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INTRODUCTION

Recently, metabolic syndrome has become a major problem, and has come to pose a major
worldwide threat to human health. It is a clustering of metabolic abnormalities that has been
associated with cardiovascular disease (CVD) risk factors of diabetes, abdominal obesity,
high blood pressure and high cholesterol (Alberti et al., 2005; Alberti et al., 2006). The Adult
Treatment Panel Il (ATP I1lI) of the National Cholesterol Education Program (NCEP)
published new standard for identifying subjects with metabolic syndrome. Metabolic
syndrome was determined using the NCEP-ATP-I1I guidelines (NIH, NCEP-ATP Il panel,
2002), assessing the presence of three or more of the following criteria: abdominal obesity
(waist circumference >102/88 cm in males/females), dyslipidemia (fasting HDL cholesterol
<40/50 mg/dL in males/females), hypertriglyceridemia (triglyceride concentration >150
mg/dL under fasting conditions or fibrate or nicotinic acid therapy), hypertension
(systolic/diastolic blood pressure >130/85 mmHg or antihypertensive treatment), and
hyperglycemia (fasting glucose level >110 mg/dL or glucose-lowering treatment or
previously diagnosed diabetes mellitus) (Table I).

Hypertension is one of the major risk factors relevant to the development of cardiovascular

diseases including arteriosclerosis, stroke, and myocardial infarction (Lee et al., 2010;
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Table I. Clinical identification of the Metabolic Syndrome*

Risk factor

Defining level

Abdominal obesity (Waist circumference)

Male: >102 cm (>40 inch)

Female: >88 cm (>35 inch)

Triglycerides

>150 mg/dL

High-density lipoprotein (HDL) cholesterol

Male: <40 mg/dL
Female: <50 mg/dL

Blood pressure

>130/>85 mmHg

Fasting glucose level

>110 mg/dL

* Executive Summary of The Third Report of The National Cholesterol Education Program
(NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol

In Adults (Adult Treatment Panel I11), 2001.
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Je et al., 2005a). It is triggered by environmental influences including salt intake, obesity,
insulin resistance, stress, smoking and lack of exercise (Bohr et al., 1991). Among process
related to hypertension, angiotensin I-converting enzyme (ACE, EC 3.4.15.1) participates in
regulating blood pressure in the kallikrein kinnin system (KKS) and rennin-angiotensin
system (RAS). ACE is a zinc-containing exopeptidase enzyme discovered in vascular, heart,
lung and brain tissue, and cleaves dipeptides at the C-terminus of oligopeptides (Je et al.,
2005b). ACE converts an inactive form of decapeptide, angiotensin | (Asp-Arg-Val-Tyr-lle-
His-Pro-Phe- His-Leu), to octapeptide angiotensin Il (Asp-Arg-Val-Tyr-lle-His-Pro-Phe), a
potent vasoconstrictor, and inactivates bradykinin, which exerts a depressor effect (Je et al.,
2005a) (Fig. I). ACE inhibition has been used extensively in therapeutic strategies for the
prevention and treatment of hypertension, and the literature regarding ACE inhibitory
compounds is also rather extensive. Since the discovery of an ACE inhibitor in snake venom,
several synthetic ACE inhibitors have been developed, including alacepril, captopril,
benazepril, enalapril, fosinopril, ramipril, and zofenopril, all of which are currently
extensively used in the treatment of essential hypertension and heart failure in humans
(Ondetti, 1977; Je et al., 2005b). However, these synthetic ACE inhibitors are believed to

exert certain side effects, including cough, taste disturbances, and skin rashes (Kato and
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Fig. 1. Proposed reaction mechanism catalyzed by angiotensin | converting enzyme

(Kininase I1).

Collection @ jeju



Suzuki, 1972; Thurman and Schrier, 2003). Therefore, the development of ACE inhibitors
from natural products has become a major area of research. Also, Vasorelaxation effects were
identified as a major mechanism of anti-hypertensive effects. The mechanisms of
vasorelaxators may be characterized as endothelium-dependent or endothelium-independent
(Kamiya et al., 1998). Endothelium-dependent vasorelaxation induced by increased blood
flow and receptor-specific agonists such as bradykinin, adenosine, triphosphate and
acetylcholine, are reduced in the presence of classical vascular risk factors, including
hypertension (Asselbergs et al., 2005). The endothelium controls a variety of important
functions, including the maintenance of blood circulation and fluidity as well as the
regulation of vascular tone, coagulation, and inflammatory responses (Furchgott and
Zawadzki, 1980). Endothelium was synthesized and releases a broad spectrum of vasoactive
substances, including nitric oxide (NO), prostacyclin and endothelin-1 (Bannister, 1995). In
particular, NO is believed to be the most important endothelium-derived relaxing factor, and
is generated from the amino acid L-arginine by the calcium/calmodulin-dependent enzyme,
NO synthase (NOS), in the site of the vascular endothelium (Asselbergs et al., 2005).
Recently, many studies have found that NO is capable of an endothelium-dependent

vasorelaxant effect in hypertension (Kim et al., 2011; Ushida et al., 2008).
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Insulin resistance appears when tissues in the body (skeletal muscle, adipose/fat and liver)
become less sensitive and ultimately resistant to insulin, the hormone which is produced by
the B-cells in the pancreas (Carrand and Utzschneider, 2004; Hu et al., 2004). Also, insulin
resistance is a major defect underlying the development of type Il diabetes and is a central
factor of the metabolic syndrome, a constellation of abnormalities including obesity and
hypertension (Hotamisligil, 2006; Moller and Flier, 1992). Among the tissue in the body;,
skeletal muscle tissue is responsible for the majority, accounting 75-80% of insulin-
stimulated glucose uptake in the post-prandal state and plays a pivotal role in maintain
glucose homestasis (Breen et al., 2008; Zygmunt et al., 2010). In skeletal muscle insulin
stimulates glucose uptake primarily by increasing translocation of the glucose transporter-4
(GLUT4) from internal membrane to the plasma membrane (Stephens and Pilch, 1995; Zaid
et al., 2008) (Fig. I1). The signaling mechanism by which insulin stimulates muscle glucose
uptake is relatively well known and involves binding of insulin to its receptor,
phosphorylation of downstream insulin receptor substrates (IRS) and activation of
phosphatidylinositol-3 kinase (P13-K) and protein kinase B (Akt) which promotes GLUT4

glucose transporter translocation from a cellular pool the plasma membrane (Breen et al.,
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Fig. I1. Outline of pathways regulating glucose transport GLUT4 translocation to the
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2008; Dugani et al., 2008; Taniguchi et al., 2006). AMP-activated protein kinase (AMPK)
complex is afy heterorimer, which functions as a cellular energy sensor have been positively
correlated with increases in muscle glucose uptake (Kim et al., 2010; Rogers et al., 2009) and
recent years has become an attractive pharmacological for the treatment of insulin resistance
and type Il diabetes (Breen et al., 2008). In skeletal muscle, AMPK is activated by
exercise/constraction and numerous compounds including thiazolidineones (Konrad et al.,
2005), metformin (Zou et al., 2004), resveratrol (Breen et al., 2008) resulting in stimulation
of glucose uptake. The study of new compounds that activate AMPK and stimulate skeletal
muscle glucose uptake is pivotal role as the knowledge obtained from such studies could be
used towards the development of treatment of insulin resistance and Type Il diabetes
(Zygmunt et al., 2010). Hypertension is associated with insulin resistance and glucose
intolerance. Increased skeletal muscle blood flow and resulting improvements in insulin
delivery are pivotal mechanisms by which attenuation of the rennin-angiotensin system
(RAS) improves glucose uptake (Stump et al., 2006). One potential mechanism is through the
inhibition of angiotensin I-converting enzyme (ACE) inhibitors on kinase I, thereby

increasing bradykinin and enhancement of nitric oxide (NO) generation (Henriksen and Jacob,
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2003; Stump et al., 2006). Current therapeutics for diabetes are often associated with
undesirable side effects and in many cases the precise mechanism of action remains to be
completely clarified (Campbell, 2009). Therapeutic approaches with natural products
investigate for searching safe, effective and relatively inexpensive new remedies for diabetes
mellitus and associated metabolic disorders (Moller, 2001; Tan et al., 2008). Additionally, the
use of natural products for the treatment of metabolic diseases has not been explored in depth
despite the fact that a number of modern oral hypoglycemic agents such as metformin are
derivatives of natural products.

Obesity is associated with insulin resistance and the metabolic syndrome. Obesity
contributes to hypertension, high serum cholesterol, low HDL cholesterol and
hyperglycaemia, and is independently associated with higher cardiovalscular diseases (CVD)
risk (Hu et al., 2004; Zimmet et al., 2001). The risk of serious health consequences in the
form of type Il diabetes, coronary heart disease (CHD) and a range of other conditions,
including some forms of cancer, has been shown to rise with an increase in body mass index
(BMI) (Lee et al., 1993), but it is an excess of body fat in the abdomen, measured simply by
waist circumference, that is more indicative of the metabolic syndrome profile than BMI

(Ohlson et al., 1985; Pouliot et al., 1994). Obesity is characterized by excessive lipid
9
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deposition associated with morphological and functional changes in adipocyte (Kang et al.,
2010). Adipocytes are derived from mesenchymal stem cells, which can differentiate into
osteoblasts, myoblasts, chondroblasts, or adipocytes (Kim et al., 2010). Adipocytes are
critically associated with the regulation of adipose mass and obesity, whereas 3T3-L1 cells
are a well established in vitro model for assessing adipocyte differentiation and the several
stages related to obesity (Cho et al., 2008; Tang et al., 2003). The adipocyte life cycle
includes changes in cell shape and terminal differentiation, clonal expansion and complex
gene expression cascades which lead to the storage of lipids and finally apoptosis (Gregoire
2001; Kim et al., 2010). The function of adipocytes is to store energy in the form of fatty
acids, and these cells play a central role in lipid and glucose metabolism; adipocytes also
produce several hormones and cytokines (adipokine) (Rasouli and Kern, 2008). The
differentiation of preadipocytes into adipocytes is accompanied by many changes in gene
expression, e.g., a dramatic increase in the expression of CCAAR/enhancer binding proteins
B (C/EBP) followed by the expression of CCAAR/enhancer binding proteins o (C/EBPa)
and peroxisome proliferator-activated receptors y (PPARYy) (Rosen et al. 2002) (Fig. I11).
AMPK acts as a fuel sensor and regulates glucose and lipid homeostasis in adipocytes (Unger,

2004). AMPK activation leads to numerous metabolic changes that would be attractive

10
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targets in treatment of metabolic disorders such as obesity, type Il diabetes and metabolic
syndrome (Kong et al., 2009).

Potent bioactive peptides have been produced via the enzymatic hydrolysis of food
proteins (Fahmi et al., 2004; Lahl and Braun, 1994). While these peptides are inactive within
the sequence of the parent protein, bioactive peptides can be released via enzymatic
hydrolysis during the food manufacturing process (Lee et al., 2011). Additionally, enzymatic
hydrolysates are also a source of bioactive peptides, which are short peptides released from
proteins by hydrolysis that have been shown to exert biological effects such as
antihypertensive (Jung et al., 2006), antioxidative (Bougatef et al., 2010), and antimicrobial
(Kim et al., 2001) effects.

The Styela clava used in this study, a valuable marine resource, is found in Korea and Far
East Asia. It is a traditional remedy for healing various internal conditions, and is believed to
have profound curative properties. Additionally, in our previous study, S. clava was shown to
reduce blood pressure in spontaneously hypertensive rats (SHRs). Several studies of the
bioactivities of S. clava, such as its ACE inhibitory activity (Lee et al., 2010), as well as
its antioxidant and anticancer activities (Kim et al. 2006; Lee et al., 2010) have been

carried out previously. However, the above studies employed solvent extraction methods, and
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there remains a lack of data regarding the biological activities of S. clava protein by
enzymatic hydrolysis.

The principal objective of this study was to purify and identify an antihypertensive peptide
derived from S. clava, under in vitro and in vivo conditions, and investigated its effects on

glucose uptake in skeletal muscle cells and adipogenesis suppress in 3T3-L1 preadipocytes.
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Part I.
Purification and identification of antihypertensive peptide
from enzymatic hydrolysates of Styela clava and its

antihypertensive effect in spontaneously hypertensive rats
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Part I.
Purification and identification of antihypertensive peptide from enzymatic hydrolysates

of Styela clava and its antihypertensive effect in spontaneously hypertensive rats

1. ABSTRACT

The principal objective of the present study is to isolate antihypertensive peptides derived
from Styela clava flesh tissue and to characterize the isolated peptide with regard to
angiotensin I-converting enzyme (ACE) inhibition and vasorelaxation. Nine proteases were
used, and their respective enzymatic hydrolysates were screened to evaluate their potential
ACE inhibitory activity. The Protamex hydrolysate possessed the highest ACE inhibitory
activity, and the Protamex hydrolysate of flesh tissue showed relatively higher ACE
inhibitory activity compared with the Protamex hydrolysate of tunic tissue. The induction of
vasorelaxation of Protamex hydrolysate was endothelium-dependent and could be markedly
blocked by pretreatment with the nitric oxide synthase (NOS) inhibitor, N®-nitro--arginine
methyl ester (.-NAME). During consecutive purification, a potent antihypertensive peptide
from S. clava flesh tissue, which was composed of five amino acids, Ala-His-lle-lle-lle (MW:

565.3 Da), and enhanced ACE inhibition and vasorelaxation. In human endothelial cells, NO
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synthesis was found to be increased and eNOS phosphorylation was upregulated when the
cells were cultured with the purified peptide. These results demonstrate that the purified
peptide could mediate NO production, thereby exerting an endothelium-dependent
vasorelaxation activity. Furthermore, systolic blood pressure (SBP) was reduced following
administration of the antihypertensive peptide found in spontaneously hypertensive rats

(SHRs).
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2. MATERIALS AND METHODS

2.1. Materials

Styela clava (Fig. 1-1) used was kindly donated by Miduduk Corporated Association (Masan,
Korea) and stored at -70°C until use. Commercial food grade proteases including Protamex,
Kojizyme 500 MG, Neutrase 0.8L, Flavourzyme 500 MG and Alcalase 2.4L FG were
purchased from Novo Co. (Novozyme Nordisk, Bagasvaerd, Denmark). Other proteases
containing pepsin, trypsin, a-chymotrypsin and papain, as well as angiotensin | converting
enzyme (from rabbit lung) and N-Hippuryl-His-Leu tetrahydrate (HHL) were purchased from
Sigma chemical Co. (St. Louis, Mo, USA). The other chemicals and reagents used were of

analytical grade.

2.2. Preparation of enzymatic hydrolysates of S. clava

To obtain antihypertensive peptide from S. clava, enzymatic hydrolysis was performed using
various commercial proteases (Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase,
pepsin, trypsin, a-chymotrypsin, and papain) under optimal conditions for 24 h. One gram of
the dried ground S. clava powder was homogenized with buffer (100 ml), and then 10 mg or
10 pl enzyme was added. The pHs of the homogenates were adjusted to their respective

optimal pH values before the enzymatic hydrolyzes (Table 1-1). The enzymatic reactions
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Fig. 1-1. The photography of the Stylea clava.
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were performed for 24 h to achieve optimum degree of the enzymatic hydrolysates. As soon
as the enzymatic reaction complete, the hydrolysates were boiled for 10 min at 100°C to
inactivate the enzyme. Each enzymatic hydrolysate was clarified by centrifugation (3500 rpm,
for 20 min at 4°C) to remove the residue. The yields of enzymatic hydrolysates were
determined by subtracting the dried weight of the residue from one gram of hydrolysates
dried and were expressed as a percentage. In all the tested enzymatic hydrolysates for
antihypertensive effects of enzymatic hydrolysates, one enzymatic hydrolysate from S. clava
subjected to molecular weight fractionation to obtain the peptides with molecular weight of
<5 kDa (5 kDa or smaller), 5-10 kDa (between 5 and 10 kDa), and >10 kDa (10 kDa or
larger). Enzymatic hydrolysate was passed through ultra-filtration membranes (molecular
weight cut-off of 5 and 10 kDa) using Millipore’s Labscale TFF system (Millipore
Corporation, Bedford, Massachusetts, USA) at 4°C. The resultant fractions collected
according to molecular weights (>10, 5-10, and <5 kDa) were lyophilized and stored at -
20°C for use in further experiments (Fig. 1-1). All the hydrolysates and molecular weight

fractions were kept -20°C for the further experiments.
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Table 1-1. Optimum conditions of enzymatic hydrolysis for various enzymes.

Optimum conditions

Enayme
pH Temp. (C) Buffer

Protamex 6.0 40 50 mM sodium phosphate
Kojizyme 6.0 40 50 mM sodium phosphate
Neutrase 6.0 50 50 mM sodium phosphate
Flavourzyme 7.0 50 50 mM sodium phosphate
Alcalase 8.0 50 50 mM sodium phosphate
a-chymotrypsin 8.0 37 50 mM sodium phosphate
Trypsin 80 37 50 mM sodium phosphate
Papain 6.0 37 50 mM sodium phosphate
Pepsin 20 37 20 mM glycine-HCI
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2.3. Purification and identification of antihypertensive peptide

The strongest ACE inhibition and vasorelaxation fraction was applied to a Sephadex G-25
gel filtration column (2.5 x 75 cm), equilibrated with distilled water. The column was eluted
with distilled water at a flow rate of 2 ml/min. The active fraction obtained was then applied
to reverse-phase high performance liquid chromatography (RP-HPLC) on a YMC-Pack ODS-
A (5 um, 4.6 x 250 mm, YMC Co., Kyoto, Japan) analytical column with 15% acetonitrile
containing 0.1% trifluoroacetic acid (TFA) at a flow rate of 1.0 ml/min. The finally purified
peptide was analyzed for the amino acid sequence. Molecular mass and amino acid sequence
of the purified peptide was determined by Waters Synapt high definition mass spectrometer
(HDMS) coupled with electrospray ionization (ESI) source (Waters Corporation, Milford,
MA, USA). The instrument was operated in positive-ion mode with a capillary voltage of 2.8
kV unless stated otherwise. The cone voltage was maintained at 30 V for intact mass analysis.
Following molecular mass determination, peptide was automatically selected for

fragmentation and sequence information was obtained tandem MS analysis.
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<Q-TOF MS/MS> <Reverse phase-HPLC>

Fig. 1-2. Purification and Identification scheme of antihypertensive peptide from

S. clava.

22

Collection @ jeju



2.4. ACE inhibitory activity

The ACE inhibitory activity was assayed by measuring the concentration of hippuric acid
liberated from HHL by the method of Cushman and Cheung (1970). For each assay, a 50 ul
of the sample solution with 50 ul of ACE solution (25 mU/ml) was pre-incubated at 37°C for
10 min, and then incubated with 100 ul of substrate (25 mM HHL in 50 mM sodium borate
buffer containing 500 mM NaCl at pH 8.3) at 37°C for 60 min. The reaction stopped by
adding 250 pl of 1 N HCI. Hippuric acid was extracted with 500 ul of ethyl acetate. Then a
200 ul aliquot of the extract was removed by evaporation in a dry-oven at 80°C. The residue
was dissolved in 1 ml distilled water and its UV spectra absorbance was measured at 228 nm.
The ICs value, defined as the concentration required for 50 % inhibition of ACE activity,
was determined.
The ACE inhibitory activity was calculated as follows:
Inhibition %=(Ac-As)/(Ac-Ab)
Ac=Absorbance of control sample
As=Absorbance of sample solution

Ab=Absorbance of blank solution
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2.5. Animals

All animal procedures were carried out in accordance with the National Institute of Health
Guide for the Care and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Utilization Committee for Veterinary Medicine of Jeju National University.
Male Sprague-Dawely (SD) rats with 11-week old and spontaneously hypertensive rats
(SHRs) were purchased from Japan SLC. Inc. (Shizuoka, Japan). All rats were maintained at

24+1°C with 12 h light/dark cycle and were given standard rat chow and water ad libitum.

2.6. Determination of vasorelaxation

The descending thoracic aortas obtained from the experimental groups of rats were dissected
and placed in an ice-cold and oxygenated Krebs solution containing 120 mM NacCl, 4.75 mM
KCI, 6.4 mM glucose, 25 mM NaHCO3, 1.2 mM KH,PQO,, 1.2 MgSO, and 1.7 mM CacCl..
Rings of thoracic aorta (4 mm in length) were carefully excised and submerged in organ

baths containing 10 ml of Krebs solutions of bathing medium at 37 °C and continuously gas

with a carbogen mixture, 95% O, and 5% CO,. The rings were mounted by means of two
parallel triangle-shaped stainless-steel holder served as a anchor, while the other was

connected to a force-displacement transducer (FT03, Grass, USA) to measure isometric

24

@ jeju



contractile force recorded by physiograph recorder (PowerLab/800, USA). A basal tension of
1 g was applied. Each preparation was allowed to equilibrate for 60~90 min in Krebs solution
prior to the initiation of the experimental procedures, and during this period, the incubation
medium was changed every 15 min. After equilibration time, the aortic rings were exposed to
norepinephrine (10~ M). When the concentration had stabilized, acetylcholine (10° M) was
added to teat for the presence of the endotheilum. After equilibration time, the aortic rings
were contracted by norepineohrine (107 M), and when the contractile response was stabilized
(Steady-state phase, 12~15 min), relaxation was evaluated by cumulative addition of sample.
Cumulative concentration-response curves were also performed with in the presence and
absence of N®-nitro-_-arginine methyl ester (.-NAME; 100 puM/L) or endothelium-denuded
artery segments. | -NAME was pre-incubated for 30 min before experiments. The degrees of
pre-contraction of artery segments with all of the treatments were similar to the control.
Relaxation responses to samples were plotted as a percentage of relaxation from the

maximum contraction (Fig. 1-3).

2.7. Cell culture

Human endothelial cell line EA. hy 926 cells were used for NO production and eNOS
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Isolated thol;acic artery

Thoracic ;lrtery Physiograph recorder

Fig. 1-3. Determination of vasorelaxation effect of S. clava.
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expression by peptides from S. clava flesh tissue in vitro. Cells were grown in DMEM
supplemented with 10% heat-inactivated fetal bovine serum, streptomycin (100 mg/ml), and

penicillin (100 unit/ml). Cultures were maintained at 37°C in 5% CO; incubator.

2.8. Measurement of nitric oxide (NO) production

After pre-incubation of EA. hy 926 cells (1x10° cells/ml) with the antihypertensive peptide
for 24 h, the quantity of nitrite accumulated in the culture medium was measured as an
indicator of NO production. Briefly, 100 ul of cell culture medium was mixed with 100 pl of
Griess reagent (1% sulfanilamide and 0.1% naphthylenthylenediamine dihydrocholoride in
2.5% phosphoric acid), the mixture was incubated at room temperature for 10 min, and the
absorbance at 540 nm was measured in a microplate reader. Fresh culture medium was used

as a blank in every experiment.

2.9. Western blot analysis
Cells (2x10° cells/ml) were treated with the purified peptide and harvested. The cell lysates
were prepared with lysis buffer [50 mM/L Tris-HCI (pH 7.4), 150 mM/L NaCl, 1% Triton X-

100, 0.1% sodium docecyl sulfate (SDS), and 1 mM)/L ethylenediamide tetraacetic acid

27

@ jeju



(EDTA)]. Cell lysate were washed by centrifugation, and protein concentrations were
determined by using BCA™ protein assay kit. The lysate containing 40 pg of protein were
subjected electrophoresis on 8% SDS-polyacrylamide gel, and the gel was transferred onto a
nitrocellulose membrane (Bio-Rad, Hercules, CA, USA). The membranes were incubated
with primary antibody against p-eNOS and B-actin (Cell Signaling Technology, Inc., Danvers,
MA, USA) in TTBS (25 mM/L Tris-HCI, 137 mM/L NaCl, 0.1% Tween 20, pH 7.4)
containing 1% BSA at 1 h. Membranes were washed with TTBS and incubated with
secondary antibodies. Signals were developed using an enhanced chemiluminescence (ECL)

Western blotting detection kit and exposed to X-ray films.

2.10. Anti-hypertensive effect in spontaneously hypertensive rats (SHRs)

The products were orally administered by metal gastric zoned in SHR. Saline solution
served as the as negative control, and amlodipine (30 mg/kg body weight), a known calcium
channel blocker, served as the positive control. The antihypertensive peptide was dissolved in
saline solution at a dose of 100 mg/kg body weight. Before the measurement, the rats were
kept at 37°C for 10 min. The systolic blood pressure (SBP) of the rats was measured by the

tail-cuff method, before administration and also 1, 3, 6, 12 and 24 h post-administration using
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physiograph recorder (PowerLab 2/25, AD instruments, Colorado springs, USA).

2.11. Statistical analysis
All data were represented as the mean+S.E.M. Statistical comparisons of the mean values
were performed by analysis of variance (ANOVA), followed by Duncan’s multiple-range test

using SPSS (11.5) software. Statistical significance was considered at p<0.05.
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3. RESULTS AND DISCUSSION

Catalytically bioactive peptides can be obtained from a variety of food proteins (Byun &
Kim, 2001). Improved nutritional and potent bioactive peptides have been shown to be
generated by the enzymatic hydrolysis of proteins (Ondetti, 1997). Bioactive peptides may
function as potential physiological modulators in the process of metabolism during the
intestinal digestion of the diet (Kato & Suzuki, 1975). Bioactive peptides are liberated
depending on their structure, composition and amino acid sequence (Lee et al., 2009). These
peptides evidenced a variety of bioactivities, including antioxidative (Liu et al., 2010) and
antihypertensive effects (Vercruysse et al.,, 2008). This study were to isolated
antihypertensive peptide from S. clava flesh tissue and to investigate the ACE inhibitory and
vasorelaxation effects, in vitro and in vivo spontaneously hypertensive rat (SHR) model.

The approximate chemical composition of S. clava is shown in Table 1-2. The major
chemical component of the tested S. clava whole tissue was found to be carbohydrate;
carbohydrate contents accounted for more than 40% of the total dry weight. The moisture,
ash, protein, and lipid contents of S. clava whole tissue were 9.34, 10.77, 33.12, and 4.25%.
Additionally, the carbohydrate content (60.38%) of S. clava tunic tissue was the highest

among all components.
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Table 1-2. Chemical compositions of S. clava.

Content (%)
Composition

Whole Flesh Tunic
Moisture 9.34+0.21 1.84+0.18 1.78+0.37
Ash 10.77+0.33 7.05+0.32 3.57+0.25
Protein 33.12+0.29 67.80+0.22 31.51+0.21
Carbohydrate 42.52+0.41 16.77+0.07 60.38+£0.21
Lipid 4.25+0.43 6.54+0.21 2.76+0.11
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However, S. clava flesh tissue evidenced a higher protein content (67.80%) than was
observed in the other samples.

To produce antihypertensive peptide, S. clava was separated and hydrolyzed using a variety
of commercial digestive enzymes. We screened the ACE inhibitory activity of the enzymatic
hydrolysates from S. clava. The ACE inhibitory activities of the different enzymatic
hydrolysates are provided in Table 1-3. Among all of the hydrolysates, the Protamex
hydrolysate, in particular, evidenced the highest level of activity relative to the other
hydrolysates. In terms of the activation of the ACE inhibitory effect, the highest ICsy value
was observed with the Protamex hydrolysate at a concentration of 1.023 mg/ml. Thus,
Protamex was selected for the effective hydrolysis of S. clava. We evaluated the effects of the
ACE inhibitory activity of Protamex hydrolysate from the flesh and tunic tissues of S. clava.
The Protamex hydrolysate of flesh tissues (PHFT) evidenced relatively higher levels of ACE
inhibitory activity (Table 1-4; 1Cs flesh tissue of 0.455+£0.011 mg/ml compared to ICs tunic
tissue of 2.060£0.007 mg/ml). Compared to what has been observed in previous reports, the
ACE inhibitory activities of enzymatic hydrolysates were more effective than those of the
organic solvents and aqueous extracts from S. clava (Lee et al., 2010). Many previous reports

have demonstrated that enzymes are capable of producing bioactive properties when they are
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Table 1-3. ACE inhibitory activity of enzymatic hydrolysates from S. clava.

Enzyme ICso value (mg/ml)?
Kojizyme 2.481+0.032
Flavourzyme 2.343+0.022
Neutrase 2.234+0.019
Alcalase 1.781+0.018
Protamex 1.023+0.047
Pepsin 2.147+0.051
Trypsin 2.427+0.033
a-chymotrypsin 2.263+0.028
Papain 2.282+0.042

The concentration of an inhibitor required to inhibit 50% of the ACE activity.

The values of ICsy were determined by at triplicate individual experiments.
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Table 1-4. ACE inhibitoty activity of Protamex hydrolysates from flesh and tunic tissue

of S. clava

Tissue ICso value (mg/ml) #
Whole 1.023+0.003

Flesh 0.455+0.011

Tunic 2.060+0.007

#The concentration of an inhibitor required to inhibit 50% of the ACE activity.

The values of ICsy were determined by at triplicate individual experiments.
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incorporated to hydrolyze natural resources (Bougatef et al., 2010; Lee et al., 2009; Li et al.,
2006).

The effect of PHFT on vasorelaxation was characterized using rat thoracic aorta prepared
with or without endothelium to assess any improvements in endothelium-dependent
vasorelaxation. The vasorelaxation effect of PHFT is shown in Fig. 1-4(A). The
vasorelaxation of PHFT was increased in a concentration-dependent manner (0.187 to
3 mg/ml) with an ECs value of 2.81 mg/ml on an intact endothelium. However, endothelial
denudation abolished vasorelaxation completely. The endothelium, a single layer of the
vascular wall, regulates vascular tone via the production of vasoactive factors (Asselbergs et
al., 2005; Kim et al.,, 2011). The endothelium generates potent vasodilators such as
endothelium-derived hyperpolarizing factor (EDHF) (Beny and Brunet, 1988; Feletou and
Vanhoutte, 2007) and endothelium-derived relaxing factor (EDRF) (Moncada and Vane,
1978). The EDRF has been identified as NO (Kim et al., 2011). NO is produced continuously
by eNOS in the healthy endothelium in certain amounts in response to shear and pulsatile
stretch of the vascular wall (Asselbergs et al., 2005). To further evaluate the mechanism of
the vasorelaxation response in PHFT in endothelium-intact aorta rings, they are pre-incubated

with -NAME (100 uM), a nitric oxide synthesis inhibitor. The pretreatment of aorta rings
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with | -NAME markedly attenuated the vasorelaxation effect of PHFT (Fig. 1-4(A)). These
results demonstrated that PHFT could mediate nitric oxide, thereby exerting an endothelium-
dependent vasorelaxation activity. Endothelium-dependent vasorelaxation has been shown to
be reflective of endothelial functioning, on the basis of the assumption that impaired
endothelium-dependent vasomotion reflects impaired NO production (Asselbergs et al.,
2005). Endothelial dysfunction, which manifests as reduced bioactive NO levels, is one of
most common pathologic changes occurring in a variety of cardiovascular diseases
(Christopher et al., 2008).

Fractionation with different molecular weights of the enzymatic hydrolysates was conducted
using ultra-filtration (UF) membranes of different pore sizes (Byun and Kim, 2001). The
principal advantage of the UF system is that the molecular weight distribution of the desired
digests can be controlled by adopting an appropriate UF membrane (Jeon et al., 2000). The
PHFT was further separated into three MW groups, PHFT-1 (MW <5 kDa), PHFT-Il (MW =
5~10 kDa) and PHFT-IIl1 (MW >10 kDa), using UF membrane (MW cut-off of 5 and 10 kDa).
The three groups were investigated by vasorelaxation. As shown in Fig. 1-4(B)~(D), most of
the MW groups evidenced endothelium-dependent vasorelaxation. Among all of the MW

groups, PHFT-I evidenced the strongest vasorelaxation and had an ECs, value of 1.58 mg/ml
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Fig. 1-4. Concentration-dependent vasorelaxation of PHFT and molecular weight

fractions of PHFT in aortic segments with and without endothelium. (A) PHFT; (B)

PHFT-1 (MW < 5 kDa); (C) PHFT-1l (MW = 5~10 kDa); (D) PHFT-11l (MW >10 kDa). The

data are expressed as the meansS.E. Statistical evaluations were conducted to compare the

endothelia (-). *p < 0.05.
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(Fig. 1(B)). Additionally, the pretreatment of aorta rings with | -NAME markedly attenuated
the vasorelaxation effect exhibited by PHFT-I. Molecular size of fractions became smaller,
and evidenced a low extent as compared with molecular weight size. ACE inhibitory activity
was widely observed in all of the fractions, thus suggesting that many ACE inhibitory
substances with various molecular weight ranges were contained in the PHFT. However, the
most potent ACE inhibition was noted at PHFT-I, and evidenced an ICsy value of 0.281
mg/ml (Table 1-5). This result was consistent with the previous studies of anti-hypertensive
peptides, in which the lower molecular weight fraction had more potent ACE inhibition and
vasorelaxation when separated by an UF membrane (Miguel et al., 2007).

To purify the strong antihypertensive peptide, gel filtration chromatography of PHFT-1 was
conducted using a Sephadex G-25 column, and a total of four fractions were collected
(Fig. 1-5(A)). Among the fractions, fraction A evidenced the strongest vasorelaxation, with
an ECso value of 0.761 mg/ml on an intact endothelium (Fig. 1-5(B)). Additionally, the
pretreatment of aorta rings with |-NAME markedly attenuated the vasorelaxation effect
exhibited by fraction A. Also, fraction A evidenced the highest ACE inhibitory activity, with
an I1Csp value of 0.162 mg/ml (Table 1-6). Fraction A was concentrated and used for further

isolation using reverse phase-HPLC on a YMC-Pack ODS-A column (Cyg 5 um, 4.6 x 250
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Table 1-5. ACE inhibitory activity of molecular weight fractions of PHFT.

Fraction ICso value (mg/ml)?
PHFT-1 (<5 kDa) 0.281%0.003
PHFT-11 (5-10 kDa) 0.552+0.005
PHFT-111 (>10 kDa) 0.325+0.008

The concentration of an inhibitor required to inhibit 50% of the ACE activity. The values of

ICso were determined by at triplicate individual experiments.
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Fig. 1-5. Sephadex G-25 gel filtration chromatogram of PHFT-1 (MW <5 KkDa).

(A) Separation was performed at 2 ml/min and collected at a fraction volume of 10 ml. Gel

columns were separated

into four

fractions (A~D).

(B) Concentration-dependent

vasorelaxation of gel filtrated fractions of PHFT-1 (MW <5 kDa) in aortic segments with

endothelium and without endothelium. The data are expressed as the meantS.E. Statistical

evaluation was conducted to compare the endothelium (-). *p < 0.05.
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Table 1-6. ACE inhibitory activity of gel filtrated fractions of PHFT-1 (MW <5 kDa).

Fraction ICso value (mg/ml)?
A 0.162+0.012
B 0.926+0.025
C 0.285+0.009
D 1.140+0.029

#The concentration of an inhibitor required to inhibit 50% of the ACE activity.

The values of ICsy were determined by at triplicate individual experiments.
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mm, YMC, Kyoto, Japan). Of the two fractions collected, fraction A-Il evidenced the most
profound vasorelaxation (Fig. 1-6). Also, fraction A-Il exhibited the most potent ACE
inhibitory activity, with an ICs, value of 0.021 mg/ml (Table 1-7). The purity of fraction A-11
was confirmed by RP-HPLC analysis (Fig. 1-7). The molecular mass of the purified peptide
was 565.3 Da, as determined by a Waters Synapt high-definition mass spectrometer (HDMS).
The purified peptide was analyzed using a peptide sequencer and was identified as a
pentapeptide, Ala-His-lle-1le-lle (Fig. 1-7). These findings indicate that the anti-hypertensive
effect of Ala-His-lle-lle-lle from PHFT is caused by ACE inhibition and endothelium-
dependent vasorelaxation. Anti-hypertensive treatment with ACE-inhibitors, calcium—
channel blockers, angiotensin Il receptor blockers, and diuretics can improve endothelium-
dependent vasorelaxation (Clozel et al., 1990; Hayakawa et al. 1997; Modena et al., 2002;
Modena et al., 1994). The most potent improvement of endothelium function might be
obtained by ACE inhibitors, and reduce blood pressure by inhibiting not only the production
of angiotensin 1l, but also via the degradation of bradykinin, the vasorelaxing activity of
which is caused by NO (Zhao et al., 2008). The direct effects of the antihypertensive peptide

on the endothelium were investigated in human endothelial cells. In order to observe the
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Fig. 1-6. RP-HPLC chromatogram of the fraction A isolated from Sephadex G-25 in
aortic segments with endothelium. (A) Separation into sub-fractions (A-I and A-I1) was
carried out with a linear gradient of acetonitrile from 0% to 15% at a flow rate of 1 ml/min.
(B) Vasorelaxation effect of sub-fraction of the fraction A in aortic segments with and without

endothelium. The data are expressed as the meanS.E. Statistical evaluation was carried out

to compare the A-1 and A-11. *p < 0.05.
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Table 1-7. ACE inhibitory activity of sub-fraction of the fraction A.

Fraction ICso value (mg/ml)?
A-1 0.132+0.025
A-ll 0.021+0.012

The concentration of an inhibitor required to inhibit 50% of the ACE activity. The values of

ICso were determined by at triplicate individual experiments.
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<— Antihypertensive peptide
2000.00| Amino acid sequence: Ala-His-Tle-Tle-Tle
Molecular weight: 565.3 Da

8

8

o

160000 g
— <t "
2 ™
€ =
- g
:
@
S 100000
° ]
> bs,
Yy
K ‘v T
500.00] 10
0. 00—’M';\“’J k i
0.00 5.00 10,00 16.00 20,00 25.00 30.00 36.00 40.00 46.00 50.00

Time[min]

Fig. 1-7. RP-HPLC and MS profile of the purified antihypertensive peptide.
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effect of the antihypertensive peptide on NO production, human endothelial cells (EA.hy 926
cells) were incubated in medium and the levels of released NO were measured at varying
concentrations of the antihypertensive peptide from PHFT. As demonstrated in Fig. 1-8(A),
the level of NO released in the incubation media of endothelial cells were increased by
treatment with the antihypertensive peptide at a concentration of 0.1 mM. This result suggests
that the antihypertensive peptide directly affects NO production in endothelial cells. Reduced
NO activity in the vasculature promotes the progression of cardiovascular disease (Schmitt
and Dirsch, 2009). An important characteristic of healthy endothelium is an adequate output
of NO, which is generated by endothelial nitric oxide synthase (eNOS) (Alderton et al., 2001;
Palmer et al., 1988; Schmitt and Dirsch, 2009). As the antihypertensive peptide enhanced NO
production from endothelial cells, this study further investigated the effect of the
antihypertensive peptide on NO synthase activation. On the basis of Western blot analysis,
the treatments of the antihypertensive peptide markedly enhanced eNOS phosphorylation (ser
1177) in endothelial cells (Fig. 1-8(B)). The overall data indicate that NO production via the
activation of eNOS is involved in the antihypertensive peptide-induced vasorelaxation. The

phosphorylation of eNOS is a major post-translational regulatory mechanism of eNOS
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Fig. 1-8. The effect of the antihypertensive peptide on NO production and eNOS

phosphorylation in human endothelial cells. The eNOS phosphorylation level was
determined via Western blot analysis in the endothelial cells treated with one dose of the

antihypertensive peptide (0.1 mM).
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activity and involves a number of kinases and phosphatases. The eNOS phosphorylation sites
have been identified thus far; the amino acid numbers refer to the human eNOS sequence,
unless started otherwise (Schmitt and Dirsch, 2009). Among the phosphorylation sites, Ser
1177 is the most important positive regulatory domain, which is phosphorylated in response
to most stimuli promoting eNOS activation. eNOS phosphorylation is catalyzed by protein
kinase B (Akt), as well as a number of other kinases (Schmitt and Dirsch, 2009; McCabe et
al., 2000; Mount et al., 2007).

The antihypertensive effect of the purified peptide was evaluated by measuring the change
in systolic blood pressure (SBP) at 1, 3, 6, 12 and 24 h after the oral administration of 100
mg/kg of body weight. Amlodipine (30 mg/kg bodyweight) was employed as a positive
control, and the control group was injected with an identical volume of saline. In our acute
oral administration experiments (Fig. 1-9), little SBP changes were observed in the SHR
model control group. The maximum SBP reduction levels of these treatment groups were, in
descending order: amlodipine group (53.67 mmHg); and the purified peptide group (46.83
mmHg). The antihypertensive effects of these treatments were maintained for 12 h. The SBP
began to recover 12 h after treatment (the purified peptide) and returned to initial levels 24 h

after administration. Overall, our results clearly indicated that the purified peptide could
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depress SBP in SHRs. Many antihypertensive peptides have recently been isolated from
enzyme-digested food proteins. Small peptides (di- or tripeptides) are readily absorbed in
their intact forms in the intestine (Lee et al., 2010). In order to exert an antihypertensive
effect after oral ingestion, bioactive peptides must be absorbed from the intestine intact and
be resistant to degradation (Zhao et al., 2007). Even through the purified peptide has
relativity high MW compared to di- or tripeptides, the results clearly demonstrated that
purified peptide exerts a substantial effect on the reduction of SBP in SHRs. If this peptide
was not effectively absorbed without digestion, it was quite difficult to observe this type of
anti-hypertensive effect on SHRs.

In conclusion, we have purified and identified a novel antihypertensive peptide (Ala-His-Ile-
Ile-1le) from Styela clava flesh tissue via ACE inhibitory and NO mediated vasorelaxation
effects. Additionally, the anti-hypertensive effect in SHR also showed that the oral
administration of purified peptide could reduce SBP significantly. The results of this study
indicate that the antihypertensive peptide from S. clava flesh tissue could be employed as a
functional food ingredient with potential therapeutic benefits in the prevention and treatment

of hypertension and other associated diseases.
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Fig. 1-9. Change of systolic blood pressure (SBP) of SHRs after the oral administration
of test group. (e) negative control (Saline); (m) positive control (Amlodipine, 30 mg/kg body
weight); (e) the antihypertensive peptide (100 mg/kg body weight);. The data are expressed as
the meanstS.E. Statistical evaluation was carried out and compared with the control group.

*p < 0.01.
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Part I1I.

Antihypertensive peptide purified from Styela clava flesh

tissue stimulates glucose uptake through AMP-activated

protein kinase (AMPK) activation in skeletal muscle cells
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Part Il.

Antihypertensive peptide purified from Styela clava flesh tissue stimulates glucose
uptake through AMP-activated protein kinase (AMPK) activation in skeletal muscle

cells

1. Abstract

In the present study, we reported the glucose uptake effects of the antihypertensive peptide
purified from Styela clava, on skeletal muscle cells. The antihypertensive peptide dose-
dependently increased glucose uptake in differentiated L6 rat myoblast cells compared to
control. Inhibition of AMP-activated protein kinase (AMPK) by compound C exhibited
significant inhibitory effect on antihypertensive peptide-stimulated glucose uptake. Western
blotting analyses revealed that antihypertensive peptide increased the phosphorylation level
of AMPK and such enhancement can be specifically inhibited by compound C. In addition,
we demonstrated that glucose transporter GLUT4 translocation to plasma membrane was
increased by antihypertensive peptide. In summary, AMPK activation was involved in the
effects of antihypertensive peptide on glucose transport activation. The antihypertensive

peptide can be further developed as potential compound for the anti-diabetic therapy.
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2. MATERIALS AND METHODS
2.1. Materials

The rat myoblast cell line L6 was purchased from the Korean Cell Line Bank (KCLB,;
Seoul, KOREA). DMEM (Dulbecco’s modified Eagle’s medium), wortmannin, and
compound C were purchased from Sigma (St. Louis, MO, USA). Antibodies against AMP-
activated protein kinase (AMPK), phospho-AMPK (Thr 172), and glucose transporter 4
(GLUT4) were from Cell Signaling Technology (Bedford, Massachusetts, USA). Second IgG
HRP-linked antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The

other chemicals and reagents used were of analytical grade.

2.2. Cell culture

Rat myoblast L6 cells were maintained in high glucose-DMEM supplemented with 10%
heat-inactivated FBS, penicillin (100 U/ml) and streptomycin (100 ug/ml). Cultures were
maintained at 37°C in 5 % CO, incubator. For differentiation, the cells were seeded in
appropriate culture plates, and after sub-confluence (about 80%), the medium was changed to
DMEM containing 2% horse serum for 7 days, with medium changes every day. All

experiments were performed in differentiated L6 myotubes after 7 days.
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2.3. MTT assay

The cytotoxicity of antihypertensive peptide against the L6 cells was determined by a
colorimetric MTT assay. Cells were seeded in a 24-well plate. After 24 h, the cells were
treated with various concentrations (9.38, 18.8, 37.5, 75 and 150 pM) of the antihypertensive
peptide. The cells were then incubated for an additional 24 h at 37°C. MTT stock solution
(100 pl; 2 mg/ml in PBS) was then added to each well. After incubating for 4 h, the plate was
centrifuged at 2,000 rpm for 10 min and the supernatant was aspirated. The formazan crystals
in each well were dissolved in DMSO. The amount of purple formazan was determined by

measuring the absorbance at 540 nm.

2.4. Glucose uptake assay

L6 cells were seeded in a 24-well plate. After differentiation, the cells were starved in
serum-free low glucose DMEM for 4 h, and then washed with PBS and incubated with fresh
serum-free low glucose DMEM. After that, the cells were treated with insulin (100 nM) for
1 h, or the indicated concentrations (to determine the dose response of L6 myotubes to
antihypertensive peptide) of antihypertensive peptide. Glucose uptake was measured by

glucose concentration in the media solution using glucose oxidase assay kit (Asan
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Pharmaceutical corp., Korea).
In some experiments, 100 nM of Wortmannin (PI3-kinase inhibitor) and 10 uM of
Compound C (AMPK inhibitor) were added 30 min before the antihypertensive peptide

treatment.

2.5. Western blot analysis

L6 myotubes were grown 100 mm dishes and were starved in serum-free low glucose
DMEM for 4 h prior to treatment with the indicated agents. Following treatment the media
were aspirated and the cells were washed twice in ice-cold PBS. The cells were lysated in
NucBuster™ Protein Extraction Kit (Novagen, San Diego, CA, USA) for 10 min and then
centrifuged at 16,000 rpm for 5 min at 4°C. The protein concentrations were determined by
using BCA™ protein assay kit. The lysate containing 40 pg of protein were subjected to
electrophoresis on 12% sodium dodecyl sulfate-polyacrylamide gel, and the gel was
transferred onto a nitrocellulose membrane. The membrane was blocked in 1% bovine serum
albumin (BSA) in TBST (25 mM Tris-HCI, 137 mM NacCl, 0.1% Tween 20, pH 7.4) for 2 h.
The primary antibodies were used at a 1:1000 dilution. Membranes incubated with the

primary antibodies at 4°C for overnight. Then the membranes were washed with TTBT and
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then incubated with the secondary antibodies used at 1:3000 dilution. Signals were developed

using an ECL western blotting detection kit and exposed to X-ray films.

2.6. Plasma membrane fractionation and immunoblot analysis

L6 myotubes were treated with the indicated agents and harvested. The cell lysates were
prepared with lysis buffer [250 mM sucrose, 20 mM HEPES (pH 7.4), 10 mM KCI, 1.5 mM
MgCl,, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol (DTT), and protease inhibitors
(2 mM PMSF, 25 pg/ml aprotinin, and 25 pg/ml leupeptin)] and kept on ice for 10 min. The
cell lysate were ultracentrifuged at 22,000 rpm for 1 h at 4°C. The pallet was re-suspended in
a lysis buffer and kept on ice for 10 min and then centrifuged at 8,000 rpm for 5 min at 4°C
to obtain plasma membrane fraction from the middle layer of the supernatant. Immunoblot

analyses of GLUT4 described in the method to 2.6.

2.7. Statistical analysis
All data were represented as the mean + S.E.M. Statistical comparisons of the mean values
were performed by analysis of variance (ANOVA), followed by Duncan’s multiple-range test

using SPSS (11.5) software. Statistical significance was considered at p<0.05.
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3. RESULTS AND DISCUSSION

Type |1 diabetes has come to pose a major worldwide threat to human health and is the most
common type of diabetes (Zimmet et al., 2001). Hyperglycemia plays a pivotal role in the
development type Il diabetes and complications associated with the diseases such as
arteriosclerosis, stroke, nephropathy and myocardial infarction (Baron, 1998). Therefore, the
effective control of blood glucose level is the key to prevent or reverse diabetic complications
and improve the quality of the life in diabetic patients (DeFronzo, 1999). Currently available
drugs for type Il diabetes have a number of limitations, including adverse effects and high
rates of secondary failure. In recent years, natural products have become the focus of a
considerable amount of attention from researchers searching for alternative therapies of
diabetes (Chang et al., 2006; Jung et al., 2007). This is because natural products are usually
considered to be less toxic with fewer side effects than synthetic drugs. Recently, interest has
emerged to identify and characterize bioactive peptides from natural products (Sarmadi and
Ismail, 2010).

Skeletal muscle has been identified as the major tissue in glucose metabolism, accounting
for nearly 75% of whole-body insulin-stimulated glucose uptake (Defronzo et al., 1981).

Insulin-stimulated glucose uptake in skeletal muscle is critical for reducing blood glucose
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levels. Failure of glucose uptake due to decreased insulin sensitivity leads to the development
of type Il diabetes. In skeletal muscle, glucose transport can be activated by at least two
major mechanisms. In this article, we have studied the effects of antihypertensive peptide
purified from S. clava on glucose uptake in cell cultures of differentiated L6-myotubes.
Furthermore, we analyzed the phosphorylation status of key components of signaling
pathways that are involved in the molecular mechanisms regulating glucose uptake.

Cytotoxicity of antihypertensive peptide was evaluated using the MTT assay in various
concentrations (9.38, 18.8, 37.5, 75, and 150 uM). The antihypertensive peptide did not affect
the cytotoxic of L6 skeletal muscle cells compared control (Fig 2-1). Thus, the concentrations
were used in subsequent experiments.

In order to determine the role of antihypertensive peptide did not shown cytotoxicity up to
150 uM compared with control in glucose metabolism of muscle cells, the effect of
antihypertensive peptide on glucose uptake was investigated in L6 skeletal muscle cells. It
was found that antihypertensive peptide dose-dependently stimulated glucose uptake as
shown in Fig. 2-2, and the effect of antihypertensive peptide (150 uM) was comparable to
that of insulin, which indicates that antihypertensive peptide may have metabolic effects in

skeletal muscle cells.
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Fig. 2-1. Cytotoxicity of antihypertensive peptide. Cytotoxicity of antihypertensive
peptide was determined using the MTT assay. Each value is expressed as meantS.E. in

triplicate experiments.
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Fig. 2-2. Antihypertensive peptide dose-dependently stimulates glucose uptake in L6
skeletal muscle cells. (A) Cells were starved in serum free (SF) media for 4 h, and incubated
for 1 h with increasing of antihypertensive peptide and insulin. Values are expressed as means
+ S.E. in triplicate experiments. “®Values with different alphabets are significantly different at

P<0.05 as analyzed via Duncan's multiple range test.
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To look into which pathway may be involved in the effect of antihypertensive peptide on
glucose uptake in L6 cells, L6 cells were pretreated with wortmannin, an inhibitor of
phosphatidylinositol (PI) 3-kinase and compound C, a selective AMPK inhibitor. As shown
in Fig. 2-3, compound C exhibited significant inhibition on glucose uptake stimulated by
antihypertensive peptide (150 uM). The results indicate that antihypertensive peptide-induced
increase in the glucose uptake may involve AMPK activation. To look into the roles of
antihypertensive peptide in AMPK signaling pathway, we investigated the effects of
antihypertensive peptide on AMPK activation. We found that treatment of antihypertensive
peptide induced increase in AMPK phosphorylation in L6 cells (Fig. 2-4). However, the
increase in phosphorylation of AMPK was inhibited by pretreatment of compound C, a
selective AMPK inhibitor for 30 min before treatment of antihypertensive peptide (Fig. 2-4).
This result, together with above results, strongly indicates that antihypertensive peptide plays
a metabolic role in skeletal muscle cells through the AMPK pathway. AMPK is known to
play a major role in energy homeostasis in ATP-depleting metabolic states such as ischemia,
hypoxia, heart shock, oxidative stress, and especially exercise (Harder et al., 2001; Raj and
Dentino, 2002). Once activated under such condition, it accelerates ATP-generating catabolic

pathway including glucose uptake and fatty acid oxidation through direct regulation of key
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Fig. 2-3. Antihypertensive peptide-induced increase of glucose uptake was reduced by
wortmannin and compound C. After 4 h starvation, L6 skeletal muscle cells were
pretreated with or without 1200 nM wortmannin (phosphatidylinositol (PI) 3-kinase inhibitor)
and 10 uM compound C, (AMPK inhibitor) for 30 min, and then treated with 150 uM
antihypertensive peptide for 1 h. Each value is expressed as mean = S.E. in triplicate

experiments. "P<0.05 vs. control or between two groups as indicated.
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Fig. 2-4. Effect of antihypertensive peptide on AMPK signaling pathway. Cells were
pretreated with or without 10 uM compound C for 30 min, and then treated with the indicated
concentrations of antihypertensive peptide and insulin for 1 h and 10 min, respectively. The
cell lysates were analyzed via Western blotting using anti-phosphoAMPK (Thr 172) and anti-

AMPK. Figures are representative of three independent experiments.
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metabolic enzymes (Sheetz and King, 2002). In recent papers, it has been reported that
AMPK serves as a key metabolic sensor through cellular regulation of insulin-independent
glucose uptake and glycogen metabolism as described previously (Ozcan et al., 2004;
Hotamisligil, 2006). From this, AMPK is emerging as a potentially interesting target for the
treatment of diabetes (Nakatani et al., 2005), especially because it could plays a principal role
in exercisedinduced adaptation of skeletal muscle (Ozawa et al., 2005), type Il diabetes,
obesity and the metabolic syndrome. Present study showed a significant increase in AMPK
phosphorylation by antihypertensive peptide. And also, the antihypertensive peptide -
mediated activation of AMPK is abolished by pretreatment of compound C, highly-selective
AMPK inhibitor. Therefore, these results indicate that AMPK is a principal factor in
antihypertensive peptide -stimulated glucose uptake.

We next examined the effect of antihypertensive peptide on the AMPK signaling pathway
that leads to the translocation of glucose transport 4 (GLUT4) to the plasma membrane and
increases the uptake of glucose. After L6 myotubes cells were treated with antihypertensive
peptide for 1 h, the translocation of GLUT4 was determined. As seen in Fig. 2-5, GLUT4
translocation to the plasma membrane of L6 myotubes cells were markedly increased by

treatment of antihypertensive peptide. However, increased translocation of GLUT4 to the
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plasma membrane of antihypertensive peptide-treated L6 myotubes cells were almost
completely abolished by compound C pretreatment. These results suggest that
antihypertensive peptide stimulated increase in GLUT4 translocation to the plasma
membrane possibly via activating AMPK pathway. Hyperglycemic-hyperinsulinemic clamp
analyses of human type Il diabetic patients show that insulin resistance in muscle is caused
by a defect in glucose transport.

In consequence, these results demonstrate that antihypertensive peptide improve glucose
uptake via activating AMPK pathway in skeletal muscles. Especially, the skeletal muscle has
a major role in the regulation of energy balance (Ozcan et al., 2006) and is the primary tissue
for glucose uptake and disposal. Indeed, the glucose uptake, by skeletal muscle, accounts for
>70% of the glucose removal from the serum in humans (Cormont et al., 1993). With this, it
is considered an important target tissue for type Il diabetes (Sheetz and King, 2002).

In conclusion, antihypertensive peptide increases glucose uptake through activating AMPK
pathway, a novel target for treatment of type Il diabetes and we can find a new possibility of

antihypertensive peptide as a anti-diabetic agent.
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Fig. 2-5. Effect of antihypertensive peptide on GLUT4 translocation to the plasma
membrane. Cells were pretreated with or without 10 uM compound C for 30 min, and then
treated with the indicated concentrations of antihypertensive peptide and insulin for 1 h and
10 min, respectively. The cell lysates were analyzed via Western blotting using anti-GLUT4.

Figures are representative of three independent experiments.
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Part I11.
Antihypertensive peptide purified from Styela clava
inhibits the expression of adipogenic regulators 3T3-L1
preadipocytes and reduces weight gain in mice fed a high-

fat diet
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Part I11.
Antihypertensive peptide purified from Styela clava inhibits the expression of
adipogenic regulators 3T3-L1 preadipocytes and reduces weight gain in mice fed a high-

fat diet

1. Abstract

In this study, we investigated the effect of antihypertensive peptide on adipogenesis of
3T3-L1 adipocytes during differentiation of preadipocytes into adipocytes by measuring lipid
accumulation and adipogenesis related factors and an animal model of obesity.
antihypertensive peptide treatment inhibits adipocyte differentiation, evidenced by decreased
lipid accumulation and down regulation of adipocyte markers. antihypertensive peptide then
inhibited the expression of both early CCAAT-enhancer-binding proteins o (C/EBPa) and
peroxisome proliferator-activated receptors y (PPARy), differentiation- dependent factor
1/sterol regulatory element-binding protein (SREBP-1) and late activating protein 2 (aP2)
adipogenic transcription factors, which is a crucial role for adipocyte development.
Antihypertensive peptide administration significantly reduced the body weight of mice fed a
high-fat diet. These results demonstrate an inhibitory effect of antihypertensive peptide on

adipogenesis through reduction of an adipogenic factor and reducing body weight gain in a
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high-fat diet-induced animal model of obesity.
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2. MATERIALS AND METHODS
2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), bovine serum
(BS), Phosphate-buffered saline (pH 7.4; PBS) and penicillin—streptomycin (PS) were from
Gibco BRL (Grand Island, NY, USA). Antibodies to PPARy, aP2 and C/EBPa were
purchased were from Cell Signaling Technology (Bedford, Massachusetts, USA). Antibody
to SREBP-1c was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 3-
isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl tetrazolium bromide (MTT) were from Sigma Chemical Co. (St. Louis, MO,
USA). A All other reagents were purchased from Sigma Chemical Co. unless otherwise

stated.

2.2. Cell culture and differentiation

3T3-L1 preadipocyte cells obtained from American Type Culture Collection (Rockville,
MD, USA) were cultured in DMEM containing 1% PS and 10% bovine calf serum (Gibco
BRL) at 37°C under a 5% CO, atmosphere. To induce differentiation, 2-day post confluent

preadipocytes (designated Day 0) were cultured in MDI differentiation medium (DMEM
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containing 1% PS, 10% FBS, 0.5 mM IBMX, 0.25 uM dexamethasone and 5 pg/ml insulin)
for 2 days. The cells were then cultured for another 2 days in DMEM containing 1% PS, 10%
FBS and 5 pg/ml insulin. Thereafter, the cells were maintained in post differentiation
medium (DMEM containing 1% PS and 10% FBS), with replacement of the medium every 2
days. To examine the effects of antihypertensive peptide on the differentiation of
preadipocytes to adipocytes, the cells were cultured with MDI in the presence of various
concentrations of antihypertensive peptide. Differentiation, as measured by the expression of
adipogenic markers and the appearance of lipid droplets, was complete on Day 8. The effect
of antihypertensive peptide on cell viability and cytotoxicity was determined by the MTT
assay. Cells were seeded at a density of 1x10° cells/well into a 96-well plate, then treated
antihypertensive peptide after 24 h, and then incubated for 48 h. The MTT stock solution
(100 pl; 2 mg/ml in PBS) was added to each well, and the plates incubated for 4 h at 37°C.
The liquid in the plate was removed, and dimethyl sulfoxide was added to dissolve the MTT—

formazan complex. Optical density was measured at 540 nm.

2.3. Determination of lipid accumulation by Oil Red O staining

To induce adipogenesis, 3T3-L1 cells were seeded on 6-well plates and maintained for
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2 days after reaching confluence. Then media was exchanged with differentiation medium
(DMEM containing 10% FBS, 0.5 mM IBMX, 0.25 uM Dex and 10 pg/ml insulin) and cells
were treated with antihypertensive peptide (0, 112.5, 225 or 450 uM). After two days, the
differentiation medium was replaced with adipocyte growth medium (DMEM supplemented
with 10% FBS and 5 ug/ml insulin), which was refreshed every 2 days. After adipocyte
differentiation, the cells were stained with Oil Red O, an indicator of cell lipid content with
slight modifications. Briefly, cells were washed with phosphate-buffered saline, fixed with
10% buffered formalin and stained with Oil Red O solution (0.5 g in 100 ml isopropanol) for
10 min. After removing the staining solution, the dye retained in the cells was eluted into

isopropanol and Optical density was measured at 520 nm.

2.4. Western blot analysis

Cells were lysated in NucBuster™ Protein Extraction Kit (Novagen, San Diego, CA, USA)
for 10 min and then centrifuged at 16,000 rpm for 5 min at 4°C. The protein concentrations
were determined by using BCA™ protein assay kit. The lysate containing 40 pg of protein
were subjected to electrophoresis on 12 % sodium dodecyl sulfate-polyacrylamide gel, and

the gel was transferred onto a nitrocellulose membrane. The membrane was blocked in 1%
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bovine serum albumin (BSA) in TBST (25 mM Tris-HCI, 137 mM NacCl, 0.1% Tween 20,
pH 7.4) for 2 h. The primary antibodies were used at a 1:1000 dilution. Membranes incubated
with the primary antibodies at 4°C for overnight. Then the membranes were washed with
TTBT and then incubated with the secondary antibodies used at 1:3000 dilution. Signals were

developed using an ECL western blotting detection kit and exposed to X-ray films.

2.5. In vivo anti-obesity effect

All animal procedures were carried out in accordance with the National Institute of Health
Guide for the Care and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Utilization Committee for Veterinary Medicine of Jeju National University.
After purchase, 40 male 5-week-old C57BL/6N mice (Japan SLC. Inc. Shizuoka, Japan) were
adapted for 1 week to specific conditions of temperature (23+2°C), humidity (50£5%) and 12
h light/dark cycle and were given standard mouse chow and water ad libitum. After
adaptation, the C57BL/6N mice (now 6 weeks old) were randomly divided into a normal diet
group (ND; n=10), high-fat diet group (HFD; n=10), high-fat diet + 5 mg/kg BW of AP
(HFD + 5 mg/kg BW of AP) and high-fat diet + 10 mg/kg BW of AP (HFD + 10 mg/kg BW

of AP). Mice in the HFD group were orally administered saline once a day while mice in the
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HFD + AP group were orally administered 5 and 10 mg AP/kg BW in saline. Body weights

were recorded weekly for six weeks.

2.5. Statistical analysis
All data were represented as the mean+S.E. Statistical comparisons of the mean values were
performed by analysis of variance (ANOVA), followed by Duncan’s multiple-range test using

SPSS (11.5) software. Statistical significance was considered at p<0.05.
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3. RESULTS AND DISCUSSION

Obesity is associated with the development of metabolic diseases such as type Il diabetes,
hypertension, heart, disease and myocardial infarction, where its prevalence is greatly
increasing (Lee et al., 2005). The possible proposed mechanisms for the treatment of obesity
are as follows: balance energy intake and expenditure, reduction of preadipocyte
differentiation, decrease in lipogenesis, increase in lipolysis and induction of adipocyte
apoptosis (Evans et al., 2002). Adipocytes play an important role in lipid homeostasis and
energy balance by relating to triglyceride storage and release of free fatty acids. Adipocyte
differentiation and the amount of fat accumulation are associated with the occurrence and
development of obesity (Jeon et al., 2004). For these reasons, anti-obesity works have been
conducted in 3T3-L1 adipocytes. In this study, we investigated anti-obesity effect of
antihypertensive peptide in the 3T3-L1 cell model by understanding the molecular
mechanisms through AMPK signaling pathway.

To identify a concentration of antihypertensive peptide that did not affect viability or cause
cytotoxicity in 3T3-L1 preadipocytes, cell viability and cytotoxicity after 48 h incubation
periods in 3T3-L1 preadipocytes were evaluated in MTT assays. At concentrations of 112.5,

225 or 450 pM, antihypertensive peptide did not affect viability or cause cytotoxicity in 3T3-
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L1 cells, as determined by MTT assay (Fig. 3-1).

Next, we tested whether antihypertensive peptide inhibited MDI-induced differentiation in
3T3-L1 preadipocytes. On day O, antihypertensive peptide was added to the MDI
differentiation medium, containing IBMX, dexamethasone, and insulin; on day 8, the
adipocytes were stained using Oil Red O. Oil Red O staining demonstrated that treatment
with antihypertensive peptide at a concentration of 112.5, 225 or 450 uM dose-dependently
inhibited 3T3-L1 adipocyte differentiation and lipid accumulation (Fig. 3-2(A) and (B)).

Adipocyte differentiation causes a series of programmed changes in specific gene
expressions. Adipogenesis can be induced through the action of several enzymes such as FAS,
ACC, ACS and glycerol-3-phosphate acyltransferase. They are regulated by transcription
factors such as PPARy, C/EBPa and SREBP-1c, which are known to be critical activators for
adipogenesis. These transcription factors are regulated in early stage of adipocyte
differentiation (Latasa et al., 2000; Luong et al., 2000; Ericsson et al., 1997). Overexpression
of these transcription factors can accelerate adipocyte differentiation. PPARy and C/EBPa are
induced prior to the transcriptional activation of most adipocyte specific genes and coordinate
expression of genes involved in creating or maintaining the phenotype of adipocytes (Rosen,

2005). SREBP-1c critically crossactivates a ligand binding domain of PPARY and regulates
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Fig. 3-1. Effect of antihypertensive peptide on the viability of 3T3-L1 preadipocytes
treated for 48 h. Viability was determined via MTT assay. Each value is expressed as

meanzS.E. in triplicate experiments.
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Fig.3-2. Antihypertensive peptide inhibits lipid accumulation during the differentiation
of 3T3-L1 preadipocytes. (A) O Red O staining at day 8 with antihypertensive peptie at 0,
112.5, 225, 450 uM. (B) The lipid accumulation determined by absorbance at 520 nm.
*U\alues with different alphabets are significantly different at P<0.05 as analyzed via

Duncan's multiple range test.
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the expression of the enzymes involved in lipogenesis and fatty acid desaturation (Bruce and
Jeffery, 2001; Rosen et al., 2000).

To determine whether antihypertensive peptide affects the expression of transcriptional
factors, Western blotting analysis was conducted (Fig. 3-3). Treatment with antihypertensive
peptide lessened regulation of peroxisome proliferator-activated receptor-y (PPARY),
differentiation- dependent factor 1/sterol regulatory element-binding protein (SREBP-1c) and
CCAAT/enhancer-binding proteins a (C/EBPa), compared to fully differentiated control
adipocytes. The inhibitory effects of antihypertensive peptide exhibited dose-dependent
pattern.

PPARy, C/EBPoa and SREBP-1c synergistically activate the adipocyte specific gene
promoters such as aP2, FAS, LPL, ACS1 and leptin (Gregoire et al., 1998). The aP2 gene is
the terminal differentiation marker of adipocytes and plays central roles in the pathway which
link obesity to insulin resistance and fatty acid metabolism. Further investigations were
carried out to find the effect of antihypertensive peptide on regulation of adipogenic target
genes such as adipocyte fatty acid binding protein (aP2) (Fig. 3-3). Presence of
antihypertensive peptide lessened the expression level of aP2 gene.

To investigate the anti-adipogenic properties of antihypertensive peptide in vivo, we
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recorded body weights after oral administration of antihypertensive peptide 5 and 10 mg/kg
per day to HFD-induced obese mice for six weeks. Fig. 3-4 shows that the HFD increased
body weight significantly compared to the normal diet (ND) over six week period. Moreover,
final body weight was significantly lower in the HFD + 10 mg/kg of antihypertensive peptide
group compared to the HFD group after six weeks.

In conclusion, we evaluated the anti-obesity effects of antihypertensive peptide on adipocyte
differentiation and associated mechanisms in 3T3-L1 cells and confirmed and confirmed our
findings in an obese animal model fed HFD. Atihypertensive peptide decrease lipid
accumulation in 3T3-L1 adipocytes. Moreover, administration of antihypertensive peptide
effectively suppressed body weight gain. These results suggest that the anti-obesity effect of
antihypertensive peptide results from a decrease in adipogenesis and the antihypertensive

peptide has a beneficial effect, reducing body weight gain in an experimental animal model.
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Fig. 3-3. Antihypertensive peptide suppressed the SREBP-1¢, C/EBPa, PPARY and aP2
protein expression in the differentiation of 3T3-L1 preadipocyte in to adipocyte. Cells
were cultured for 8 days with 112.5, 225 or 450 uM antihypertensive peptide or without

antihypertensive peptide.
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Fig. 3-4. Effect of supplementing antihypertensive peptide on body weight gain profile

in HFD-induced experimental group for 6 weeks. The values were expressed as
meank=S.E. (n=10). Mean separation was performed by Duncan’s multiple rang test.

Different letters indicate significant differences (p<0.1).
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