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⟨Abstract⟩

Transversally harmonic maps

between foliated Riemannian manifolds

Let (M,F) and (M ′,F ′) be two foliated Riemannian manifolds with M compact.

Then we study the first normal variational formula for the transversal energy. More-

over, if we assume that the transversal Ricci curvature of F is nonnegative and the

transversal sectional curvature of F ′ is nonpositive, then any transversally harmonic

map φ ∶ (M,F)→ (M ′,F ′) is transversally totally geodesic. In addition, if the transver-

sal Ricci curvature is positive at some point, then φ is tansversally constant.
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1 Introduction

Harmonic maps are solutions to a natural geometrical variational problem. This

notion grew out of essential notions in differential geometry, such as geodesic, minimal

surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic

maps in several complex variables, to the theory of stochastic processes, to nonlinear

field theory in theoretical physics, and to the theory of liquid crystals in materials

science.

There are several equivalent definitions for harmonic maps. A map between Rieman-

nian manifolds is harmonic if the divergence of its differential vanishes. Equivalently,

harmonic maps are critical points of the energy functional.

On foliated Riemannian manifolds, transversally harmonic maps were introduced by

Konderak and Wolak [6] in 2003. Namely, let (M,g,F) and (M ′, g′,F ′) be two foliated

Riemannian manifolds and let φ ∶ (M,g,F) → (M ′, g′,F ′) be a smooth foliated map,

which is a smooth leaf-preserving map. Then φ is a transversally harmonic map if φ is a

solution of the equation τb(φ) = trQ∇̃dTφ = 0, where ∇̃ be the connection on Q∗⊗φ−1Q′.

Equivalently, φ is a critical point of the transversal energy functional on any compact

domain of M . That is, transversally harmonic maps are considered as harmonic maps

between the leaf spaces ([6, 7]). On a point foliation, transversally harmonic map is just

harmonic map. So transversally harmonic maps are generalizations of harmonic maps.

In this thesis, we study transversally harmonic maps and give some interesting facts

relating to them. In chapter 2, we review the well-known facts on a foliated Riemannian
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mannifold. In chapter 3, we review the properties of the transversally harmonic map,

which were studied in [7] and give some results. In chapter 4, we give a new proof of the

first normal variational formula for the transversal energy EB(φ) (Theorem 4.3). In the

last chapter, we study the generalized Weitzenböck formula and give some applications

(Theorem 5.4 and Theorem 5.5).
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2 Riemannian foliation

Let M be a smooth manifold of dimension p + q.

Definition 2.1 A family F ≡ {Lα}α∈A of connected subsets of a manifold Mp+q is

called a p-dimensional(or codimension q) foliation if

(1) ∪αLα =M,

(2) α ≠ β Ô⇒ Lα ∩Lβ = ∅,

(3) for any point p ∈M there exist a Cr−chart(local coordinate system) (ϕp, Up), such

that p ∈ Up and if Up ∩Lα ≠ ∅, then ϕp(Up ∩Lα) = Ac ∩ ϕ(Up), where

Ac = {(x, y) ∈ Rp ×Rq ∣y = constant}.

Here (ϕp, Up) is called a distinguished(or foliated) chart.

Roughly speaking, a foliation corresponds to a decomposition of a manifold into a union

of connected submanifolds of dimension p called it leaves.

Remark. From (3), we know that on Ui ∩ Uj ≠ ∅, the coordinate change ϕ−1
j ○ ϕi ∶

ϕ−1
i (Ui ∩Uj)→ ϕ−1

j (Ui ∩Uj) has the form

ϕ−1
j ○ ϕi(x, y) = (ϕij(x, y), γij(y)), (2.1)

where ϕij ∶ Rp+q → Rp is a differential map and γij ∶ Rq → Rq is a diffeomorphism.

Example.

(1) Line foliation. ([17]) Consider a closed 1-form ω = adx+bdy, a, b ∈ R on T 2 = R2/Z2.

Then we obtain a family of lines which defines a foliation in T 2. In this case, each leaf
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figure 1 figure 2 figure 3 figure 4

is R (See figure 1).

(2) Circles. In R2, the differential equation xdx + ydy = 0 has x2 + y2 = c2, c ∈ R+ as

general solution. When c varies, we obtain a family of circles which defines a foliation

in R2. In this case, each leaf is circle (See figure 2).

(3) In the plane R2, the differential equation dy
dx = tanx has the solution y = log∣secx∣ +

c, c ∈ R. When c varies, we obtain a foliation as figure 3.

(4) Reeb solid torus. ([17]) On a solid cylinder D2×R, we obtain the Reeb component

which is also defined by a submersion f ∶D2 ×R→ R :

f(x, y, z) = a(r2)exp(z),

where r = (x2 + y2) 1
2 and a(r) = exp(−exp( 1

1−r2 )) (See figure 4).

Let (M,gM ,F) be a (p + q)-dimensional Riemannian manifold with a foliation F

of codimension q and a Riemannian metric g. Let TM be the tangent bunlde of M , L

the tangent bundle of F and then L is the integrable subbundle of TM . i.e., X,Y ∈

ΓLÔ⇒ [X,Y ] ∈ ΓL. Let Q = TM/L the corresponding normal bundle of F , then the

metric gM defines a splitting σ in the exact sequence of vector bundles

0 // L // TM σ
// Qπoo // 0 , (2.2)
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where π ∶ TM → Q is a projection and σ ∶ Q→ L⊥ is a bundle map satisfying π ○σ = id.

Thus gM = gL ⊕ gL⊥ induces a metric gQ on Q ; that is,

gQ(s, t) = gM(σ(s), σ(t)) ∀s, t ∈ ΓQ. (2.3)

So we have an identification L⊥ with Q via an isometric splitting (Q,gQ) ≅ (L⊥, gL⊥).

Definition 2.2 A Riemannian metric gQ on Q of a foliation F is holonomy invariant

if θ(X)gQ = 0, for any X ∈ ΓL, where θ(X) is the transverse Lie derivative. i.e.,

XgQ(s, t) = gQ(π[X,Ys], t) + gQ(s, π[X,Yt]), ∀X ∈ ΓL, ∀s, t, ∈ ΓQ, (2.4)

where Ys = σ(s) for any s ∈ ΓQ.

Definition 2.3 A foliation F is Riemannian if there exists a holonomy invariant metric

gQ on Q. A metric gM is a bundle-like (with respect to F) if the induced metric gQ is

holonomy invariant.

Theorem 2.4 ([14]) Let F be a foliation on (M,g). Then the following conditions are

equivalent.

(a) F is Riemannian and g is a bundle-like metric.

(b) There exists an orthonomal adapted frame {Ei,Ea} such that

g(∇MEa
Ei,Eb) + g(∇MEb

Ei,Ea) = 0,

where ∇M be the Levi-Civita connection on M .

(c) All geodesics orthogonal to a leaf at one point are orthogonal to each leaf at every

point.
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Definition 2.5 ([13]) The transverse Levi-Civita connection ∇Q on the normal bundle

Q is defined by

∇QXs =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

π([X,Ys]) ∀X ∈ ΓL,

π(∇MX Ys) ∀X ∈ ΓL⊥,

(2.5)

where ∇M be the Levi-Civita connection associated to the Riemannian metric gM and

Ys = σ(s).

Then the transverse Levi-Civita connection ∇Q is metrical and torsion-free with respect

to gQ = gL⊥ . That is, ∇QXgQ = 0 for all X ∈ ΓTM and for any Y,Z ∈ ΓTM ,

TQ(Y,Z) = ∇QY π(Z) −∇QZπ(Y ) − π[Y,Z] = 0,

where TQ is the transversal torsion tensor field of ∇Q.

Let the transversal curvature tensor RQ of ∇Q ≡ ∇ is defined by

RQ(X,Y ) = [∇X ,∇Y ] −∇[X,Y ], ∀X,Y ∈ ΓTM. (2.6)

It is trivial that i(X)RQ = 0 for any X ∈ ΓL, where i(X) is the interior product. In

fact, RQ(X,Y )s = (θ(X)∇)Y s = 0 where Y ∈ ΓTM and s ∈ ΓQ ([14]).

Definition 2.6 The transversal sectional curvature KQ, transversal Ricci operator

RicQ and transversal scalar curvature σQ with respect to ∇ are defined by

KQ(s, t) = gQ(RQ(s,t)t,s)
gQ(s,s)gQ(t,t)−gQ(s,t)2 , ∀s, t, ∈ ΓQ

RicQ(s) = ∑aRQ(s,Ea)Ea, σQ = gQ(RicQ(Ea),Ea),

where {Ea} is a local orthonomal basic frame of Q.
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Definition 2.7 The mean curvature form κ of F is given by

κ(X) = gQ(
p

∑
i=1

π(∇MEi
Ei),X), ∀X ∈ ΓQ, (2.7)

where {Ei}i=1,⋯,p is a local orthonormal basis of L. The foliation F is said to be minimal

(or harmonic) if κ = 0.

Definition 2.8 Let F be an arbitrary foliation on a manifold M . A differential form

ω is basic if

i(X)ω = 0, θ(X)ω = 0, ∀X ∈ ΓL, (2.8)

where i(X) is an interior product.

Locally, the basic r−form ω is expressed by

ω = ∑
a1<⋯<ar

ωa1⋯ar
dya1

∧⋯ ∧ dyar
(2.9)

where
∂ωa1⋯ar

∂xj = 0 for all j = 1,⋯, p.

Let Ωr
B(F) be the space of all basic r–forms. Then ([1])

Ω∗
B(M) = Ω∗

B(F)⊕Ω∗
B(F)⊥.

Notation. Let ωB is the basic part of the form ω.

Theorem 2.9 ([1]) For a Riemannian foliation F on a compact manifold, κB is closed,

i.e., dκB = 0.

Definition 2.10 The basic Laplacian ∆B acting on Ω∗
B(F) by

∆B = dBδB + δBdB, (2.10)
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where δB is the formal adjoint operator of dB = d∣Ω∗

B(F), which are locally given by

dB =∑
a

θa ∧∇Ea
, δB = −∑

a

i(Ea)∇Ea
+ i(κ♯B), (2.11)

where κ♯B is the gQ–dual vector of κB, {Ea}a=1,⋯,q is a local orthonormal basic frame

of Q and {θa} is its gQ–dual 1–form.

We define ∇∗
tr∇tr ∶ Ωr

B(F)→ Ωr
B(F) by

∇∗
tr∇tr = −∑

a

∇2
Ea,Ea

+∇κ♯B , (2.12)

where ∇2
X,Y = ∇X∇Y −∇∇M

X Y
for any X,Y ∈ ΓTM .

Proposition 2.11 ([3])The operator ∇∗
tr∇tr is positive definite and formally self ad-

joint on the space of basic forms, i.e.,

∫ < ∇∗
tr∇trϕ,ψ >= ∫ < ∇trϕ,∇trψ >,

where < ∇trϕ,∇trψ >= ∑
a
< ∇Ea

ϕ,∇Ea
ψ > .

Definition 2.12 ([5]) A vector field Y ∈M is an infinitesimal automorphism of F if

[Y,Z] ∈ ΓL, ∀Z ∈ ΓL.

Let V (F) be the space of all infinitesimal automorphaisms and let Let V̄ (F) =

{Ȳ = π(Y )∣Y ∈ V (F)}. It is trivial that an elements s of V̄ (F) satisfies ∇Xs = 0 for all

X ∈ ΓL. Hence the metric defined by (2.4) induces an identification([10])

V̄ (F) ≅ Ω1
B(F). (2.13)
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For the later use, we recall the transversal divergence theorem([16]) on a foliated Rie-

mannian manifold.

Theorem 2.13 (Transversal divergence theorem) Let (M,gM ,F) be a closed,

oriented Riemannian manifold with a transversally oriented foliation F and a bundle-

like metric gM with respect to F . Then

∫
M
div∇X̄ = ∫

M
gQ(X̄, κ♯B) (2.14)

for all X ∈ V (F), where div∇X denotes the transversal divergence of X with respect to

the connection ∇.

Proof. Let div∇X be the divergence of X ∈ ΓTM with respect to ∇. Then we have

div∇X = ∑
i

gM(∇MEi
X,Ei) +∑

a

gM(∇MEa
X,Ea)

= −∑
i

gQ(X̄, π(∇MEi
Ei)) +∑

a

gQ(π(∇MEa
X̄),Ea)

= −gQ(X̄, κ♯B) + div∇X̄,

where X̄ = π(X). By Green’s Theorem, we have

0 = ∫
M
div∇X = ∫

M
div∇X̄ − ∫

M
gQ(X̄, κ♯B).

Hence the proof is completed. ◻

Now we define the bundle map AY ∶ ΛrQ∗ → ΛrQ∗ for any Y ∈ V (F)([5]) by

AY φ = θ(Y )φ −∇Y φ. (2.15)

It is well-known([5]) that for any s ∈ ΓQ

AY s = −∇Ys
Ȳ , (2.16)
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where Ys is the vector field such that π(Ys) = s. In fact, AY s = θ(Y )s − ∇Y s = ∇Y s −

∇Ys
Ȳ −∇Y s = −∇Ys

Ȳ . Since θ(X)φ = ∇Xφ for any X ∈ ΓL, AY preserves the basic forms

and depends only on Ȳ = π(Y ). Now, we recall the generalized Weitzenböck formula

on Ω∗
B(F).

Theorem 2.14 ([3]) On a Riemannian foliated manifold (M,F), we have

∆Bφ = ∇∗
tr∇trφ + F (φ) +Aκ♯Bφ, φ ∈ Ωr

B(F), (2.17)

where F (φ) = ∑
a,b
θa∧ i(Eb)R∇(Eb,Ea)φ. If φ is a basic 1–form, then F (φ)♯ = RicQ(φ♯).

Now we recall a very important lemma for later use. From Proposition 4.1 in [11],

it is well-known that ∆B − κ♯B on all basic functions is the restriction of ∆ − κ♯ on all

functions. Hence, by maximum and minimum principles, we have the following lemma.

Lemma 2.15 ([4]) Let (M,g,F) be a closed oriented Riemannian manifold with a

foliation F and a bundle-like metric g. If (∆B −κ♯B)f ≥ 0(or ≤ 0) for any basic function

f , then f is constant.
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3 Transversally harmonic maps between foliated Rieman-

nian manifolds

Let (M,g,F) and (M ′, g′,F ′) be two foliated Riemannian manifolds. Let ∇M and ∇M ′

be the Levi-Civita connections of M and M ′, respectively. Let ∇ and ∇′ be the trans-

verse Levi-Civita connections of Q and Q′, respectively. Let φ ∶ (M,g,F)→ (M ′, g′,F ′)

be a smooth foliated map, i.e., dφ(L) ⊂ L′. Then we define dTφ ∶ Q→ Q′ by

dTφ ∶= π′ ○ dφ ○ σ. (3.1)

Then dTφ is a section in Q∗ ⊗ φ−1Q′, where φ−1Q′ is the pull-back bundle on M . Let

∇φ and ∇̃ be the connections on φ−1Q′ and Q∗ ⊗ φ−1Q′, respectively.

Definition 3.1 Let φ ∶ (M,g,F) → (M ′, g′,F ′) be a smooth foliated map. Then φ is

called transversally totally geodesic if

∇̃trdTφ = 0, (3.2)

where (∇̃trdTφ)(X,Y ) = (∇̃XdTφ)(Y ) for any X,Y ∈ ΓQ.

Note that if φ ∶M →M ′ is transversally totally geodesic with dφ(Q) ⊂ Q′, then for any

transversal geodesic γ in M , φ ○ γ is also transversal geodesic.

Definition 3.2 The transversal tension field of φ is defined by

τb(φ) = trQ∇̃dTφ =
q

∑
a=1

(∇̃Ea
dTφ)(Ea), (3.3)

where {Ea} is a local orthonormal basic frame of Q.
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Trivially, the transversal tension field τb(φ) is a section of φ−1Q′

Definition 3.3 Let φ ∶ (M,g,F) → (M ′, g′,F ′) be a smooth foliated map. Then the

map φ is said to be transverally harmonic if the transversal tension field of φ vanishes,

i.e., τb(φ) = 0.

Now we recall the O’Neill tensors A and T ([9,14]) on a foliated manifold (M,F),

which are defined by

AXY = π⊥(∇Mπ(X)π(Y )) + π(∇Mπ(X)π
⊥(Y )) (3.4)

TXY = π⊥(∇Mπ⊥(X)π(Y )) + π(∇Mπ⊥(X)π
⊥(Y )) (3.5)

for any X,Y ∈ ΓTM , where π⊥ ∶ TM → L. It is well known([9]) that

Aπ(X)π(Y ) = π⊥[π(X), π(Y )] (3.6)

for any vector fields X,Y on M . Then T ≡ 0 is equivalent to the property that all

leaves of F are totally geodesic submanifolds of (M,g) and A ≡ 0 is equivalent to the

integrability of Q.

Let {Ei}i=1,⋯,p be a local orthonomal basis of L and {Ea}a=1,⋯,q be a local orthonor-

mal basic frame of Q. Then we have the following.

Theorem 3.4 Let φ ∶ (M,g,F)→ (M ′, g′,F ′) be a foliated map. Then

τ(φ) = τ(φ∣F) + τb(φ) − dTφ(κ♯) + trgφ∗T ′ + trQφ∗A′

+
q

∑
a=1

π⊥{∇M
′

π⊥dφ(Ea)π
⊥dφ(Ea) +∇M

′

πdφ(Ea)π
⊥dφ(Ea) − dφ(∇Ea

Ea)}

+
q

∑
a=1

π∇M
′

π⊥dφ(Ea)πdφ(Ea),
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where τ(φ) is the tension field of φ, τ(φ∣F) = π⊥∑
i
(∇̃Ei

dφ)(Ei),

trgφ
∗T ′ = ∑pi=1 T ′dφ(Ei)dφ(Ei) +∑

q
a=1 T ′dφ(Ea)dφ(Ea) and

trQφ
∗A′ = ∑qa=1A′dφ(Ea)dφ(Ea).

Proof. Let {Ei,Ea}i=1,⋯,p;a=1,⋯,q be a local orthonormal frame of ΓTM such that Ei ∈

ΓL,Ea ∈ ΓQ. By the definition of the tension field, we have

τ(φ) =
p

∑
i=1

(∇̃Ei
dφ)(Ei) +

q

∑
a=1

(∇̃Ea
dφ)(Ea).

Since φ is a foliated map, πdφ(Ei) = 0 and π⊥dφ(Ei) = dφ(Ei). Hence we have

p

∑
i=1

(∇̃Ei
dφ)(Ei) =

p

∑
i=1

{∇M
′

dφ(Ei)dφ(Ei) − dφ(∇
M
Ei
Ei)}

= τ(φ∣F) +
p

∑
i=1

{π∇M
′

dφ(Ei)dφ(Ei) − πdφ(∇
M
Ei
Ei)}

and

q

∑
a=1

(∇̃Ea
dφ)(Ea)

= τb(φ) +
q

∑
a=1

{π⊥∇M
′

πdφ(Ea)πdφ(Ea) +∇
M ′

πdφ(Ea)π
⊥dφ(Ea)}

+
q

∑
a=1

{∇M
′

π⊥dφ(Ea)πdφ(Ea) +∇
M ′

π⊥dφ(Ea)π
⊥dφ(Ea) − π⊥dφ(∇MEa

Ea)}.

From (3.6), we have π⊥∇M ′

πdφ(Ea)πdφ(Ea) = π
⊥∇MEa

Ea = 0. From (3.4) and (3.5), we have

τ(φ) = τ(φ∣F) + τb(φ) − πdφ(
p

∑
i=1

π(∇MEi
Ei)) +

p

∑
i=1

T ′dφ(Ei)dφ(Ei)

+
q

∑
a=1

{T ′dφ(Ea)dφ(Ea) +A
′
dφ(Ea)dφ(Ea) + π∇

M ′

π⊥dφ(Ea)πdφ(Ea)}

+
q

∑
a=1

π⊥{∇M
′

πdφ(Ea)π
⊥dφ(Ea) +∇M

′

π⊥dφ(Ea)π
⊥dφ(Ea) − dφ(π∇MEa

Ea)}.

Since
p

∑
i=1
π(∇MEi

Ei) = κ♯, the proof is completed. ◻
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Corollary 3.5 If a foliated map φ ∶ (M,g,F)→ (M ′, g′,F ′) satisfies dφ(Q) ⊂ Q′, then

τ(φ) = τ(φ∣F) + τb(φ) − dφ(κ♯) + trLφ∗T ′, (3.7)

where trLφ
∗T ′ =

p

∑
i=1
T ′dφ(Ei)dφ(Ei).

Proof. Since dφ(Q) ⊂ Q′, π⊥dφ(Ea) = 0 for all a. Moreover, from (3.5) and (3.6),

A′XX = 0 and T ′XY = 0 for all X,Y ∈ ΓQ′. Hence the proof is completed. ◻

Corollary 3.6 Let φ ∶ (M,g,F)→ (M ′, g′,F ′) be a foliated smooth map. Assume that

F is minimal, F ′ is totally geodesic and dφ(Q) ⊂ Q′. Then φ is a harmonic if and only

if φ is a transversally harmonic and leaf-wise harmonic, i.e., τ(φ∣F) = 0.

Proof. Since F is minimal and F ′ is totally geodesic, i.e., κ♯ = 0 and T ′ = 0, we have

from (3.7)

τ(φ) = τ(φ∣F) + τb(φ).

So the proof is completed. ◻

Corollary 3.7 Let φ ∶ (M,g,F)→ (M ′, g′,F ′) be a smooth foliated map and dφ(Q) ⊂

Q′. Then φ is a transversally harmonic map if and only if

π(τ(φ)) = trLφ∗T ′ − dφ(κ♯).

Now, let F be a Riemannian flow defined by a unit vector field V on a Riemannian

manifold (Mn+1, g). Then

κ♯ = π(∇MV V ) = ∇MV V. (3.8)
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In fact, ∇MV V is already orthogonal to the leaves since g(∇MV V,V ) = 0. Moreover, it

is trivial that F is totally geodesic if and only if F is minimal, i.e., T = 0 if and only if

κ♯ = 0. Let F and F ′ be two Riemannian flows defined by unit vector fields V and V ′

on Riemannian manifolds (M,g) and (M ′, g′), respectively. Let φ ∶ (M,F)→ (M ′,F ′)

be a smooth foliated map. Then

τ(φ∣F) = V (λ)V ′ − π⊥dφ(κ♯), λ = (φ∗ω′)(V ), (3.9)

where ω′ is the dual 1−form of V ′. Hence if dφ(Q) ⊂ Q′, then φ is leaf-wise harmonic if

and only if λ is basic, i.e., V (λ) = 0. Hence we have following corollary.

Corollary 3.8 Let F and F ′ be two Riemannian flows defined by a unit vector fields

V and V ′ on a Riemannian manifolds M and M ′, respectively. Assume that F and F ′

are minimal. Let φ ∶ (M,g,F)→ (M ′, g′,F ′) be a smooth foliated map and dφ(Q) ⊂ Q′.

Then φ is harmonic if and only if φ is transversally harmonic and (φ∗ω′)(V ) is basic.

Proof. Since F is minimal, from (3.9)

τ(φ∣F) = V (λ)V ′, λ = (φ∗ω′)(V ).

Hence the proof follows from Corollary 3.5. ◻

Let φ ∶ (M,F) → (M ′,F ′) and ψ ∶ (M ′,F ′) → (M ′′,F ′′) be smooth foliated maps.

Then the composition ψ ○ φ ∶ (M,F)→ (M ′′,F ′′) is a smooth foliated map. Moreover,

we have

dT (ψ ○ φ) = dTψ ○ dTφ (3.10)

Hence we have the following proposition.
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Proposition 3.9 Let φ ∶ (M,F) → (M ′,F ′) and ψ ∶ (M ′,F ′) → (M ′′,F ′′) be smooth

foliated maps. Then

∇̃trdT (ψ ○ φ) = dTψ(∇̃trdTφ) + φ∗∇̃trdTψ, (3.11)

where (φ∗∇̃trdTψ)(X,Y ) = (∇̃dTφ(X)dTψ)(dTφ(Y )) for any X,Y ∈ ΓQ.

Proof. From (3.10), we have that, for any X,Y ∈ ΓQ,

(∇̃trdT (ψ ○ φ))(X,Y ) = ∇ψ○φX dT (ψ ○ φ)(Y ) − dT (ψ ○ φ)(∇XY )

= (∇̃dTφ(X)dTψ)(dTφ(Y )) + dTψ((∇̃XdTφ)(Y ))

= (φ∗∇̃trdTψ)(X,Y ) + dTψ(∇̃trdTφ)(X,Y ),

which proves (3.11). ◻

Corollary 3.10 Let φ ∶ (M,F) → (M ′,F ′) and ψ ∶ (M ′,F ′) → (M ′′,F ′′) be smooth

foliated maps. Then the transversal tension field of the composition is given by

τb(ψ ○ φ) = dTψ(τb(φ)) + trQφ∗∇̃trdTψ, (3.12)

where trQφ
∗∇̃trdTψ =

q

∑
a=1

(∇̃dTφ(Ea)dTψ)(dTφ(Ea)).

Corollary 3.11 Let φ ∶ (M,F) → (M ′,F ′) be a transversally harmonic map and let

ψ ∶ (M ′,F ′)→ (M ′′,F ′′) be a transversally totally geodesic map. Then ψ○φ ∶ (M,F)→

(M ′′,F ′′) is a transversally harmonic map.
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4 The first normal variational formula

Let (M,g,F) be a foliated Riemannian manifold. Let volL ∶M → [0,∞] be the volume

function which volL(x) is the volume of the leaf passing through x ∈ M . It is trivial

that volL is a basic function. Then we have the following.

Lemma 4.1 On a foliated Riemannian manifold (M,F), it holds that

dBvolL + (volL)κB = 0. (4.1)

Proof. Let {v1,⋯, vp} be linearly independent vector fields of ΓL such that volL =

χF(v1,⋯, vp) = i(vp)⋯i(v1)χF , where χF is the characteristic form of F . By the Rumm-

ler’s formula ([13]), ϕ0 ∶= dχF + κ ∧ χF satisfies i(vp)⋯i(v1)ϕ0 = 0. Therefore we have

i(vp)⋯i(v1)dχF = −i(vp)⋯i(v1)(κ ∧ χF)

= i(vp)⋯i(v2)(κ ∧ i(v1)χF)

= (−1)p+1κ ∧ i(vp)⋯i(v1)χF

= (−1)p+1(volL)κ.

On the other hand, a direct calculation gives

d(i(vp)⋯i(v1)χF) = (−1)pi(vp)⋯i(v1)dχF + α(v1,⋯, vp),

where α(v1,⋯, vp) =
p

∑
j=1

(−1)p−ji(vp)⋯i(vj+1)θ(vj){i(vj−1)⋯i(v1)χF}. Since L is inte-

grable, α(v1,⋯, vp) ∈ L∗ and so α(v1,⋯, vp) = 0. Since volL is a basic function, we
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have

dBvolL = dB(i(vp)⋯i(v1)χF)

= (−1)pi(vp)⋯i(v1)dBχF

= (−1)2p+1(volL)κB = −(volL)κB.

The proof is completed. ◻

Definition 4.2 Let Ω be a compact domain of M . Then the transversal energy of φ

on Ω ⊂M is defined by

EB(φ; Ω) = 1

2
∫

Ω
∣dTφ∣2

1

volL
µM , (4.2)

where ∣dTφ∣2 =
q

∑
a=1

gQ′(dTφ(Ea), dTφ(Ea)) and µM is the volume element of M .

Let V ∈ φ−1Q′. Obviously, V may be considered as a vector field on Q′ along φ.

Then there is a 1-parameter family of foliated maps φt with φ0 = φ and dφt

dt ∣t=0 = V .

Then the family {φt} is said to be a foliated variation of φ with the normal variation

vector field V . Then we have the first normal variational formula(cf. [7]).

Theorem 4.3 (The first normal variational formula) Let φ ∶ (M,F) → (M ′,F ′)

be a smooth foliated map, and all leaves of F be compact. Let {φt} be a smooth foliated

variation of φ supported in a compact domain Ω. Then

d

dt
EB(φt,Ω)∣t=0 = −∫

Ω
< V, τb(φ) >

1

volL
µM , (4.3)

where V = dφt

dt ∣t=0 is the normal variation vector field of {φt} and < ⋅, ⋅ > is the pull–back

metric on φ−1Q′.

18



Proof. Let Ω be a compact domain of M and let {φt} be a foliated variation of

φ supported in Ω with the normal variation vector field V ∈ φ−1Q′. Choose a local

orthonormal basic frame {Ea} on Q such that (∇Ea)x = 0, at x ∈ M . Define Φ ∶

M × (−ε, ε) →M ′ by Φ(x, t) = φt(x) and set E = Φ−1Q′. Let ∇Φ denote the pull–back

connection on E. Obviously, dTΦ(Ea) = dTφt(Ea) and dΦ( ∂∂t) =
dφt

dt . Moreover, we have

∇Φ
∂
∂t

∂
∂t = ∇

Φ
∂
∂t

Ea = ∇Φ
Ea

∂
∂t = 0. Hence we have

d

dt
EB(φt,Ω) = ∫

Ω
∑
a

< ∇Φ
∂
∂t

dTΦ(Ea), dTΦ(Ea) >
1

volL
µM

= ∫
Ω
∑
a

< ∇Φ
Ea
dΦ( ∂

∂t
) , dTΦ(Ea) >

1

volL
µM

= ∫
Ω
∑
a

{Ea <
dφt
dt
, dTφt(Ea) > − < dφt

dt
,∇φt

Ea
dTφt(Ea) >}

1

volL
µM

= ∫
Ω
∑
a

Ea{<
dφt
dt
, dTφt(Ea) >

1

volL
}µM

−∫
Ω
∑
a

< dφt
dt
, dTφt(Ea) > Ea (

1

volL
)µM

−∫
Ω
< dφt
dt
, τb(φt) >

1

volL
µM .

Now we define a normal vector field Wt by

Wt =
1

volL
∑
a

< dφt
dt
, dTφt(Ea) > Ea.

Then its divergence is

div∇Wt =∑
a

Ea{<
dφt
dt
, dTφt(Ea) >

1

volL
}.
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By the transversal divergence theorem(Theorem 2.13), we have

d

dt
EB(φt,Ω) = ∫

Ω
{div∇Wt− < dφt

dt
, dTφt(dB ( 1

volL
)) >}µM

−∫
Ω
< dφt
dt
, τb(φt) >

1

volL
µM

= ∫
Ω
< dφt
dt
, dTφt((volL)κB + dBvolL) >

1

vol2L
µM

−∫
Ω
< dφt
dt
, τb(φt) >

1

volL
µM .

By Lemma 4.1, we have

d

dt
EB(φt,Ω) = −∫

Ω
< dφt
dt
, τb(φt) >

1

volL
µM , (4.4)

which proves (4.3). ◻

Corollary 4.4 Let φ ∶ (M,F) → (M ′,F ′) be a smooth foliated map. Assume that all

leaves of F are compact. Then φ is transversally harmonic if and only if φ is a critical

point of the transversal energy of φ supported in a compact domain.
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5 A generalized Weitzenböck type formula and its appli-

cations

Let (M,g,F) and (M ′, g′,F ′) be two foliated Riemannian manifolds and let φ ∶ (M,g,F)→

(M ′, g′,F ′) be a smooth foliated map. Let Ωr
B(E) = Ωr

B(F) ⊗ E be the space of E–

valued basic r–forms, where E = φ−1Q′. Let ∇̃ be the transverse Levi-Civita connection

on Ωr
B(E) and let the transveral curvature tensor R̃ of ∇̃ is defined by

R̃(X,Y ) = [∇̃X , ∇̃Y ] − ∇̃[X,Y ] X,Y ∈ ΓTM. (5.1)

Let Φ = ω⊗ s ∈ Ωr
B(E) for any ω ∈ Ωr

B(F) and s ∈ ΓE. Then by a direct calculation, we

have

R̃(X,Y )Φ = RQ(X,Y )ω ⊗ s + ω ⊗RE(X,Y )s. (5.2)

Now we define d∇ ∶ Ωr
B(E)→ Ωr+1

B (E) by

d∇(ω ⊗ s) = dBω ⊗ s + (−1)rω ∧∇φs, (5.3)

and let δ∇ be a formal adjoint of d∇. Then we have the following equations

d∇ =∑
a

θa ∧ ∇̃Ea
, δ∇ = −∑

a

i(Ea)∇̃Ea
+ i(κ♯B), (5.4)

where i(X)(ω ⊗ s) = i(X)ω ⊗ s for any X ∈ ΓTM , {Ea} is an orthonormal basis of Q,

{θa} its gQ–dual 1–form and κ = π(∑
a
∇MEa

Ea) is a mean curvature vector of F . Then

the Laplacian ∆ on Ω∗
B(E) is defined by

∆ = δ∇d∇ + d∇δ∇. (5.5)
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Moreover, the operators AX and θ(X) on Ωr
B(E) are extended by

AX(ω ⊗ s) = AXω ⊗ s (5.6)

θ(X)(ω ⊗ s) = θ(X)ω ⊗ s + (−1)rω ∧∇φXs (5.7)

for any X ∈ ΓTM . Then

d∇i(X)(Φ) = d∇(i(X)ω ⊗ s) = dBi(X)ω ⊗ s + (−1)r−1i(X)ω ∧∇φs

i(X)d∇(Φ) = i(X)(dBω ⊗ s + (−1)rω ∧∇φs)

= i(X)dBω ⊗ s + (−1)ri(X)ω ∧∇φs + (−1)rω ∧∇φXs.

Hence we can get θ(X)(Φ) = (d∇i(X) + i(X)d∇)(Φ), for any X ∈ ΓTM . Hence Φ ∈

Ω∗
B(E) if and only if i(X)Φ = 0 and θ(X)Φ = 0 for all X ∈ ΓL. Then the generalized

Weitzenböck type formula (3.17) is extended to Ω∗
B(E) as follows.

Theorem 5.1 For any Φ ∈ Ω∗
B(E),

∆Φ = ∇̃∗
tr∇̃trΦ + F (Φ) +Aκ♯BΦ, (5.8)

where F (Φ) =
q

∑
a,b=1

θa ∧ i(Eb)R̃(Eb,Ea)(Φ).
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Proof. Let Φ = ω ⊗ s ∈ Ωr
B(F)⊗ φ−1Q′. Then by a direct calculation

δ∇d∇Φ = −∑
a,b

i(Eb)∇̃Eb
(θa ∧ ∇̃Ea

Φ) + i(κ♯B)(dBω ⊗ s + (−1)rω ∧∇φEb
s)

= ∑
a,b

(−i(Eb)θa∇̃Eb
∇̃Ea

Φ + θa ∧ i(Eb)∇̃Eb
∇̃Ea

Φ)

+i(κ♯B)dBω ⊗ s + (−1)ri(κ♯B)ω ∧∇φEb
s + (−1)rω ∧∇φ

κ♯B
s,

d∇δ∇Φ = ∑
a,b

θa ∧ ∇̃Ea
(−i(Eb)∇̃Eb

Φ + i(κ♯B)Φ)

= −∑
a,b

θa ∧ i(Eb)∇̃Ea
∇̃Eb

Φ

+∑
a

θa ∧ (∇̃Ea
i(κ♯B)ω ⊗ s + (−1)r−1i(κ♯B)ω ∧∇φEa

s)

= −∑
a,b

θa ∧ i(Eb)∇̃Ea
∇̃Eb

Φ + (−1)r−1i(κ♯B)ω ∧∇φEa
s + dBi(κ♯B)ω ⊗ s.

Then we have

∆Φ = δ∇d∇Φ + d∇δ∇Φ

= −∑
a

∇̃Ea
∇̃Ea

Φ +∑
a,b

θa ∧ i(Eb)R̃(Eb,Ea)(Φ) + (−1)rω ∧∇φ
κ♯B
s

+(i(κ♯B)dBω + dBi(κ♯B)ω)⊗ s

= ∇∗
tr∇trΦ − (−1)rω ∧∇φ

κ♯B
s −∇κ♯Bω ⊗ s + F (Φ) + (−1)rω ∧∇φ

κ♯B
s

+θ(κ♯B)ω ⊗ s

= ∇∗
tr∇trΦ + F (Φ) +Aκ♯Bω ⊗ s.

Hence the proof is completed. ◻

Note that dTφ ∈ Ω1
B(E) and ∣dTφ∣2 ∈ ΩB(F), then we have the following.

Theorem 5.2 Let φ ∶ (M,g,F) → (M ′, g′,F ′) be a smooth foliated map. Then the
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generalized Weitzenböck formula is given by

1

2
∆B ∣dTφ∣2 = < ∆dTφ, dTφ > −∣∇̃trdTφ∣2 (5.9)

− < Aκ♯B(dTφ), dTφ > − < F (dTφ), dTφ >,

where

< F (dTφ), dTφ > = ∑
a

gQ′(dTφ(RicQ(Ea)), dTφ(Ea)) (5.10)

− ∑
a,b

gQ′(RQ
′

(dTφ(Eb), dTφ(Ea))dTφ(Ea), dTφ(Eb)).

Proof. Let {Ea}a=1,⋯,q be a local orthonormal basic frame such that at x ∈ M ,

(∇Ea)x = 0. Then at x, we have from (2.10) and (2.11)

1

2
∆B ∣dTφ∣2 =< ∇̃∗

tr∇̃trdTφ, dTφ > −∣∇̃trdTφ∣2. (5.11)

From (5.8), we have

1

2
∆B ∣dTφ∣2 = < ∆dTφ, dTφ > −∣∇̃trdTφ∣2

− < Aκ♯B(dTφ), dTφ > − < F (dTφ), dTφ > .

Now, we compute < F (dTφ), dTφ >. Let {Vα}α=1,⋯,q′ be a local orthonormal basic

frame of Q′ and ωα be its dual coframe field. Let fα = φ∗ωα. Then dTφ is expressed by

dTφ =
q′

∑
α=0

fα ⊗ Vα, (5.12)

where Vα(x) ≅ Vα(φ(x)). From (5.2)

R̃(Ea,Eb)dTφ =∑
α

RQ(Ea,Eb)fα ⊗ Vα +∑
α

fα ⊗RE(Ea,Eb)Vα, (5.13)
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where RE(Ea,Eb)Vα = RQ
′(dTφ(Ea), dTφ(Eb))Vα. From (5.11), we have

< F (dTφ), dTφ > = ∑
a,b

< θa ∧ i(Eb)R̃(Eb,Ea)dTφ, dTφ >

= ∑
a,b,α,β

< θa ∧ i(Eb)RQ(Eb,Ea)fα ⊗ Vα, fβ ⊗ Vβ >

+ ∑
a,b,α,β

gQ(θa ∧ i(Eb)fα, fβ)gQ(RE(Ea,Eb)Vα, Vβ).

Note that dTφ(Ea) = ∑
α
fα(Ea)Vα. Then we have

∑
a,b,α,β

gQ(θa ∧ i(Eb)RQ(Eb,Ea)fα ⊗ Vα, fβ ⊗ Vβ) (5.14)

= ∑
a,b,α,β

(RQ(Eb,Ea)fα(Eb) − fα(RQ(Eb,Ea)Eb))gQ(θa, fβ)

= ∑
a,α,β

fα(RicQ(Ea))gQ(θa, fβ)

= ∑
a

gQ′(dTφ(RicQ(Ea), dTφ(Ea)).

and

∑
a,b,α,β

gQ(θa ∧ i(Eb)fα, fβ)gQ(RE(Ea,Eb)Vα, Vβ)

= ∑
a,b,α,β

gQ(fα,Eb)gQ(θa, fβ)gQ′(RN(dTφ(Eb), dTφ(Ea))Vα, Vβ)

= ∑
a,b

gQ′(RN(dTφ(Eb), dTφ(Ea))dTφ(Eb), dTφ(Ea)).

Hence we have the equation (5.9). ◻

Remark. (1) Let φ ∶ (M,F)→ (M ′,F ′) be a smooth foliated map. Then,

d∇(dTφ) = 0, δ∇(dTφ) = −τb(φ) + i(κ♯B)dTφ. (5.15)

(2) If φ ∶ (M,F)→ (M ′,F ′) is a transversally harmonic, then

∆dTφ = d∇i(κ♯B)dTφ. (5.16)
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Corollary 5.3 Let φ ∶ (M,g,F)→ (M ′, g′,F ′) be a transversally harmonic map. Then

1

2
∆B ∣dTφ∣2 = −∣∇̃trdTφ∣2− < F (dTφ), dTφ > +

1

2
κ♯B(∣dTφ∣2). (5.17)

Proof. Since d∇(dTφ) = 0, we have

AX(dTφ) = −∇̃XdTφ + d∇i(X)dTφ, ∀X ∈ ΓQ. (5.18)

Hence (5.17) follows from (5.16) and (5.18). ◻

As applications of the generalized Weitzenböck formula, we have the following the-

orems.

Theorem 5.4 Let (M,g,F) be a compact foliated Riemannian manifold of nonnega-

tive transversal Ricci curvature RicQ and (M ′, g′,F ′) be a foliated Riemannian man-

ifold of nonpositive transversal sectional curvature KQ′

. If φ ∶ (M,F) → (M ′,F ′) is

a transversally harmonic, then φ is a transversally totally geodesic, i.e., ∇̃trdTφ = 0.

Furthermore,

(1) If the transversal Ricci curvature RicQ of F is positive somewhere, then φ is a

transversally constant, i.e., the induced map between leaf spaces is constant.

(2) If the transversal sectional curvature KQ′

of F ′ is negative, then φ is either a

transversally constant or φ(M) is a transversally geodesic closed curve.

Proof. Let φ ∶ (M,F)→ (M ′,F ′) be a transversally harmonic map. Then from (5.17),

we have

1

2
(∆B − κ♯B)∣dTφ∣2 = −∣∇̃trdTφ∣2− < F (dTφ), dTφ > . (5.19)
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Since RicQ ≥ 0 and KQ′ ≤ 0, from (5.8) we have

< F (dTφ), dTφ > ≥ 0. (5.20)

Hence (∆B − κ♯B)∣dTφ∣2 ≤ 0. Then by Lemma 2.15, ∣dTφ∣ is constant and then we have

∣∇̃trdTφ∣2+ < F (dTφ), dTφ >= 0. (5.21)

Hence ∇̃trdTφ = 0, i.e., φ is a transversally totally geodesic and

∑
a

gQ′(dTφ(RicQ(Ea)), dTφ(Ea)) = 0, (5.22)

∑
a,b

gQ′(RQ
′

(dTφ(Ea), dTφ(Eb))dTφ(Eb), dTφ(Ea)) = 0 (5.23)

for any indices a and b. Moreover, if RicQ is positive at some point, then dTφ = 0. i.e., φ

is a transversally constant, which proves (1). For the proof of (2), if there exists a point

x ∈ M such that at least two vectors in {dTφ(Ea)} are linearly independent at φ(x),

say dTφ(E1) and dTφ(E2), then our hypothesis contradicts (5.23). Hence the rank of

dTφ < 2, that is the rank of dTφ is zero or one everywhere. If rank(dTφ) = 0, then

φ is a transversally constant and if rank(dTφ) = 1, then φ(M) is closed transversally

geodesic. ◻

Theorem 5.5 Let (M,g,F) be a compact foliated Riemannian manifold and let (M ′, g′,F ′)

be a foliated Riemannian manifold. Assume that λ and µ are two positive constants such

that RicQ ≥ λ id and KQ′ ≤ µ, where RicQ denotes the transversal Ricci curvature of M

and KQ′

denotes the transversal sectional curvature of M ′. Let φ ∶ (M,F) → (M ′,F ′)

be a transversally harmonic map with max{rankTφ} ≤ C, where C ≥ 2 is constant. If
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∣dTφ∣2 ≤ λC
µ(C−1) , then φ is transversally constant or φ is transversally totally geodesic.

In particular, if ∣dTφ∣2 ≤ λ
µ , then φ is transversally constant.

Proof. Let {Ea}a=1,⋯,q be a local orthonormal basic frame of Q such that

dTφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ1 ⋯ 0

⋮ ⋱ ⋮ ∗

0 ⋯ λq

∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and rankTφ = q ≤ C

and λ1 ≥ λ2 ≥ ⋯ ≥ λq > 0.

Since gQ′(dTφ(Ea), dTφ(Eb))∣x = λaδab, ∣dTφ∣2 =
q

∑
a=1

gQ′(dTφ(Ea), dTφ(Ea)) =
q

∑
a=1

λa.

Then we have

1

2
∆B ∣dTφ∣2 = 1

2
κ♯B(∣dTφ∣2) − ∣∇̃trdTφ∣2 −

q

∑
a=1

gQ′(dTφ(RicQ(Ea)), dTφ(Ea))

+
q

∑
a,b=1

{∣dTφ(Ea)∣2∣dTφ(Eb)∣2 − gQ′(dTφ(Ea), dTφ(Eb))2}KQ′

ab

≤ 1

2
κ♯B(∣dTφ∣2) − ∣∇̃trdTφ∣2 − λ∣dTφ∣2 + µ(∣dTφ∣4 −

q

∑
a=1

λ2
a) ,

where KQ′

ab = gQ′(RQ′(dTφ(Ea), dTφ(Eb))dTφ(Eb), dTφ(Ea)) is the transversal sec-

tional curvature spanned by dTφ(Ea) and dTφ(Eb).

Using the Scwarz’s inequality, we have

∣dTφ∣4 = (
q

∑
a=1

λa)(
q

∑
b=1

λb) =
q

∑
a,b=1

λaλb ≤
1

2

q

∑
a,b=1

(λ2
a + λ2

b)

= 1

2

q

∑
a=1

(qλ2
a +

q

∑
b=1

λ2
b) = 1

2
(q

q

∑
a=1

λ2
a + q

q

∑
b=1

λ2
b) = q

q

∑
a=1

λ2
a ≤ C

q

∑
a=1

λ2
a.

Therefore ∣dTφ∣4 −
q

∑
a=1

λ2
a ≤ ∣dTφ∣4 − 1

C ∣dTφ∣4 = (C−1)
C ∣dTφ∣4
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and then by hypothesis,

1

2
∆B ∣dTφ∣2 ≤ 1

2
κ♯B(∣dTφ∣2) − ∣∇̃trdTφ∣2 − λ∣dTφ∣2 +

µ(C − 1)
C

∣dTφ∣4

= 1

2
κ♯B(∣dTφ∣2) − ∣∇̃trdTφ∣2 − ∣dTφ∣2 (λ −

µ(C − 1)
C

∣dTφ∣2)

≤ 1

2
κ♯B(∣dTφ∣2). (5.24)

Hence from Lemma 2.15, ∣dTφ∣ is constant and then

∣∇̃trdTφ∣2 + ∣dTφ∣2 (λ −
µ(C − 1)

C
∣dTφ∣2) = 0. (5.25)

Therefore ∇̃trdTφ = 0(i.e., φ is transversally totally geodesic) and ∣dTφ∣2 (λ − µ(C−1)
C ∣dTφ∣2) =

0. If ∣dTφ∣ = 0, then φ is a transversally constant and if ∣dTφ∣ ≠ 0, then ∣dTφ∣2 = λC
µ(C−1) .

Particularly, if ∣dTφ∣2 ≤ λ
µ (< λC

µ(C−1)), then φ is transversally constant. ◻

Remark. For the point foliation, Theorem 5.4 and Theorem 5.5 are found in [2] and

[12], respectively.

Example. Let T 2 be the flat 2−torus paramerized by the angles (u, v) with 0 ≤ u, v <

2π. Let φ̄ ∶ T 2 → S3 be defined by

φ̄(u, v) = (cosu, sinu, cosv, sinv)/
√

2,

considered as a point in R4. Then φ̄ is harmonic but not totally geodesic[2]. Now

let (F,h) and (F ′, h′) be Riemannian manifolds. Consider the foliations on T 2 ×F and

S3×F ′ given by the projections on the first component π1 ∶ T 2×F → T 2, π2 ∶ S3×F ′ → S3,

respectively. Then the projections πi(i = 1,2) are Riemannian fibrations, and so the

foliations are Riemannian. Let φ ∶ T 2 ×F → S3 ×F ′ be a foliated smooth map, which is

29



given by

φ((u, v), x) = (φ̄(u, v), f(u, v, x))

for any x ∈ F , where f ∶ T 2×F → F ′ is smooth. Then φ is transversally harmonic because

φ̄ is harmonic. But φ is not totally geodesic because φ̄ is not totally geodesic[6].
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<국문 초록>

엽층적 리만다양체상에서의 횡단선의 조화사상

엽층적 리만다양체 (M,ℱ)와 (M',ℱ')에 대하여 M이 컴팩트인 경우에

대하여, 우선 횡단하는 힘에 대한 첫 번째 변분공식에 대하여 연구하였다.

엽층구조 ℱ의 횡단하는 Ricci 곡률이 음(-)이 아니고 ℱ‘의 횡단하는 절

단선의 곡률이 양(+)이 아닐 때, 횡단적으로 조화사상  : (M,ℱ)→(M',ℱ

')는 횡단적으로 완전히 측지선이 된다. 특히, 횡단하는 Ricci 곡률이 양

(+)인 점이 존재할 때, 는 횡단적으로 상수가 된다.
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청무우 밭인가 해서 내려갔다가는

어린 날개가 물결에 절어서

공주처럼 지쳐서 돌아온다.
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