will always assume that m,n > 2.

Lemma 2.19. Let T : M, ,(By) — M, ,,(By) be a linear operator which
maps a line to a line and T be defined by the rule T'(E; ;) = E, . j), where o
is a permutation on the set {(i,7)|i = 1,2,...,m;j5 =1,2,...,n}. Then T
be a (P, Q)-operator.

Proof.  Since no combination of p rows and ¢ columns can dominate .J for
any nonzero p and g with p+q = m, we have that either the image of each row
is a row and the image of each column is a column, or m = n and the image
of each row is a column and image of each column is a row. Thus there are
permutation matrices P and @ such that T(R;) < PR,Q, T(C;) < PC;Q
or, if m = n, T(R;) < P(R)TQ, T(C;) < P(C;)TQ. Since each nonzero
entry of a cell lies in the intersection of a row and a column and T maps cells
to cells, it follows that T'(E; ;) = PE; ;Q, or, if m =n, T(E;;) = P(E;;)’Q.

Lemma 2.20. [f T(X) = X o B for all X € M,,,,(By) and factor rank of
B is 1, then there exist diagonal matrices D and E such that T(X) = DXFE
for all X € M, n(By).

Proof. Since factor rank of B is 1, there exist vectorsd = [dy,da, ..., dn]T €
Mm1 and e = [eq,ez,...,e,] € My, such that B = de or bi; = d;e;.
Let D = diag{d,ds,...,d,} and E = diag{e,es,...,e,}. Now the (i,7)"

12



entry of T(X) is b; jx;; and the (i,7)" entry of DXE is d;x; je; = b;jx; ;.
Hence T'(X) = DXE. u

Example 2.21. Consider the linear operator 1" : M3 3(Bs) — Ms3(B3) de-
fined by T(X) = X o B for all X € Mj33(B3) with By = P({a,b,c}). Then
t(B) = 3 and b(B) = 1 but we show that 7" does not preserves the term rank

and the zero-term rank if B # J.

{a,b} {a,b,ct {a,b} {a} {0} {c}
For, let X = | {a,¢} {a,¢} {a,b} | and B = | {a} {b} {c}

{a}  {bc} {ab} {a} {b} {c}
Then t(X) = 3, but

{a} {b} O
T(X)=XoB=|{a} 0 0

{a} {0} 0
That is, t(T(X)) = t(X o B) = 2 # 3 =t(X). Thus t(B) = 3 but T does
not preserves the term rank since every nonzero nonunit entry of B is a
zero-divisor.
Moreover, z(T(X)) = z(X o B) = 2 # 0 =z(X). Thus z(B) = 0 but T
does not preserves the zero-term rank since every nonzero nonunit entry of

B is a zero-divisor. ]

13



3 Extremes Preservers of Term Rank over
Nonbinary Boolean Algebra

In this section, we characterize the linear operators that preserve the extreme
set of matrix pairs, which are driven from the inequalities of the term ranks
of matrices over nonbinary Boolean algebra.

We begin with a Lemma.

Lemma 3.1. Let By be a nonbinary Boolean algebra, and T : M, ,,(By) —

M, (Bg) be a (P,Q)-operator. Then T preserves all term ranks.

Proof.  Assume that T is a (P, Q)-operator. For any X € M,,,,(Bx), we
have

HT(X)) = H(PXQ) = t(X)

or if m = n,

tHT(X)) =t(PX'Q) = t(X") = t(X).

Hence any (P, Q)-operator preserves all term ranks. [ |

3.1 Characterization of linear operators
that preserve T,,(B;)

Recall that
T..(Br) ={(X,Y) € Mm,n(IB%k)zlt(X +Y)=tX)+tY)}.

We show that Ty, (Bs) is not an empty set.
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Example 3.2. Let By = P({a,b}) = {9, {a}, {b}, {a,b}}. Consider two ma-

trices X and Y over B,:

X = { {g} {“(’)b} ] and Y = [ {a?b} {2} ] .

Thus t(X) =t(Y) = 1 and

xev=| i G

has term rank 2. Thus (X,Y) € Ty, (B2). That is Ty, (B2) # ¢. u

Theorem 3.3. Let By be a nonbinary Boolean algebra, T : M, ,(Bg) —
M, (Bg) be a surjective linear map. Then T preserves the set Ty,(By) if
and only if T is a (P, Q)-operator, where P and Q) are permutation matrices

of appropriate sizes.

Proof. (<) Assume that T is a (P, Q)-operator. Then T preserves all term
ranks by Lemma 3.1. Therefore for any (X,Y) € T, (Bg), we have t(X +Y)
= t(X) + t(Y). Thus
t(T(X)+TY)) =t(T(X+Y)) =t(X+Y) =t(X) + t(Y) = t(T'(X)) +
t(T(Y)).
Hence (P, Q)-operator preserves the set Ty, (By).

(=) If T'is surjective, then by Theorem 2.17 we have that T'(E; ;) = Ey ;)

forall 2,7, 1 < i <m, 1 < j <n, where ¢ is a permutation on the set of

pairs (i, 7).
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Let us show that 7" maps lines to lines. Suppose that the images of two
cells are in the same line, but the cells are not, say F; ;, Ey; are the cells such
that t(E; ; + Ey;) =2 and t(T(E; j + Ey;)) = 1. Then (E; j, Ey;) € T (By)
but (T'(E;;), T(Ek;)) ¢ Tsa(Bg), a contradiction. Thus 7" maps lines to lines.
Thus by Lemma 2.19 T is a (P, Q)-operator where P and @) are permutation
matrices of appropriate sizes. [

Now we can improve Theorem 3.3 in the following way.

Theorem 3.4. Let By be a nonbinary Boolean algebra, T : M, ,(Bg) —
M, (Bg) be a linear map. Then T strongly preserves the set Ty, (By) if and
only if T is a (P, Q)-operator, where P and Q) are permutation matrices of

appropriate sizes.

Proof. (<) By Lemma 3.1, (P, Q)-operator preserves the term rank. Hence
it strongly preserves the set T,(By) as we see in the proof of Theorem 3.3.

(=) Suppose that T" strongly preserves T, (By) and By, is finite and an-
tinegative with identity 1. Then there exist positive integers o > (3 such that
a-1=3-1. Also in this case there is some power of T" which is idempotent,
say L =T and L? = L, see [11]. Tt is easy to see that L strongly preserves
Tsa(Br).

Note that if X € M,,,(By) and (X, X) € Ty, (By) then necessarily X =
O. Thus, if A # O, then (A, A) ¢ T4, (By) and hence (L(A), L(A)) ¢ Tsu(By)
since L strongly preserves Ty, (By). Thus L(A) # O.

Suppose that there exists ¢, 1 < i < m, such that L(R;) is not dominated

by R;. Then there is a pair of indexes (7, s) such that E, ; is not dominated
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by R; and L(R;) > E,,. Then (R;, E, ) € Ty, and L(R;) = aE, s + X with

Ty = 0.
Now,

L(BR; + (o — B)aE, ;) =

NOW7 (ﬁRza (Oé - 6)aE7",S> S

L(BR) + L((a — B)aF,)
L2(BR;) + L((a — B)aFyy)

L(6L<Rz)) + L((& - ﬂ)aEr,s>
L(B(aE, s+ X))+ L((a — B)ak, ;)
L(Bak, s+ BX)+ L((a — B)ak, )
L(BX) + L(BaBry) + L{(a — Bk,
L(BX)+ L(BaE, s + (o — B)aE, )
L(BX) + L(aaE, )

L(aX)+ L(caFE, )

L(a(X +aFE,y))

L(aL(R;))

L2(O./RZ‘)

L(3R,).

Tsa(Bk) but? L(ﬁRz) + L((Oé - ﬁ)aEr,s) =

L(BR; + (o — B)aE, ) = L(BR;) and hence, (L(BR;), L((ov — B)aE,s)) ¢

T, (B), a contradiction.

We have established that L(R;) < R; for all 7. Similarly, L(C;) < C; for

all j. By considering that F; ; is dominated by both R; and C; we have that

L(E;;) < E; ;. Since S is antinegative, we have that 7" also maps a cell to

a multiple of a cell, or |T'(E; ;)| = 1 for all 4,7, and T'(J) has all nonzero

entries.

So T induces a permutation, o, on the set of subscripts {1,2,---,m} x

1,2,--- .,n}. That is, T(E; ;) = b; ;E,¢; + for some scalars b; ;. But T" does
J o (isg) J

not preserve term rank if b; ; # 1 from Example 2.21. So T(E; ;) = Eu(;)-

Moreover we can show that T maps lines to lines by repeating the arguments
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used in the proof of Theorem 3.3. Therefore we obtain that 7" is a (P, Q)-

operator. [ |

3.2 Characterization of linear operators
that preserve Ty, (By)

Recall that
Tyn(Br) = {(X,Y) € M,,,,(Be)*[H(X +Y) = max(t(X), t(Y))}.
We show that T, (B5) is not an empty set.

Example 3.5. Let By = P({a,b}) = {9, {a}, {b}, {a,b}}. Consider two ma-

trices X and Y over B,:

X:{{? %ﬁ}]wdyz[{fw £}}

Thus t(X) =2, t(Y) =1 and

o= G

has term rank 2. Thus (X,Y) € Ty, (Bs). That is T4, (B2) # ¢. m

Theorem 3.6. Let By be a nonbinary Boolean algebra, T : M, ,(Bg) —
M, »(Bg) be a surjective linear map. Then T preserves the set T, (By) if
and only if T is a (P, Q)-operator, where P and Q) are permutation matrices

of appropriate sizes and elements.
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Proof. 1f T is surjective, then by Theorem 2.17 we have that T'(E; ;) = E, )
forall ,5, 1 < i < m, 1 < j < n, where ¢ is a permutation on the set of
pairs (i, 7).

Suppose that the images of two cells are not in the same line, but the
cells are, say E;;, F;; are the cells such that T'(E;;),T(E;;) are not in
the same line, ie., t(T(E;; + E;;)) = 2. Then (E;;, E;;) € Tsn(By) but
(T(E:;), T(FEi;)) ¢ Tsn(Bg), a contradiction. Thus 7! maps lines to lines.
By Lemma 2.19 it follows that T—! is a (P, Q)-operator where P and @ are
permutation matrices of appropriate sizes. Hence, T is also of this type.

Conversely, by Lemma 3.1, any (P, Q)-operator preserves the term rank.
Thus as we see in the proof of Theorem 3.3, any (P, Q))-operator preserves

the set T, (Bg). ]

3.3 Characterization of linear operators
that preserve T,,,(By)

Recall that
T,n(Br) = {(X,Y) € M, (B;)?[t(XY) = min(r(X), c(Y))}.
We show that T,,,(B2) is not an empty set.

Example 3.7. Let By = P({a,b}) = {¢,{a}, {b},{a,b}}. Consider two ma-

trices X and Y over Bs:

X:{{g} {a(’)b}}andY:{{?’b(;} 8}
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Thus r(X) =1, ¢(Y) =1 and

Xy:{{a}g{b} 8] :{{a,ob} 8}

has term rank 1. Thus (X,Y) € T,,,(B2). That is T,,,,(B2) # ¢. u

Theorem 3.8. Let By be a nonbinary Boolean algebra, T : M, ,(Bg) —
M, »(Bg) be a surjective linear map. Then T preserves the set T, (By) if
and only if T is a nontransposing (P, P*)-operator, where P is a permutation

matriz.

Proof. (<) By similar proof of the Lemma 3.1, it is easy to see that any
nontransposing (P, P')-operator preserves t(A), ¢(A) and r(A). Therefore
any nontransposing (P, P')-operator preserves the set T, (By).

(=) Assume that T preserves the set T,,,(By). Since T is surjective, by
Theorem 2.17 one has that T'(E; ;) = Eu ).

Let us show that 7' transforms lines to lines. For all £ one has that

(Ei,j7 Ej,k) < Tmn(Bk> since
t(EijEj) = t(Ei) = 1 = min{r(Ei;), c(Ejx)}.

Thus (T'(E;;), T(Ejx)) € Tpmn(By) by assumption, so t(T'(E;;)T(Ejx)) =
min{r(T(E;;)),c(T(E;x))} = 1since T transforms cells to cells. But T'(E; ;)T (E;x) =
EoijyEs(jk) so that E,ry is in the same row as E, ;) for every k. That
is, T" maps rows to rows. Similarly 7" maps columns to columns. That is,

T(X) = PXQ for some permutation matrices P and Q.
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Therefore, T(E; ;) = Eu;),-(j) where o is the permutation corresponding
to P and 7 is the permutation corresponding to Q. But, (Ey;, E;1) €
Ty (Br). Thus (Esq)ra), Eo@),rq)) € Tmn(Bi) by assumption, and hence
7 = 0. This implies that Q" = P and hence T is a nontransposing (P, P*)-

operator. [ |

3.4 Characterization of linear operators
that preserve T,,,(By)

Recall that
Tya(Br) = {(X, ) € M, (By)2Jt(XY) = H(X) + £(Y) — n}.
We show that T,,,(B2) is not an empty set.

Example 3.9. Let By = P({a,b}) = {9, {a}, {b}, {a,b}}. Consider two ma-

trices X and Y over B,:

<= o Jeer = )

Thus t(X) =2, t(Y) =2 and

o[ ]

has term rank 2. Thus (X,Y) € T,,,(B3). That is T,,,(B2) # ¢. [
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To study linear preservers of the equality in the multiplicative low bound

the following reduction is vital:

Lemma 3.10. Let By be a nonbinary Boolean algebra, and T : M, ,(Bg) —
M, »(Bg) preserve the set Tp,,(By). Then T preserves the set of matrices

with term rank n.

Proof. Let A =0 and let B be any matrix of term rank n over B;. Then,
t(A) = 0, t(AB) = 0. Hence, t(AB) = t(A) + t(B) — n. It follows that
t(T(A)T(B)) = t(T(A)) + t(T'(B)) —n. That is 0 = 0+ t(T(B)) — n. It
follows that ¢(7'(B)) = n. That is, T" preserves term rank n. u

Lemma 3.11. Let By, be a nonbinary Boolean algebra, and T : M, ,(By) —
M, »(Bg) be a surjective linear map. Then T preserves the set of matrices
with term rank n if and only if T is a (P,Q)-operator where P and @ are

permutation matrices of appropriate sizes.

Proof. (<) By Lemma 3.1, any (P, Q))-operator preserves all the term ranks.
Thus T preserves the set of matrices with term rank n.

(=) By Theorem 2.17 one has that T'(E; ;) = E,q ) for alli,7, 1 <4,j <
n, where o is a permutation on the set of pairs of indexes. Let us show that
T~ maps lines to lines. Assume that the pre-image of a row is not dominated
by any line. Then there are indexes i, k,[ such that T~*(E; and T~'(E;,)
are not in one line. That is, there is indexes p,r, q, s, p # r, ¢ # s, such that
T Y Eix+E) <E.s+E,, and T '(E;; + E;;) is not dominated by each
of the cells E, 5, E,,. By extending E, s + E, , to a permutation matrix by

adding n — 2 cells, we find a matrix A such that ¢t(A) = n. Since T preserves

22



term rank n by assumption, one has that ¢(7'(A)) = n. On the other hand,
T(A) is dominated by (n —1) lines since T'(E, ;) = E; and T(E, ,) = E;, lie
in one row. This is a contradiction with ¢(7(A)) = n. Thus the pre-image of
every row is a row or a column. Similarly, the pre-image of every column is

a row or a column. It follows by Lemma 2.19 that T is a (P, Q))-operator. m

Theorem 3.12. Let By, be a nonbinary Boolean algebra, T : M, ,,(B) —
M, (Bg) be a surjective linear operator. Then T preserves the set T, (Bg) if
and only if T is a nontransposing (P, P')-operator, where P is a permutation

matriz.

Proof. (<) Let us prove that a nontransposing (P, P')-operator preserve
the set T,,.(Bx). By Lemma 3.1 any (P, Q)-operator preserves all the term
ranks. Thus the right-hand side of the equality determining T,,,(By) is
not changed under the mapping by a nontransposing (P, P*)-operator T and
the left-hand side of the equality also is not changed since ¢t(T'(X)T(Y)) =
t(PXP'PY P') =t(PXY P") = t(XY).

(=) Assume that T preserves the set T,,,(B;). Then by Lemma 3.10
T preserves the set of matrices with term rank n. Since T is surjective, by
applying Lemma 3.11 we obtain that 7" is a (P, Q)-operator.

Now, let us see that transposition transformation does not preserve the
set Ty0(Bg). Indeed, the pair (X = E;;,Y =1 — Ej;) € T,,,(By) since
t(XY)=t0)=0=1+(n—-1)—n =tX) +t(Y) — n. However, (X' =
E;i,Yi=1—FE;;) ¢ T,a(By) since t(X'Y") =t(E;;) =1#0.

It remains to prove that PQ) = I the identity matrix. Let us assume that

a nontransposing (P, Q))-operator preserves the set T,,,(Bg). Thus one has
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that t(XY) = t(PXQPY Q) = t((XQPY) for all pairs (X,Y) € T,..(By).
The matrix QP is permutation matrix as a product of two permutation
matrices. Assume that QP permutes ¢’th and j’th columns of X. Let X =

J#i
tHX)+tY)—n, ie, (X,Y) € Tpu(Bg). On the other side, XQP = E; ;.

Thus XQPY = E;; # 0. Hence, (T'(X),T(Y)) = (PXQ,PYQ) ¢ T,,.(By).
This contradiction concludes that QP = I and hence T is a nontransposing

(P, P')-operator. |

3.5 Characterization of linear operators
that preserve T, (B;)

Recall that
T, (Br) = {(X,Y, Z2) € M,(Bp)*[t(XY Z) +t(Y) = t(XY) + (Y Z)}.

We show that T,,;(B2) is not an empty set.

Example 3.13. Let By = P({a,b}) = {¢,{a}, {b},{a,b}}. Consider three

matrices X, Y and Z over By:

o= [y b= [T R eaz= [0 G ]

Thus t¢(XYZ) = 0, t¢(Y) = 1, t{(XY) = 1 and t¢(YZ) = 0. Thus
(X,Y,Z) € Tpi(Bs). That is T (Bs) £ ¢. -
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Theorem 3.14. Let By be a nonbinary Boolean algebra, and T : M, ,(Bg) —
M, »(Bg) be a surjective linear map. Then T preserves the set T, (By) if and
only if T is a nontransposing (P, P')-operator where P and Q are permutation

matrices of appropriate sizes.

Proof. (<) By Lemma 3.1, any (P, Q)-operator preserves all the term
ranks. Thus as we see in the proof of Theorem 3.3, any nontransposing
(P, P")-operator preserves the set T,,:(Bg).

(=) By Theorem 2.17 one has that T'(E; ;) = E,q ) for all 4,7, 1 <4d,j <
n, where ¢ is a permutation on the set of pairs of indices.

It can be directly checked that (E; ;, Ejx, Ex;) € Tyu(Bg) for all I and for
arbitrary fixed i, j, k. Thus

HT(Ei)T(Ejnk) + HT(Ejr)T (Eg)) (1)
= UT(Ei;) T(Ejr)T (Erg)) + UT(Ej))-

Let us denote T'(E; ;) = E, 4, T(Ejx) = E, s, and T(Ey,;) = E,,. Since
t(E.s) =1 # 0, it follows from the equality (1) that either ¢ = r or s = u
or both. If for all [ = 1,...,n it holds that ¢ = r or for all l = 1,...,n
it holds that s = w then it is easy to see that T" maps lines to lines. As-
sume that there exists an index [ such that r # ¢. Thus by (1) s = w.
Hence, for arbitrary m, 1 < m < n one has that (E; ;, E; i, Exm) € Tpe(Bg).
Denote, T(Ey,,) = E,.. Using the previous notations, one obtains that
(Epgs Ers, Ewz) € Trt(Byg). Since ¢ # r it follows that w = s and hence T
maps kth row to sth row. Thus in this case we obtain that rows are trans-

formed to rows. By the same arguments with the first matrix it is easy to see
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that columns are transformed to columns. In the other case s # v and g = r
one obtains that rows are transformed to columns and columns to rows.

By Lemma 2.19 it follows that there exists a permutation matrices P and
@ such that T(X) = PXQ for all X € M,,(B) or T(X) = PX'Q.

In order to show that the transposition transformation does not preserve
T,.:(By) it suffices to note that (E;;, 1,1 — E;;) € T,,;(By) and (E;;, 1,1 —
Ej;) & Tot(By).

In order to show that @ = P! it suffices to note that(E;;, E;;, E;;) €
T,.:(By). Denote that T'(E; ;) = E,z)-(j) where o is the permutation cor-
responding to P and 7 is the permutation corresponding to Q°. Therefore,
(Eoti)r(j)> Lo()r)s Eo)r)) € Tme(Br) by assumption, and hence 7 = o.
This implies that Q' = P and hence T is a nontransposing (P, P')-operator.

26



4 Extremes Preservers of Zero-Term Rank
over Nonbinary Boolean Algebra

In this section, we characterize the linear operators that preserve the extreme
set of matrix pairs, which are driven from the inequalities of the zero-term
ranks of matrices over nonbinary Boolean algebra.

We begin with a Lemma.

Lemma 4.1. Let By be a nonbinary Boolean algebra, and T : M, ,,(By) —

M, (Bg) be a (P, Q)-operator. Then T preserves all zero-term ranks.

Proof.  Assume that T is a (P, Q)-operator. For any X € M,,,,(Bx), we

have
A(T(X)) = 2(PXQ) = (X)
or if m=n,
2(T(X)) = 2(PX'Q) = 2(X) = 2(X).
Hence any (P, Q)-operator preserves all zero-term ranks. [ ]

4.1 Characterization of linear operators that preserve

Recall that
Zy(Br) = {(X,Y) € M,,,(Bg)?[2(X + V) = min{2(X), 2(Y)}}.

We show that Zg,(Bs) is not an empty set.
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Example 4.2. Let By = P({a,b}) = {¢,{a}, {b}, {a,b}}. Consider two ma-

trices X and Y over Bs:
v { (e (o1 ] oy l CORL ] |

Thus z(X) = 2(Y) =1 and

iy o [ {a(,)b} {a(,)b} }

has zero-term rank 1. Thus (X,Y) € Z,(Bs). That is Z,,(B2) # ¢. =

Theorem 4.3. Let By be a nonbinary Boolean algebra, and T : M, ,(By) —
M, (Bg) be a surjective linear map. Then T preserves the set Zg,(By) if
and only if T is a (P, Q)-operator where P and @ are permutation matrices

of appropriate sizes.

Proof. (=) By Theorem 2.17 we have that T'(E;;) = E,q; ) for all 4,7,
1 <i<m,1<j<n, where o is a permutation on the set of pairs (i, j).
Let us show that T" maps lines to lines. Suppose that the images of
two cells are not in the same line, but the cells are, say FE;;, ;) are the
cells such that T'(E;;),T(E; ) are not in the same line. Then one has that
A((J—Eij—Eip)+Eig) =1 = 2(J— Eij— Eip), ice. (J—E;;— Eig, Eiy) €
Zy,(Bg), as far as 2(T(J — E;j — Ei) + T(Eix)) =1 < 2 = min{z(T(J —
Ei;—Eix),2(T(Eix)} ie. (T(J—E;;—Eix),T(Eix)) ¢ Zsn(By), a con-

tradiction. Thus T maps lines to lines.
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By Lemma 2.19 it follows that 7" is a (P, Q)-operator where P and @) are
permutation matrices of appropriate sizes.

(<) Assume that T"is a (P, QQ)-operator. Then T preserves all zero-term
ranks by Lemma 4.1. Therefore for any (X,Y) € Z,(By), we have z(X +
Y) = min{z(X), 2(Y)}. Thus 2(T(X)+T(Y)) = 2(T'(X+Y)) = 2(X+Y) =
min{z(X), 2(Y)} = min{z(T(X), 2(T(Y)}. Hence (P, Q))-operator preserves
the set Z, (By). m

4.2 Characterization of linear operators that preserve
Recall that
Z,.(By) = {(X,Y) € M,,,..(B:)?[2(X +Y) = 0}.
We show that Z;,(Bs) is not an empty set.

Example 4.4. Let By = P({a,b}) = {9, {a}, {b}, {a,b}}. Consider two ma-

trices X and Y over B,:

X = { {3} {aéb} ] and Y = { {a?b} {2} ] .

Thus z(X) = 2z(Y) =1 but

A= [ o oy ]

has zero-term rank 0. Thus (X,Y) € Z,,(By). That is Zs.(Bs) # ¢. =
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Theorem 4.5. Let By be a nonbinary Boolean algebra, and T : M, ,(Bg) —
M, »(Bg) be a linear map. Then T preserves the set Z,,(By) if and only if

T is a permutation on the set of all cells.

Proof. (<) Assume that 7" is a permutation on the set of all cells. That is,
T(E;j) = Eyq, ) foralli,5, 1 <i<m,1<j<n, where o is a permutation
on the set of pairs (i, j).

Consider (A, B) € Zs,(By). Then z(A+ B) = 0. From antinegativity it
follows that sets of zero cells in A and B are disjoint. Thus the same holds
for T(A) and T'(B) since o is a permutation. Hence in (T(A) + T(B)) there
is no zero elements and hence (T(A),T(B)) € Zs.(By). Thus such a linear
operator T preserve the set Z, (By).

(=) Assume that 7" preserves the set Zg,(By). If T" is not a permutation
on the set of all cells, then there is two distinct cells E; ;, Ej; such that
T(E;;) = T(Eng) = E,q Then z(J) = 0 but 2(7(J)) > 1, and hence
(J,0) € Zy.(By) but (T'(J),T(0)) ¢ Zs.(By), a contradiction. u

4.3 Characterization of linear operators that preserve

Zmz (Bk)

Recall that
Zno(B) = {(X,Y) € M, (B,)22(XY) = 0}.

We show that Z,,,(Bs) is not an empty set.
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Example 4.6. Let By = P({a,b}) = {9, {a}, {b}, {a,b}}. Consider two ma-

trices X and Y over B,:

RO R S

Then XY = [ ?bbi EZ; } , and hence z(XY') = 0. n

Theorem 4.7. Let By be a nonbinary Boolean algebra, and T : M, (Bg) —
M, (Bx) be a linear surjective map. Then T preserves the set Z,,(By) if
and only if T is a nontransposing (P, P')-operator, where P is a permutation

matrix.

Proof. (<) By Lemma 4.1, nontransposing (P, P')-operators preserve all
the zero-term ranks. Let (X,Y) € Z,,.(Bg). Then 2(XY) = 0 and hence
XY has no zero entries. Since T is a nontransposing (P, P*)-operator, one
has T(X)T(Y) = PXP'PY P' = PXY P!, which has no zero entries. Thus
(T'(X), T(Y)) € Zy,.(Bg). Hence T preserves the set Z,,,(By).

(=) By Theorem 2.17 we have that T'(E; ;) = Ey(; ;) foralli, j, 1 <i <m,
1 < j < n, where o is a permutation on the set of pairs (i, j).

Let us show that T" maps lines to lines. Suppose that the images of
two cells are in the same line, but the cells are not, say F;;, ;) are the
cells such that T-(E; ;), T~ (E; ) are not in the same line. Let us consider
A =T71(J\R;). Thus there are no zero rows of A since T is a permutation on
the set of cells and not all elements of :’th row lie in one row by the choice of i.

Hence AJ does not have zero elements by the antinegativity and z(AJ) = 0.
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Thus (A, J) € Z,,.(Bg) as far as (T'(A), T(J)) = (J\ R, T(J)) ¢ Zy,.(Bg), a
contradiction. Thus 7! maps lines to lines. Hence T" maps lines to lines.

By Lemma 2.19 it follows that 7" is a (P, Q)-operator where P and () are
permutation matrices of appropriate sizes.

In order to prove that transposition operator does not preserve Z,,.(By) it
suffices to take the pair (C1, Ry). That is, (C1, Ry) € Z,.(By) but (C}, RY)
(By,C1) ¢ Zin:(Br).

Now, let us show that @Q = P!. Assume in the contrary that QP # I.

Thus there exists indexes 7, j such that QP transforms ¢’th column into j’th
column. In this case we take matrices A = J\ (Ev1 + ... + E1,) + B,
B = J\ E;,. Thus AB has no zero elements, i.e., z(AB) = 0. However,
the (1,1)th element of QT(A)T(B)P is zero, i.e., z(T(A)T(B)) # 0. This
contradiction concludes that @ = P*. Thus T is a nontransposing (P, P?)-

operator. [ |

4.4 Characterization of linear operators that preserve
st(Bk’)

Recall that
Zpns(Br) = {(X,Y) € M, (By)?|2(XY) = 2(X) + 2(Y)}.
We show that Z,,s(B5) is not an empty set.

Example 4.8. Let By = P({a,b}) = {9, {a}, {b}, {a,b}}. Consider two ma-

trices X and Y over Bs:

32



[ - [ 8]

Then XY = { {8} % } and hence (X,Y) € Zy,s(By). =
Theorem 4.9. Let By, be a nonbinary Boolean algebra, and T : M, (By) —
M, (Bx) be a linear surjective map. Then T preserves the set Zi,s(By) if
and only if T is a nontransposing (P, P')-operator, where P and Q are

permutation matrices of order n.

Proof. (<) By Lemma 4.1, nontransposing (P, P')-operators preserve all the
zero-term ranks. Let (X,Y) € Z,,s(Bg). Then 2(XY) = 2(X) + 2(Y). Since
T is a nontransposing (P, P*)-operator, one has T(X)T'(Y) = PXP'PY P! =
PXY P!, which has the same zero-term rank as z(XY). And z(T'(X)) +
2(T(Y)) = 2(X) 4+ 2(Y). Thus (T(X), T(Y)) € Z,s(Bx). Hence T preserves
the set Z,,s(By).

(=) By Theorem 2.17 we have that T'(E; ;) = Ey(; ;) foralli, j, 1 <i <m,
1 < j < n, where ¢ is a permutation on the set of pairs (i, j).

Let us show that T" maps lines to lines. Suppose that the images of two
cells are not in the same line, but the cells are, say F; ;, E; i, are the cells such

that T'(E; ;), T(E; ) are not in the same line. Note that
2(J\R)J)=2(J\R)=1=14+0=2(J\ R;) + 2(J).

Thus (J\ R, J) € Zp,s(Bg). On the other hand, T'(J) = J and T'(J\ R;) has
at least two lines containing zero entries, so one has z(T'(J\ R;)) 4+ 2(T(J)) >

2. But T'(J \ R;) has no rows containing only zero entries and 7'(J) = J, so
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one has z(T'(J \ R;)T(J)) = z(J) = 0. Hence (T'(J\ R;),T(J)) ¢ Zps(Bx).
This contradiction shows that T" maps lines to lines.

By Lemma 2.19 it follows that 7" is a (P, Q))-operator where P and () are
permutation matrices of appropriate sizes.

In order to prove that transposition operator does not preserve Z,,s(By)
it suffices to take the pair of matrices X = J\ Ry, Y = J\ C] since (X,Y) €
Zyns(By) but (X, Y") ¢ Zins(By).

Now, let us show that @ = P'. Assume in the contrary that QP # I.
Thus there exist indexes ¢, 7 such that QP transforms i’th column into j’th
column. In this case we take matrices A = J\ C;, B = R;. Thus AB =0
and hence z(AB) =n. And z(A) + Z(B) = n. Therefore (A, B) € Z,s(B).
However, T(A)T'(B) = PAQPBQ = P(J \ C;)R,Q = PJ(Q) = J has zero-
term rank 0 while z2(T'(A))+2(T(B)) = 2(PAQ)+2(PBQ) = z(A)+2(B) =
n. Therefore (T(A),T(B)) ¢ Zus(By). This contradiction concludes that

Q = P'. Thus T is a nontransposing (P, P')-operator. [
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5 Regular matrices preservers over (non)binary
Boolean Algebra

In this section, we study some properties of regular matrices over nonbinary
Boolean algebras Bj,. We also determine the linear operators on M, (By) that

strongly preserve regular matrices.

5.1 Some basic properties of regular matrices

A matrix X in M, (By) is said to be invertible if there is a matrix Y in M, (By)
such that XY =YX =1,.

In 1952, Luce [21] showed a matrix A in M,,(B;) possesses a two-sided
inverse if and only if A is an orthogonal matrix in the sense that AA! = I,,,
and that, in this case, A! is a two-sided inverse of A. In 1963, Rutherford
[27] showed if a matrix A in M,,(B;) possesses a one-sided inverse, then the
inverse is also a two-sided inverse. Furthermore such an inverse, if it exists, is
unique and is AT, Also, it is well known that the n x n permutation matrices
are the only n x n invertible matrices over the binary Boolean algebra.

Let oy ={a1}, 0, = {a,} for p = 1,2, ..., k. For any matrix A = [q; ;] in
M, (Bg), the p'* constituent, A,, of A is the matrix in M,,(B;) whose (i, j)™"
entry is 1 if and only if a;; 2 0,. Via the constituents, A can be written
uniquely as A = i o,A, which is called the canonical form of A. It follows
from the uniquerlfgs.ls of the decomposition and the fact that the singletons

are mutually orthogonal idempotents that for all matrices A, B, C' € M, (By,)

and for all a € B,
(A+B),=A,+B, (BC),=B,C, and (aA),=a,4, (5.1.1)
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forallp=1,... k.

Lemma 5.1. (/20]) For any matriz A in M, (Bg) with k > 1, A is invertible
if and only if its all constituents are permutation matrices. In particular, if

A is invertible, then A~' = AT

The notion of generalized inverse of an arbitrary matrix apparently orig-
inated in the work of Moore [23], and the generalized inverses have applica-
tions in network and switching theory and information theory ([14]).

Let A be a matrix in M,(B;). Consider a matrix X € M, (By) in the
equation

AXA = A (5.1.2)

If (5.1.2) has a solution X € M, (By), then X is called a generalized inverse
of A. Furthermore A is called regular if there is a solution of (5.1.2).

The equation (5.1.2) has been studied by several authors ([17], [23], [25],
[26]). Rao and Rao [26] characterized all regular matrices in M,,(B;). Also
Plemmons [25] published algorithms for computing generalized inverses of
regular matrices in M,,(B;) under certain conditions.

Matrices J and O in M, (By) are regular because JGJ = J and OGO = O
for all cells G in M, (By). Therefore in general, a solution of (5.1.2), although
it exists, is not necessarily unique. Furthermore each cell E in M, (By) is

regular because FE'FE = E.

Proposition 5.2. Let A be a matriz in M,,(By). If U and V' are invertible

matrices in M, (By), then the following are equivalent:
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(i) A is regular;
(ii) UAV is regular;
(iii) AT is regular.

Proof. The proof is an easy exercise. ]

Also we can easily show that

A is regular if and only if {A is regular (5.1.3)

5
O B
for all matrices A € M, (By) and for all regular matrices B € M,,,(By). In
particular, all idempotent matrices in M, (By) are regular.

For any zero-one matrices A = [a; ;] and B = [b; ;] in M, (By,), we define
A\ B to be the zero-one matrix C' = [¢;;] such that ¢;; = 1 if and only if
a;; = 1 and b; ; = 0 for all 7 and j.

Define an upper triangular matrix A,, in M, (By) by

[1 1 1 0]

n 1 1 1

An = [)\Z,j] = (Z EZ,]) \El,n — : :
<] 1 1
- 1_

Then the following Lemma shows that A,, is not regular for n > 3.

Lemma 5.3. A, is reqular in M, (By) if and only if n < 2.

Proof. For n <2, clearly A, is regular because A, I, A, = A,,.
Conversely, assume that A,, is regular for some n > 3. Then there is a

nonzero matrix B = [b; ;] in ML, (Bj) such that A,, = A, BA,,. From 0 =\, ,, =

37



n—1 n
> bi;, we obtain all entries of the second column of B are zero except for
1j=2

1=

n
the entry by, 2. From 0 = Aoy = Y b; 1, we have all entries of the first column
i=2

n 2
of B are zero except for by;. Also, from 0 = A\32 = > > b;j, we obtain
i=3j=1

b2 = 0. If we combine these three results, we conclude all entries of the first
n 2
two columns are zero except for by ;. But we have 1 = Xgo = > > b;; =0,
=2 j=1
a contradiction. Hence A,, is not regular for all n > 3. ]
1 10
In particular, A3 = |0 1 1| is not regular in M3(Bg). Let
0 01
As O
0[5 9 514

for all n > 3. Then ®,, is not regular in M, (By) by (5.1.3).
Note that for a matrix A = [a;;] in M, (By), the p™* constituent, A,, of A

is the matrix in M,,(B;) whose (7, j)™ entry is 1 if and only if a;; 2 o,.

Example 5.4. Let k£ > 2. Consider the matrix

1 01 0
A= 10 o7 o EMg(Bk).
0 O 01

Then A; = Aj is not regular in M3(B,), while A, = E\ ; is regular in M3(B,)
for all p = 2,3,..., k. The below Theorem shows that A is not regular in
M;(Bg). =

Theorem 5.5. Let A be a matriz in M,,(By). Then A is regular in M, (By)

if and only if its all constituents are reqular in M,,(By).
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Proof. 1f A is regular in M, (By), then all constituents of A are regular in
M, (By) by (5.1.1).

Conversely, assume that each constituent A, of A is regular in M, (B;)
forall p=1,..., k. Then there are matrices Gy, ..., Gy in M,,(B;) such that
AGpA, = Ay forallp=1,... k. If G = i op,Gp, then we can easily show
that AGA = A and hence A is regular in ﬁ:(Bk) ]

Theorem 5.5 shows that the regularity of a matrix A in M, (By) depends
only on the regularities of its all constituents in M, (B;). Henceforth we
suffice to consider properties of regular matrices in M,,(B;).

The Boolean factor rank([9]) of a nonzero matrix A € M, (By) is defined
as the least integer r for which there are Boolean matrices B and C' of orders
n x 1 and r X n, respectively such that A = BC. We denote rank(A) as b(A)
for any A € M, (By). The rank of a zero matrix is zero. Also we can easily

obtain that
0<b(A)<n and b(AB) < min{b(A),b(B)} (5.1.5)

for all A, B € M, (By).

Let A= [a; ay -+ a,] be a matrix in M, (By), where a; denotes the ;"
column of A for all j = 1,...,n. Then the column space of A is the set
{ Yoasa;|a; € IB%k}, and denoted by < A >: the row space of A is < AT >.

j=1

For a matrix A € M, (By) with b(A) = r, A is said to be space decom-
posable if there are matrices B and C' of orders n x r and r X n, respectively

such that A = BC, < A >=< B > and < AT >=< C7T >.
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Theorem 5.6. (/26]) A is reqular in M,,(B1) if and only if A is space de-

composable.

Let A be a matrix in M,,(By). By Theorem 5.5 and 5.6, A is regular in
ML, (By) if and only if its all constituents are space decomposable in M., (B;).

Lemma 5.7. If A is a matriz in M, (B) with b(A) < 2, then A is reqular.

Proof. 1f b(A) = 0, then A = O is clearly regular. If b(A) = 1, then there

J O
o O] , and hence

PAQ is regular by (5.1.3). It follows from Proposition 5.2 that A is regular.

exist permutation matrices P and () such that PAQ = {

Suppose b(A) = 2. Then there are matrices B = [b; by and C' =
[c;  co]T of orders n x 2 and 2 x n, respectively such that A = BC, where b
and by are distinct nonzero columns of B, and ¢; and ¢, are distinct nonzero
columns of CT. Then we can easily show that all columns of A are of the
forms 0, by, by and by + by so that < A >=< B >. Similarly, all columns of
AT are of the forms 0, ¢y, ¢y and ¢; 4 ¢4 so that < AT >=< CT >. Therefore
A is space decomposable and hence A is regular by Theorem 5.6. ]

For matrices A = [a; ;] and B = [b; ;] in M, (By), we say B dominates A
(written B > A or A < B) if b;; = 0 implies a;; = 0 for all ¢ and j. This
provides a reflexive and transitive relation on M, (By).

The number of nonzero entries of a matrix A in M,,(By) is denoted by

|A|. The number of elements in a set S is also denoted by [S].

Corollary 5.8. Let A be a nonzero matriz in M, (B,), where n > 3.
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(i) If |A| < 4, then A is regular;

(i) If |A| <2, there is a matriz B such that |A+ B| =5 and A+ B is not

reqular;

(iii) If |A| = 3 and b(A) = 2 or 3, there is a matriz C with |C| = 2 such
that A + C is not regular;

(iv) If |A| = 5 and A has a row or a column that has at least 3 nonzero

entries, then A is reqular.

Proof. (i) By Lemma 5.7, we lose no generality in assuming that b(A) > 3
so that b(A) = 3 or 4. Consider the matrix X = {é g] in M,,11(By).
Since |A| < 4 and b(A) = 3 or 4, we can easily show that there are per-
mutation matrices P and () of orders n + 1 such that PXQ = P(; g} for
some idempotent matrix Y in My(B;) with |Y| = 3 or 4. By (5.1.3 ) and
Proposition 5.2, X is regular and hence A is regular by (5.1.3).

(ii) If | A| < 2, we can easily show that there are permutation matrices P
and @ such that PAQ < ®,,. Let B’ = ¢,,\ PAQ. Then we have PAQ+ B’ =
®,, so that A+ PTB'QT = PT®,QT is not regular by Proposition 5.2. If we
let B = PTB'QT, then we have |A + B| =5 and A + B is not regular.

(iii) Similar to (ii).

(iv) If |A] = 5 and A has a row or a column that has at least 3 nonzero

entries, then we can easily show that b(A) < 3. By Lemma 5.7, it suffices

to consider b(A) = 3. Then A has either a row or a column that has just 3
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nonzero entries. Suppose that a row of A has just 3 nonzero entries. Since

b(A) = 3, there are permutation matrices P and @) such that
PAQ =FEy 1+ Eio+ Eig+ Ey; + Es

for some 4,5 € {1,...,n} with i < j. If j > 4, then PAQ is regular by the
above result (i) and (5.1.4), and hence A is regular by Proposition 5.2. If

1 < i < j < 3, then there are permutation matrices P’ and @’ such that

D O 1 1 1
P'PAQQ = [O O] , where D = |0 1 0. We can easily show that D is
0 01

idempotent in Mj3(B;), and hence D is regular. It follows from (5.1.3) and
Proposition 5.2 that A is regular.

If a column of A has just 3 nonzero entries, a parallel argument shows
that A is regular. ]

Linearity of operators on M, (By) is defined as for vector spaces over fields.
A linear operator on M, (By) is completely determined by its behavior on the
set of cells in M, (By).

An operator T on M, (By) is said to be singular if T(X) = O for some
nonzero matrix X € M, (By); Otherwise 1" is nonsingular.

An operator T' on M, (By)
(1) preserve regularity if T(A) is regular whenever A is regular in M, (By) ;

(2) strongly preserve regularity provided that T'(A) is regular if and only if
A is regular in M, (By,).
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Example 5.9. Let A be any regular matrix in M, (By), where at least one
entry of A is 1. Define an operator 7" on M, (By) by
T(X) = (Z > xj> A
i=1 j=1
for all X = [z;;] € M, (B). Then we can easily show that 7" is nonsingular
and 7' is a linear operator that preserves regularity. But 7" does not preserve

any matrix that is not regular in M, (By). u

Thus, we are interested in linear operators on M, (By) that strongly pre-

serve regularity.

Lemma 5.10. Let n > 3. If T is a linear operator on M, (B) that strongly

preserves reqularity, then T is nonsingular.

Proof. 1f T(X) = O for some nonzero matrix X in M, (B,), then we have
T(E) = O for all cells E < X. By Corollary 5.8(ii), there is a matrix B such
that |B| = 4 and F 4 B is not regular, while B is regular by Corollary 5.8(i).
Nevertheless, T(E 4+ B) = T(B), a contradiction to the fact that T strongly
preserves regularity. Hence T'(X) # O for all nonzero matrix X in M,,(B;).
Therefore 7' is nonsingular. ]

If n < 2, then all matrices in M,,(B;) are regular by (5.1.5) and Lemma 5.7.
Therefore all matrices in M, (Bg) are also regular by Theorem 5.5. This

proves:

Theorem 5.11. If n < 2, then all operators on M, (By) strongly preserve

reqularity.
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5.2 Characterization of linear operators that strongly
preserve regular matrices over the binary Boolean
algebra

In this section we have characterizations of the linear operators that strongly
preserve regular matrices over the binary Boolean algebra B;.

As shown in Theorem 5.11, each operator 7" on M, (B, ) strongly preserves
regularity if n < 2. Thus in the followings, unless otherwise stated, we assume
that T is a linear operator on M, (B;) that strongly preserves regularity for
n > 3.

The following lemma and proposition are necessary to prove the main

Theorem.

Lemma 5.12. Let A be a matriz in M, (B,) with |A| = k and b(A) = k.
Then J \ A is reqular if and only if k < 2.

Proof. 1f k < 2, then there are permutation matrices P and () such that
P(J\A)Q = J\ (aFE11 + bEy32), where a,b € {0,1}, and hence

a 1

Lo 1 01 1
ORI L N

_1 1_

so that b(J \ A) =b(P(J\ A)Q) <2, where a+d =b+V =1 with a # &
and b # b'. Thus we have J \ A is regular by Lemma 5.7.
Conversely, assume that J \ A is regular for some & > 3. It follows from

|A| = k and b(A) = k that there are permutation matrices U and V' such

44



that .
UJ\NAV =T\ Ey.
t=1

Let J '\ <i Et,t) = X = [z;,]. By Proposition 5.2, X is regular, and hence
there is ati)nzero matrix B = [b; ;] € M,,(B;) such that X = XBX. Then
the (,t)™ entry of X BX becomes

D by (5.2.1)

i€l jeJ
forall t = 1,...,k, where I = J = {1,...,n}\ {t}. From z;; = 0 and
(5.2.1), we have

b;; =0 forall i,je{2,...,n}. (5.2.2)

Consider the first row and the first column of B. It follows from x92 = 0 and
(5.2.1) that
bi,1 =0= bLj for all Z,j € {1, 3, 4, . ,n}. (523)

Also, from z335 = 0, we obtain b1 5 = by; = 0, and hence B = O by (5.2.2)
and (5.2.3). This contradiction shows that k < 2. u

Proposition 5.13. Let A and B be matrices in M, (B;) such that A < B
and |A| < |B|. If |B| < (n — 2)n, then we have |T'(A)| < |T(B)|.

Proof. Suppose that |T(A)| = |T(B)| for some A, B € M, (B;) with A < B,
|A| < |B| and |B| < (n—2)n. Then T(A) = T(B) and there is a cell E such
that £ < Band E' £ A. Since |A| < (n—2)n, there must be two distinct cells
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F and G different from E such that FF € A, G £ A and b(E + F + G) = 3.
Let C =J\ (E+ F+ ). Then

A+C=J\(E4+F+G) and B+C=J\(F+G).

It follows from T(A) = T(B) that T(J\ (E+ F + G)) = T(J \ (F + G)),
a contradiction to the fact that T' strongly preserves regularity because J \
(F' + G) is regular, while J \ (F 4+ F 4+ G) is not regular by Lemma 5.12.
Hence the result follows. |

Let A be a matrix in M3(B;). If |[A] < 4, then A is regular by Corol-
lary 5.8(i). And if |A| > 7, then b(A) < 2 and so A is regular by Lemma 5.7.
Hence, if A € M3(B;) is not regular, then |A| = 5 or 6 and there are permu-
tation matrices P and @ such that PAQ is of the form of following :

11
00

— = O
_ = O

11
01
10

Furthermore, if E is a cell with £ < C, then there are permutation matrices

P’ and @' such that P'(C'\ F)Q = B and hence C'\ E is not regular.

Lemma 5.14. For every cell E in M3(By), T(E) is a cell.

Proof.  Suppose that |T(E;)| > 2 for some cell E; € M3(B;). Let A €
M3(B;) be a matrix that is not regular with £y < A and |A| = 5. Then
T(A) is not regular and so [T'(A)| € {5,6}. Let B € M3(B;y) be a matrix
with B < A and |B| = 4. If |T(B)| > 5, then T'(B) is not regular, while B
is regular by Corollary 5.8(i), a contradiction. Hence there is not a matrix

B with B < A and |B| = 4 such that |T'(B)| > 5.
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5
Write A = Y E; for distinct cells Ey, ..., E5. It follows from Proposi-
i=1
tion 5.13 that

[ T(EV)| < |T(Ey + E3)| < [T(Ey + Bz + E3)
and hence 4 < |T(E1+FE>+E3)| < |T(A)| because |T(E7)| > 2. Thus we have

<
IT(E, + By + E3)| = 4. Since T (zij Z)<T(ZE> and ’T(ZE)

i=1

>5

are impossible, we have

r(yx ) -r(3m)

and hence T(E; + Ey + E3 + E5) = T(A), a contradiction because A is not
regular, while E; + Ey + E3 + Ej5 is regular by Corollary 5.8(i). Thus we
have |T'(E)| < 1 and hence |T(E)| = 1 for every cell E by Lemma 5.10.
Consequently, T'(F) is a cell for every cell E. [ |

For any k € {1,2,...,n?}, let S; denote a sum of arbitrary distinct cells
in M,,(B;) with |Sg| = k.

Proposition 5.15. (i) If n =2t and t > 2, then |T(Siy_1)| < n? — 3 for
all Stnfl € Mn<Bl),

(ii)) Ifn=2t+1 andt > 2, then
T (Ss1ym—a))| < 1 =2

fOT all St+1 —(t+1) € M ( )
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Proof. (i) Let n = 2t with ¢ > 2. Suppose that |T(Sy,_1)| > n* — 2
for some Sy, 1 € M, (B;). Since |Sy,_1| = tn — 1, there must be three
distinct cells Fq, F5 and E3 such that they are not dominated by S;,_1 and
b(Ey + F3 + E3) = 3. Hence there is a matrix A € M, (B;) such that
Sin-1+ A= J\ (E) + Fy + E3). Tt follows from |T(Sy,—1)] > n? — 2 that
|T(J\ (E1 + Ey + E3))| > n?> —2 and hence B = T(J \ (E; + E» + E3))
is regular by Lemma 5.7 because b(B) < 2. But J \ (E; + E; + Ej3) is not
regular by Lemma 5.12; a contradiction. Hence the result follows.

(i) Similar to (i). n

The next Lemma will be important in order to show that if E is any cell
in M,,(By) with n > 4, then T(F) is also a cell for any linear operator on

M, (B) that strongly preserves regularity.
Lemma 5.16. (i) Letn=2t,t>2 and h € {0,1,2,...,tn — 2}. Then
|T(Sn_1-1)| <n®>—3—2h
for all Sy,—1-n € M, (By),
(i) Letn=2t+1,t>2and h€{0,1,2,...,(t+1)n— (t+2)}. Then
I T(S+1yn-(r1)-n)| <1 —2—2h

for all S(t+1)n—(t+1)—h c Mn(Bl).

Proof. (i) The proof proceeds by induction on h. If h = 0, the re-
sult is obvious by Proposition 5.15(i). Next, we assume that for some

h € {0,1,2,...,tn — 3}, the argument holds. That is,
|T(Sin1-1)| <n*—3—2h (5.2.4)
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for all Sy,—1-5 € M, (B1). Now we will show that |T'(Sy,_o_1)| < n?>—5—2h
for all Sy, 55 € M, (B;). Suppose that |T(S;,_2_4)| > n? —4 — 2h for some
Stn—a—n € My(By). By (5.2.4) and Proposition 5.13, we have |T'(Sy,—2-1)| =
n? — 4 — 2h and

T (Sn_9-n+ F)| =n*>—3—2h

for all cells F' with F' £ Sy, _o_p. This means that for all cell F with F £

Sin_o_n, there is only cell Cr such that

Cr L T(Stn—2-1), Cr<T(F) and T(Sy—o-n+F)=T(Stn—2-1n)+Cp

(5.2.5)

because |T(Sy_o-1)| = n? —4 — 2h. Let &, be the set of all cells in M,,(B;)

and let

Q={Cp|Fe& and F £ Spm o}

Suppose that Cy # CF for all distinct cells F' and H that are not dominated

by Sin_o_n. Then we have |2 = n? — (tn — 2 — h). Since Cr £ T(Stm_2-1)

for any cell F' with F' £ Sy,_o_p, we have Q] < n? — (n? — 4 — 2h) because

|T(Stn—2-n)| = n* —4—2h. This is impossible. Hence Cy = Cr for some two

distinct cells F' and H that are not dominated by Sy, s p. It follows from

(5.2.5) that

T(Stn—2—h +F+ H) = T(Stn—Z—h + F) + T(Stn—Z—h + H)
- T(Stn_g_h) + CF - T(Stn—2—h + F)

But Proposition 5.13 implies that |T'(Si—2-n + F)| < |T(Stn—o-n + F + H)|
because |Sy, o+ F+ H| < tn < (n—1)n, a contradiction. Hence the result

follows.
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(i) Similar to (i). u
Corollary 5.17. T'(E) is a cell for all cells E.

Proof. Forn = 3, the result was proved in Lemma 5.14. If n = 2t with t > 2,
let h = tn — 2 in Lemma 5.16(1). Then |T(S7)| < 1 for all S; € M, (By).
Ifn=2t+1witht > 2 let h = (t+ 1)n — (t + 2) in Lemma 5.16(ii).
Then |T(S;)| < 1 for all S; € M,,(B;). It follows from Lemma 5.10 that
|T(S1)] =1 for all S; € M,,(By), equivalently |T(E)| = 1 for any cell E in
M, (By). Therefore T(E) is a cell for any cell E in M,,(B;). u

Lemma 5.18. T is bijective on the set of cells.

Proof. By Corollary 5.17, it suffices to show that T(E) # T(F') for all
distinct cells E and F' in M,,(B;). Suppose T(E) = T(F) for some distinct
cells F and F. Then we have T(E + F) = T(E). But this is impossible
because |T'(E) < |T(E + F)| by Proposition 5.13. Thus the result follows. m

A matrix L € M,,(B,) is called a line matrizif L= Y E;yor L= E;;
k=1 i=1

n n
- D - th - _
for some 7,5 € {1,...,n}; R; = ;} E; is an ™" row matriz and C; = ZE E,;
—1 =1

is a j™" column matriz. Cells Ey, Es, ..., E) are called collinear if i E, <L
for some line matrix L. -

A matrix A € M, (B,) is an s-star matriz if |A| = s and there are cells
E, ..., E, such that A = ZS: E; and A < L for some line matrix L. By

i=1
Lemma 5.7, all line matrices and all s-star matrices are regular in M,,(B;).

Lemma 5.19. T preserves all line matrices.
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Proof. By Lemma 5.18, T is bijective on the set of cells. First, we show that
T preserves all 3-star matrices. If T' does not preserve a 3-star matrix A €
M,,(By), then we have b(T'(A)) = 2 or 3 with |T(A)| = 3. By Corollary 5.8
(iii), there is a matrix C' € M,,(B;) with |C| = 2 such that T'(A) + C' is not
regular. Furthermore we can write C' = T(E; + FE») for some distinct cells

FE; and E5. Thus we have
T(A)+C=T(A+ E, + Ey).

But A + E; + Es is regular by Corollary 5.8(i) or (iv). This contradicts to
the fact that T strongly preserves regularity. Hence 7' preserves all 3-star
matrices.

Suppose that T does not preserve a line matrix L in M,,(B;). Then there
are two distinct cells F; and F, dominated by L such that two cells T'(Fy)
and T'(F») are not collinear. Let Fj be a cell such that Fy + F, + F3 is a
3-star matrix. By the above result, T'(F} + F; + F3) is a 3-star matrix, and
hence b(T'(Fy + Fo + F3)) = 1. Thus, the three cells T'(Fy), T'(F») and T'(F3)
are collinear. This contradicts to the fact that the two cells T'(F}) and T'(F3)
are not collinear. Therefore T preserves all line matrices. ]

A linear operator 7" on M, (By) is called a (U, V)-operator if there are
invertible matrices U and V such that T'(X) = UXV for all X € M,,(By) or
T(X) = UXTV for all X € M, (By,).

We remind the nxn permutation matrices are the only invertible matrices
in M,,(B;).

Now, we are ready to prove the main Theorem.
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Theorem 5.20. Let T be a linear operator on M,,(By) with n > 3. Then T

strongly preserves reqularity if and only if T is a (U, V')-operator.

Proof. If T is a (U,V)-operator on M,,(B,), clearly T strongly preserves
regularity by Proposition 5.2.

Conversely, assume that T strongly preserves regularity. Then T is bijec-
tive on the set of cells by Lemma 5.18 and 7" preserves all line matrices by
Lemma 5.19. Since no combination of s row matrices and ¢ column matrices

can dominate .J, where s +t = n unless s = 0 or £ = 0, we have that either

(1) the image of each row matrix is a row matrix and the image of each

column matrix is a column matrix, or

(2) the image of each row matrix is a column matrix and the image of each

column matrix is a row matrix.

If (1) holds, then there are permutations o and 7 of {1,...,n} such that
T(R;) = Ry and T(C;) = Cyrj) for all 4,5 € {1,2,...,n}. Let U and V be
permutation (i.e., invertible) matrices corresponding to o and 7, respectively.
Then we have

T(Eij) = Eoiyrg) = UE;V

for all cells E; ; in M,,(By). Let X = > > x;,E; ; be any matrix in M,,(B;).
i=1j=1

By the action of T" on the cells, we have T'(X) = UXV. If (2) holds, then

a parallel argument shows that there are invertible matrices U and V' such

that T(X) = UXTV for all X € M,,(B,). u
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Thus, as shown in Theorems 5.11 and 5.12, we have characterizations of
the linear operators that strongly preserve regular matrices over the binary

Boolean algebra.

5.3 Characterization of linear operators that strongly
preserve regular matrices over the nonbinary Boolean
algebra

If T is a linear operator on M,,(By) with k& > 1, for each p € {1,2,...,k},
define its p™ constituent operator, T,, by T,(B) = (T(B)), for all B €
M., (B;). By the linearity of 7', we have

k
T(A) = ZJPTP<AP)
p=1
for all A € M, (By).

Lemma 5.21. If T is a linear operator on M, (By) that strongly preserves
reqularity, then its all constituent operators on M, (By) strongly preserve

reqularity.

Proof.  Let A be any matrix in M,,(B;). Obviously, A is the matrix in
M, (By) such that A, = A for all p = 1,... k. If A is regular in M,,(B,),
then A is regular in M, (B ) by Theorem 5.5. Since T preserves regularity, we
have T'(A) = Zk: 0,T,(A,) is also regular in M, (By). Again by Theorem 5.5,
each T,(A,) ié):riegular in M,,(B;) so that T,,(A) is regular in M,,(B,) for all
p=1,...,k.
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Conversely, if T),(A) is regular in M,,(B,) forallp = 1,..., k, then T'(A) =
k
> 0,T,(A,) is regular in M, (By,) by Theorem 5.5. Since T strongly preserves
p=1
regularity, A is regular in M, (By). Hence by Theorem 5.5, A(= A,) is regular

in Mn<B1) |
Example 5.22. Let n > 3. Define an operator 7" on M,,(B3) by
T(X) = O'1X1 + O'2X2T + O'3X3

3

for all X = ) 0,X, in M,,(Bs). Then we can easily show that 7" is not
p=1

a (U, V)-operator on M,,(B3) while its all constituent operators are (U, V)-

operators on M,,(B;). Furthermore the below theorem shows that 7" strongly

preserves regularity:.

Theorem 5.23. Let T' be a linear operator on M, (Bg) with n > 3. Then

the following statements are equivalent:
(i) T strongly preserves regularity on M., (By);
(ii) All constituent operators of T' strongly preserve reqularity on M., (B1);

(i) There are invertible matrices U and V' such that

T(X)=UXV forall X € M,,(Bg), or (5.3.1)
k

T(X) = U(Zapyg,)v for all X € M,(By), (5.3.2)
p=1

where Y, = X, ongforallpzl,...,k.

o4



Proof. It follows from Lemma 5.21 that (i) implies (ii).
Assume (ii) holds. That is, each constituent operator 7, of T" strongly
k
preserves regularity on M,,(B,) for all p =1,... k. Let X = > 0,X, be

p=1
k
any matrix in M, (Bg). Then we have T'(X) = > 0,7,(X,). By Theorem
p=1
5.20, each T}, has the form
T,(Xp) = Up X, V3, (5.3.3)
or
T,(X,) = U, XV, (5.3.4)
where U, and V), are permutation matrices for all p =1,... k.

Assume that only (5.3.3) are possible for all p=1,..., k. Then we have
k k k k
T(X)= Z opUpXpVyp = ( Z UpUp) < Z OPXP> < Z Upvp) :
p=1 p=1 p=1 p=1

k k
If we let U = < > O'pUp> and V = ( > op‘/;,>, then U and V' are invertible
p=1 p=1
matrices in M, (B) by Lemma 5.1, and hence (5.3.1) is satisfied.
k
If both (5.3.3) and (5.3.4) are possible, then T'(X) = > 0,U,Y,V,, where
p=1

Y, = X, or X! for each p € {1,...,k}, equivalently
k k k
T(X) = ( Z UpUp) ( Z Jpr) ( Z Upr> :
p=1 p=1 p=1

k k
If welet U = (Z apUp> and V = (Z Jpr>, then (5.3.2) is satisfied.
=1 p=1

Therefore (ii) implies (iii).
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Assume (iii) holds. If T" has a form (5.3. 1) then we are done by Propo-
sition 5.2. Thus we assume (5.3.2). If X = Z 0,X, is regular in M, (By),
then so is X, in M, (B;) for all p = 1,.. k by Theorem 5.5. Thus there
are matrices G, € M, (B;) such that X,G,X, = X, for all p = 1,... k.
Let G = VT< Z opH )UT, where H, = G, or GT according as Y, = X,
or X' Then we can easily show that T(X)GT(X) = T(X) so that T'(X)
is regular in M, (Bj). Conversely, if T'(X) is regular in M, (By), then each
constituent 7,(X,) = U,Y,V, is regular in M,,(B,) for all p =1,... k. By
Proposition 5.2, each X, is regular in M,,(B;) because Y, = X, or X[ for
all p=1,..., k. Hence X is regular in M,,(B;) by Theorem 5.5. Therefore
(i) is satisfied. n

Thus, as shown in Theorems 5.11 and 5.23, we have characterizations
of the linear operators that strongly preserve regular matrices over general

Boolean algebras.
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