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(Abstract)

Transversally harmonic maps

between foliated Riemannian manifolds

Let (M,F) and (M',F") be two foliated Riemannian manifolds with M compact.
Then we study the first normal variational formula for the transversal energy. More-
over, if we assume that the transversal Ricci curvature of F is nonnegative and the
transversal sectional curvature of F’ is nonpositive, then any transversally harmonic
map ¢ : (M, F) - (M',F') is transversally totally geodesic. In addition, if the transver-

sal Ricci curvature is positive at some point, then ¢ is tansversally constant.



1 Introduction

Harmonic maps are solutions to a natural geometrical variational problem. This
notion grew out of essential notions in differential geometry, such as geodesic, minimal
surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic
maps in several complex variables, to the theory of stochastic processes, to nonlinear
field theory in theoretical physics, and to the theory of liquid crystals in materials
science.

There are several equivalent definitions for harmonic maps. A map between Rieman-
nian manifolds is harmonic if the divergence of its differential vanishes. Equivalently,
harmonic maps are critical points of the energy functional.

On foliated Riemannian manifolds, transversally harmonic maps were introduced by
Konderak and Wolak [6] in 2003. Namely, let (M, g, F) and (M’, ¢', F") be two foliated
Riemannian manifolds and let ¢ : (M, g,F) — (M',¢g',F’) be a smooth foliated map,
which is a smooth leaf-preserving map. Then ¢ is a transversally harmonic map if ¢ is a
solution of the equation 7,(¢) = trQﬁthb =0, where V be the connection on Q*®¢~1Q’.
Equivalently, ¢ is a critical point of the transversal energy functional on any compact
domain of M. That is, transversally harmonic maps are considered as harmonic maps
between the leaf spaces ([6, 7]). On a point foliation, transversally harmonic map is just
harmonic map. So transversally harmonic maps are generalizations of harmonic maps.

In this thesis, we study transversally harmonic maps and give some interesting facts

relating to them. In chapter 2, we review the well-known facts on a foliated Riemannian



mannifold. In chapter 3, we review the properties of the transversally harmonic map,
which were studied in [7] and give some results. In chapter 4, we give a new proof of the
first normal variational formula for the transversal energy Ep(¢) (Theorem 4.3). In the
last chapter, we study the generalized Weitzenbock formula and give some applications

(Theorem 5.4 and Theorem 5.5).



2 Riemannian foliation
Let M be a smooth manifold of dimension p + q.

Definition 2.1 A family F = {L,}aeca of connected subsets of a manifold MP*? is
called a p-dimensional(or codimension q) foliation if

(1) ugLq = M,

(2) a+f=LynLg =2,

(3) for any point p € M there exist a C"—chart(local coordinate system) (¢p,Up), such

that p e U, and if U, n Ly # @, then ¢,(Upn L) = Ac 0 ¢(U,), where
Ac={(z,y) e R” x Ry = constant}.
Here (pp, Up) is called a distinguished(or foliated) chart.

Roughly speaking, a foliation corresponds to a decomposition of a manifold into a union
of connected submanifolds of dimension p called it leaves.
Remark. From (3), we know that on U; nU; # @, the coordinate change cp;l o p; :

;7 (Uin Uj) - <,0]_-1(U¢ nUj) has the form

;o pi(x,y) = (i (2, ), 7i5(¥)), (2.1)

where ;; : RP*Y — RP is a differential map and ~;; : R? - R? is a diffeomorphism.
Example.
(1) Line foliation. ([17]) Consider a closed 1-form w = adx+bdy,a,b e R on T? = R?/72.

Then we obtain a family of lines which defines a foliation in 72. In this case, each leaf
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is R (See figure 1).

(2) Circles. In R?, the differential equation zdx +ydy = 0 has 2 + y* = ¢,c € R as
general solution. When ¢ varies, we obtain a family of circles which defines a foliation
in R?. In this case, each leaf is circle (See figure 2).

(3) In the plane R?, the differential equation % = tanz has the solution y = log|secx| +
¢,c € R. When ¢ varies, we obtain a foliation as figure 3.

(4) Reeb solid torus. ([17]) On a solid cylinder D?xR, we obtain the Reeb component

which is also defined by a submersion f: D? xR - R :
f(a,y,2) = a(r?)exp(2),

where 7 = (2 + %)z and a(r) = exp(—exp(ﬁ)) (See figure 4).

Let (M, gn, F) be a (p + q)-dimensional Riemannian manifold with a foliation F
of codimension ¢ and a Riemannian metric g. Let T'M be the tangent bunlde of M, L
the tangent bundle of F and then L is the integrable subbundle of T M. i.e., X,Y €
'L = [X,Y]eTL. Let Q = TM/L the corresponding normal bundle of F, then the

metric gps defines a splitting o in the exact sequence of vector bundles

0—=L—>TM<Z=Q—0, (2.2)



where m: TM — @ is a projection and o : Q - L* is a bundle map satisfying 7 oo = id.

Thus gar = g1, ® g1+ induces a metric gg on @ ; that is,

9q(s,t) =gu(o(s),o(t)) Vs, tel'Q. (2.3)
So we have an identification L* with @ via an isometric splitting (@, g¢g) = (L*, gr+).

Definition 2.2 A Riemannian metric gg on @ of a foliation F is holonomy invariant

if 6(X)gg =0, for any X € I'L, where (X) is the transverse Lie derivative. i.e.,
Xgo(s,t) =go(m[X,Y5],t) + 9o(s,7[X,Y;]), VX elL, Vs,telQ, (2.4)

where Y = o(s) for any s e T'Q.

Definition 2.3 A foliation F is Riemannian if there exists a holonomy invariant metric

go on Q. A metric gys is a bundle-like (with respect to F) if the induced metric gg is

holonomy invariant.

Theorem 2.4 ([14]) Let F be a foliation on (M,g). Then the following conditions are
equivalent.
(a) F is Riemannian and g is a bundle-like metric.

(b) There exists an orthonomal adapted frame {E;, E,} such that
9(Vig, Ei, By) + 9(Vig, i, Ea) = 0,

where VM be the Levi-Civita connection on M.
(c) All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every

point.



Definition 2.5 ([13]) The transverse Levi-Civita connection V9 on the normal bundle

Q is defined by

m([X,Y]) VX elL,
Vs = (2.5)

m(VNY,) VX eTL',

where VM be the Levi-Civita connection associated to the Riemannian metric gy; and

Ys =o(s).

Then the transverse Levi-Civita connection V? is metrical and torsion-free with respect

to gg = gr+. That is, V?(gQ =0 for all X e'T'M and for any Y, Z e I'T' M,
T, Z) = Ve (Z) - Vin(Y) - n[Y, Z] = 0,

where T€ is the transversal torsion tensor field of V.

Let the transversal curvature tensor R? of V¥ = V is defined by
RY(X,Y)=[Vx,Vy]-Vixy], YX,YeITM. (2.6)

It is trivial that i(X)R? = 0 for any X e I'L, where i(X) is the interior product. In

fact, R%(X,Y)s = (0(X)V)ys =0 where Y e 'TM and s e TQ ([14]).

Definition 2.6 The transversal sectional curvature K€, transversal Ricci operator

Ric? and transversal scalar curvature o with respect to V are defined by

_ g (RO (s,t)t,s)
K9(s,t) = -2 an oo "5helQ

Ric®(s) =Y, R9(s,E,)E,s, 09 = gg(Ric?(E,),E,),

where {E,} is a local orthonomal basic frame of Q.



Definition 2.7 The mean curvature form x of F is given by
C M
(X)=90> . n(Vp Ei), X), VXelQ, (2.7)
i=1

where {E; }i-1 ..., is a local orthonormal basis of L. The foliation F is said to be minimal

(or harmonic) if k = 0.

Definition 2.8 Let F be an arbitrary foliation on a manifold M. A differential form
w is basic if

i(X)w=0, 0(X)w=0, VXelL, (2.8)

where i(X) is an interior product.

Locally, the basic r—form w is expressed by

w= Y Waa,dYa, A AdYa, (2.9)

a1 < <ay

where &'Jg#‘” =0forall j=1,---)p.

Let Q% (F) be the space of all basic r—forms. Then ([1])
Qp(M) = Qp(F) @ Qp(F)"
Notation. Let wpg is the basic part of the form w.

Theorem 2.9 ([1]) For a Riemannian foliation F on a compact manifold, kg is closed,

i.e., depg = 0.
Definition 2.10 The basic Laplacian Ap acting on Q5 (F) by

AB:dB(SB"'(SBdBa (2.10)



where dp is the formal adjoint operator of dg = d|Q*B (F), which are locally given by

dp=Y0"AVE, ©6p=->i(E)Vp, +i(rk), (2.11)

where mﬁg is the gg—dual vector of kg, {Es}a-1,...q is a local orthonormal basic frame

of @ and {6} is its go—dual 1-form.
We define V. Vi : Qp(F) - Qp(F) by
Vi Vir = - Za: V5, * Vi, (2.12)
where V% y = VxVy - Vyuy for any X,Y e I'TM.

Proposition 2.11 ([3]) The operator V.V is positive definite and formally self ad-

joint on the space of basic forms, i.e.,
f <V Virp, ) >= [ < Virp, Vi) >,
where < Vi, Vi) >= %: <Vg, o, Ve, >.
Definition 2.12 ([5]) A vector field Y € M is an infinitesimal automorphism of F if
[Y,Z]eTL, VZeTLL.

Let V(F) be the space of all infinitesimal automorphaisms and let Let V(F) =
{Y =7(Y)|Y e V(F)}. It is trivial that an elements s of V (F) satisfies Vxs = 0 for all

X eT'L. Hence the metric defined by (2.4) induces an identification([10])

V(F) =2 Qp(F). (2.13)



For the later use, we recall the transversal divergence theorem([16]) on a foliated Rie-

mannian manifold.

Theorem 2.13 (Transversal divergence theorem) Let (M, gn,F) be a closed,
oriented Riemannian manifold with a transversally oriented foliation F and a bundle-

like metric gy with respect to F. Then

dive X = f X, sl 2.14
[ divg% = [ go(X,x) (2.14)
for all X € V(F), where divgy X denotes the transversal divergence of X with respect to

the connection V.

Proof. Let divg X be the divergence of X ¢ I'I'M with respect to V. Then we have

divg X S ou(VEX,E)+> gu(Vi X, E,)
7 a

- ZQQ(XJ‘-(V%E%')) + EQQ(W(V%IX)a Ea)

-90(X, kly) + divg X,
where X = 7(X). By Green’s Theorem, we have

O:fd'X:[d'X—[ X, kh).
.y vy . vy MgQ( K'3)

Hence the proof is completed. O

Now we define the bundle map Ay : A"Q* - A"Q* for any Y € V/(F)([5]) by
Ay¢=0(Y)p-Vyo. (2.15)
It is well-known([5]) that for any s € I'Q

Ays=-VyY, (2.16)



where Yj is the vector field such that m(Ys) = s. In fact, Ays =0(Y)s - Vys = Vys —
Vy.Y-Vys=-Vy Y. Since 0(X)¢ = Vx¢ for any X € 'L, Ay preserves the basic forms
and depends only on Y = 7(Y). Now, we recall the generalized Weitzenbock formula

on Q%5 (F).

Theorem 2.14 ([3]) On a Riemannian foliated manifold (M,F), we have
Apd=VyVud+ F(P) + Agy &, ¢ €Qp(F), (2.17)

where F($) = geaAi(Eb)RV(Eb,Eam. If ¢ is a basic 1-form, then F ()} = RicP(4").

Now we recall a very important lemma for later use. From Proposition 4.1 in [11],
it is well-known that Ag - /ﬁ% on all basic functions is the restriction of A — k! on all

functions. Hence, by maximum and minimum principles, we have the following lemma.

Lemma 2.15 ([4]) Let (M,g,F) be a closed oriented Riemannian manifold with a
foliation F and a bundle-like metric g. If (Ap—r%) f > 0(or <0) for any basic function

f, then f is constant.

10



3 Transversally harmonic maps between foliated Rieman-

nian manifolds

Let (M, g, F) and (M’, ¢, F') be two foliated Riemannian manifolds. Let v and v’
be the Levi-Civita connections of M and M’, respectively. Let V and V' be the trans-
verse Levi-Civita connections of Q and Q’, respectively. Let ¢ : (M, g, F) - (M',g', F")

be a smooth foliated map, i.e., dp(L) c L'. Then we define dr¢: Q - Q" by
dr¢:=m"odgpoo. (3.1)

Then dr¢ is a section in Q* ® ¢~1Q’, where ¢~ 'Q’ is the pull-back bundle on M. Let

v? and V be the connections on ¢ 'Q’ and Q* ® ¢~ 'Q’, respectively.

Definition 3.1 Let ¢: (M,g,F) - (M',g',F") be a smooth foliated map. Then ¢ is

called transversally totally geodesic if
Virdrd =0, (3.2)
where (Vi dr¢)(X,Y) = (Vxdre)(Y) for any X,Y € Q.

Note that if ¢ : M — M’ is transversally totally geodesic with d¢(Q) c @', then for any

transversal geodesic v in M, ¢ oy is also transversal geodesic.
Definition 3.2 The transversal tension field of ¢ is defined by

7(0) = tro¥drs = i(wadmﬁ)w@), (3.3)

where {E,} is a local orthonormal basic frame of Q.

11



Trivially, the transversal tension field 7;,(¢) is a section of ¢~1Q’

Definition 3.3 Let ¢ : (M,g,F) - (M',g¢',F') be a smooth foliated map. Then the

map ¢ is said to be transverally harmonic if the transversal tension field of ¢ vanishes,

i.e., Tb(¢) =0.

Now we recall the O’Neill tensors A and 7 (]9,14]) on a foliated manifold (M, F),

which are defined by

AxY T (VM (V) + 1 (Vi (V) (3.4)

TxY

7rL(Vﬁ/{(}()ﬂ(y)) + W(V%(X)WL(Y)) (3.5)
for any X, Y e I'TM, where n* : TM — L. It is well known([9]) that
Ar)ym(Y) =7 [7(X),7(Y)] (3.6)

for any vector fields X,Y on M. Then 7 = 0 is equivalent to the property that all
leaves of F are totally geodesic submanifolds of (M, g) and A = 0 is equivalent to the
integrability of Q.

Let {E;}i=1,..p be a local orthonomal basis of L and {Eq }4-1....4 be a local orthonor-

mal basic frame of (). Then we have the following.

Theorem 3.4 Let ¢: (M,g9,F) - (M',g',F') be a foliated map. Then

() T(¢F) + 7(¢) — drd(Kh) + trgg* T' + troo* A’

q , 7
+ Wl{vgdqs(Ea)WldMEa) + Vde¢(Ea)7Tld¢(Ea) -do(VE,Ea)}
a=1
q w
+ Z;WVﬂxd¢(Ea)7rd¢(Ea)a

12



where T(¢) is the tension field of ¢, 7(¢|F) = 7+ L(VE,dd)(E;),
g6 T' = $0 Th oy d0(ED) + T3, Ty d0(Ea) and

tTqu*.A/ = 2321 &¢(Ea)d¢(Ea)'

Proof. Let {E;, Eq}i-1,.. p:a=1,-,¢ be a local orthonormal frame of I'T'M such that F; €

I'L,E, eI'Q). By the definition of the tension field, we have
P a
7(¢) = > (VE,dp)(Ei) + Y (VE,do) (Ey).
i=1 a=1

Since ¢ is a foliated map, 7d¢(E;) =0 and ntd¢p(E;) = dp(E;). Hence we have

ﬁlmidqﬁ)(&) - i{v%@i)dwﬂ)—dm%m}
- (gl + i{w%@dm —d(VYE))
and
ileadqﬁ)(Ea)

q 7 ’
= () + Y AT Vias(m,)Tdd(Ea) + Vs, )™ do(Ea)}
a=1
q 7 !
+ 2 AV 4o TAS(Ea) + Viigg(s)m do(Ea) = wdo(Vi, Ea)}-
a=1

From (3.6), we have WLV%;(EQ)MZQS(E@) = WLV%[QEQ =0. From (3.4) and (3.5), we have

"(8) = T(6lr) +m(6) - wdqb(il (VY E)) + f;m@dqs(a)

q !
+ 2:1{7:1,¢(Ea)d¢(Ea) + Ay, 40 (Ea) + VN gy 1,y mdd(Ea) }

q ! !
+ 2 TVt dS(Ea) + VE 4y )T dd(Ea) - d(x Vi Ea)}.
a=1

P
Since Y W(V%Ei) = k!, the proof is completed. O
i=1 ‘

13



Corollary 3.5 If a foliated map ¢: (M,g,F) — (M',g', F') satisfies dp(Q) c Q', then

7(9) = T(dlF) + T(¢) — dp(k?) + trpd* T, (3.7)
where trpd*T' = Zp: 721’¢(Ei)d¢(Ei)‘
=1

Proof. Since dop(Q) c Q', m*dop(E,) = 0 for all a. Moreover, from (3.5) and (3.6),

A X =0and TgY =0 for all X,Y eI'Q’". Hence the proof is completed. O

Corollary 3.6 Let ¢: (M,g,F) — (M',g',F') be a foliated smooth map. Assume that
F is minimal, F' is totally geodesic and d¢(Q) c Q'. Then ¢ is a harmonic if and only

if ¢ is a transversally harmonic and leaf-wise harmonic, i.e., T(¢|F) = 0.

Proof. Since F is minimal and F’ is totally geodesic, i.e., k! =0 and 7’ = 0, we have

from (3.7)

7(¢) = 7(¢lF) + ().

So the proof is completed. O

Corollary 3.7 Let ¢: (M,g,F) - (M',g',F") be a smooth foliated map and dp(Q) c

Q'. Then ¢ is a transversally harmonic map if and only if
(7()) =trd™T' - d(st).

Now, let F be a Riemannian flow defined by a unit vector field V on a Riemannian
manifold (M™*!, g). Then

kh=n(vMV) = vV, (3.8)

14



In fact, Vi7 V is already orthogonal to the leaves since g(V V, V') = 0. Moreover, it
is trivial that F is totally geodesic if and only if F is minimal, i.e., 7 = 0 if and only if
k! = 0. Let F and F’ be two Riemannian flows defined by unit vector fields V' and V'
on Riemannian manifolds (M, g) and (M',g"), respectively. Let ¢ : (M, F) — (M', F")

be a smooth foliated map. Then
7(3l7) = VIOV = mdo(sh), A= (¢"w)(V), (3.9)

where w’ is the dual 1-form of V'. Hence if d¢(Q) c @', then ¢ is leaf-wise harmonic if

and only if \ is basic, i.e., V(A\) = 0. Hence we have following corollary.

Corollary 3.8 Let F and F' be two Riemannian flows defined by a unit vector fields
V and V' on a Riemannian manifolds M and M', respectively. Assume that F and F’
are minimal. Let ¢: (M,g,F) — (M',g", F") be a smooth foliated map and dp(Q) c Q’.

Then ¢ is harmonic if and only if ¢ is transversally harmonic and (¢p*w")(V') is basic.

Proof. Since F is minimal, from (3.9)

T(¢lF) = VOV, A= (¢"W) (V).
Hence the proof follows from Corollary 3.5. O
Let ¢ : (M, F) - (M',F') and ¢ : (M',F') - (M",F") be smooth foliated maps.
Then the composition ¥ o ¢ : (M,F) - (M",F") is a smooth foliated map. Moreover,
we have
dr(¢ o ¢)=dryodre (3.10)
Hence we have the following proposition.

15



Proposition 3.9 Let ¢ : (M, F) - (M',F") and vy : (M',F') - (M",F") be smooth

foliated maps. Then

@trdT(T/} ° (b) = dTw(@trdT(Zs) + QS*@trdTwa (3'11)

where (6 Vi dr)(X,Y) = (Va, 000, dr00) (drd(Y)) for any X,Y € TQ.

Proof. From (3.10), we have that, for any X,Y ¢ I'Q,

(Verdr(¥o ) (X,Y) = VPdr(v o ¢)(Y) - dr(v o ¢)(VxY)

(Varex)ydr) (drd(Y)) + drp((Vxdre)(Y))

(0" Virdr)(X,Y) + drp(Virdrd) (X,Y),

which proves (3.11). O

Corollary 3.10 Let ¢ : (M, F) - (M',F") and ¢ : (M", F') - (M",F") be smooth

foliated maps. Then the transversal tension field of the composition is given by
(¢ 0 ) = dpip(1(9)) + trQe* Virdri), (3.12)
- q .
where tT’Q¢*vtrdT¢ = Z_:I(VdT¢(Ea)dT¢)(dT¢(Ea))

Corollary 3.11 Let ¢ : (M, F) — (M',F") be a transversally harmonic map and let
Vi (M, F") > (M",F") be a transversally totally geodesic map. Then hod: (M, F) —

(M",F") is a transversally harmonic map.

16



4 The first normal variational formula

Let (M, g,F) be a foliated Riemannian manifold. Let voly, : M — [0, oo] be the volume
function which volr(x) is the volume of the leaf passing through x € M. It is trivial

that volr, is a basic function. Then we have the following.

Lemma 4.1 On a foliated Riemannian manifold (M,F), it holds that

dpvoly, + (volp)kp = 0. (4.1)

Proof. Let {v,--,vp} be linearly independent vector fields of I'L such that volj, =
xF (v, -+, vp) = i(vp)--i(v1) xF, where x £ is the characteristic form of F. By the Rumm-

ler’s formula ([13]), @o := dxF + K A xF satisfies i(vp)--+i(v1)po = 0. Therefore we have

~i(up)-i(01) (5 A )

i(vp)---i(vl)dxf
= i(vp)i(v2) (K Adi(v1)XF)

= (-1)P"kn i(vp)-i(v1)xF

(-1)P*"(voly) k.
On the other hand, a direct calculation gives
d(i(vp)--i(v1)xF) = (=1)Pi(vp)--i(v1)dxF + a(vi, -, vp),

where a(vi,-,vp) = f:(—1)p_jz'(vp)---z'(vj+1)Q(Uj){i(vj_l)---i(vl)x}-}. Since L is inte-
j=1

grable, a(vq,--,v,) € L* and so a(vi,-,vp) = 0. Since voly, is a basic function, we

17



have

dpvoly = dp(i(vp)-i(vi)xF)

(=1)Pi(vp)-+-i(v1)dBxF

(-1)**(volp)kp = —(voly ) k.
The proof is completed. O

Definition 4.2 Let 2 be a compact domain of M. Then the transversal energy of ¢

on 2 c M is defined by

1 1
Ep(6:9) = 5 [ ldrof ——par, (42)
2 Ja voly,
q
where |drd)* = Y 9o (drd(Eq),dré(E,)) and s is the volume element of M.
a=1

Let V € ¢71Q’. Obviously, V may be considered as a vector field on Q' along ¢.
Then there is a 1-parameter family of foliated maps ¢; with ¢g = ¢ and %h:o =V.
Then the family {¢;} is said to be a foliated variation of ¢ with the normal variation

vector field V. Then we have the first normal variational formula(cf. [7]).

Theorem 4.3 (The first normal variational formula) Let ¢: (M, F) - (M',F")
be a smooth foliated map, and all leaves of F be compact. Let {¢.} be a smooth foliated

variation of ¢ supported in a compact domain 2. Then

d 1
—EB(¢t,Q)|t=0 = - [ <V, (p) > —pinrs (4.3)
dt Q voly,

where V' = %hzo is the normal variation vector field of {¢¢} and < -,- > is the pull-back
metric on ¢~1Q’.

18



Proof. Let Q be a compact domain of M and let {¢;} be a foliated variation of
¢ supported in Q with the normal variation vector field V € ¢~'Q’. Choose a local
orthonormal basic frame {E,} on @ such that (VE;); = 0, at © € M. Define @ :
M x (=€,€) - M’ by ®(x,t) = ¢;(x) and set E = 7 1Q’. Let v® denote the pull-back
connection on E. Obviously, dr®(E,) = dr¢i(E,) and d®( 8t) = d¢’ . Moreover, we have

V‘D@g =V E, = VE 8t = 0. Hence we have

1
Sy X < T dr () dr (£ >
Q ot voly,

|
=
=
&
=2
I

fZ<vE d@(g) dr®(E, )>LZMM

S S < St (Bu) > = < SV drn(Bu) >

d¢t
S X Bl G dron(E) >
- X< St dron B > B
ovr,

dé 1
\/Q < dt 7Tb(¢t) > 'UOZLMM‘

Now we define a normal vector field W; by
1 d
:_lz (bt ,dr i (Eq) > Eq.
Then its divergence is

dqf)t

divg Wy = ZE {< A1 (Ey) > _}
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By the transversal divergence theorem(Theorem 2.13), we have

%EB(¢ta Q)

| tdivgwi- < df qust(dB( ! ))>}MM

—fﬂ Tb(¢t) LZMM

doy 1
[Q ) ,dpde((volp)kp + dpvoly) > TMM

—[Q Tb(¢t) LZMM

By Lemma 4.1, we have
© En(on ) =~ [ <% o) > (14)
— , T — :
qp - B\%o o b\ Pt MM7

which proves (4.3). O

Corollary 4.4 Let ¢ : (M, F) — (M',F") be a smooth foliated map. Assume that all
leaves of F are compact. Then ¢ is transversally harmonic if and only if ¢ is a critical

point of the transversal energy of ¢ supported in a compact domain.
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5 A generalized Weitzenbock type formula and its appli-

cations

Let (M, g, F) and (M’,g', F") be two foliated Riemannian manifolds and let ¢ : (M, g, F) —
(M',g',F") be a smooth foliated map. Let Q(E) = QL (F) ® E be the space of E-
valued basic r—forms, where E = ¢~1Q’. Let V be the transverse Levi-Civita connection

on Q5 (F) and let the transveral curvature tensor R of V is defined by
R(X,Y)=[Vx,Vy]-Vxy; X,YeITM. (5.1)

Let ?=w®seQy(F) for any w e Q3 (F) and s e 'E. Then by a direct calculation, we

have

R(X,Y)®=ROUX,Y)w®s+we RE(X,Y)s. (5.2)

Now we define dy : Q5 (E) > Q5 (E) by
dy(w®s)=dpw®s+(-1)"wA Vs, (5.3)
and let dy be a formal adjoint of dy. Then we have the following equations
dvzgeaA@Ea, Sy :—gi(Ea)@Eam(ﬁﬁB), (5.4)

where i(X)(w®s) =i(X)w®s for any X e I'TM, {E,} is an orthonormal basis of @,
{0} its go—dual 1-form and k = 7 () VJ)E{ E,) is a mean curvature vector of F. Then
VI,

the Laplacian A on Q5 (E) is defined by
AZ(Svdv +dv5v. (55)
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Moreover, the operators Ax and §(X) on Q';(F) are extended by
Ax(w®s)=Axw®s (5.6)
H(X)(w®s)=0(X)wes+(-1)wAV%s (5.7)
for any X e I'TM. Then

doi(X)(®) = dy(i(X)w®s) =dpi(X)w® s+ (1) i(X)wA V¥s

i(X)dy(®) = i(X)(dpw® s+ (~1)"wAVs)

i(X)dpw® s+ (~1)"i(X)w A Vs + (1) w A Vs

Hence we can get 0(X)(®) = (dyi(X) +i(X)dy)(®P), for any X € I'TM. Hence ® «
Q5(E) if and only if ¢(X)® =0 and #(X)® = 0 for all X e I'L. Then the generalized

Weitzenbock type formula (3.17) is extended to Q5 (E) as follows.
Theorem 5.1 For any ® € Q3 (F),
AD =V}, V4 + F(P) + Ay @, (5.8)

where F(®) = bi 0% £ i(Ey) R(Ep, Ea)(P).

a,b=1
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Proof. Let ® =w® s € Q%(F) ® ¢'Q’. Then by a direct calculation

dydy® = —Zi(Eb)@Eb(H“A@EQCD)+i(/~i%)(d3w®s+(—1)rw/\V%bS)
a,b

= Y (-i(E)0"VE, VE,®+0°Ni(Ey)VE, VE,®)
a,b

+i(kl)dpw ® s+ (-1)"i(kh)w A VY, s+ (-1) wA VY, 5,
dydy® = Y 0°AVE, (-i(Ey)VE,® +i(rk)®)
a,b

= =2 0“Ni(Ey)VE,VE,®
a,b

30N (Vi i(sh)w © s+ (-1) i(kh)w AV )

= =20 Ni(B)VE, VE®+ (-1) i(kh)w A VY s+dpi(kh)w e s.
a,b

Then we have

AP 5vdv(p+dv6v@

= =3 VEVE®+ 0" Ai(E)R(Ey, Eo)(®) + (1) w A VY, s

a a,b B
+(i(kly)dpw + dpi(kl)w) ® s

= ViVl (-1)wAVS s-Vawes+ F(®)+(-1)wAv? s

+0(k)w® s

= V,Vu®+F(P)+ ANqu ® s.

Hence the proof is completed. O

Note that dr¢ € Q5(E) and |dr¢[? € Qp(F), then we have the following.

Theorem 5.2 Let ¢ : (M,g,F) - (M',g',F") be a smooth foliated map. Then the
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generalized Weitzenbock formula is given by

SABldrG? = < Adpd,drg > ~[Fipdrof (5.9)
- <A (drd),dré > - < F(drd),drd >,
where
<F(dr¢),dré> = 3 go(dro(Ric?(E,)), dro(Ea)) (5.10)

- z;ng(Rdem(Eb),dT¢<Ea))dT¢<Ea>,dT¢<Eb>>.

Proof. Let {Ea}azl,...g be a local orthonormal basic frame such that at x € M,

(VE,)z =0. Then at z, we have from (2.10) and (2.11)

1 . i

§AB|dT¢|2 =< V3 Virdr, drd > ~|Vidro|. (5.11)
From (5.8), we have

< Adro,dr > —|Vidr|

1
S Asldrof

< AK“B (dT¢)7dT¢ > =< F(dT¢)v dT¢ >

Now, we compute < F'(dr¢),dr¢ >. Let {V,}az1,..g be a local orthonormal basic

frame of Q" and w® be its dual coframe field. Let f® = ¢*w®. Then dr¢ is expressed by
ql
dro =) f*® Va, (5.12)
a=0
where V,(2) 2 Vo (¢(x)). From (5.2)

R(E,, Ey)dr¢=> RUEy, Ep)f*® Vo + Y. f* ® RE(Ey, Ey)Va, (5.13)
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where RF(E,, Ey)Va = R? (dp¢(Ey), dpd(Ey))Va. From (5.11), we have

< F(dpo),dpd > 3 < 0% Ni(Ey)R(Ey, Ey)dr¢, dro >

a,b

= Y <0 Ni(E)RO(Ey, E)f*® Vo, fP @ V5 >
a,b,a,8

+ Y 900" Ni(Ey) £, )90 (RE (Ea, Ey)Va, V3).
a,b,a,B

Note that dr¢(Eg) =Y. f*(Eq)Va. Then we have

> 9Q(0° Ni(Ey) R (Ey, Ea) f* ® Va, £ ® V) (5.14)
a,b,a,

= bZﬁ(RQ(Eb,Ea)f%Eb)—f“(RQ(Eb,Ea)Eb»gQ(e“,fB)

= Y f(RicP(Ea))gq (6%, £7)

a7a7B

= Y 9o (dr¢(Ric?(E,), drd(Ey)).

and

> 900" Ni(Ey) £, fP)gq(RE (Ea, Ey)Va, Va)
a,b,a,

= ZBgcz(f‘%Eb)gcz(ea,fﬁ)gQI(RN<dT¢(Eb),dT¢(Ea)>va,vﬁ)
a,b,a,

= Z;gQr(RN(qub(Eb),dT¢<Ea))dT¢(Eb)7dT¢(Ea)).

Hence we have the equation (5.9). O

Remark. (1) Let ¢: (M,F) - (M',F") be a smooth foliated map. Then,
dy(dr¢) =0, by (dre) = -m(9) +i(sk)dro. (5.15)
(2) If ¢: (M, F)— (M',F") is a transversally harmonic, then

Ady¢ = dyi(kly)dro. (5.16)
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Corollary 5.3 Let¢: (M,g,F) - (M',g',F') be a transversally harmonic map. Then
SABlroP = [TudroP- < F(dro),dro > +5ub(dro?).  (5.17)
g DBldT trdr T¢),dr 5B ldr
Proof. Since dy(dr¢) =0, we have
Ax(dr¢) = ~Vxdré +dyi(X)dre, VX eTQ. (5.18)

Hence (5.17) follows from (5.16) and (5.18). O
As applications of the generalized Weitzenbock formula, we have the following the-

orems.

Theorem 5.4 Let (M,g,F) be a compact foliated Riemannian manifold of nonnega-
tive transversal Ricci curvature Ric? and (M',g', F') be a foliated Riemannian man-
ifold of monpositive transversal sectional curvature K9 . If ¢ : (M,F) — (M',F') is
a transversally harmonic, then ¢ is a transversally totally geodesic, i.e., Vi-drd = 0.
Furthermore,

(1) If the transversal Ricci curvature Ric® of F is positive somewhere, then ¢ is a
transversally constant, i.e., the induced map between leaf spaces is constant.

(2) If the transversal sectional curvature K9 of F' is negative, then ¢ is either a

transversally constant or ¢(M) is a transversally geodesic closed curve.

Proof. Let ¢: (M,F) - (M',F") be a transversally harmonic map. Then from (5.17),

we have
1 -
5 (85 = rb)drol’ = -|Vidrol - < F(dre),dré > (5.19)
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Since Ric? >0 and K9 <0, from (5.8) we have
< F(dpo),dr¢> >0. (5.20)
Hence (Ap - x)|dr@|? < 0. Then by Lemma 2.15, |dr¢| is constant and then we have
|Virdr o[+ < Fdrd),dre >= 0. (5.21)
Hence Vy.dr¢ =0, i.e., ¢ is a transversally totally geodesic and
290 (dr¢(Ric® (Ea)), dré(Ea)) =0, (5:22)

z;ng(R%m(Ea), drd(Ep))drd(Ep), drd(Eq)) =0 (5.23)

for any indices a and b. Moreover, if Ric¥ is positive at some point, then dp¢ = 0. i.e., ¢
is a transversally constant, which proves (1). For the proof of (2), if there exists a point
x € M such that at least two vectors in {dr¢(FE,)} are linearly independent at ¢(z),
say dr¢(FE1) and dp¢(FE2), then our hypothesis contradicts (5.23). Hence the rank of
dr¢ < 2, that is the rank of dr¢ is zero or one everywhere. If rank(dy¢) = 0, then
¢ is a transversally constant and if rank(dr¢) = 1, then ¢(M) is closed transversally

geodesic. O

Theorem 5.5 Let (M, g, F) be a compact foliated Riemannian manifold and let (M', g’ F")
be a foliated Riemannian manifold. Assume that A and p are two positive constants such
that Ric® > X id and K< < ., where Ric? denotes the transversal Ricci curvature of M
and K9 denotes the transversal sectional curvature of M'. Let ¢ : (M, F) — (M', F")
be a transversally harmonic map with maz{rankr¢} < C, where C' > 2 is constant. If
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ldro)? < %, then ¢ is transversally constant or ¢ is transversally totally geodesic.

In particular, if |alT<z§|2 < 3, then ¢ is transversally constant.

Proof. Let {Eg}q-1,..4 be a local orthonormal basic frame of @) such that

dro = . o and rankr¢p=q<C

and Ay > Ag > 3 A, > 0.
q q
Since 9o/ (dr¢(Ea), dr¢(Ep))|z = Aadap, |drd|* = EIQQ'(dT¢(Ea)adT¢(Ea)) = ; Aa-

Then we have

q
SABlroP = Lab(drol) - 1udrof - 3. go (dro(Ric?(E,)), dro(E))
a=1
q s
+ 3 {ldrd(Ed)Pldrd(Ey)? — 9o (drd(Ea), dro(Ey))* I KS
a,b=1

1 - q
5B (drol*) = [Vipdrof - Ndrof + p (\chbl“ -2 Ai) ,
a=1

where K{g = 9o/ (RO (dr¢(EL), dr¢(Ey))dr¢(Ey), dr¢(E,)) is the transversal sec-
tional curvature spanned by dp¢(E,) and dro(Ep).

Using the Scwarz’s inequality, we have

q q q 1 q
dre|* = (Z )‘a) (Z Ab) = > Ak < 5 S (Ar+ N
a=1 b=1 a,b=1 a,b=1
1 2 ! 2 1 I 2 ! 2 2 2
= —E q)\a"l‘E)\b = = qZ)\a‘l‘qZ)\b :qZ)\ SCZAG
2 a=1 b=1 2 a=1 b=1 a=1 a=1

q _
Therefore |dr¢|* - ) N2 <ldrgl* - &ldrolt = SR drgl!
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and then by hypothesis,

EARldrof < Leb(ldrol?) - [Fudrof - Narof + M D agt
- yrbarof) - o arof (1 - L Dlar)
< o rb(ldroP) (5.24)

Hence from Lemma 2.15, |d7¢| is constant and then
- Cc-1
[Verdr @l + ldr el (A - %\dmr?) = 0. (5.25)

Therefore Vi,dr¢ = 0(i.e., ¢ is transversally totally geodesic) and |d¢|? ()\ - @MT@Q) =
0. If |dp@| = 0, then ¢ is a transversally constant and if |dp¢| # 0, then |dp¢|? = —2<—

mw(C-1)°
Particularly, if |dr¢|? < ﬁ (< %), then ¢ is transversally constant. O
Remark. For the point foliation, Theorem 5.4 and Theorem 5.5 are found in [2] and
[12], respectively.

Example. Let T2 be the flat 2-torus paramerized by the angles (u,v) with 0 < u,v <

27. Let ¢: T? - S3 be defined by
d(u,v) = (cosu, sinu, cosv, sinv) [\/2,

considered as a point in R% Then ¢ is harmonic but not totally geodesic[2]. Now
let (F,h) and (F’,h') be Riemannian manifolds. Consider the foliations on 72 x F' and
S3x ' given by the projections on the first component 71 : T?xF — T? 1y : S3xF' - §3,
respectively. Then the projections m;(i = 1,2) are Riemannian fibrations, and so the

foliations are Riemannian. Let ¢ : T% x F - S3 x F' be a foliated smooth map, which is
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given by
¢((u,v),2) = (¢(u,v), f(u,v,2))

for any = € F, where f : T?xF — F'is smooth. Then ¢ is transversally harmonic because

¢ is harmonic. But ¢ is not totally geodesic because ¢ is not totally geodesic[6].
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