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Abstract

Wind turbines operate in a very instationary environment, where wind turbines gen-

erally have been modelled with steady airfoil characteristics. The unsteady effects on

the airfoil characteristics influence loads and stability of wind turbines. It is no doubt

that unsteady aerodynamic effect is important to predict aerodynamic damping and

aero-elastic stabilities of wind turbines. Furthermore there is the fact that the size of

wind turbines is getting larger, which cause more unsteadiness on the blades of wind

turbines. In this thesis the effects due to the fluctuation of airfoil will be evaluated for

different reduced frequencies. In order to determine unsteady effects a code has been

developed based on Theodorsen theory and compared with the measurement data of

The Ohio State University. At last, The effects due to the fluctuation on the flapwise

vibration, chordwise vibration and pitch regulation will be evluated at different period

and amplitude of the motion of airfoils.
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Nomenclature

Roman letters

a - pitching point

A f w,Acw,Aθ - Flapwise, chordwise and torsion amplitudes of vibration

An - Fourier coefficients of non-dimensional bound vorticity distribution

Bn - Fourier coefficients of camber line slope

c - Chordlength [m]

cl - Lift coefficient

k - reduced frequency of vibration

L - Lift force [N]

M - Moment

p - pressure

pu - Pressure over camber line [N/m2]

pl - Pressure under camber line [N/m2]

r - position of vector

u - Local velocity on x axis component [m/s]

U - Inflow velocity [m/s]

Urel - Relative velocity [m/s]

w - Local velocity on z axis component [m/s]

wb - Local velocity along the camber line induced by bound vorticity [m/s]

ww - Local velocity along the wake due to shed wake vorticity [m/s]

x, zc - Cartesian coordinate system for camber line

∇ - Gradient

Greek letters

α - Angle of attack [deg]

αzero - zero lift angle of attack [deg]

αe f f - Effective angle of attack [deg]

6



γ - Bound vorticity

Γ - Bound vortex strength

Γw Discrete shed vortex strength

∆ - Increment in quantity

Φ - Velocity potential function

Ω - Rotor’s angular speed [rad/s] or [rpm]

θ - Transform valuable

λ - Transform valuable

ρ - Fluid density [kg/m3]

Abbreviation

2D - Two dimensional

3D - Three dimensional

AOA - Angle of attack

BEMT - Blade element momentum theory

MW - Megawatt

OSU - Ohio state university

WTG - Wind turbine generator
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1 Introduction

1.1 Background

Wind turbines operate in a very instationary environment, where wind turbines gen-

erally modelled with steady airfoil characteristics. The unsteady effects on the airfoil

characteristics influence loads and stability of wind turbines. It is no doubt that un-

steady aerodynamic effect is important to predict aerodynamic damping and aeroelas-

tic stabilities of wind turbines.

Furthermore there is the fact that the size of wind turbines is getting larger. Among

commercial Wind turbine generator systems (WTGS), the largest capacity of WTGS

is 6MW and rotor diameter even reaches 126 m[1]. Since the longer blade WTGS

has the more unsteadiness the blade has, strong demands for modelling the unsteady

aerodynamic forces and aeroelastic stabilities have been required.

For example of 5MW reference wind turbine which has a blade length of 61.5 m,

the heaving amplitude of the tip of blade can be more than 0.2 m at 18 ms wind speed

which can be critical effect on aerodynamic damping and aeroelastic stabilities. [2]

In this Thesis, unsteady airfoil aerodynamic at a attached and potential flow [chapter

2.2] will be treated. The effects due to the fluctuation on the flapwise vibration, chord-

wise vibration and pitch regulation will be evaluated for different reduced frequencies1

In order to determine unsteady effects a model has been developed, based on Theodorsen

theory and compared with the measurement data of The Ohio State University[3]. The

method of Theodorsen theory is well described by Theodorsen[4] and Katz[5]. Appli-

cation of Theodorsen theory to three dimension has been carried out by Snel[6].
1A dimensionless number used in studying the vibrations of a body past which a fluid is flowing; it is equal to a characteristic

dimension of the body times the frequency of vibrations divided by the fluid velocity relative to the body; For wind turbines blades
the characteristic dimension of the body is the chordlength shown as equation (69).
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1.2 The Goal of Research

The main goals of this research can be divided to two objects.

The first goal is to determine the effects due to the heaving (flapwise component),

vibration (chordwise component) and pitching (torsion component) phenomena in a

fully attached flow based on Theodorsen theory.

The second goal is to determine the unsteady aerodynamic effect on the airfoil data

at different reduced frequencies from these movements. affects of reduced frequency

on each component.

1.3 The Structure of Thesis

For modelling Theodorsen theory in the case of unsteady potential flow will be treated

in three steps in chapter 2.

First, potential flow will be introduced in chapter 2.2.

Secondly, in chapter 2.3 thin airfoil theory for the steady case will be used to pre-

dict aerodynamic forces using Glauert’s series expansion solution[7].

Third, unsteady effects will be combined by considering the time dependent bound-

ary condition and shed wake induction effect will be applied to the unsteady boundary

condition in chapter 2.4.

The last step for modelling the 2D lifting airfoil is determination of pressure field

and resulting forces obtained by the unsteady Bernoulli equation.

In chapter 3, an airfoil will be analysed and resulting lift coefficient will be compared

9



with measurement data to validate the code. Lift coefficient in different reduced fre-

quency will be compared with OUS data and discussed.

Finally chapter 4 states several important conclusions, recommendations and future

works.
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2 Theoretical Background

2.1 Unsteady models

The most significant functions for two-dimensional potential theory of airfoil in the

unsteady case are regarded by Wagner [8] and by Theodorsen [4].

Wagner : Wagner’s function concerns the growth of circulation or lift about an airfoil

at a small fixed angle of attack starting impulsively from rest to a uniform velocity

U[8].

Theodorsen : Theodorsen’s function describes the lift due to circulation about an air-

foil osillating sinusoidally and moving with uniform velocity U[8].

In this thesis Theodorsen theory will be used to describe the unsteady aerodynamic

forces due to the motion of airfoil vibrating sinusoidally.
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2.2 Potential flow

A potential flow is described such that a velocity potential Φ, being a function of space

and time, which can be defined such that the flow velocity vector U is equal to the

gradient, ∇, of Φ. [9]

U = ∇Φ (1)

The irrotationality of a potential flow is due to the the curl of a gradient, always being

equal to zero[9].

∇×∇Φ = 0 (2)

Consequently the vorticity, the curl of the velocity field U, is zero[9]:

∇×U = 0 (3)

This implies that a potential flow is an irrotational and inviscid flow. Only viscous

effect can cause rotation while pressure forces only gives normal forces. In case of an

incompressible flow the velocity U has zero divergence[9]:

∇ ·U = 0 (4)

With the dot denoting the inner product, As a result, the velocity potential Φ has to

satisfy Laplace’s equation[9].

∇
2
Φ = 0 (5)

Hence, the assumption of this Thesis is potential flow which is inviscid, incompressible

and irrotational.
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2.3 Glauert’s Solution for a Thin Airfoil in The Steady Case

2.3.1 Zero-thickness Airfoil at Angle of Attack

As introduced in chapter 2, in a potential flow the continuity equation is:

∇
2
Φ = 0 (6)

Consider the airfoil defined by its camberline zc(x) to the x axis with the leading edge

at x=-c/2 and the trailing edge at x = c/2 and center of the chordlength of airfoil is zero

as shown below in Figure 1.

Figure 1 The geometry of thin cambered airfoil at an angle of attack

The undisturbed flow velocity is U and is aligned with the x-direction. The local

velocity of the section will be given by u, w and it will be assumed that u and w

are small compared to U:

w
U

,
u
U
� 1

In case of small-disturbance flow which the boundary condition is applied at z=0, the

sum of all the velocity components normal to the camberline, the freestream velocity

and the velocity induced by vortex, must be zero at all points along the camber line.

First, freestream velocity can be expressed below using the approximations that cosα ≈1,

sinα ≈ 0 for small α , where α is in radians.

∂Φ

∂ z
(x,0±) =U

( zc

dx
cosα− sinα

)
'U

( zc

dx
−α

)
(7)
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In order to compute the velocity induced by vortex at position x, consider the vortex

distribution along the chordlength with a strength of γdx at x = x0.

dΦ =
γdx
2π

tan−1
(

z
x− x0

)
(8)

This equation (8) follows from the 2D Biot-Savart Law[10] for the vortex singularity.

Figure 2 Vortex distribution along the chordline[5]

As a result, the local velocity field induced by vortex can be obtained:

u(x,z) =
∫ c/2

−c/2

∂dΦ

∂x
=
∫ c/2

−c/2

γ(x0)

2π

z
(x− x0)2 + z2 dx0 (9)

w(x,z) =
∫ c/2

−c/2

∂dΦ

∂ z
=−

∫ c/2

−c/2

γ(x0)

2π

x− x0

(x− x0)2 + z2 dx0 (10)

Since z=0 is assumed, equation (9) becomes zero, except for x0 = x, where it can’t be

calculated. To evaluate this integral a new integration variable should be used:

λ =
x− x0

z
,

dλ

dx0
=−1

z

Integral limits become +∞ and -∞ while z approaches zero from the positive side

(z=0+) and zero from the negative side (z=0−) respectively.

z
(x− x0)2 + z2 dx0 =−

z2

(x− x0)2dλ
=− 1

1+λ 2 dλ =−d arctanλ (11)
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The local velocity u is:

u(x,0±) =
∂Φ

∂x
(x,0±) =±λ (x)

2
(12)

For the present model the resulting local velocity w should be determined. The w can

be directly derived from equation (10):

w(x,0) =−
∫ c/2

−c/2

∂Φ

∂ z
=−

∫ c/2

−c/2

γ(x0)

2π

dx0

x− x0
(13)

As mentioned in forth paragraph in this chapter, the unknown vortex distribution γ(x)

along the camberline can be calculated using the condition that the sum of all the

velocity components normal to the chordlength is zero, which is a form of zero normal

flow boundary condition:

w(x,0)
U

=− 1
2πU

∫ c/2

−c/2
γ(x0)

dx0

x− x0
=

dzc

dx
−α (14)

2.3.2 Glauert’s Series Expansion Solution

In order to solve the vortex distribution, Glauert’s [[7]] series expansion solution is

used in this chapter.

The first step to solve equation 14 is changing x variable to θ as shown in Figure 3:

x0 =−
c
2

cosθ0, dx0 =
c
2

sinθ0dθ0 (15)

As shown in Figure (3), the x coordinates has been changed by θ so that the leading

edge of airfoil is at x=0 (θ = 0) and trailing edge is at x=c (θ = π)

Hence, the equation (14), the zero normal flow boundary condition, becomes:

1
2πU

∫
π

0
γ(θ0)

sinθ0

cosθ0− cosθ
dθ0 =

dzc(θ)

dx
−α (16)

To find vortex distribution, a function which satisfies large suction peak at the leading

edge and reduces to 0 at the trailing edge subject to Kutta condition is needed. Using

the trigonometric cotangent function which is proper for two conditions above, vortex
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Figure 3 Transformation of variable x to θ

distribution can be expressed in terms of θ and Fourier coefficients as equation (17):

γ(θ)

2U
= A0 cot

θ

2
+

∞

∑
n=1

An sinnθ = A0
1+ cosθ

sinθ
+

∞

∑
n=1

An sinnθ (17)

Then, equation (17) can be substituted into the zero normal boundary condition, equa-

tion (16):

1
2πU

∫
π

0
γ(θ0)

sinθ0

cosθ0− cosθ
dθ0 =

1
π

∫
π

0

[
A0

1+ cosθ0

sinθ0
+

∞

∑
n=1

An sinnθ0

]
sinθ0dθ0

cosθ0− cosθ
=

dzc(θ)

dx
−α

(18)

∫
π

0

cosnθ0

cosθ0− cosθ
dθ0 =−

π sinnθ

sinθ
(19)

Using Glauert’s integral (19) above and replacing 1 by cosθ0 The integral of the first

singular term containing A0 becomes:

A0

π

π∫
0

1+ cosθ0

cosθ0− cosθ
dθ0 =

A0

π
[−0−π] =−A0 (20)

sinnθ sinθ =
cos(n−1)θ − cos(n+1)θ

2
(21)

The equation (21) which is trigonometric relation will be used for the remainning temrs

16



containing An:

An

2π

∫
π

0

cos(n−1)θ0− cos(n+1)θ0

cosθ0− cosθ
=

Anπ

2π

[
sin(n+1)θ − sin(n−1)θ

sinθ

]
= An cosnθ

(22)

Also the slope of the camberline can be expanded to a Fourier cosine series

dzc

dx
(θ) =

∞

∑
n=0

Bn cosnθ (23)

Substituting equation (20), (22) and (23) into (18), boundary condition can be rewritten

in terms of Fourier coefficients:

w(x,0)
U

=−A0 +
∞

∑
n=1

An cosnθ =−α +
∞

∑
n=0

Bn cosnθ =
dzc(θ)

dx
−α (24)

Hence:

A0 = α−B0 n = 0

An = Bn n = 1,2,3, ...∞
(25)

The coefficients A0 and An above can be computed for a given function of camberline

and then Aerodynamic forces can be derived as will be introduced in the next chapter.

2.3.3 Aerodynamic Forces in Terms of Fourier Coefficient in The Steady Case

Since local velocity u has been determined in equation (12), the pressure difference

can be obtained with the equation below:

∆

ρ
(x) =

pl(x)− pu(x)
ρ

=
1
2

[(
U +

γ

2
(x)
)2
−
(

U− γ

2
(x)
)2
]
=Uγ(x) (26)

According to Kutta-Joukowski[[10]] theorem, lift force can be written in:

L =
∫ c/2

−c/2
ρUγ(x)dx = ρU

∫ c/2

−c/2
γ(x)dx = ρUΓ (27)

Where Γ is defined as the sum of γ(x) along the profile and lift force can be derived to

17



equation (28) below in terms of A0 and An coefficients.

Γ = 2U
∫ c/2

−c/2

γ(x)
2U

dx = 2U
∫

π

0

[(
A0

1+ cosθ

sinθ
+

∞

∑
n=1

An sinnθ

)
c
2

sinθ dθ

]
=Uc

(
A0π +A1

π

2

) (28)

Substituting equation (28) into equation (27), lift force becomes:

L = ρU2 c
2
(2πA0 +πA1) = ρU2cπ

(
A0 +

A1

2

)
(29)

The moment at a given point x=a on the airofil, can be expressed by:

M =−
∫ c/2

−c/2
∆p(x)(x−a)dx =−ρU

∫ c/2

−c/2
γ(x)(x−a)dx

=−ρU
∫ c/2

−c/2
γ(x)xdx+

a
L

(30)

The moment at x=a on the airfoil, can be derived in terms of Fourier coefficients:

Mx=a =
1
2

ρU2c2
[

A0

(
1+

4a
c

)
+A1

2a
c
+

A2

2

]
(31)

Normally pitching point is defined at the quarter chord which makes equation (31)

dependent of A1 and A2 only:

Mc/4 =
1
2

ρU2c2 π

4
(−A1 +A2) (32)

The moment at the quarter chord is independent of angle of attack, since only A0 is

dependent of angle of attack shown as equation (25).
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2.4 Unsteady Flow of a Two-dimensional and Shed Wake Induction Effects

2.4.1 Unsteady boundary condition

Continuity equation is mentioned in equation (6) in a potential condition, which does

not depend on time directly. Hence in this chapter, boundary condition dependent on

time will be derived.

Boundary condition requiring no normal flow across the surface depending on time

can be derived:

(∆Φ−U−urel−Ω× r) ·n = 0 (33)

Where the vector n normal to the surface is given by camber line:

n =

(
−∂ zc

∂x
,0,1

)
√(

∂ zc

∂x

)2

+1

(34)

urel is the velocity of the Cartesian system in two dimensional coordinates (x-z coor-

dinates):

Urel = [−U(t),0,0] (35)

r is the position of vector, r=(x,y,z) and Ω is the rate of rotation, Ω = [0,
∂θ

∂ t
,0], so that:

Ω× r = (
∂θ

∂ t
z,0,−∂θ

∂ t
x) (36)

The velocity potential Φ can be divided into an airfoil potential ΦB and a wake potential

ΦW :

Φ = ΦB +ΦW (37)

Hence, the boundary condition for airfoil potential can be obtained:

∂ΦB

∂ z
=

(
∂ΦB

∂x
+

ΦW

∂x
+U− ∂θ

∂ t
z
)

∂ zc

∂x
− ∂ΦW

∂ z
− ∂θ

∂ t
x+

∂ zc

∂ t
≡ w(x, t) (38)
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2.4.2 Wake model

dΓ

dt
= 0 (39)

Kelvin states
dΓ

dt
= 0. Hence a change in bound vortex strength should be computed

with shed vorticity, see also figure 4 hence a change in bound vortex strength should

be compounded with shed vorticity, see also figure 4.

Figure 4 Discrete wake vortex distribution[5]

The strength of wake vortex element generated due to the changes of bound vortex

and shed from trailing edge is defined Γwi . The location of the shed vorticity can be

calculated as U(t)∆t, where ∆t is time step. Each shed vortex element can be expressed

Γwi =
∫ t

t−∆t γw(t)U(t)dt. Using Kalvin’s condition, shed vortex can be obtained:

Γw =−dΓ

dt
∆t (40)

2.4.3 Solution of Laplace equation

The resulting velocity wb induced by bound vortex along the camberline can be ex-

pressed given by equation 14 :

wb(x, t) =−
∫ c/2

−c/2

δΦB

δ z
=−

∫ c/2

−c/2

γ(x0, t)
2π

dx0

x− x0
(41)

Once Γwk at each time step is determined, also the resulting velocity potential asso-

ciated with a wake vortex element Γwk at x = xk can be derived in the same way as

introduced in equation 8. For z=0, wake induced velocity along the airfoil can be
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calculated:

ww(x, t) =
n

∑
k=1

−Γwk

2π

x− xk

(x− xk)2 +(z− zk)2 (42)

Where the k is the counter of the wake vortex.

For z=0 assumption, angle of attack is α , pitch point on chordlengh is a and with

heaving speed
dh
dt

, equation 38 becomes:

wb +ww ≈U
(

dzc

dx
−α

)
− (x−a)

dθ

dt
+

dh
dt
−
(

dzc

dx
−α

)
dx
dt

(43)

Where dθ/dt is pitching speed, dh/dt is heaving speed, dx/dt shows the vibrating

speed. This boundary condition can be combined into combination which is common

in Aerodynamic field. The component of the vibrational velocity in the U direction

to change the magnitude of U and the component normal to U to change the effective

relative direction of U, it is easily described:

wb +ww =

(
U− dx

dt

)
dzc

dx
−
(

U− dx
dt

)
−

α− 1

U− dx
dt

dh
dt

− (x−a)
dθ

dt
(44)

Here, repeated terms can be substituted to quasi steady parameters Urel and αe f f which

is the form used in Bladed element momentum theory(BEMT):

Urel =U− dx
dt

αe f f = α− 1
Urel

dh
dt

(45)

As seen in equation 46 below, unsteady boundary condition can be derived in terms of

quasi-steady parameters Urel , αe f f :

wb(x, t) =−
∫ c/2

−c/2

γ(x0, t)
x0− x

=Urel

(
dzc

dx
−αe f f

)
− (x−a)

dθ

dt
−ww(x, t) (46)

The induced wake velocity ww(x, t) will be treated as a modification of the camber line,

which has been suggested by Snel[6]:

∂ zc

∂x
− ww(x, t)

Urel
=

∞

∑
n=0

(Bn +∆Bn)cosnθ (47)
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where Bn coefficient is the slope of the camberline as introduced in equation (23) and

∆Bn coefficient is the wake induced velocity along the chordline due to the shed wake

vortex with the time variation. So the final form of unsteady boundary condition equa-

tion 46 can be computed by Glauert series expansion in terms of Fourier series as

explained in chapter 2.2.2.

Time dependent vortex distribution is:

γ(θ)

2U(t)
= A0(t)

1+ cosθ

sinθ
+

∞

∑
n=1

An(t)sinnθ (48)

As same steps as equation from equation 18 to 24, the unsteady boundary condition 46

can be rewritten in terms of Fourier coefficients at any time step t:

wb(x, t)
Urel(t)

=−A0(t)+
∞

∑
n=1

An cosnθ =

(
dzc

dx
−αe f f

)
− (x−a)

Urel

dθ

dt
− ww(x, t)

Urel
(49)

The pitching term in right side of equation should also be transformed using Glaert’s

series expansion:

− (x−a)
Urel

dθ

dt
=
(

a+
c
2

cosθ

) 1
Urel(t)

dθ

dt
(50)

So that An coefficient can be derived:

A0 = αe f f −B0−∆B0 +
a

Urel

dθ

dt
n = 0

A1 = B1 +∆B1 +
c

2Urel

dθ

dt
n = 1 (51)

An = Bn +∆Bn n = 2,3,4, ...∞

As introduced in the thin airfoil theory, the time dependent bound vortex Γ(t) can be

written, using only two first An coefficients:

Γ(t) = πcUrel(t)
(

A0(t)+
A1(t)

2

)
(52)
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2.5 Aerodynamic Forces in Terms of Fourier Coefficient for The Unsteady Case

In case of unsteady flow, Bernoulli’s law can be derived:

p
ρ
+(U~ex +~∆Φ)2 +

∂Φ

∂ t
=Ct (53)

For z=0, the pressure difference along the airfoil can be calculated by the unsteady

Bernoilli’s law in terms of vortex distribution γ(x, t):

∆p(x, t)
ρ

=
pl− pu

ρ
=U(t)γ(x, t)+

∂

∂ t
(Φu−Φl) =U(t)γ(x)+

∂

∂ t

x∫
−c/2

γ(x0, t)dx0

(54)

According to Kutta-Joukowski theorem as shown in equation 27, lift force can be then:

L
ρ
=U(t)Γ(t)+

∂

∂ t

c/2∫
−c/2

 x∫
−c/2

γ(x0, t)dx0

dx (55)

Substituting the transformation 15 and Glauert’s integral 19 again into equation 55, the

first inner integral can be derived in terms of Fourier coefficients:

x∫
−c/2

γ(x0, t)dx0 =U(t)c

A0(θ + sinθ)+
∞

∑
n=1

θ∫
0

An sinnθ0 sinθ0dθ0

 (56)

For n=1, the second term of equation 56 becomes

A1

θ∫
0

sin2
θdθ =

A1

2

(
θ − sin2θ

2

)
(57)

Hence, the vortex distribution can be obtained:

x∫
−c/2

γ(x0, t)dx0 =U(t)c
[

A0(θ + sinθ)+
A1

2

(
θ − sin2θ

2

)

+
An

∑
2

(
sin(n−1)θ

n−1
− sin(n+1)θ

n−1

)]
(58)
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The double integral term of Equation 55 becomes:

∫ c/2

−c/2

x∫
−c/2

γ(x0, t)dx0 =U(t)
c2

2

[
A0

∫
π

0
(θ sinθ + sin2

θ)dθ+

A1

2

∫
π

0

(
θ − sin 2θ

2

)
sinθdθ +

∞

∑
1

An

2

∫
π

0

(
sin(n−1)θ

n−1
+

sin(n+1)θ
n+1

)
sinθdθ

]

=U
c2

2

[
A0

3π

2
+A1

π

2
+A2

π

4

]
(59)

Hence, unsteady lift force in terms of Fourier coefficients is:

L =
1
2

ρU(t)2c2π

[
A0 +

A1

2

]
+

1
2

ρc22π

[
3
4

∂

∂ t
(U(t)A0(t)+

1
4

∂

∂ t
(U(t)A1(t))+

1
8

∂

∂ t
(U(t)A2(t))

] (60)

Note that the first term of this equation is same as equation (29) caused by instanta-

neous bound vortex, while the second term results from time variation of the velocity

potential.

Substituting equation (52) into equation (60), these two terms can be derived in terms

of camber line Bn and modified camber line ∆Bn:

cl =
L

1/2ρU2
relc

= 2π

(
α−αzero−

c
4Urel

dθ

dt
−∆B0 +

∆B0

2

)
−

πc
2U2

rel

[
Cx

d2x
dt2 +3

d2h
dt2 + c

d2θ

dt2 −Urel
d
dt

(
−3∆B0 +∆B1 +

∆B2

2

)] (61)

Where Cx =
1
2
(−B1 +2∆B1 +B2 +∆B2)

This lift coefficient cl can be divided into two parts, the quasi steady approach and an

additional part ∆cl:

cl = cl,steady(αe f f )+∆cl (62)

Since cl,steady is 2π(α −αzero), the second term ∆cl can be separated from equation
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(61):

∆cl =
dcl

dα

(
− c

4Urel

dθ

dt
−∆B0 +

∆B1
2

)
−

πc
2U2

rel

[
Cx

d2x
dt2 +3

d2h
dt2 + c

d2θ

dt2 −Urel
d
dt

(
−3∆B0 +∆B1 +

∆B2

2

)] (63)

In equation 63 the motion of the airfoil can be given by a model shape:

d( f lapwise,chordwise, torsion) = (A f w sinwt,Acw sinwt,Aθ sinwt) (64)

Where d is the deformation vector, ans A f w, Acw and Aθ are the amplitudes in flapwise,

chordwise and torsion component respectively.

Hence, in 2D coordinate, these heaving, vibrating, and pitching can be decomposed:

dh
dt

= (Aip sinΦin f +A f cosΦin f )wcoswt = Ahwcoswt

dx
dt

= (Aip cosΦin f +A f sinΦin f )wcoswt = Axwcoswt

dθ

dt
= Aθ wcoswt

(65)

For the accelerations we find:

d2h
dt2 =−Ahw2 sinwt,

d2x
dt2 =−Axw2 sinwt,

d2θ

dt2 =−Aθ w2 sinwt (66)

Equation (65) and (66) can be substituted into the equation (63) and can be rewritten

in terms of reduced frequency:

∆cl =
dcl

dα

[(
−k

2
Aθ −∆B0 +

∆B1

2

)
+(

Cxk2 Ax

c
+3k2 Ah

c
+ k2Aθ

)
+

k
2

d
dwt

(
−3∆B0 +∆B1 +

∆B2

2

)] (67)

Where reduced frequency is:

k =
wc

2Urel
(68)

Here the effect of airfoil motion depends on reduced frequency and on the amplitude

of the motion.
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3 Development of the code and Comparison the Code with Ohio

data

3.1 Analysis of Unsteady Aerodynamics Performance of Airfoils

In this section the results from the model are compared with unsteady 2D wind tun-

nel measuremetns from OSU [3]. These measurements are carried out at different

airfoils, different Reynolds numbers, different variation of AOA. The measurement

which match as good as possible the atached inviscid conditions for which the model

is developed.

The measurement data of airfoils NACA4415[9] is used to compare with the result

of calculation. The measurement is carried out at the mean AOA of 8◦, 14◦, 20◦

with ±5.5◦ and ±10◦ pitch oscillation amplitudes. Measurement data is acquired at

Reynolds number of 0.75, 1, 1.25 and 1.5 million at different reduced frequency of

approximately 0.038, 0.077 and 0.116.

The purpose of OSU measurement is to determine unsteady properties of stall which

has viscous effect while the assumption of code is inviscous. In case of the present 10◦

mean angle of attack with ±5.5◦ pitch oscillation amplitudes, however, small portion

of data at AOA is measured in attached flow. Only in attached flow measured data

and calculation will be compared and the trend of fluctuation of lift coefficient will be

discussed.

Measurement with Reynolds number of 0.75 million and±5.5◦ pitch oscillation ampli-

tudes is used, each of theses cases has different values of reduced frequency of 0.038,

0.077 and 0.116. The reason Reynolds number of 0.75 million has been chosen is that

it has the highest reduced frequency, which means this measurement has the most un-

steady effects. Note that the model of this Thesis is inviscid so that Reynolds number

is infinity in this model.
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According to Leishman[11], it is regarded that k<0.05 is quasi-steady, k>0.05 is

unsteady and when k>0.2 unsteady effect is critical. Hence the case of a reduced

frequency of 0.038 is considered quasi-steady and in the cases of the other reduced

frequency of 0.077 and 0.116 are considered unsteady.

The detailed measurement variables are listed in the table 1:

Table 1 Parameters of OSU

Reduced frequency 0.038 0.077 0.116
Mean AOA (deg) 8 8 8

Number of data point 120 120 120
Sample rate (Hz) 21.55 37.86 60.94

Reynolds number (Million) 0.75 0.75 0.75
Oscillator frequency (Hz) 0.6 0.077 1.85

Wind speed (m) 22.89 22.89 22.89

Figure 5 shows unsteady lift coefficient at different reduced frequency k=0.116, k=0.077

and k=0.038 respectively. In the next chapter under the unsteady condition lift coef-

ficient at low angle of attack will be discussed when the flow is fully attached to the

surface of airfoil.
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Figure 5 Unsteady lift coefficient of NACA4415 airfoil (AOA : 8◦ ± 5◦,Reynols : 0.75 million,k =
0.116,k = 0.077,k = 0.038)
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3.2 Comparison of Modified Theodorsen code with Ohio measurement data

First of all, inviscous and viscous effect at certain angle of attack should be distin-

guished in order to understand Ohio measurement data with the result of calculation.

Figure 6 Comparison of steady measurement and calculation using thin airfoil theory [chapter 2.3] of
NACA 4415

In Figure 6, steady measurement at Reynolds number 3 million is compared with cal-

culation using thin airfoil theory which is the base theory of Theodorsen theory. Since

thin airfoil is inviscous, lift coefficient is infinite as AOA increases. As shown in this

figure, between -10◦ and 4◦ comparison matches well while lift coefficient started to

mismatch at the angle of around above 4◦ and below -10◦ due to the viscous effect

Hence, the AOA between approximately -10◦ and 4◦ is regarded as a attached flow in

the case of NACA 4415 airfoil.
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Under the conditions that are stated in table 1, calculation using Theodorsen’s theory

has been compared with OSU measurement.

Results obtained at three different reduced frequency show a good corellation at only

small angle of attack. In figure 9, since reduced frequency is less than 0.5 the calcula-

tion is regarded as steady. Hence, amplitude of lift coefficient is small and as displayed

in table 2. Although the reduced frequency of 0.77 and 0.116 is regarded as unsteady,

It is not enough to find the fluctuation of lift force at low AOA. Furthermore at every

time step, previous step affects following next steps, which means once stall occurred

this model doesn’t correct any more. The peak around 0 degree is due to the assump-

tion that the latest vortex is half of bound vortex. After few time steps the result of

calculation goes into the lift cycle.

It is clear that unsteady measurement at fully attached AOA approximately between

-10◦ and 4◦ degree and with higher reduced frequency is required in the case of NACA

4415.

Table 2 NACA 4415, Calculation summary

Clmin Clmax Clmax - Clmin
Thin airfoil theory 0.708 1.914 1.206

k=0.038 0.709 1.921 1.212
k=0.077 0.70 1.928 1.229
k=0.116 0.691 1.936 1.244
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Figure 7 Unsteady lift coefficient of NACA4415 airfoil (k = 0.116)

Figure 8 Unsteady lift coefficient of NACA4415 airfoil (k = 0.077)

31



Figure 9 Unsteady lift coefficient of NACA4415 airfoil (k = 0.038)
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3.3 Results of pitching, heaving and vibrating effects on NACA 4415 airfoil

3.3.1 Pitching effect

The calculations have been carried out under the conditions that mean AOA is 0◦ de-

gree with a pitch oscillation amplitude of ±5◦ degree, considering the comparison of

steady measurement and calculation using thin airfoil. These cases represent reduced

frequencies of 0.2, 0.3, 0.4 and 0.5 respectively. Pitching effect at different reduced

frequency is shown in the figure 10:

Figure 10 Unsteady lift coefficient of pitching NACA4415 (AOA : 0◦±5.5,k = 0.2,0.3,0.4 and 0.5)

Table 3 Pitching NACA 4415, Calculation summary

Clmin Clmax Clmax - Clmin
Thin airfoil theory 0.708 1.914 1.206

k=0.2 -0.21 1.08 1.29
k=0.3 -0.24 1.12 1.37
k=0.4 -0.29 1.16 1.44
k=0.5 -0.34 1.22 1.57

33



As reduced frequency increases the fluctuation of lift force rises. When the k=0.5 at 0◦

AOA the amplitude of lift force is approximately 0.1.

3.3.2 Heaving effect

According to Riziotis et al.[2] in case of 5MW reference wind turbine which has 61.5 m

length of blade, the amplitude of blade tip flapwise displacement at 18 m/s wind speed

is approximately 0.2 m which can be a representative heaving amplitude. Chordlength

around tip is distributed from 1.5 m to 2.5 m.

In a rotating situation the reduced frequency in 3D is approximately:

k =
wc

2Urel
≈ wc

2Ωr
=

f c
2r

(69)

As it goes to the tip of blade, Urel increases, which means reduced frequency decreases.

In the case of 5MW reference turbine reduced frequency can be obtained as approxi-

mately 0.03 by equation (69).

Several cases at different reduced frequency are computed as shown in figure 11 and

table 4. Here, it is assumed that chordlength is 2 m and heaving amplitude is 0.2,

referencing Riziotis et al.[2].

Table 4 Heaving NACA 4415 at 0◦ AOA, Calculation summary

Clmin Clmax Clmax - Clmin
k=0.02 0.41 0.461 0.051
k=0.03 0.397 0.474 0.076
k=0.05 0.371 0.501 0.13
k=0.1 0.305 0.568 0.263
k=0.2 0.164 0.712 0.548

The table 4 shows that lift fluctuation increase much more rapidly as reduced frequency

increase, compared to pitching effect.

The most dominant parameter on heaving effect is 3
d2h
dt2 from the equation (61). Ac-

cording to equation (60) 3
d2h
dt2 = −Ahw2 sinwt. This acceleration term multiplied by
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Figure 11 Unsteady lift coefficient of heaving NACA4415 (AOA : 0◦,k= 0.02,k= 0.03,k= 0.05,k= 0.1
and k=0.2, heaving amplitude = 0.2 m)

3 is the function as w2. Hence, w, which is determined by the oscillator frequency is

important parameter on this heaving effect.

3.3.3 Vibrating effect

Also According to [2] the amplitude of blade tip chordwise displacement at 18 m/s

wind speed is 0.4 m, which is vibrating amplitude. Chordlength is also decided as 2

m. Reduced frequency can be decided as it is introduced in chapter 3.3.2.

Table 5 Vibrating NACA 4415, Calculation summary

Clmin Clmax Clmax - Clmin
mean k=0.02 0.2 0.2 0
mean k=0.03 0.3 0.3 0
mean k=0.05 0.435 0.436 0.001
mean k=0.1 0.434 0.437 0.003
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Figure 12 Unsteady lift coefficient of heaving NACA4415 (AOA : 0◦, mean k = 0.02,k = 0.03,k = 0.05,
and k=0.1, vibrating amplitude = 0.4 m)

Vibrating effect is quite small compared to heaving effect. In the case of k=0.1, Clmax

- Clmin at 0◦ AOA is 80 times lower than heaving effect. Vibrating effect is negligible.

Note that due to the variation of wind speed of x direction component reduced fre-

quency also changes.

Table 6 Reduced frequency

mean reduced frequency k=0.02 k=0.03 k=0.05 k=0.1
min k 0.02 0.03 0.049 0.096
max k 0.02 0.03 0.051 0.104

Max k - min k 0 0 0.02 0.008

It can be seen that reduced frequency at 0.02 and 0.03 which are considered as quasi-

steady there is no change, and at 0.05 and 0.1 which are unsteady condition there is
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Figure 13 Reduced frequency (AOA : 0◦, mean k = 0.02,k = 0.03,k = 0.05, and k=0.1, vibrating ampli-
tude = 0.4 m)

only a small fluctuation.
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4 Conclusions, recommendations and future works

Conclusions

- An unsteady aerodynamic airfoil code of attached and potential flow is developed.

- The code is compared with OSU measurement of pitching NACA 4415 airfoil.

- Pitching, heaving and vibrating effects at different reduced frequency are analysed.

- Pitching and heaving effect shows unsteady aerodynamic effects among 3 effects

while vibrating effect is negligible.

- The most dominant parameter that affect to heaving fluctuation is the acceleration of

heaving motion.

Recommendations

- Since the measurements from OSU are partly taken in stall where viscous effects play

a role, where the present model is inviscid it is urgently required to take measurements

in a fully attached flow.

- Measurement data with higher reduced frequency is required to estimate the unsteady

effect more clearly.

- Also measurement data with heaving and vibrating effect is required.

Future works

- It is necessary to combine viscous model to to this inviscid model.

- The adoption of 3D model Theodorsen theory is required.
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1. Input parameters                              
 

! NACA 4-digit type 

! maximum camber as percentage of the chord 

    real, parameter::camber_max=0.04  

    ! the distance of maximum camber from the airfoil leading edge(percent of the 

chord) 

    real, parameter::camber_max_pos=0.4 

! maximum thickness of the airfoil as percent of the chord 

    real, parameter::camber_max_thick=0.15         

 

! Number of points on the camber line 

    integer::camber_npoint=1000   

    ! Number of time step 

integer, parameter::nstep=100 

! Stepping time 

real, parameter::time_step=0.05  

 

    ! chord length of airfoil 

    real, parameter::chord_length=2.0          

    ! frequency of pitching ocillcation 

    real, parameter::frequency=0.728611 

    ! wind speed 

    real, parameter::wind_speed=22.89 

     

! Amplitude angle(degree)  

    real, parameter::alpha_amplitude=0.0    

! Amplitude of vibration(m) 

    real, parameter::inplane = 0.0  

! Amplitude heave(m) 

    real, parameter::flap= 3.0  

    ! mean angle of attack 

    real, parameter::alpha_mean=1.0  
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2. Flow chart & the description of each flow 
 

 
 

Flow chart of program 

START 

Parameters Setup 

Pitching, Heaving, Vibrating 

Assuming an vortex 

strength(Гwi) 

END 

Calculation of B coefficient 

Calculation of ΔB and A 

coefficient 

Calculation of  Г(t)  

Calculation of the slope of 

camber line( dz/dx ) 

If f(Г)=0                 

Calculation of  the 

downwash of  the Nw wake 

Calculation of  CL  

New Гwi 

Next Time 

Step 

Ye

s 

N

o 



45 

 

 
 

Calculate the function of camberline of airfoils 

 

 
 

SUBROUTINE naca4_airfoil(bound) 

 

Differentiate the equation of the camber line and save the differential values at 

each point on the camber. 

 

 
 

FUNCTION get_B0(bound) 

 

0

0

0

1 ( , ) 1 ( )

( )

W x t dz
B d d

U t dx

 


 
 

    

Using thin airfoil theory, the slope of camber line can be computed. 

 

FUNCTION get_BN(bound, norder) 

 

0

2 ( )
cos( )n

dz
B n d

dx

 
 


   

 

Numerical integration is approximated to generate geometrically. This is called 

the Trapezoidal Rule. 
 

( ) ( )
( ) ( )

2

b

a

f a f b
f x dx b a


 

 
 

In the case of that all the f(x) has been known at each point line, this numerical 

method can be applied to integrate the camber line. The number of point should be 

enough. 

The f(x) value(dz/dx) will be saved in bound structure. 

 

1
0 1

1

(
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Parameters Setup 

Calculation of the slope of 

camber line( dz/dx ) 

Calculation of B coefficient 
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Pitching, heaving and vibrating motion will be determined in this function. 

 

 
 

Assuming an initial vortex strength 

 

 
 

SUBROUTINE get_downwash_wake(bound, wakes, nwakes) 

 

The most recently shed trailing edge vortex the wake influence 
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The result of calculation is saved to Wwake variables of the bound structure. 

 

 
 

FUNCTION get_delB0(bound) 

0

0

1 wd
B d

dz







    

FUNCTION get_delBN(bound, norder) 

0

2
cos( )w

n

d
B n d

dz



 



    

This integration is same as the above description(Calculation of B coefficient). 

Where, the f(x) is the Wwake value of the bound structure. 

 

 

Pitching, Heaving, Vibrating 

Assuming an vortex 

strength(Гwi) 

Calculation of  the downwash 

of  the Nw wake 

Calculation of ΔB and A 

coefficient 

Calculation of  Г(t)  
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Calculates the circulation of the airfoil 
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Calculates the total circulation, which must be zero for the converged solution 
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Using a simple Newton-Raphson Method 
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Calculates the lift coefficient. 
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New Гwi 

Calculation of  CL  

If  f(Г)=0                 
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3. Stucture of parameters                             

 

 
The airoil structure is expressed bound data of airfoil  

camber_x : x coordinates of camber line 

camber_y : y coordinates of camber line 

dy_dx : derivatives at each camber points 

theta : radian at camber point by transformation 

Wwake : the downwash of the Nw discrete voritices of the wake on the airfoil 

 

 
The time_step_save structure saves calculated data at each step. 

nstep : Step number 

yime : Stepping time 

alpha_deg : angle of attack 

bound : the airfoil structure 

delB0, delB1, delB2 : calculated ΔB0 , ΔB1 , ΔB2 at each step 

GAMMA : The circulation of the airfoil 

CL : Lift coefficient 

 

 
The wake structure save the discrete vortices of the wake of the previous time step 

x : x coordinate of a wake 

x : y coordinate of a wake 

gamma : strength of the vortex 

 

 

 

type airfoil 

        real, dimension(1000)::camber_x, camber_y 

        real, dimension(1000)::dy_dx  

        real, dimension(1000)::theta 

        real, dimension(1000)::Wwake                 

end type 

type(airfoil)::bound 

type time_step_save 

        integer::nstep 

        real::time 

        real::alpha_deg 

       type(airfoil)::bound 

        real::delB0, delB1, delB2 

        real::GAMMA, CL 

 end type 

 type(time_step_save), dimension(1000)::steps 

type wake 

        real::x, y 

        real::gamma 

end type 

type(wake), dimension(1000)::wakes 
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