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초록 

 

전기 임피던스 단층촹영법(EIT)에서는 경계면의 전기적 측정치로부터 대상체 내부의 

도전율 또는 유전율에 대한 영상이 얻어진다. 일반적으로, 대상체 주위에 일정한 

간격으로 전도성 전극을 부착하고 이 전극들을 통해 소량의 전류를 주입시킨다. 이에 

유기되는 전기 신호인 전압을 측정하는데, 이 과정을 여러 다른 전류 패턴들에 

대해서 반복 수행한다. 그리고 주입시킨 전류와 측정 전압 데이터를 사용하여, 

대상체 내부의 도전율 분포 또는 저항률 분포에 대한 근사치를 얻을 수 있다. 

수학적으로, EIT 문제는 비선형이고 부정치성 역문제이다. 

 

본 논문에서는, EIT 에서 level set 방법을 기반으로 한 다상류(multi-phase flow)에 

대한 모양 복원(shape reconstruction) 방법을 제안한다. 이 방법의 주요 특징은 서로 

다른 도전율 값을 갖는 영역들 사이의 경계를 찾는 역문제를 풀기 위해 

협대역(narrowband) level set 방법을 사용하는 것이다. 다상 level set 모델을 

사용함에 있어서, 도전율은 두 level set 함수에 의해 주어질 수 있다. 주요 

아이디어는 level set 이론을 기반으로, 고차원 함수의 (zero) level set 으로서 모양의 

경계(shape interface)를 나타내고 나서 편미분 방정식들의 집합을 푸는 것이다. level 

set 기반의 기법은 전형적인 픽셀 기반의 접근 방법과 비교해서 몇몇 이점들을 

제공한다. level set 전략은 전개 과정 동안 저절로 위상기하학적 병합(topological 

merging)과 분리(breaking)를 다룬다. 다상의 경우에 대해 적용시키기 위해 level set 

방법을 확장하였고, 수치적 데이터와 실험 데이터를 사용하여 제안 알고리즘을 

테스트 하였다. 그 결과, 모양 기반의 level set 방법이 픽셀 기반의 영상 방법과 

비교해서 더 나은 복원 성능을 보였다. 
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1. Introduction 

1.1 Electrical impedance tomography  

Electrical impedance tomography (EIT) is an imaging technique to view cross-sectional image of 

the object, where an array of electrodes are attached and small alternating current are injected and 

the corresponding voltages are measured, the internal conductivity or resistivity distribution is 

reconstructed with these measurement data from the boundary of the object to be imaged. A 

schematic diagram of the EIT measurement system is shown in figure 1.1. As EIT technology 

come form the soft field imaging techniques which the electrical quantities are dispersed inside the 

object and are affected by the inside objects, thus EIT has lower spatial resolution in comparison 

to other modalities, such as, magnetic resonance imaging (MRI) and X-ray tomography. On the 

other hand, EIT has high-speed data acquisition system thus has high temporal characteristics. For 

example in industrial process tomography, where the targets often change very rapidly, EIT is a 

workable modality due to its good temporal resolution.  

 

Figure 1.1 Schematic diagram of EIT system 

Many applications of EIT have been developed e.g. for medical purpose. For instance, EIT is 

useful for monitoring patient lungs because the air has a large conductivity contrast to the other 

tissues in the thorax (Brown 2001). The most promising clinical application is for lung function 

monitoring of patients being treated with mechanical ventilation. EIT can resolve the changes in 
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the distribution of lung volumes between dependent and non-dependent lung regions as ventilator 

parameters are changed. Also EIT is being investigated in the field of breast imaging as an 

alternative or complementary technique to mammography and magnetic resonance imaging (MRI) 

for breast cancer detection (Cherepenin et al. 2001, Cherepenin et al. 2002 and Kerner et al. 2002). 

In industrial field, EIT has been widely applied to monitor flow processes, multi-phase imaging 

and monitor mixtures of conductive fluids in vessels or pipes (Jones et al. 1993).  

 

In EIT, an image of the conductivity or resistivity distribution of the object is inferred from 

surface electrical measurements made on the boundary. Image reconstruction in EIT is a kind of 

nonlinear optimization problem, which means the solution is obtained iteratively and computed 

through forward and inverse solvers. In forward problem, the conductivity distribution and the 

injected current are known and the voltages are computed. In inverse problem, the internal 

conductivity distribution of the object is estimated based on the measured voltage and injected 

current data. The physical relationship between the internal conductivity or resistivity and 

measured boundary voltages is governed by a partial differential equation (PDE) derived from 

Maxwell equations with an appropriate boundary condition. Methods for reconstruction of EIT 

images are based on mathematical models that connect the internal conductivity or resistivity 

distribution to the voltages measurements made on the boundary of the object. In (Cheng et al. 

1989) various models were studied, such as continuum, average-gap, shunt and complete electrode 

model (CEM). In connection with EIT problem these models are referred to as electrode models. It 

was found that the most accurate and popular model is CEM. This model can take into account the 

shunting effect of the electrodes and also the contact impedances between the electrodes and the 

object. In most cases, it is impossible to obtain an analytical solution for the forward problem so a 

numerical technique such as the finite element method (FEM) can be applied (Jain et al. 1997, 

Polydorides et al. 2002). The EIT reconstruction methods can be divided into two categories, 

stationary and non-stationary imaging. Stationary imaging techniques are used for the case where 

the internal conductivity of the object is time invariant within the time taken to acquire a full set of 

measurement data. In this thesis, reconstruction methods for the stationary cases are considered. In 

non-stationary imaging or dynamic imaging technique, which have been introduced to enhance 

the temporal resolution for situations where the conductivity distribution inside the body changes 
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rapidly. In these dynamic approaches, the time-dependence of the conductivity distribution is 

taken into account, and a reconstruction is obtained after each current injection. The reduction in 

current patterns is also made possible by the analysis of current patterns to use only the optimal 

current patterns in a dynamic scenario. With the evaluation of the norm and power 

distinguishability, the optimal current pattern can be determined (Isaacson 1990, Gisser et al. 

1988). With or without using the optimal current patterns, many dynamic techniques were 

proposed in which the inverse problem is treated as a nonlinear state estimation problem and the 

time-varying state is estimated with a suitable reconstruction method, where the Kalman filter (KF) 

(Vauhkonen 1997, Kim et al. 2001) is the most popular method for tracking the dynamic changes. 

1.2 Shape reconstruction problem 

Two-phase or multi-phase flow can occur in a variety of industrial applications, such as in 

condensers, nuclear cooling systems, and fluidised bed sulphide roasters, heat exchangers, and oil 

pumping for example. The constituents may be gas and liquid, such as air/water or steam/water, 

gas and solid, as in a fluidised bed. Liquid/liquid immiscible flows occur in oil extraction, where 

oil mixes with water in the borehole. The phase distribution affects the safety, control and 

operation of mechanical systems and clinic treatment therefore it is necessary to determine the 

phase distribution without disturbing the flow field (figure 1.2). 

 

In order to achieve even more voracious measurement information on two-phase flow section, and 

carry out non-intrusive and non-destructive collecting information, many novel sensor techniques 

have been applied to the measurement of two-phase flow, such as radiation (Banerjee et al. 1981), 

laser (Kumar et al. 1995), nuclear magnetic resonance (NMR) (Lynch et al. 1977), ultrasonic 

(Couthard et al. 1993), and tomography. One kind of attractive technique to measure two-phase 

flow parameters is a method based on electrical tomography. Such a method uses non-intrusive or 

non-invasive sensors that are located on the boundary of objects, such as process vessels or 

pipelines, to reconstruct the spatial distribution of the interfaces among various phases and then 

form the cross-sectional image of the phase distributions of objects. The electrical tomographic 

methods applied in two-phase flow measurement such as electrical capacitance tomography (ECT), 
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electrical resistivity tomography (ERT), and EIT have become popular. For example, ERT system 

was used to measure the gas–liquid mixture in a stirred vessel (Wang et al. 1999). An ERT system 

applied to monitor the hydro cyclone operation (Bond et al. 1999). Also measurement parameters 

of two-phase flow using ERT system has been studied (Dong et al. 2003). A real-time EIT system 

was used to image the flow of saline through the human vascular system (Brown et al. 1992), EIT 

system was used to image a volunteer's forearm during resting cardiovascular activity (Halter et al. 

2008). In case of multi-phase flow, similar as two-phase flow, EIT can be a promising technique to 

reconstruct the phase distribution. In many situations, the knowledge of the conductivities of the 

anomalies is known a priori. The prior information of the conductivities can be used in the inverse 

algorithm to estimate the size, shape and location of the anomalies. The process of the estimating 

the phase distribution from the measured voltages made on the boundary is named as shape 

reconstruction problem. 

Conductivity of 
background phase

Conductivity
 of phase 2

Conductivity 
of phase 1

0s

1s

2s

 

Figure 1.2 Shape reconstruction of multi-phase flow using EIT  

 

Shape reconstruction has been studied by many researchers and different methods are proposed to 

represent the shape of the anomalies occurring in flow process (Tamburrino et al. 2003, 

Kolehmainen et al. 1999). Level set method has emerged recently as an attractive alternative to 

solve topology optimization problems (Osher et al. 1988). A level set representation can describe 

concisely the geometric and material boundaries of an anomaly, for example it can be used to 

represent or identify piecewise constant or piecewise smooth functions of the inclusions (Luminita 

et al. 2002, Osher et al. 2001 and Chung et al. 2005). More importantly, it has strong ability to 

accommodate shape related topological changes, especially merging or splitting of the 
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components. Level set method has become powerful and versatile tool for image processing and 

computational physics (Luminita et al. 2002, Osher et al. 2001 and Osher et al. 2003), also it has 

found applications in shape reconstruction and inverse scattering (Dorn et al. 2000, Dorn et al. 

2006). More recently, applications of level set method to electrical tomography problems have 

been proposed. In Ito et al. 2001, using values of Neumann data as well as values of solution in a 

thin layer along the domain, level set method together with steepest descent method has been 

employed to solve the inverse conductivity problem. In Soleimani et al. 2006a, narrow band level 

set method applied in Gauss-Newton method as an inverse algorithm was used to estimate the 

shape and conductivities of two-phase. In Soleimani et al. 2006b, a similar method as in Soleimani 

et al. 2006a was employed using EIT to imaging of the human brain. Most of the work discussed 

before are related to the reconstruction of two-phase. In real situations, more than two-phase can 

exist, therefore, multi-phase reconstruction will provide better visualization of the flow 

characteristics. 

 

In this thesis, we present shape reconstruction technique based on level set method using EIT. 

Multi-phase reconstruction is done where the conductivity values of the inhomogeneous 

background and that of anomalies are known, and the size, shape and location of the anomalies are 

unknown. Gauss Newton method based on level set method in Soleimani et al. 2006a and 

multi-phase framework for image segmentation in Luminita et al. 2002 are employed into 

multi-phase shape reconstruction. In using a multi-phase level set model, we will represent the 

conductivity by two level set functions. Based on the level set theory, the key idea was to 

implicitly represent the shape interface as the zero level set of a higher dimensional function, and 

then solve a set of partial differential equations in the Cartesian coordinate system which contains 

the shape of this new embedding function. The shape is set as the zero level set of higher 

dimensional functions, so the computational cost and time will increase. In order to reduce the 

cost time, we used a narrowband technique to calculate the shape deformation or update. The 

combination of the narrowband technique and optimization approach results in a computationally 

efficient and fast method for solving the inverse problem.  

 



1.3 Aims and contents of the thesis 

6 

1.3 Aims and contents of the thesis 

The aims of this thesis are: 

1. To apply level set method for monitoring of multi-phase flow using EIT. 

2. To investigate the performance of the proposed algorithm. 

3. To evaluate the proposed approach with standard pixel-based Gauss Newton method using 

numerical and experimental data.    

 

This thesis contains four chapters. Chapter 1 gives a soft introduction about EIT and shape 

reconstruction in general. The most commonly applied applications and methodology are given in 

this chapter and an overview of this thesis is given. In chapter 2 the most widely used EIT 

electrodes model, so-called complete electrode model (CEM), is presented and a finite element 

method (FEM) is applied to solve the forward problem of EIT. The solution of CEM, that is, the 

solution of the potential distribution when injected currents and conductivity or resistivity are 

known, is necessary in the implementation of inverse problem. Also the Jacobian calculation is 

discussed in this chapter. Chapter 3 constitutes the main part of this thesis, in which the novel 

shape-based level set method is applied to reconstruct the shape of the flow process. Several 

numerical simulations and experimental case for multi-phase flow are studied to demonstrate the 

performance of the proposed method. Finally, the conclusion and guidelines of the future research 

are summarized in chapter 4. 
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2. Forward problem 

 

In order to solve an EIT reconstruction problem, a physical model need to be derived from the 

prior information, such as measured voltage, injected current, and a conductivity distribution. The 

equations for the physical model can be derived from Maxwell equations of electromagnetism 

(Malmivuo et.al. 1995, Doerstling 1995). In this chapter, the so-called complete electrode model 

(CEM) applied into governing equation with boundary conditions to solve the EIT problem is 

presented. The numerical solution for CEM is also given. Also Jacobian defined as the rate of 

change of potential with respect to the conductivity or resistivity is derived. 

 

2.1 Physical model inside the body 

Maxwell’s equations in the domain Ω can be written as  

 

    
B

E
t

¶
Ñ´ = -

¶
                        (2.1) 

D
H J

t

¶
Ñ´ = +

¶
                               (2.2) 

 

where E is the electric field, H magnetic field, D electric displacement, B magnetic induction, and 

J electric current density. 

In case of linear isotropic medium domain Ω, the following equations holds true 

 

                        D = εE                                (2.3) 

B = µH                   (2.4) 

J = σE                        (2.5) 

 

where ε is permittivity, µ permeability, and σ conductivity of the medium. Assuming that the 

injected currents are time harmonic with frequency w  and using the previous equations (2.3-2.5) 

we get the following relationships 
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                                 i tE Ee w= %                         (2.6) 

  i tB Be w= %                    (2.7) 

 

Solving equations (2.1) and (2.2) using equations (2.3) to (2.7), we get  

 

( )

( ) ( )

i t

i t i t
i t

B Be
E

t t

e B e B
iwBe i H

t t

w

w w
w wm

¶ ¶
Ñ´ = - = -

¶ ¶

¶ ¶
= - - = - -

¶ ¶

%

% %
%

 

( ) ( )

( ) ( )

i t

i t i t
i t

D E Ee
H J J J

t t t

e E e E
J i Ee J i E

t t

w

w w
w

e e

e e
we we

¶ ¶ ¶
Ñ´ = + = + = +

¶ ¶ ¶

¶ ¶
= + + = + +

¶ ¶

%

% %
%

 

 

In EIT, the current density J can be divided into two components, which are so-called ohmic 

current ( 0J Es= ) and current source ( sJ ). The following simplified Maxwell equations can 

hold true without the oscillatory exponential terms (Somersalo et al. 1992, Ola et al. 1993, 

Doerstling 1995) 

E i HwmÑ´ = -               (2.8) 

( ) .sH i E Js weÑ´ = + +                     (2.9) 

 

In EIT, some simplifications are made for those equations, such as assuming static conditions, 

which mean that the effect of magnetic induction which produces an induced electric field is 

neglected. Also the capacitive effects i Ewe  in (2.9) is assumed be neglected (Barber et al. 1984, 

Baker 1989). With these assumptions, the above equations can be simplified as 

 

E u= -Ñ                                 (2.10) 

.sH E JsÑ´ = +                            (2.11) 

 

Taking the divergence on both sides of (2.11) and substituting (2.10) into (2.11), the equation 
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( ) 0usÑ× Ñ =                                (2.12) 

can be obtained for EIT inside the domain. where u = u(x,y), for x,yÎΩ. The equation (2.12) 

serves as the governing equation for EIT. In order to solve the governing equations, a set of 

boundary conditions need to be considered. In the following subsection, a so-called complete 

electrode model in EIT is presented.  

 

2.2 Complete electrode model 

In EIT problem, there are current source sj  on the boundary ∂Ω of the object Ω, we get the 

boundary condition:  

e

u
dS Is

n

¶
=

¶ò
l

l     on ¶Wl , 1, 2, , L=l L     (2.13) 

In order to taking convenience on research of CEM, we set the zone between two electrodes by 

h¶W , and assume that there is no current on h¶W , so we get 

          0
u

s
n

¶
=

¶
            on h¶W       (2.14) 

In actual application of EIT, we should take account of the imperfect contact between electrode 

and object, according series connection theorem (see figure 2.1), the real potential of electrode 

should be the plus of the potential at the object and the contact impedance potential. Described as: 

 
u

u z Us
n

¶
+ =

¶
l l    ( ),x y eÎ l ,  1, 2, , L=l L     (2.15) 

where zl  is the effective contact impedance between the l  th electrode and object. U l  is the 

measured boundary potential. 

u

U l

 
u

z s
n

¶

¶
l

 

 

Figure 2.1 A zoom-in picture of one electrode and object 
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2.3 Numerical solution of forward problem 

In section 2.2, equations set of CEM are obtained, the main goal is to find the potential 

( ),u x y  on W  and the voltages U l  on the electrodes with the information of the injected 

currents, measured boundary voltages and the prior knowledge on the resistivity values. With 

a small change of governing equation 2.12, and define usF = Ñ , then  

( ) 0usÑ×F = Ñ × Ñ =                               (2.16) 

 

Using a test function V to multiply equation (2.16),we can get 

 

0VÑ×F =                                (2.17) 

 

And integrating the equation (2.17) over the object Ω 

 

0V dp
W

Ñ×F =ò                              (2.18) 

 

For ( )V ds V dp V dp V dp
¶W W W W

F = Ñ× F = Ñ×F + Ñ ×Fò ò ò ò  (if ∂Ω is smooth enough) 

 

Then                    V uds V udps s
¶W W

Ñ = Ñ × Ñò ò                          (2.19) 

 

 

As we know, there is no current on h¶W , thus equation (2.19) can be written that 

1

L

e

V uds V udps s
= W

Ñ = Ñ × Ñåò ò
l l

                         (2.20) 

Furthermore, the equation (2.15) implies 

 
u U

u
z

s
-

Ñ = - l

l

                             (2.21) 

Now the equation (2.20) can be written in the form 

1

1
( ) 0

L

e

u U Vds u Vdp
z

s
= W

- + Ñ ×Ñ =å ò òl
l l l

                    (2.22) 
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Then  

1 1

1
0

L L

e e

U
u Vdp uVds Vds

z z
s

= =W

Ñ ×Ñ + - =å åò ò òl
l ll ll l

                 (2.23) 

 

Next, using equation (2.21) into boundary equation (2.13), we can get 

1
( )

e

U u ds I
z

- =ò l l

l l

                            (2.24) 

For U l  is a constant parameter, then 

1

e e

U
uds ds I

z z

-
+ =ò òl l

l ll l

  Set 
e

e ds= ò
l

l , where el  is the area of the electrode l . 

Equation (2.24) becomes  

1

e

e
uds U I

z z

-
+ =ò l l

l ll

l
                           (2.25) 

In general, most of the forward problem cannot be solved analytically, thus numerical methods 

have to be employed. In this thesis, we use the finite element method (FEM) to obtain the 

numerical solution for the forward problem. In the context of FEM, the domain Ω is discretized 

into small triangular elements and the finite dimensional approximations are written for the 

unknown functions. The potential distribution within the object Ω is approximated by the finite 

sum in the form of 

1

N
h

n n
n

u u u
=

» = Få                              (2.26) 

Also set mV = F , then equation (2.23) becomes 

1 1 1 1

1
( ) 0

N L N L

n n m n n m m
n ne e

U
u dp u ds ds

z z
s

= = = =W

Ñ F ×ÑF + F F - F =å å å åò ò òl
l ll ll l

       (2.27) 

1 1 1

1
[ ] 0

N L L

n n m n m m
n e e

U
u dp ds ds

z z
s

= = =W

ÑF ×ÑF + F F - F =å å åò ò òl

l ll ll l

          (2.28) 

In matrix form, we can write as 

, ,
1 1

0
N L

n m n m
n

B u C U
= =

+ =å å l l
l

                         (2.29) 
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Where 

,
1

,

1

1

L

n m n m n m

e

m m

e

B dp ds
z

C ds
z

s
=W

= ÑF ×ÑF + F F

= - F

åò ò

ò

l l l

l

l l

 

For equation (2.25), use 
1

N
h

n n
n

u u u
=

» = Få , it becomes 

1

1 N

n n
ne

e
u ds U I

z z=

-
F + =åò l l

l ll

l
 

1

1N

n n
n e

e
u ds U I

z z=

-
F + =å ò l l

l ll

l
 

Define ,
1

n n

e

C ds
z

-
= Fòl

l l

,
e

D
z

=l

l

l
, then 

,

1

N

n n
n

C u D U I
=

+ =å l l l l                           (2.30) 

Finally, the following system of linear equations is obtained from the finite element formulation  

AX b=
uvuuv v

                                (2.31) 

Where 

T

B C
A

C D

æ ö
= ç ÷
è ø

, 
u

X
U

æ ö
= ç ÷
è ø

, 
0

b
I

æ ö
= ç ÷
è ø

 

That is  

0
T

B C u

C D U I

æ öæ ö æ ö
=ç ÷ç ÷ ç ÷

è ø è øè ø
                           (2.32)     

In EIT, the potentials at the electrodes can be expressed in a matrix form as 

�

�

�

�

1

2

1 1 1

1 0 0

0 1 0

0 0 1

h

L

U

U

U NU

U

æ öæ ö ç ÷ç ÷ ç ÷-ç ÷ç ÷ç ÷= =- ç ÷ç ÷ ç ÷ç ÷ ç ÷ç ÷- ç ÷è ø è ø

L

L

ML

MM M O M

L
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Where ( )1 2 1

1 1 1

1 0 0

, , , 0 1 0

0 0 1

LN n n n -

æ ö
ç ÷-ç ÷
ç ÷= = -
ç ÷
ç ÷
ç ÷-è ø

L

L

L L

M M O M

L

 , � � � �( )1 2

T

LU U U U= L L  

Now, equation (2.32) can be written as  

�

0
T

uB C

C D INU

æ öæ ö æ ö
=ç ÷ç ÷ ç ÷
è øè øè ø

 

Using matrix transform, we can get 

�

0
T T T T

uB CN

N C N DN N IU

æ ö æ öæ ö
=ç ÷ ç ÷ç ÷

è ø è øè ø
 

Set             ( )

1

2

1 2 1 3 1

1 1 1

1 0 0

, , ,0 1 0

0 0 1

T

TT
L

L

I

I

I N I I I I I I I

I

æ öæ ö
ç ÷ç ÷- ç ÷ç ÷
ç ÷ç ÷= = = - - --
ç ÷ç ÷
ç ÷ç ÷

ç ÷ ç ÷-è ø è ø

L

L
% M LL

MM M O M

L

 

Then 

�

0
T T T

uB CN

N C N DN U I

æ ö æ öæ ö
=ç ÷ ç ÷ç ÷

è øè ø è ø
%

                       (2.33) 

Solving the equation (2.31) or equation (2.33) as 1X A b-= , the approximation solution for the 

forward problem is obtained.  

The elements of the other matrices in matrix A are 

( )
1

1 1
B ,

L

i j i j

e

i j d dS
z

j j jj
r =W

= Ñ ×Ñ W+åò ò
l

l l

,   , 1, 2, ,i j N= L   (2.34) 

( )
1

,
j

i

j e

C i j dS
z

j= - ò ,  1,2, ,i N= L , 1, 2, ,j L= L         (2.35) 

( ),
j

ij jij

i ie

e
D i j dS

z z

dd
= =ò

0

j

j

i j

e
i j

z

¹ì
ï

= í
=ï

î

   , 1, 2, ,i j L= L    (2.36) 
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2.4 Jacobian calculation for resistivity change 

Jacobian is defined as the rate of change of potential with respect to the conductivity or resistivity, 

the resulting matrix is defined as Jacobian matrix. In the applications of EIT, a set of current 

patterns should be used. Even with the consideration of the current patterns, the expression of the 

above equation will not be altered if the resistivity and the contact impedance do not depend on 

the current pattern. If P  is the number of the current patterns, N Pu ´ÎÂ , � ( 1)L PU - ´ÎÂ , and 

~
L PI ´ÎÂ .  

In some cases, the voltages are measured only at some selected electrodes, not every electrode. 

Also, the selected electrodes may be different at each current pattern. The measured voltages at the 

measurement electrodes U  can be obtained as 

�T h T E PU M U M NU ´= = ÎÂ       (2.37) 

where, E  is the number of the measurement electrodes and L EM ´ÎÂ  is the measurement 

matrix. The element ( , )M pl  is set to ‘1’ if the l -th electrode is measured at the p -th current 

pattern and otherwise set to zero. Furthermore, hU  can be extracted directly from X  by 

introducing the extended mapping matrix 
~

N  

~
( 1)(0, ) L N LN N ´ + -= ÎÂ  and 

~
hU N X=      (2.38) 

where 0 L N´ÎÂ . Therefore, we have 

~ ~
T h TU M U M N X M X= = =       (2.39) 

where the extended measurement matrix is defined as 

~ ~
( 1)T E N LM M N ´ + -= ÎÂ .       (2.40) 

 

The Jacobian defined as the relative change of the measured voltage at the l -th measurement 

electrode at the p -th current pattern (
pUl

ˆ ) with respect to the change of the conductivity or 

resistivity of the m -th pixel ( mr ), that is 
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ˆ p

pm

m

U
J

r

¶
=
¶

l
l         (2.41) 

or in a matrix form 

1 1 1
1 1 1

1 2

1 1 1
2 2 2

1 2

1 1 1

1 2

2 2 2
1 1 1

1 2

2 2 2

1 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

M

M

E E E

M

M

E E E

M

P P P
E E E

M

U U U

U U U

U U U

J U U U

U U U

U U U

r r r

r r r

r r r

r r r

r r r

r r r

æ ö¶ ¶ ¶
ç ÷
¶ ¶ ¶ç ÷

ç ÷¶ ¶ ¶
ç ÷
¶ ¶ ¶ç ÷

ç ÷
ç ÷
ç ÷¶ ¶ ¶
ç ÷
¶ ¶ ¶ç ÷

ç= ¶ ¶ ¶ç
ç ¶ ¶ ¶
ç
ç
ç ¶ ¶ ¶
ç
¶ ¶ ¶ç

ç
ç
ç ¶ ¶ ¶
ç
¶ ¶ ¶è ø

L

L

M M M M

L

L

M M M M

L

M M M M

L

 ÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷      (2.42) 

 

where M  is the number of pixels (meshes). The Jacobian matrix can be obtained from the 

derivative of the system of equation 

AX b=          (2.43) 

and the expression 

~ ~
T h TU M U M N X M X= = =       (2.44) 

That is, 

( )
1~ ~ ~

1

m m m m

U X A
M M A b M b

r r r r

-
-¶ ¶ ¶ ¶

= = =
¶ ¶ ¶ ¶

 

1
1 1 1

m m m

A A A
b A A b A X

r r r

-
- - -¶ ¶ ¶

= - = -
¶ ¶ ¶

 

~ ~ ~
1 1 1( )

T TT T
T

m m m m

U A A A
M A X A M X A M X

r r r r
- - -æ ö æ ö¶ ¶ ¶ ¶

= - = - = -ç ÷ ç ÷
¶ ¶ ¶ ¶è ø è ø

  (2.45) 

In the last equality, 1 1( )TA A- -=  is used because of the symmetry of the stiffness matrix. If the 
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pseudo-resistance matrix defined as 

~ ~
1 ( 1)

T
N L ER A M- + - ´= ÎÂ                  (2.46) 

is given we can calculate the Jacobian matrix. The pseudo-resistance matrix can be easily obtained 

during the solution of the system equation 

~ ~ T

A R X M b
æ öæ ö

= ç ÷ç ÷
è ø è ø

       (2.47) 

or 

~

1

~ ~

2

0 0
T T

R u
A

N M N b
R U

æ ö
æ öç ÷ = ç ÷ç ÷ è ø

è ø

      (2.48) 

where 

~ ~

1 (1: ,:) N ER R N ´= ÎÂ  and 
~ ~

( 1)
2 ( 1: 1,:) L ER R N N L - ´= + + - ÎÂ   (2.49) 

The derivative of the stiffness matrix with respect to the resistivity is 

0

0 0

m

m

B
A

r
r

¶æ ö
¶ ç ÷¶=

ç ÷¶ ç ÷
è ø

        (2.50) 

Therefore, we have 

~

~ ~ ~1
1 2 1~~

2

0

0 0 0

T

T T T

m m

m m

B Bu uRU B
R R R u

UR

r r
r r

¶ ¶æ ö æ öæ ö æ ö æ ö¶ ¶ç ÷ ç ÷ç ÷ ¶ ¶ç ÷= - = - = -ç ÷ç ÷ ç ÷ç ÷ ç ÷¶ ¶è øç ÷ ç ÷è øè ø è ø è ø

  (2.51) 

in which the term 
( ),

m

B i j

r

¶

¶
 can be calculated as 

( )
2

, 1

m

i j

m m

B i j
dj j

r r
W

¶
= - Ñ ×Ñ W

¶ ò ,   Nji ,,2,1, L=     (2.52) 

where ij , jj  are basis functions and 
m

W  is the element with which the derivative is 

computed.  
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3. Shape reconstruction in EIT 

 

In EIT, the conductivity or resistivity distribution of the object is inferred from surface voltage 

measurements made on the boundary and the injected current data. Image reconstruction in EIT is 

a kind of nonlinear optimization problem, which means the solution is obtained iteratively and 

computed through forward and inverse solvers. The physical relationship between the internal 

conductivity or resistivity and measured boundary voltages is governed by a partial differential 

equation derived from Maxwell Equations with an appropriate boundary condition. For solving 

the nonlinear system equations, lots of classical method are applied to the impedance 

reconstruction (Li et al. 2004, Wang et al. 2004), such as modified Newton-Raphson method 

(mNR), Landweber method (LW), and Differential Evolution algorithm (DE). Recently, various 

methods that have been proven successful in image processing have also found their way to help 

solving electrical tomography problems. In this chapter, shape reconstruction based on level set 

method using EIT is presented. Multi-phase reconstruction is done where the conductivity values 

of the inhomogeneous background and that of anomalies are known, and the size, shape and 

location of the anomalies are unknown. Gauss-Newton method based on level set method in 

Soleimani et al. 2006a and multi-phase framework for image segmentation in Luminita et al. 2002 

are employed to monitor the process of multi-phase flow. In using a multi-phase level set model, 

the conductivities distribution can be presented by two level set functions. Based on the level set 

theory, the inverse boundary problem is to find a level set function which can implicitly represent 

the conductivity distribution, and then solve a set of partial differential equations in the Cartesian 

coordinate system which contains the shape of this new embedding function to minimize the 

mismatch between the measured and calculated data. As the shape is described by the zero level 

set of higher dimensional functions, so the computational cost and time will increase. To improve 

the level set reconstruction process, a narrowband technique applied to calculate the shape 

deformation or update. The combination of the narrowband technique and optimization approach 

results in a computationally efficient and fast method for solving the inverse problem. 
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3.1 Level set method 

3.1.1 Level set formulation for two-phase flow 

For simplicity, we formulate the simpler two-phase problem first for a clearer introduction of the 

level set method in two dimensions, and then extend the framework to multi-phase problems. The 

interface represented by a level set function is thus also referred to as a curve. However, the 

methodology presented in this section can be naturally extended to any number of space 

dimensions. There, the interface that is represented is generally called a hyper surface (in three 

dimensions, it is simply called a surface). We will use the words interface and curves, 

interchangeably. In the level set method, the curves are implicitly defined as the zeros of a 

Lipschitz continuous functionf . This is to say that { }: ( , ) : ( , ) 0D x y x yf¶ = =  corresponds to 

the embedded curve. See Figures3.1 for example. 

 

-1
-0.5

0

0.5
1

-1

-0.5

0

0.5

1
-0.5

0

0.5

1

              -0.5 0 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

Figure 3.1 A circular contour embedded by a level set function. 

If D  is the inclusion with conductivity ints  embedded in a background W  with conductivity 

exts , then the embedded curve, which is the boundary DG = ¶  of the inclusion, can be given by 

the zero level set  

{ }: ( , ) : ( , ) 0D x y x yf¶ = =                       (3.1) 

where the conductivity distribution of each point will be  
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{ }
{ }

int ( , ) :  ( , ) 0
( , )   

( , ) :  ( , ) 0ext

x y x y
x y

x y x y

s f
s

s f

<ì
= í

>î
                   (3.2) 

If we add some perturbation on the level set function, which will lead in the change of the shapes 

automatically. This relationship is used in the level set technique when constructing updates to a 

given level set function such that the shapes are deformed in a way which reduces a given cost 

functional. We assume a continuous velocity field ( )v t  whose restriction onto the curve 

represents the velocity of the curve, and then at least locally in time, the evolution can be 

described as a Hamilton-Jacobi-type equation 

( ) 0v t
t

f
f

¶
+ Ñ =

¶
                          (3.3) 

Here ( )v t  is a velocity function of evolving contours in their outward direction. we assume the 

velocity field is regular enough smooth that the basic structure of shape D remains preserved 

during this evolution. Meantime we assume that fÑ  is well defined and nonzero along the 

shape boundary represented by a smooth level function ( , )x yf . For solving equation (3.3), 

usually an approach of steepest descent flow can be applied. See for example (Burger 2001, Ito et 

al. 2001). 

 

3.1.2 General multi-phase formulation 

In this subsection, the shape parameterization using level set method is presented. With m  level 

set functions ( )1 2 3, , , , Kf f f fL , we can represent up to 2m
distinct regions of the form 

{ }1
0

m

jj
f

=
± >I  (Luminita et al. 2002), and each may be used to represent one phase. For simplicity of 

presentation, we assume Ω  contains three different regions (Figure 3.2) which did not have 

overlapping and vacuum state with piecewise constant conductivities 0 1 2( , , )s s s s= , where 

0s , 1s  and 2s  are three positive real numbers. In association with the three regions given by 

the two level set functions ( )1 2( , ), ( , )x y x yf f f=  through the representation of the interior 

conductivity distribution ( , )x ys  in Ω  as follows. 
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0 1 2 1 1 2 2 2 1( ) ( ) (1 ( )) ( ) (1 ( )) ( )H H H H H Hs s f f s f f s f f= + - + -          (3.4) 

 

where H(x) is the Heaviside function, namely 

 

( ) 1       0,       ( ) 0       0.H x for x H x for x= ³ = <               (3.5) 

and ( )1 2( , ), ( , )x y x yf f f=  is the level set function satisfying 

{ }
{ }

1 1 2

2 1 2

( , ) ( , ) 0,  ( , ) 0

( , ) ( , ) 0,  ( , ) 0

x y x y x y

x y x y x y

f f

f f

W = ÎW < >

W = ÎW > <
                 (3.6) 

 

Ω1 Ω2

1 20,  0f f< >
1 20,  0f f> <

1 20,  0f f> >

 

Figure 3.2 Example of partition of the domain in regions with boundaries represented via two 

level set functions 

 

Then we can write 

 

1 2 1 2 1 2( ) ( ) ( ) ( )g H g Hs f f f fÑ = ×Ñ + ×Ñ                      (3.7) 

Where  

 

1 2 0 1 2 2 2

2 1 0 2 1 1 1

( ) ( ) ( ) (1 ( ))
( ) ( ) ( ) (1 ( ))

g H H
g H H

f s s f s f
f s s f s f

= - + -
= - + -

                (3.8) 

 

Let ( )1, 2j jG = be the interface between two different regions, which is also a boundary of the 

region, is given by the zero level set (Figure 3.3)  
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{ }: ( , ) : ( , ) 0j jx y x yf¶G = =                        (3.9) 

X

Y

( , ) 0j x yf =

jf

 

Figure 3.3 Representation of the expanding contours of the object as the zero level set of a level 

set function. 

 

3.1.3 Inverse problem using level set method 

If we change the level set function by a small distance, we assume the update is sufficiently 

smooth, such that the basic structure of the shape remains preserved. Then we move the shapes 

accordingly. This idea is used in the level set technique when constructing updates to a given level 

set function such that the shapes are deformed in a way which reduces the objective function. As 

given in Soleimani et al. 2006a, the Gauss-Newton update for level set function can be written as 

follows 

2 1 2 *
1 ( ) [ ( ( )) ( )]T T T T

n n n n n n nJ J R R J V G R Rf f l a f a f f-
+ = + + - - -         (3.10) 

Here nJ is the Jacobian calculated with nf  being the level set function (detail of the Jacobian 

calculation will be discussed in the next section), V and ( )nG f  are the vector of measured and 

calculated voltages. l  is the time step size for the current update and R is a regularization matrix.  

To improve the level set reconstruction process, a narrowband technique applied to calculate the 

shape deformation or update. Here the narrow band means the area that includes elements sharing 

nodes with the boundary and its neighbors. It was able to reduce the number of elements taking 

part in the reconstruction process making it better conditioned. The level set-based reconstruction 

algorithm steps applied to multi-phase case are as follows: 
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1. Start with two initial guesses for the shape of the inclusions, namely two initial level set 

functions. During the following numerical or experimental solutions, distance functions are 

selected as level set functions. 

2. Define the boundary of inclusions and narrow band. Solve 2D forward problem using FEM 

and calculate the updated Jacobian with respect to the level set function. 

3. Update the level set function with an applicable step-size (such as using a line search 

technique) and calculate the new boundary of the inclusion and narrow band using the 

updated level set function. 

4. Check the misfit condition of the logical. If it is satisfy enough, stop. 

5. In case the misfit is not satisfied with the condition, go to step 2 until the final results are 

estimated.  

All these steps are summarized in the following flowchart, see details in figure 3.4. 
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Figure 3.4 Flowchart of level set-based reconstruction algorithm. 

3.2 Jacobian calculation with level set function 

The Jacobian quantifies the sensitivity of the voltage measurements due to changes of the level set 

function, as an adaptive parameter in particular, the element conductivity changes. In this section, 
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a formula for the voltage sensitivity 
n

U

f

¶

¶
 is derived, and we describe how this quantity is 

assembled into each component of the Jacobian. 

A change in the level set function of an element k  requires the calculation of 

k

k k

U U
J

s

f s f

¶¶ ¶
= = ×
¶ ¶ ¶

                         (3.11) 

where 

0 1 2 1 1 2 2 2 1( ) ( ) (1 ( )) ( ) (1 ( )) ( )H H H H H Hs s f f s f f s f f= + - + -  

Then the following relationships will be hold true  

1

1

0 1 2 1 1

0 1 1

   [ ( ( ) ( )) ( )]

   ( ) ( )

U
J

U
H

U

s

s f

s d f f s d f
s

s s d f
s

¶ ¶
= ×
¶ ¶

¶
= × × -
¶

¶
= × -
¶

                  (3.12) 

and 

2

2

0 2 1 2 2

0 2 2

   [ ( ( ) ( )) ( )]

   ( ) ( )

U
J

U
H

U

s

s f

s d f f s d f
s

s s d f
s

¶ ¶
= ×
¶ ¶

¶
= × × -
¶

¶
= × -
¶

                  (3.13) 

In the above, ( )xd  denotes the Dirac function. Also from the previous chapter we can get 

~

~ ~ ~1
1 2 1~~

2

0

0 0 0

T

T T TB BuR uU B
R R R u

UR

s s
s s

¶ ¶æ ö æ öæ ö æ ö æ ö¶ ¶ç ÷ ç ÷ç ÷ ç ÷= - = - = -¶ ¶ç ÷ç ÷ ç ÷ç ÷ ç ÷¶ ¶ç ÷ ç ÷è øè øè ø è ø è ø

    (3.14) 

and 

m

i j

B
dj j

s
W

¶
= Ñ ×Ñ W

¶ ò                          (3.15) 
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3.3 Results and discussion 

In this section, imaging of multi-phase flow using level set method is presented. The method is 

tested with numerical and experimental data. In order to evaluate the performance of the proposed 

method, root mean square error (RMSE) as a performance criterion is computed. RMSE for 

conductivity distribution and voltage measurement are defined as  

cal tru

tru

RMSEs

s s

s

-
=                           (3.16) 

cal tru
u

tru

u u
RMSE

u

-
=                           (3.17)  

3.3.1 Numerical results 

In this section, the numerical results obtained using level set methods are proposed. We carried out 

extensive computer simulations with synthetic data to illustrate the reconstruction performance of 

the proposed algorithm. In order to avoid the so-called ‘inverse crime’, two different finite 

element meshes are used for forward and inverse problem. A fine mesh (radius of 14 cm) with 

3809 nodes and 7306 triangular elements is used in forward solver to generate the boundary 

voltage data. A coarse mesh with 985 nodes and 1840 triangular elements are used in inverse 

solvers to reconstruct the shape, location and size of the targets, see figure 3.5.  
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                  (a)                                   (b) 

Figure 3.5 The used FEM mesh: (a) forward mesh and (b) inverse mesh. 
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In the first numerical example below, in figure 3.6 the background conductivity is set to 50mS/cm 

and the conductivity of the inclusions are set to 25mS/cm and 20mS/cm, respectively. With two 

different circles initial guess, solid line represents the true boundary, while the dashed line shows 

the initial guess, see figure 3.6(b), the level set method was able to identify the position and a 

relatively accurate shape of the inclusions. To simulate with actual conditions, Gaussian noise with 

S.D up to 2% of the corresponding computed voltage are added to the computed data. 

Reconstructed images of resistivity distribution without or with noise cases are shown in figure 

3.6. Two criteria of the performance during the reconstruction are shown in figure 3.7 and figure 

3.8, respectively. 

 

In the next two examples (figure 3.9 and figure 3.12), we attempt to reconstruct two objects which 

are produced probability in industrial process tomography. Considering the actual conditions, 

Gaussian noise with S.D of 0.5%, 1% and 2% of the corresponding calculated voltage are added to 

the simulated data. The level set method was able to separate the inclusions clearly, and also 

identify the position and a good amount of details of the inclusions, see details in figure 3.9 and 

figure 3.12. The RMSE values of conductivity distribution during the shape reconstruction process 

are shown in figure 3.10 and figure 3.13, respectively. The RMSE plots of the voltage 

measurements of case 2 is shown in figure 3.11. The evolution of the shape during the level set 

reconstruction of case 4, in which inclusions are located relatively close to each other, are shown 

in figure 3.14. It is interesting to find that the two inclusions could be clearly imaged in the level 

set-based reconstruction. In case of using a standard regularized pixel-based method, it is difficult 

to separate those two inclusions. The RMSE value of conductivity distribution and voltage during 

the shape reconstruction process are shown in figure 3.15. In order to evaluate the performance of 

level set method, a comparison between level set method and modified Newton-Raphson method 

is studied in figure 3.16, in which different examples using simulation data are considered. It was 

found that level set method can easily separate two or more objects which are close to each other 

and mNR has a poor reconstruction in these cases. The results of level set-based reconstruction 

using narrow band technique largely depend on the choice of the regularization parameter α and 

initial guess, here the regularization parameter α not only take charge of the regularization 

function but also the smooth function. With a choice of α = 0.05, we were able to recover the true 
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shape at noise level up to 2% with a quite accurate result. The optimal choice of initial guess is a 

very interesting problem as the level set function has a different significance for the reconstruction 

than the parameter distribution itself, for simplicity, distance functions are selected as level set 

functions in our numerical and experimental study.  
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(a) True object                          (b) Initial guess 
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(c) Without noise                        (d) with 0.5% noise 
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(e) With 1% noise                        (f) with 2% noise 

Figure 3.6 True image of resistivity distribution, initial guess (solid line represents the true 

boundary, while the dashed line shows the initial guess) and final level set reconstruction for case 

1 with or without noise.   
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(a) Without noise                         (b) with 0.5% noise 
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(c) With 1% noise                         (d) with 2% noise 

Figure 3.7 RMSE value of conductivity distribution of case 1 on different noise condition. 
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(a) Without noise                         (b) with 0.5% noise 

0 2 4 6 8 10 12 14 16 18 20
0.01

0.015

0.02

0.025

0.03

0.035

Iteration steps

R
M

S
E

\V
o
l

0 2 4 6 8 10 12 14 16 18 20
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

Iteration steps

R
M

S
E

\V
o
l

 

(c) With 1% noise                         (d) with 2% noise 

Figure 3.8 RMSE value of voltage of case 1 on different noise condition. 
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(a) True object                          (b) Initial guess 
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(c) Without noise                        (d) With 0.5% noise 
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(e) With 1% noise                        (f) With 2% noise 

Figure 3.9 True image of resistivity distribution, initial guess (solid line represents the true 

boundary, while the dashed line shows the initial guess) and final level set reconstruction for case 

2 with or without noise.   
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(a) Without noise                        (b) With 0.5% noise 
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(c) With 1% noise                        (d) With 2% noise 

Figure 3.10 RMSE value of conductivity distribution of case 2 on different noise condition. 
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(a) Without noise                        (b) With 0.5% noise 
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(c) With 1% noise                        (d) With 2% noise 

Figure 3.11 RMSE value of voltage of case 2 on different noise condition. 

 

 

 

 

 

 

 

 

 



3.3.1 Numerical results 

32 

 

 

20

25

30

35

40

45

50

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

 

(a) True object                          (b) Initial guess 
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(c) Without noise                         (d) With 0.5% noise 
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(e) With 1% noise                         (f) With 2% noise 

 

Figure 3.12 True image of resistivity distribution, initial guess (solid line represents the true 

boundary, while the dashed line shows the initial guess) and final level set reconstruction for case 

3 with or without noise.   
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(a) Without noise                        (b) With 0.5% noise 
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(c) With 1% noise                        (d) With 2% noise 

Figure 3.13 RMSE value of conductivity distribution of case 3 on different noise condition. 
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(a) True object                          (b) Initial guess 
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(c) Step 2                              (d) Step 5 
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(e) Step 10                             (f) Step 20 

 

Figure 3.14 True image and evolution of the shape during the level set reconstruction of case 4. 
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                  (a)                                      (b) 

Figure 3.15 Evaluation error of case 4: (a) RMSE value of conductivity distribution and (b) RMSE 

value of voltage. 

 

 

        (a) True object                (b) mNR                    (c) LS 

Figure 3.16 Comparison of level set reconstructions and modified Newton-Raphson 

reconstructions using simulation data. The left column shows the true objects, the central column 

show the mNR reconstructions and the right column the level set-based reconstructions. 
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3.3.2 Experimental results 

The visualization of multi-phase flow is carried out using the EIT experimental setup in our 

laboratory (See figure 3.17). The experimental set-up consists a circle phantom with a radius of 

140 mm. In order to inject current and measure voltages, 32 stainless steel electrodes, each of 10 

mm width and 100 mm height are mounted around the boundary of phantom, as shown in figure 

3.17(a). Measurement set-up consists of an Agilent-4284A LCR meter, which is used as a current 

source and it is connected to an NI PXI-2536 switch module to account for different current 

patterns. To measure the voltages on the electrodes, the National Instruments PXI-4065 as a 

61/2-Digit digital multimeter (DMM) is used that can measure 10 readings/s with higher resolution 

and up to 3000 readings/s at lower resolutions. To evaluate the performance of our proposed level 

set algorithm one experiment has been investigated. Experiment for two inclusions is performed 

using gelatin (4mS/cm) and plastic rods made of acryl, which has infinite conductivity are used as 

voids in flow field to visualize multi-phase flow conditions, and saline water (11mS/cm) is filled 

inside the phantom as background. As for the current injection protocol, adjacent current patterns 

are used. Current of magnitude 10mA is applied across the electrodes and the corresponding 

voltages are measured. The data obtained is then tested with the level set algorithm. During 

solving the inverse problem, there is no prior information about the inclusion location, shape and 

size of the void. Multi-phase conductivity distributions are piecewise constant and the values are a 

priori known. Also, mesh with 3424 triangular elements and 1777 nodes is used for testing the 

experimental data, see figure 3.18. 

      

                  (a)                                       (b) 

Figure 3.17 EIT measurement system used for multi-phase flow visualization: (a) phantom used 

for experiment and (b) plastic rod and cylinder gelatin placed inside used as targets 
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Figure 3.18 FEM mesh used in experimental case 

 

0 100 200 300 400 500 600 700 800 900 1000
-80

-60

-40

-20

0

20

40

60

80
Measurement data

V
o
lt
a
g
e
 (

m
V

)

Electrode Index
 

Figure 3.19 Plot of voltage measurements. There are altogether 1024 voltage measurements for 32 

electrodes configuration. 

 

Figure 3.19 shows the experimental data collected from a test example from figure 3.17(b). In this 

test example, the plastic rod and cylinder gelatin are put inside the phantom as the targets. With 

the injection of adjacent current, 1024 measurement data are taken and used in the reconstruction.  
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            (a) Initial guess                       (b) Step 5 
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            (c) Step 10                          (d) Step 20 

Figure 3.20 Initial guess and the evolution of the shape during the level set reconstruction. 

 

Figure 3.20 shows the evolution of the reconstructed image for the experimental case study using 

level set method. The initial guess are two circles in the far from the true targets, see figure 3.20 

(a). With a choice of the regularization parameter to be 1 0.1a =  and 2 0.3a = , the inclusions 

can be reconstructed effectively after 20 iterations, also the position and a relatively accuracy of 

the shape of the inclusions were able to be identified. Figure 3.21 shows the evolution of the 

RMSE of the voltage during the shape reconstruction process. The result of shape reconstruction 

using level set-based method shows that this method has a robust solution of multi-phase flow 

imaging. 
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Figure 3.21 RMSE of the voltage during the shape reconstruction process. 
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4. Conclusions 

 

In this study, electrical impedance tomography is applied to monitor the conductivity or resistivity 

distribution in an application of multi-phase flow in process tomography. Under the assumption 

that multi-phase conductivity distributions are piecewise constant and the values are known a 

priori, but the size, topology and shapes of the obstacles are unknown and have to be recovered 

from the boundary measurement data. The inverse shape reconstruction problem is to find a level 

set function (which can present a conductivity distribution) that minimizes the mismatch between 

measured and calculated data. For a shape-based inversion scheme, the unknown shapes can be 

represented by level set functions which are moving in order to reduce the misfit errors.  

 

Compared to the more typical pixel-based reconstruction methods, the shape-based reconstruction 

approach has the advantage that the prior information about the high contrast of the inclusions is 

incorporated explicitly in the modeling of the problem. In a pixel-based reconstruction scheme, 

such as mNR can be applied to find quickly a good initial guess for the shape evolution, the 

approximate locations of the unknown inclusions are found easily during the early iterations of the 

scheme, but it takes a large number of additional iterations in order to actually build up this high 

contrast to the background due to the smoothing effect of most regularization schemes. Instead, by 

using the level set-based technique, convergence is extremely fast and very good results are 

achieved. In case the inclusions are close to each other, pixel-based reconstruction method is hard 

to separate them clearly, but the proposed scheme is able to successfully separate two nearby 

objects from each other and also can reconstruct the targets with a high contrast to the background 

with rather robust solutions. Moreover, this holds true even in situations where having more than 

two obstacles in the object to be imaged. In an analogous fashion, multiple level set methods can 

be used to solve more phases and 3D EIT problems. 
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Summary 

In electrical impedance tomography (EIT), an image of the conductivity or permittivity of part of 

the object is inferred from surface electrical measurements. Typically, conducting electrodes are 

attached around the object and small alternating currents are applied to some or all of the 

electrodes. The resulting electrical potentials are measured, and the process may be repeated for 

numerous different configurations of applied current. Using the measurement voltage, an 

approximation for the conductivity or resistivity distribution within the object can be obtained. 

Mathematically, the EIT problem is a nonlinear and ill-posed inverse problem. 

 

In this thesis, a shape reconstruction scheme in EIT for multi-phase flow based on level set 

methods is studied. The key feature of the scheme is using narrow band level set method to solve 

the inverse problem of finding the interface between the regions having different conductivity 

values. In using a multi-phase level set model, the conductivity can be presented by two level set 

functions. Based on the level set theory, the key idea is to implicitly represent the shape interface 

as the zero level set of a higher dimensional function and then solve a set of partial differential 

equations. The level set-based scheme offers several advantages compared to traditional 

pixel-based approach. The level set strategy handles topological merging and breaking naturally 

during the evolution process. Extension of level set method for multi-phase case has been 

presented and tested with several of numerical and experiment data, it is found that shape-based 

level set method has better reconstruction performance when compared to pixel-based image 

method.  
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