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ĝ    Estimated value of the Fourier coefficient 
ix

jg  jth Fourier coefficient  in the x-axis direction of the ith 

boundary 
iy

jg  jth Fourier coefficient  in the y-axis direction of the ith 

boundary 

k
ag    Fourier coefficients representing closed boundary 

trueg    True value of the Fourier coefficient 

ε  Permittivity of the medium, precision variable 
h    Number of Monte Carlo runs 

nq    Periodic and smooth basis function, orthogonal to each other 

l    BBO immigration rate 
µ  Permeability of the medium, BBO emigration rate 
v   Outward unit normal vector 
s    Conductivity of the medium 

es    Area weighted conductivity 

( ),x ys   Conductivity at ( ),x y Ì W   

if    Two-dimensional first order basis function 

A   Magnetic vector potential, Stiffness matrix,  

kA    Disjoint region, enclosed inside a domain  

B   Magnetic induction, Component of stiffness matrix 
C   Component of stiffness matrix 

( )lC s   Boundary of any enclosed region  

( )kC s    Closed boundary 

CR  Probability of crossover in DE algorithm 
D   Electric displacement, Component of stiffness matrix 
E   Electric field 
E   Maximum emigration rate in BBO 



 

iv 
 

F   Mutation scaling factor in DE algorithm 
 H   Magnetic field, habitat in a BBO population 

( )iH c    cth decision variable of the ith habitat 
PNH    BBO population comprising of a group of NP habitats   

I   Identity matrix 
I   Maximum immigration rate in BBO 
Il    

Current applied to the thl  electrode 

J   Current density 
Jr    Quasi-reflection jumping probability  

sJ    Source current density 
L    Number of electrodes 
M    Number of closed boundaries inside the domain 
N    Number of nodes in the finite element mesh 
Nq  Order of the Fourier coefficients to represent a closed 

boundary 

cN    Number of Fourier coefficients to represent an enclosed region 

Nch    Number of offspring solutions generated using an EA 
NG Number of parent and offspring solutions combined 
NP   Number of candidate solutions in an EA population  
P  Number of current patterns, Population of candidate solutions 

in an EA 

kQ    Process noise covariance 

kR    Measurement noise covariance 

S1, S2   HSI islands in BBO  
Smax    Maximum possible number of species in a BBO island 

XS  Average sensitivity of decision space to change in objective 
space 

T   Transpose of a matrix 
U l    Boundary voltage measured on thl  electrode 

V   Boundary voltage calculated using the FEM formulation 

( )iX c    cth coefficient of the ith parent solution in DE 

( )iY c    cth coefficient of the ith offspring solution in DE 

el    thl  electrode 

je    Area of the electrode j  

1ef   Fitness values of an individual solution in old environment 1e  

2ef   Fitness values of an individual solution in new environment 2e  

2e
bestf  Fitness value of the best fit solution in new environment 2e  

i,  j, k  indices 

k   Discrete time step 
l    Electrode index 
l   Enclosed  region boundary index  
n   Basis functions index 
nGen   Total number of generations so far 



 

v 
 

rj   Uniformly distributed random number    
s   Curve parameter [0,1]Î  

es    Error standard deviation  

x
cs  Average sensitivity of the cth decision variable to change in 

the objective space 

( ),u x y    Electric potential at ( ),x y Ì W   

w Relative weight given to the past evolutionary progress 
compared to the most recent one 

wi    Reflection weight for the ith individual solution 

kw    Process noise  

x̂    An estimated solution 

0̂x    Opposite of the estimated solution x̂  

0
ˆ

qx    Quasi-opposite of x̂  

ˆ
qrx    Quasi-reflected of x̂  
new
cx    cth decision variable after relocation step 
old
cx    cth decision variable before relocation step 

( )lx s  x-coordinates of the enclosed boundary, represented as 

coefficients of truncated Fourier series 
( )ly s   y-coordinates of the enclosed boundary, represented as 

coefficients of truncated Fourier series 
zl    Contact impedance of lth electrode 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

Contents 

Acknowledgements i 

Abbreviations and notations ii 

List of figures viii 

List of tables xiii 

초록 xiii 

1. Introduction 1 

1.1 Motivation and problem description 1 

1.2 Boundary estimation in EIT 1 
1.3 Dissertation outline 5 

2. Electrical impedance tomography 6 

2.1 EIT forward problem 6 

2.2 EIT inverse problem 9 
2.2.1 The boundary representation 11 

3.  Evolutionary algorithms 13 

3.1 Basics of evolutionary algorithms 14 
3.2. Standard evolutionary algorithms 18 

3.2.1 Genetic algorithms 18 
3.2.2 Evolutionary strategies 19 
3.2.3 Evolutionary programming 20 
3.2.4 Genetic programming 20 

3.3 Advanced evolutionary algorithms 21 
3.3.1 Differential evolution algorithm 21 
3.3.2 Biogeography based optimization 23 

3.3.2.1 BBO algorithm 25 

3.4 Hybrid evolutionary algorithms 27 
3.4.1 Biogeography-based optimization combined with evolutionary strategies
 27 
3.4.2 Oppositional-biogeography-based optimization 28 

3.4.2.1 OBBO algorithm 29 

4. OBBO applied to reconstruct organ boundaries in human thorax using EIT 32 

4.1 Biogeography-based optimization applied to EIT 33 
4.2 OBBO applied to EIT boundary estimation 35 

4.3 Results and discussions 39 
4.3.1 Numerical results 39 
4.3.2 Experimental results 56 

5. Dynamic optimization 64 



 

vii 
 

5.1 The uncertainties in DOPs 65 
5.3 Important features of DOPs 66 

5.3.1 Severity of change 67 
5.3.2 Frequency of change 67 

5.3.3 Observability and detectability of change 67 
5.3.4 Dynamics of change 67 

5.4 Desired characteristics of a DEA suitable to solve a DOP 68 
5.5 Evolutionary approaches to solve DOPs 70 

5.5.1 Reinitialization 70 
5.5.2 Memory-based approaches 70 
5.5.3 Multiple population approaches 72 
5.5.4 Mutation and self-adaptation 73 
5.5.5 Local variation 74 
5.5.6 Diversity preserving techniques 74 

6. Dynamic OBBO with variable relocation 76 

6.1 Variable relocation 76 
6.2 Dynamic OBBO algorithm 80 

7. Dynamic OBBO applied to dynamic heart boundary estimation using EIT 83 

7.1 Results and discussions 83 
7.1.1 Numerical results 83 

7.1.2 Experimental results 93 

Conclusions 99 

Summary 101 

References 102 

  

 

 

  

 

 

 

 

 

 

 



 

viii 
 

List of figures 

 

Figure 2.1. EIT schematic diagram. .......................................................................... 9 

Figure 2.2. A schematic view of an object with three regions (M = 3) enclosed inside 
it. The boundary of the background region A0 is ¶W  while the boundaries of the 
enclosed regions A1, A2 and A3 are denoted by C1, C2 and C3, respectively. .... 11 

Figure 3.1. Schematic description of a simple crossover operation involving two 
parents. The characteristic variables a1, b2, from Parent1 combine with the 
variables a3, b4 of Parent2 to generate the new Offspring................................ 13 

Figure 3.2. Flow chart description of offspring generations in evolutionary 
algorithms...................................................................................................... 15 

Figure 3.3. Linear immigration and emigration curves for candidate solutions to 
some problem, sorted by fitness. S1 is like a low HSI island; it has a high 
immigration rate and a low emigration rate whereas S2 is like a high HSI island 
that has a low immigration rate and a high emigration rate. Smax is the 
maximum possible number of species in the habitat (adapted from Simon 2008).
...................................................................................................................... 24 

Figure 3.4. Flow chart description of OBBO algorithm........................................... 25 

Figure 3.5. Schematic description of a BBO migration step. The immigrating solution 
(in the middle) is accepting characteristic (decision) variables (a1, b2, c3 and c4, 
respectively) from four emigrating sol utions, scattered around it. The decision 
variable e0 belongs to the immigrating solution and is retained in the new 
solution.......................................................................................................... 26 

Figure 3.6. The schematic description of an estimated point ˆ { , }x a bÎ , its opposite 

0x̂ , its quasi-opposite 0
ˆ

qx and the quasi-reflected point ˆ
qrx , respectively. c  is 

the centre of the domain { , }a b  (adapted from Ergezer et al. 2009). ............... 29 

Figure 4.1. Forward FEM mesh (left) and inverse FEM mesh (right) structures. The 
forward mesh structure has the boundaries of the heart, the lungs and the 
backbone embedded into it, while the inverse mesh structure is inhomogeneous 
concentrated in the regions of interest. ........................................................... 40 

Figure 4.2. Voltage RMSE for different location errors in the organ boundaries. (a) 
Voltage RMSE  plotted against x-translation errors. (b) Voltage RMSE  plotted 
against y-translation errors. (c) Voltage RMSE  plotted against x & y- 
translation errors. ........................................................................................... 42 

Figure 4.3.  Voltage RMSE for different scaling errors in the organ boundaries. (a) 
Voltage RMSE  plotted against x-scaling errors. (b) Voltage RMSE plotted 
against y-scaling errors. (c) Voltage RMSE  plotted against x & y- translation 
errors. (d) Voltage RMSE plotted against due to simultaneous 
expansion/shrinking of different organs. ........................................................ 43 

Figure 4.4.  Estimated organ boundaries in a simulated human chest cross section 
using OBBO and mNR. The solid line is used to draw the true organ boundaries 



 

ix 
 

while the broken line is used to show the (mean) estimated boundaries using 
OBBO (left) and mNR (right). The results in the top row are for the big heart 
case while the bottom results are for small heart. ........................................... 46 

Figure 4.5. RMSEg  for different sets of initial populations. (a) – (g) show the 

RMSEg  values calculated for all three organs, plotted iteratively for each 

OBBO generation. (h) summarizes the best RMSEg  values, as obtained at the 

end of the 10th OBBO generation, plotted against each set of the initial 
population...................................................................................................... 52 

Figure 4.6. RMSEg  for different conductivity errors. (a)-(d) plot the best RMSEg  

values, as obtained at the end of OBBO generations, for different (percentage) 
errors in the conductivity of Lung1, Lung2, Heart, and all the three organs, 
respectively.................................................................................................... 53 

Figure 4.7. Estimated size of the organs for different conductivity errors, expressed 

as Fourier coefficients corresponding to their radii. (a) plots the radii 1

2
xg  and 

1

3
yg of Lung1, (b) plots the radii 2

2
xg  and 2

3
yg of Lung2, (c) plots the radii 3

2
xg  and 

3

3
yg  of Heart and (d) plots the radii of all the organs, against different 

(percentage) errors in the conductivity of the respective organs...................... 54 

Figure 4.8.  Chest-like EIT experimental setup: (a) Two lungs and a big heart. (b) 
Two lungs and a small heart. The experiments have been performed using the 
ACT3 system at Electrical Impedance Imaging lab, RPI, USA....................... 57 

Figure 4.9. The inverse mesh structure used with the experimental setup. It is 
inhomogeneous concentrated in the regions of interest................................... 58 

Figure 4.10. OBBO and mNR estimated organ boundaries using EIT measurement 
data obtained from an experimental setup with two lungs and a big heart. The 
broken line is used to show the (mean) estimated boundaries using OBBO (left) 
and mNR (right). The results in the top row are for the big heart case while the 
bottom results are for small heart. .................................................................. 59 

Figure 4.11. Experimental Scenario 1 (big heart case): RMSEg  for different sets of 

initial populations. (a) – (g) show the RMSEg  values calculated for all three 

organs, plotted iteratively for each OBBO generation. (h) summarizes the best 

RMSEg  values, as obtained at the end of the 10th OBBO generation, plotted 

against each set of the initial population......................................................... 62 

Figure 4.12. RMSEg  for different conductivity errors. (a)-(d) plot the best RMSEg  

values, as obtained at the end of OBBO generations, for different (percentage) 
errors in the conductivity of Lung1, Lung2, Heart, and all the three organs, 
respectively.................................................................................................... 63 

Figure 4.13. Experimental Scenario 1 (big heart case): Estimated size of the organs 
for different conductivity errors, expressed as Fourier coefficients 

corresponding to their radii. (a) plots the radii 1

2
xg  and 1

3
yg of Lung1, (b) plots the 



 

x 
 

radii 2

2
xg  and 2

3
yg of Lung2, (c) plots the radii 3

2
xg  and 3

3
yg  of Heart and (d) plots 

the radii of all the organs, against different (percentage) errors in the 
conductivity of the respective organs. ............................................................ 64 

Figure 5.1.  Changing fitness peak heights. The left side shows the peaks before the 
dynamic change whereas the right hand side shows the peaks after change. ... 66 

Figure 5.2. Changing fitness peak shapes. The left side shows the peaks before the 
dynamic change whereas the right hand side shows the peaks after change. ... 66 

Figure 5.3. Changing fitness peak locations. The left side shows the peaks before the 
dynamic change whereas the right hand side shows the peaks after change. ... 66 

Figure 5.4. The desired characteristics of the DEAs and their effect on the different 
features of the DOPs, as well as, on each other The DEAs’ desired 
characteristics have been shaded to distinguish them from the DOP features.. 69 

Figure 7.1. Result with 1% measurement noise. Estimated organ boundaries in a 
simulated human chest cross section using dynamic OBBO and EKF. The solid 
line is used to draw the true organ boundaries while the broken line is used to 
show the (mean) estimated boundaries, estimated at each iteration, using 
dynamic OBBO (left) and EKF (right). .......................................................... 84 

Figure 7.2. Result with 2% measurement noise. Estimated organ boundaries in a 
simulated human chest cross section using dynamic OBBO and EKF. The solid 
line is used to draw the true organ boundaries while the broken line is used to 
show the (mean) estimated boundaries, estimated at each iteration, using 
dynamic OBBO (left) and EKF (right). .......................................................... 85 

Figure 7.3. Dynamic heart estimation results with 1% measurement noise. The 

Fourier coefficients 3

2
xg  and 3

3
yg corresponding to the radii in the x- and y- 

directions, respectively, of the heart plotted iteratively.  The solid lines show 
the true evolution of these parameter while the broken lines are used to plot the 
mean estimates using dynamic OBBO (left) and EKF(right) respectively. The 
error bars show the standard deviation s of the estimated parameters at each 
measurement instance. ................................................................................... 88 

Figure 7.4. Heart area estimation results with 1% measurement noise. The solid line 
shows the true evolution of area of the heart while the broken line is used to 
plot the mean estimated area using dynamic OBBO (left) and EKF(right) 
respectively. The error bars show the standard deviation s of the estimated 
parameters at each measurement instance. ..................................................... 89 

Figure 7.5. Dynamic heart estimation results with 1% measurement noise. The 

Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, 

respectively, of the heart plotted iteratively.  The solid lines show the true 
evolution of these parameter while the broken lines are used to plot the mean 
estimates using dynamic OBBO (left) and EKF(right) respectively. The error 
bars show the standard deviation s of the estimated parameters at each 
measurement instance. ................................................................................... 89 



 

xi 
 

Figure 7.6. Error analysis with 1% measurement noise. RMSEg  values calculated for 

all three organs, plotted iteratively for OBBO (left) and EKF (right) 
respectively.................................................................................................... 90 

Figure 7.7. Dynamic heart estimation results with 2% measurement noise. The 

Fourier coefficients 3

2
xg  and 3

3
yg corresponding to the radii in the x- and y- 

directions, respectively, of the heart plotted iteratively.  The solid lines show 
the true evolution of these parameter while the broken lines are used to plot the 
mean estimates using dynamic OBBO (left) and EKF(right) respectively. The 
error bars show the standard deviation s of the estimated parameters at each 
measurement instance. ................................................................................... 90 

Figure 7.8. Heart area estimation results with 2% measurement noise. The solid line 
shows the true evolution of area of the heart while the broken lines is used to 
plot the mean estimated area using dynamic OBBO (left) and EKF(right) 
respectively. The error bars show the standard deviation s of the estimated 
parameters at each measurement instance. ..................................................... 91 

Figure 7.9. Dynamic heart estimation results with 2% measurement noise. The 

Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, 

respectively, of the heart plotted iteratively.  The solid lines show the true 
evolution of these parameter while the broken lines are used to plot the mean 
estimates using dynamic OBBO (left) and EKF(right) respectively. The error 
bars show the standard deviation s of the estimated parameters at each 
measurement instance. ................................................................................... 91 

Figure 7.10. Error analysis with 2% measurement noise. RMSEg  values calculated 

for all three organs, plotted iteratively for OBBO (left) and EKF (right) 
respectively.................................................................................................... 92 

Figure 7.11.  EIT experimental setup for dynamic heart estimation......................... 94 

Figure 7.12.  (a) Two lungs with the biggest heart. (b) Two lungs with the smallest 
heart. ............................................................................................................. 94 

Figure 7.13. Experimental Results. Estimated organ boundaries in a simulated human 
chest cross section using dynamic OBBO and EKF. The solid line is used to 
draw the true organ boundaries while the broken line is used to show the 
(mean) estimated boundaries, estimated at each iteration, using dynamic OBBO 
(left) and EKF (right). .................................................................................... 95 

Figure 7.14. Dynamic heart estimation results for the experimental scenario. The 

Fourier coefficients 3

2
xg  and 3

3
yg corresponding to the radii in the x- and y- 

directions, respectively, of the heart plotted iteratively.  The solid lines show 
the true evolution of these parameter while the broken lines are used to plot the 
mean estimates using dynamic OBBO (left) and EKF(right) respectively. The 
error bars show the standard deviation s of the estimated parameters at each 
measurement instance. ................................................................................... 96 

Figure 7.15. Heart area estimated for the experimental scenario. The solid line shows 
the true evolution of area of the heart while the broken lines is used to plot the 



 

xii 
 

mean estimated area using dynamic OBBO (left) and EKF(right) respectively. 
The error bars show the standard deviation s of the estimated parameters at 
each measurement instance. ........................................................................... 96 

Figure 7.16. Dynamic heart estimation results for the experimental scenario. The 

Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, 

respectively, of the heart plotted iteratively.  The solid lines show the true 
evolution of these parameter while the broken lines are used to plot the mean 
estimates using dynamic OBBO (left) and EKF(right) respectively. The error 
bars show the standard deviation s of the estimated parameters at each 
measurement instance. ................................................................................... 97 

Figure 7.17.  Error analysis for the experimental scenario. RMSEg  values calculated 

for all three organs, plotted iteratively for OBBO (left) and EKF (right) 
respectively.................................................................................................... 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 
 

List of tables 

 

Table 4.1. Simulation scenario 1 (big heart case): mean ĝ , error standard deviation 
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초록  
 

전기  임피던스  단층촬영법 (EIT)은  비침습성  영상  방법으로 , 산업  분야뿐만  

아니라  의료  분야에서도  활발히  연구되어  왔다 . 그러나  EIT를  사용하여  도전율  

분포를  복원하기  위한  역문제  알고리즘들의  성능은  종종  차선 (sub-optimal)이  

된다 . 측정  잡음에  대한  EIT 의  높은  민감도 , 반올림  오차 (rounding-off errors), 

EIT 문제가  갖는  고유의  부정치성  성질  그리고  전역  최소치  대신에  국부  

최소치로의  수렴  등등  이런  요소들로  인해  낮은  성능을  보인다 . 게다가 , 

대부분의  역문제  알고리즘들의  성능은  초기치의  선택뿐만  아니라  gradient 

matrix 의  정확한  계산에  크게  좌우한다 . 이런  요인들을  고려해  보면 , 정확한  

해에  도달하기  위한  효과적인  최적화  알고리즘이  요구된다 . 본  논문에서는  2D 

EIT를  사용하여  대상  도메인  내부에서  표적들의  경계면에  대한  모양과  크기  

그리고  위치를  추정하기  위해  oppositional biogeography 기반의  최적화 (OBBO) 

기법을  제시하고  있다 . 표적들의  경계면은  truncated 푸리에  급수의  계수로  

표현되는데 , 이  때  표적들의  도전율  값은  선험적으로  알려져  있다고  가정한다 . 

OBBO 기법은  흉부와  같은  구조  내부에서  정적  조직의  경계면들을  복원하는데  

처음으로  적용된다 . 그리고  나서  움직이는  심장의  경계면을  추정하는데  동적  

OBBO 기법이  적용된다 . 그리고  정적뿐만  아니라  동적  경우에  대해 , 반복적인  

수치적  시뮬레이션과  실험  데이터를  사용하여  알고리즘의  

강인성 (robustness)을  입증하였다 . OBBO 기법을  사용하여  추정된  

파라미터들에  대해  폭넓은  통계학적  분석을  하였고  전형적인  mNR 알고리즘과  

EKF 알고리즘과  비교하였다 . 전형적인  알고리즘들과  비교했을  때  OBBO 

기법이  우수한  성능을  보였다 . 게다가 , OBBO 기법은  측정  잡음과  경계면의  

크기와  위치에  대한  초기치에  강인하였고  도전율의  선험적  지식이  정확하지  

않을  때도  타당한  해를  제공하였다 . 
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1. Introduction 
        

1.1 Motivation and problem description 

Electrical impedance tomography (EIT) is a non-invasive imaging modality in which 

a cross sectional image of the conductivity distribution inside an object can be 

obtained by injecting a set of current patterns and measuring boundary voltages 

across the electrodes attached to the surface of the object (McArdle 1992, 

Vauhkonen 1997). There are several applications of EIT in the fields of medical 

imaging and process industry. In medical imaging, EIT can be used to detect certain 

anomalies such as breast cancer cells (Kim et al. 2007a) and monitor several 

physiological phenomena, such as cardiac, pulmonary and respiratory functions 

(Harris 1991, Brown 1994, Kim et al. 2006, Deibele 2008). The applications of EIT 

in the process industry include monitoring the multi-phase flow in the process 

pipelines, monitoring of the mixing phenomenon, sedimentation monitoring and etc. 

(Mann et al. 1997, Kim et al. 2005, Khambampati et al. 2009, Rashid at al. 2010a). 

The conductivity estimation using EIT is a nonlinear ill-posed problem. In medical 

imaging we are often interested in the estimation of organ boundaries rather than the 

conductivity distribution inside the human body. The poor spatial resolution of EIT 

makes it difficult to estimate the organ boundaries, thus undermining its anatomical 

significance. If the conductivity values inside a specific region of the human body, 

such as that of thorax region, are assumed to be known a priori then the inverse 

problem in EIT becomes the estimation of shape, size and location of the internal 

organs. Such an approach is known as the boundary estimation problem in EIT. It 

consequently leads to a much lesser ill-posed problem and significantly reduces the 

dimension of the solution space. It also results in marked improvement in the 

estimation performance of the EIT inverse problem in terms of spatial resolution. 

1.2 Boundary estimation in EIT 

Several boundary estimation approaches have been devised in the literature (Han and 

Prosperetti 1999, Ikehata and Siltanen 2000, Kolehmainen et al. 2001). In closely 

related studies, Vauhkonen et al. (1998) and Rashid et al. (2010b) considered to 
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reconstruct the elliptic boundaries, represented using only six Fourier coefficients. 

They assumed that the boundaries of the lungs are known a priori and the estimation 

problem was reduced to the estimation of heart (ventricle) boundary. Similarly, 

Khambampati et al. (2010) assumed the heart boundary to be known, while the 

dynamic boundaries of the elliptic lungs were recovered using the expectation 

maximization algorithm. The a priori knowledge of the boundaries of some of the 

organs, while reconstructing the others, may be inaccurate potentially leading to 

large estimation errors in realistic situations. Kolehmainen et al. (2001) considered a 

more general case, i.e., simultaneous estimation of three non-elliptic region 

boundaries (resembling two lungs and a heart) inside a circular domain using 

extended Kalman filter (EKF). They also attempted to reconstruct the boundaries 

using the traditional Gauss-Newton method; however, it exhibited severe 

convergence problems and a tendency to produce self-intersecting boundaries when 

the number of Fourier coefficients to express the boundaries is high. Even EKF 

reconstructions, besides a very close initial guess, sometimes showed deviations from 

the true boundaries, especially in the case of non-elliptic lungs. All these facts 

necessitate further research into EIT boundary estimation, more specifically in the 

case of multiple non-elliptic targets in which the inverse algorithms usually exhibit 

poor performance.  

EIT reconstruction can be classified as either static imaging or dynamic 

imaging. In the case of static imaging, a full frame of independent measurements is 

available while the conductivity distribution inside the domains remains constant. In 

the case of dynamic imaging, however, a full measurement frame may not be 

obtained before the conductivity inside the domain changes. The static imaging 

algorithms usually fail to track the fast conductivity changes inside the domain. The 

dynamic imaging algorithms, on the other hand, enhance the temporal resolution of 

the EIT image when the conductivity distribution inside the body changes rapidly 

(Kim et al. 2001, Kim et al. 2007b). Extended Kalman filter (EKF) is one of the most 

frequently used dynamic estimation algorithms for nonlinear systems. EKF, however, 

is only accurate up to second order for Gaussian distribution. Moreover, the 

performance of EKF heavily relies on the calculation of Jacobain to linearize the 

inherently non-linear EIT problem. The unscented Kalman filter (UKF), which 
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propagates mean and covariance information through a nonlinear transformation, 

does not require to calculate Jacobian and potentially offers superior performance 

compared to EKF (Julier and Uhlmann 2004). Remarkably, the computational 

complexity of the UKF is of the same order as that of EKF. Considering these 

advantages, Khambampati et al. (2009) employed UKF as an inverse solver to 

estimate the sharp interfacial phase boundaries in three-dimensional sedimentation 

monitoring using 3D EIT.  

A major challenge while applying EIT to dynamic image reconstruction is 

that a state evolution based estimation technique is required. The evolution model, 

along with the observation model, constitutes the state-space representation of the 

system. In the state-space model, the evolution of state parameters is modelled as a 

stochastic process. The knowledge of the stochastic nature of the state evolution is 

instrumental in order to apply EIT for dynamic image reconstruction. A number of 

state evolution models have been proposed to monitor dynamic processes using EIT 

(Vauhkonen et al. 1998, Tossavainen et al. 2006, Kim et al. 2004, Khambampati et 

al. 2009). The simplest of these models is the so-called random-walk model in which 

the state parameters evolve by a predetermined covariance of the added white noise 

(Vauhkonen et al. 1998, Kim et al. 2007). However, application of this model is 

based on the fact that no prior knowledge of the process is available therefore it is not 

considered as an accurate evolution model. For processes which evolve with constant 

velocity or constant acceleration, the kinematic models offer a better solution 

(Tossavainen et al. 2006, Khambampati et al. 2009]. The kinematic models have 

originated from target tracking problems (Li 1997). In a comparative study, 

Tossavainen et al. (2006) showed that the kinematic models had better estimation of 

the settling curves, settling velocities and the conductivities of the phase layers than 

the random-walk model. Another evolution model which is commonly used to 

monitor the flow of a fluid in a pipeline is based on the convection diffusion equation 

(Seppanen et al. 2001a, 2001b). Rashid et al. (2010a) proposed a state evolution 

model developed for three-layer sedimentation based on the solids flux theory for 

batch sedimentation. It is essentially based upon a kinematical theory of 

sedimentation based on the propagation of sedimentation waves in the suspension 

and assumes that the settling velocity of the particles is a function of the 
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concentration alone. The model is simple, computationally inexpensive and 

incorporates the dynamics of actual sedimentation phenomenon.  

In realistic environments, the dynamics of the evolution are complex and it may 

be very difficult to model them in a prior form. The coefficients of noise covariance 

in the dynamic algorithms such as EKF and UKF need to be manually tuned and may 

lead to suboptimal performance, if not tuned well. It is, nevertheless, possible to 

estimate the dynamic state transition matrix, the noise covariance matrices and the 

initial states with the help of expectation-maximization (EM) algorithm. The EM 

algorithm is a method of finding a mode of the proposed likelihood function through 

the expectation and maximization steps (Dempster et al. 1977, Shumway and Stoffer 

1982). Khambampati et al. (2011) proposed a dynamic estimation scheme to track 

the void boundaries in the flow process based on the assumption that the prior 

knowledge of the model parameters is not known with certainty. The problem was 

treated as state estimation problem to estimate the non-stationary boundaries 

represented using the Fourier coefficients.  

The performance of the inverse algorithms for image reconstruction using EIT 

is often sub-optimal. Several factors contribute to this poor performance including 

high sensitivity of EIT to the measurement noise, the rounding-off errors, the 

inherent ill-posed nature of the problem and the convergence to a local minimum 

instead of the global minimum. Moreover, the performance of many of these inverse 

algorithms heavily relies on the selection of initial guess as well as the accurate 

calculation of a gradient matrix. Considering these facts the need of an efficient 

optimization algorithm to reach the correct solution cannot be overstated.  

This thesis presents an oppositional biogeography-based optimization (OBBO) 

technique to estimate the shape, size and location of non-stationary region boundaries 

inside an object domain using two-dimensional electrical impedance tomography 

(2D EIT). The region boundaries are expressed as coefficients of truncated Fourier 

series and the conductivity distribution inside the domain is assumed to be known a 

priori (Kolehmainen et al. 2001). First of all, a static scenario has been considered 

such that all the organ boundaries are assumed be constant while a full frame of 

independent measurement data is obtained. In the second situation, the boundaries of 

the lungs are fixed while a heart expansion/contraction cycle is considered. The 



 

5 
 

scenarios are analogous to the situation in which a patient is told to hold his/her 

breathe while EIT measurements are taken. In the second case, a partial subset of the 

full measurement frame is assumed to be available at each instance. A dynamic 

version of the OBBO is used to reconstruct the non-stationary organ boundaries in 

this case. An extensive statistical analysis of the estimated parameters using OBBO 

and its comparison with the traditional modified Newton-Raphson (mNR) and EKF 

algorithms is presented. 

The main advantage of the proposed estimation technique over the traditional 

techniques is that it does not require the calculation of the Jacobain matrix. 

Furthermore, the dynamic version of the OBBO is very simple to derive and 

implement. Finally, in contrast to the aforementioned dynamic algorithms 

(EKF/UKF), the dynamic OBBO does not require much manual tuning, potentially 

leading to far superior results with little tuning effort. 

1.3 Dissertation outline 

This thesis consists of seven chapters. The first chapter gives a brief introduction and 

a literature survey of the boundary estimation in electrical impedance tomography. 

The second chapter gives an overview of electrical impedance tomography and its 

constituents. i.e., the forward problem and the inverse problem. Chapter three 

presents a literature survey of standard and advanced evolutionary algorithms (EAs). 

Chapter four applies the selected evolutionary algorithm, namely OBBO, to 

reconstruct static organ boundaries in human thorax using EIT. An extensive 

statistical analysis of the technique with the help of numerical simulations as well as 

with an experimental setup resembling human chest is presented. Chapter five 

introduces the dynamic optimization problem (DOP), discusses its important features 

and the related issues, presents the desired characteristics of a dynamic evolutionary 

algorithm (DEA) suitable to solve DOPs and concludes with the most common 

evolutionary approaches to solve them. Chapter six presents the dynamic OBBO with 

variable relocation. Finally, chapter seven presents a study of the dynamic OBBO 

applied to dynamic heart boundary estimation using EIT. 
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2. Electrical impedance tomography 

2.1 EIT forward problem 

Electrical impedance tomography is an imaging modality in which the internal 

electrical conductivity distribution is reconstructed based on the imposed currents 

and the measured voltages across the electrodes placed on the surface of an object. 

The physical relationship between the internal conductivity ( ),x ys  and the 

electrical potential ( ),u x y  on the object 2WÌÂ  is governed by a partial differential 

equation, derived from Maxwell’s equations (Isaacson and Cheney 1990, Malmivuo 

and Plonsey 1995, Somersalo et al. 1992). Let E be an electric field, B be used to 

denote magnetic induction, H used for magnetic field, J used to denote the current 

density and D be the electric displacement, then the electromagnetic field in a 

domain 2W Î Â  can be described as  

B
E

t

¶
Ñ´ = -

¶
                 (2.1) 

,
D

H J
t

¶
Ñ´ = +

¶
                (2.2) 

If the domain Ω is assumed to consist of a linear and isotropic medium then it 

follows that  

D = εE                  (2.3) 

J = σE                  (2.4) 

B = µH                  (2.5) 

where ε is the permittivity, µ is the permeability and σ is conductivity of the medium. 

If the injected currents are assumed to be time harmonic with frequencyw  then after 

cancelling out the oscillatory exponential and separating the current density J into 

two components, ohmic current ( 0J Es= ) and current source ( sJ ), the Maxwell’s 

equations can be written as  

E i HwmÑ´ = -                 (2.6) 

( ) sH i E Js weÑ´ = + +                (2.7) 

Assuming static conditions such that the effect of magnetic induction as well as the 

capacitive effects i Ewe  are neglected (Barber and Brown 1984) and using the fact 
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that sJ  is zero in the given EIT frequency range, the following equations can be 

derived 

E u= -Ñ                           (2.8) 

E i HwmÑ´ = -                          (2.9) 

H EsÑ´ =                              (2.10) 

( ) 0usÑ× Ñ =                            (2.11) 

where ( ),u u x y=  is the electric potential at ( ),x y ÌW . Equation (2.11) is known as 

the EIT governing equation and can be solved with appropriate boundary conditions, 

such as the so-called complete electrode model (CEM) which considers the shunting 

effects of the measurements as well as the contact impedance between the electrodes 

and the medium  

e

u
dS Is

n

¶
=

¶ò
l

l ,  ( ),x y eÌ l , 1,2, , L=l L           (2.12) 

0
u

s
n

¶
=

¶
,   ( )

1

, \
L

x y e
=

Ì ¶W l
l

U           (2.13) 

u
u z Us

n

¶
+ =

¶
l l ,  ( ),x y eÌ l , 1,2, , L=l L           (2.14) 

where L is the number of electrodes, v is the outward normal unit vector, zl  is the 

effective contact impedance and U l  is the measured boundary potential. Here, (2.12) 

represents the electrical current Il  injected to the object W  through the thl  electrode 

el  while (2.13) shows that the current is zero in the regions between the electrodes. 

The equation (2.14), which represents the voltage U l  measured across the electrodes 

1,2, , L=l L , considers the shunting effect (i.e., the potential on the surface of each 

electrode is constant) and the contact impedance between the electrode and 

electrolyte inside the domain. The details of the different electrode models used in 

EIT can be found in the reference (Cheng et al. 1989). In addition to the boundary 

conditions, described before, two additional constraints are also imposed to solve the 

governing equation given in (2.11). 

1

0
L

I
=

=å l
l

 and 
1

0
L

U
=

=å l
l

                  (2.15) 
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The first constraint enforces the conservation of charge which is needed for the 

existence of the solution while the second constraint enforces a condition on the 

voltages to specify the ground potential and is needed to ensure the uniqueness of the 

solution (Somersalo et al. 1992). The calculation of the boundary voltages using 

(2.11) – (2.15) is called the EIT forward problem. The forward problem is solved 

using the finite element method (FEM). The detailed FEM formulation of EIT can be 

found in the dissertation of Vauhkonen (1997). In FEM, the domain is divided into a 

number of small triangular elements. The conductivity value inside each finite 

element is assumed to be constant. Let N  be the number of nodes in the finite 

element mesh.  The finite element formulation gives the following system of linear 

equations (Vauhkonen 1997) 

=Ab I%                  (2.16) 

where  

T

æ ö
= ç ÷
è ø

B C
A

C D
,  

æ ö
= ç ÷
è ø

b
a

b
   and    

æ ö
= ç ÷
è ø

0
I

I
%           (2.17) 

Here, ( )
T 1

1 2, , , N
Na a a a ´= ÎÂL  and ( )

T ( 1) 1
1 2 1, , , L

Lb b b b - ´
-= ÎÂL  . 

( )
T ( 1) 1

1 2 1 3 1, , , L
LI I I I I I - ´= - - - ÎÂI L  is the reduced current matrix and 

T 1(0,...,0) N´= ÎÂ0 .   The system matrix ( 1) ( 1)N L N L+ - ´ + -ÎÂA  is of the form 

( )
1

1
, d d

L

i j i j
e

B i j S
z

s f f ff
W

=

= Ñ ×Ñ W +åò ò
ll l

, , 1, 2, ,i j N= L           (2.18) 

( )
1 1

1 1

1 1
, d d

j
i i

e e
j

C i j S S
z z

f f
+

+

= - +ò ò , 1,2, ,i N= L , 1, 2, , 1j L= -L        (2.19) 

( )

1

1

11

1 1

,
j

j

e
i j

z
C i j

ee
i j

z z

+

+

ì
¹ï

ï
= í
ï

+ =ï
î

  , , 1, 2, , 1i j L= -L           (2.20) 

where fi  is the two-dimensional first-order basis function and je  is the area of the 

electrode j. 

 A schematic description a 2D EIT measurement setup is shown ion figure 2.1. 
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Figure 2.1. EIT schematic diagram. 

2.2 EIT inverse problem 

The EIT image reconstruction consists of forward and inverse problems. While the 

forward problem calculates the boundary voltages based on the given conductivity 

distribution, the inverse problem reconstructs the conductivity distribution 

minimizing the difference between the measured and the calculated boundary 

voltages.  

 [ ] [ ]
1

2

T
V U V UF = - -                                            (2.21)  

where U  is the actual voltage measurements across the boundary electrodes and V is 

denotes the calculated voltages obtained through the FEM formulation. The objective 

of this thesis, however, is the estimation of the size and location of the internal 

organs rather than the conductivity estimation. If the conductivities of the organs are 

assumed to be known then the inverse problem is reduced to the reconstruction of 

organ boundaries (expressed as Fourier coefficients) inside the human chest. The cost 

functional (2.11), in turn, is expressed in terms of the Fourier coefficients kg as 

follows 

 [ ] [ ]
1

( ) ( ) ( )
2

T
k k kV U V Ug g gF = - -                                         (2.22)  

where 1( ) LK
kV g ´ÎÂ  are the calculated voltages based on given Fourier coefficients 

kg , 1LKU ´ÎÂ  are the measured voltages, k represents the iteration number and LK 

is the number of measurements at each iteration.  

The conventional inverse algorithms in EIT, such as mNR and EKF, often 

show sub-optimal performance when used to solve the EIT inverse problem. The 
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transformation of the conductivity estimation problem into a boundary estimation 

problem significantly reduces the ill-posedness of EIT inverse problem. However, 

the highly nonlinear nature of the inverse problem, the presence of the measurement 

noise, the discretization errors and the possibility of its convergence to a local 

minimum around the global minimum make it an extremely difficult problem to be 

solved in realistic conditions. Since an analytical solution to the EIT boundary 

estimation problem is very difficult to achieve, the selection of an efficient and 

reliable numerical minimization technique is paramount to reach the optimum 

solution. An algorithm which offers fast convergence to the optimum solution, 

effectively bypassing/filtering out the local minima, is desired. An algorithm 

combining the features of a global search method to a local search technique would 

be best suited to solve this problem. The evolutionary algorithms (EAs) are one class 

of such algorithms. In contrast to the traditional inverse algorithms applied to EIT 

these algorithms do not require the calculation of a Jacobian and, due to a large 

number of potential solutions available, often outperform the gradient-based methods. 

The application of a few EAs to EIT image reconstruction has been studied before 

(Rolnik and Seleghim 2006, Eckel H 2008, Rashid et al. 2010c). A recently 

introduced class of evolutionary algorithms offering aforementioned characteristics is 

the biogeography-based optimization (Simon 2008). The hybrid evolutionary 

algorithms usually outperform the autonomous evolutionary algorithms. (Tseng and 

Liang 2006, Grosan et al. 2007, Du et al. 2009).  Du et al. (2009) have incorporated 

the features of evolutionary strategy (ES) (Beyer and Schwefel 2002) into 

biogeography-based optimization (BBO) and suggested the hybrid algorithm namely 

biogeography-based optimization combined with evolutionary strategy (BBO/ES). 

Ergezer et al. (2009) have incorporated the opposition-based learning (OBL) into the 

BBO algorithm to introduce the hybrid algorithm named oppositional biogeography-

based optimization (OBBO). This thesis considers the application of OBBO to solve 

the EIT boundary estimation problem.   
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2.2.1 The boundary representation 

Let us consider a domain schematically shown in figure 1. The outer boundary ¶W  

of the object is assumed to be known. The boundary ( )lC s  of any enclosed region is 

assumed to be sufficiently smooth to be expressed as coefficients of truncated 

Fourier series 2MN
k

qg ÎÂ (Kolehmainen et al. 2001) 

1

( ) ( )
( ) , 1,2, ,

( ) ( )

l

l

x xN
l n n

l y y
nl n n

x s s
C s l M

y s s

q g q

g q=

öæöæ
= = =÷ç÷ç
è ø è ø

å L                (2.23)  

where M is the number of boundaries, Nq  is the order of Fourier coefficients and 

( )n sq  is the periodic and smooth basis function of the form  

1, 1

sin(2 ), 2,4,6,
2

1
cos(2 ), 3,5,7,

2

n

n

n

n

n
s n

n
s n

a

a

a

q

q p

q p

= =

= =

-
= =

L

L

            (2.24) 

The basis functions ( )n sq  are orthogonal to each other. The curve parameter [0,1]sÎ  

and a denotes x or y.  

 

Figure 2.2. A schematic view of an object with three regions (M = 3) enclosed inside 
it. The boundary of the background region A0 is ¶W  while the boundaries of the 
enclosed regions A1, A2 and A3 are denoted by C1, C2 and C3, respectively. 
 

Expanding (2.23) and (2.24), the boundaries  lC  can be represented as g  of 

the shape coefficients, i.e. 

1 1 1 1 T
1 1 1 1( ,..., , ,..., ,...,... ,..., , ,..., )M M M Mx x y y x x y y

N N N Nq q q q
g g g g g g g g g=          (2.25) 

C1 

C3 

C2 

A1 

A3 

A2 

¶W 
A0 
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The truncated Fourier series reduce to a centre point, circle and ellipse for Nq =1, 2 

and 3, respectively. This paper considers the problem of estimating the boundaries of 

two lungs and the heart (M = 3) with the conductivities of the organs and the 

background assumed to be known a priori. The inverse problem, therefore, becomes 

the estimation of 2MNq  Fourier coefficients g  given in (2.25). A schematic view of 

an object with three regions (M = 3) enclosed inside it is shown in figure 2.2. 
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3.  Evolutionary algorithms 

 
Any optimization problem which is aimed at finding the best global solution among a 

possible set of local optima is known as the global optimization problem. One of the 

most popular examples of global optimization problems is the traveling salesman 

problem. These problems are often nonlinear, non-differentiable, exist in higher 

dimension of space and often fail reach the global optimum due to the presence of 

local minima. The analytical solution of these problems usually does not exist and 

thus require an algorithm equipped with a global search mechanism. Evolutionary 

algorithms (EAs) are well known population-based global optimization algorithms 

which work on the principal of mutation and recombination, the latter often referred 

to as the crossover (Bäck and Schwefel 193). The crossover creates new candidate 

solutions by combining two or more existing solutions, while the mutation 

corresponds to the erroneous duplication of the previous solutions. The crossover 

steps tends to increase the correlation among the current set of candidate solutions, 

whereas the mutation keeps the search space open to new solutions, thus increasing 

the population diversity. Both the approaches have their own advantages and 

disadvantages and the right balance between them has been studied before (Spears 

1992).   

 

 

Figure 3.1. Schematic description of a simple crossover operation involving two 
parents. The characteristic variables a1, b2, from Parent1 combine with the variables 
a3, b4 of Parent2 to generate the new Offspring. 

 

A major advantage of the EAs is their ability to incorporate a priori 

information into the problem solution. This is particularly beneficial in the case of 

EIT boundary estimation, which usually suffers from large measurement and round-

off errors and under realistic conditions it is often impossible to be solved without 

a1            b1            c1           d1 a2          b2          c2           d2  

Parent1 

Offspring 

Parent2 

a1          b1           c2            d2 
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any prior information. The a priori information can be incorporated in several ways. 

One way to do it is simply rejecting all the infeasible solutions (e.g., in the case of 

multi-region boundary estimation, the boundaries cannot cross each other). However, 

this can be computationally expensive. Another way to do it is the use of such 

mutation and crossover schemes which make sure that only feasible solutions are 

generated. 

3.1 Basics of evolutionary algorithms 

Using an evolutionary algorithm to address a problem requires choosing at least five 

elements:  

· population initialization 

· representation for the solution 

· variation operators to apply 

· evaluation criteria, and  

· selection method 

One of the most critical considerations for an evolutionary algorithm is the 

selection of the initial population. A population is a group of individuals belonging to 

the same species, resembling more closely to each other in terms of their genetics 

than any other group of individuals of the same species. In terms of the evolutionary 

algorithms, an initial population is a set of preliminary candidate solutions to the 

given problem. Each candidate solution is represented using some form of data 

structure. The selection for the data structure to store the candidate solutions is 

subject to reduction of computational complexity and ease of implementation. The 

data structure should be able to support the fundamental operations required for the 

implementation of the evolutionary algorithms such as sorting, variational 

operations/perturbations applied to evolve the current solutions into new solutions, 

the statistical analysis of the solutions based upon probability distributions and etc. 

The evaluation criteria measure the quality of the candidate solutions. The selection 

method uses the fitness of the solutions to select and eliminate a subset of the 

candidate solutions at each generation. The solutions which survive are termed as the 
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parents. Figure 3.1 provides a flowchart of the process, while the key steps of the an 

evolutionary algorithm are as follows (Weicker 2003) 

1. Initialize the algorithm parameters such as the size of population, the number 

of decision variables required to characterize an individual solution and etc.  

2. Initialize a set of NP potential solutions for the problem, referred to as the 

initial population P. Also, compute the cost F  for each of the solution in the 

initial population set. 

3. Select parents form offspring generation from the population P. 

4. Generate offsrpings using combination/crossover operations. 

5. Perform mutation based upon the mutation probability.  

6. Calculate the cost F  of each new solution. 

7. Compare the newly generated solutions (steps 3-6) and select the NP most 

feasible solutions for the next generation.  

8. Go to step 3 for the next iteration, if needed. 

 

 

Figure 3.2. Flow chart description of offspring generations in evolutionary 
algorithms. 
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Like any other algorithm, an evolutionary algorithm starts with the initialization 

of the necessary parameters regarding the algorithm. The first step after the 

initialization/start of the algorithm is the selection of an initial population. The size 

and the range of the initial population are problem dependent and strongly affect the 

performance of the algorithm. The initialization of an evolutionary algorithm can be 

arbitrary, completely at random, or can be based upon some historical data acquired 

though other sources. One of the most important characteristics of a good initial 

population is its diversity. In biology, the population diversity is usually measured in 

terms of the variation in the genetic features defining the population, or in terms of 

the populations' demographics, such as the number and proportion of individuals 

belonging to different age groups, genders, races and etc. In evolutionary 

computation, the diversity of the population is a measure of variation in the candidate 

solutions present in the population. The diversity can be measured either in terms of 

the variation in the fitness of the solutions or in terms of the variation in values of the 

characteristic features of each individual in the population.  

Before entering into the generation loop of the algorithm, the fitness of each 

candidate solution in the initial population is evaluated. The fitness of an individual 

solution is the measure of the quality of that solution and forms the basis of selection 

procedures, for parents as well as the offsprings. The fitness evaluation criterion in 

the optimization problems, in general, is based upon the minimization of a predefined 

objective function. The objective function, also referred to as the cost functional, can 

be expressed either in terms of maximizing fitness, or minimizing error, or some 

combination of potentially conflicting criteria. Within each iteration, the population 

is sorted and ranked based upon the cost of the candidate solutions. The rank 

information is subsequently used for the selection of parents and the offsprings in the 

later part of the algorithm. 

The role of the parent selection step is to select a number of individuals in the 

current population which lead to the creation of offsprings for the next generation. 

The selection of parents is qualitative and is often based upon probability 

distributions of the individuals in the population. Thus the individuals with higher 

fitness values have better chances of becoming parents as compared to the 

individuals which are least fit. In most of the evolutionary algorithms, an offspring is 
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generated from two parents only; however, in some algorithms more than two 

parents may participate in the generation of a new offspring.  

The combination/crossover step combines the features of two or more parents 

to generate a new offspring. The implementation of the crossover operator varies for 

different types of evolutionary algorithms. It can be as simple as a binary crossover 

between two parents or can be a complex probabilistic combination of two or more 

than two parents. A simple crossover operation involving two parents is depicted in 

figure 3.1. A number of offspring solutions are generated this way. Some of the 

offsrpings will be better (more fit) than their parents while others may not be better, 

or even worse than their parents. Selecting the best individuals for the next 

generation is the job of forthcoming steps in the algorithm. The dissertation by 

LaTorre (2009) gives an overview of common crossover operators and some of the 

selection schemes. 

As the EA proceeds, the solutions with a high probability of success, i.e., the 

best fit solutions, tend to dominate the least fit solutions. This would be unfair in the 

sense that the solutions with a lower fitness (consequently of higher cost) value will 

not get much chance to improve even if they have more potential than the other 

solutions. In EAs, there is a remedy available for this in the form of mutation. The 

mutation step aims to keep the search space open to new solutions, thus maximizing 

the chance to reach at the best solution.  

The fitness evaluation of an offspring is similar to the fitness evaluation step for 

the initial population, explained before. The only difference is that the objective of 

former step was to select the best parents for the offspring generation whereas the 

latter step is aimed at selecting the best offsprings for the next generation step. 

The selection the offspring solutions to be carried to the next evolutionary cycle 

can be done in a number of ways 

· Steady state selection: Only one offspring is generated and takes the place of 

one individual in the parent population. 

· Generational selection: All the individuals in the parent population are 

replaced by a new generation of offspring solutions. 
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· Hybrid selection: Some of the individual solutions in the parent population 

are replaced by new offspring solutions, while the others parents are retained. 

This strategy is aimed at selecting the best of all individuals among the 

parents and their offsprings. 

In general, the hybrid selection scheme results in a better selection of the 

individual solutions as compared to other schemes and often leads to more optimized 

results. However, the selection and consequently the performance of the best scheme 

is problem dependent. 

For the problems which are known to have an optimum solution, the termination 

criterion can be that the best solution has a fitness value with a give precision � > 0. 

However, in order to avoid the scenario in which the algorithm may get stuck in an 

infinite loop, a stopping condition has to be enforced. Such a condition could be 

· the maximum number of fitness evaluations allowed 

· the maximum number of generation steps allowed 

· the maximum number of generation steps during which the improvement in 

the value of the best solution does not exceed a certain threshold 

· the maximum CPU time allowed to be elapsed, or 

· the population diversity decreases below a certain threshold  

3.2. Standard evolutionary algorithms 

This section summarizes the characteristic features and the working of some standard 

evolutionary algorithms. Following algorithms have been considered 

· genetic algorithms 

· evolutionary strategies 

· evolutionary programming 

· genetic programming 

3.2.1 Genetic algorithms 

Genetic algorithms (GAs) are one of the most popular classes of EAs and have been 

introduced in mid twentieth century (Barricelli 1957, Fraser 1957). However, the 

book written by Holland (1975) is much responsible of the popularity of GAs. GAs  
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are inspired by natural evolution and, like any other EA, solve the optimization 

problems using standard EA operation such as inheritance, mutation, selection, and 

crossover. Simple generational genetic algorithm procedure is as follows: 

1) Select an initial set of candidate solutions, termed as the initial population. 

2) Calculate the fitness/cost of each solution in the initial population. 

3) Repeat the following steps until some termination criteria is met  

a) Select suitable pairs of parent solutions from the current population. 

b) Probabilistically perform the crossover operation on the selected parents to 

generate new offsprings. 

c) Probabilistically perform mutation for a selected set of individuals. 

d) Evaluate the fitness/cost of newly generated solutions. 

e) Select and replace the worst fit solutions in the old population with the new 

solutions.  

3.2.2 Evolutionary strategies 

The evolution strategies (ESs) were proposed and developed in sixties and seventies 

by P. Bienert, Ingo Rechenberg, Hans-Paul Schwefel and others (Rechenberg 71, 

Schwefel 74). Although ESs and GAs resemble each other in terms of general 

structure (i.e. repetition of mutation and selection procedures in a loop), they differ 

from each other significantly in terms of the selection scheme, the genetic 

representation and the adaptation of the strategy parameters (Hoffmeister 1991).The 

main difference is that, in contrast to the GAs, only the best fit individuals are 

allowed to reproduce in the ESs. The basic steps of an evolutionary strategy 

algorithm can be described as follows (Beyer Schwefel 2002) 

1) Initialize a population comprising of NP individual solutions. 

2) Perform the recombination operation on NP parents to generate Nch children. 

3) Mutate all the children, using strategy parameters. 

4) Evaluate the cost of NG Î[NP, NP + Nch] individuals.  

5) Select the best NP out of NG solutions generated using the ES, to constitute the 

population for the next generation step. 

6) Repeat the steps 3-6 until the termination criterion is met. 
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In ES either all the NP + Nch individuals can be evaluated or just the Nch children can 

be evaluated instead. Choosing NP = Nch and evaluating all the NP + Nch individual 

solutions dramatically increases the probability of getting better solutions for the next 

generation step. 

3.2.3 Evolutionary programming 

Evolutionary programming (EP) was first employed by Lawrence J. Fogel in the US 

in 1960 as an artificial intelligence (AI) learning process.  EP shares many common 

features with ES, such as the representation of search points, normally distributed 

random mutation, and more specifically, the self-adaptation of strategy parameters. 

However, the two techniques differ significantly from each other in the sense that EP 

does not have any recombination/crossover operator and it used simplistic selection 

procedures. Therefore, the performance of EP, in general, is inferior to that of ES 

(Bäck et al. 1993). EP consists of three steps, repeated until an adequate termination 

criterion is met 

1) Select/generate an appropriate number of individual solutions to serve as the 

initial population.  

2) Replicate and mutate each individual solution. The mutation can vary from minor 

to major. The degree of mutation is determined based on the extent of functional 

change imposed on the parents.  

3) Evaluate the cost of each individual solution. Probabilistically decide to select 

and retain a subset of the current population for the next generation cycle. Neither 

the size of the population nor the number of offspring solutions to be generated 

from each parent solution is fixed. 

3.2.4 Genetic programming 

Genetic programming (GP) is yet another class of EA, and is a specialization of 

genetic algorithms (GA) in which each individual can be considered a computer 

program (Banzhaf et al. 1998). It was first used by Barricelli (1954). GP is a 

systematic optimization scheme which is used to tune a number of computer 

programs, based on their ability to perform certain tasks, termed as the fitness of 
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programs. The population of programs thus progressively evolves over a series of 

generation steps.  Like most of the other EAs, the GP uses crossover and mutation 

operators to generate now computer programs from the existing programs. The basic 

steps of GP are as follows 

1) Randomly generate an initial population of computer programs. 

2) Execute the computer programs and calculate the fitness of each program. 

3) Select up to two programs, based their fitness values, to participate in the genetic 

operations (crossover/mutation). 

4) Probabilistically perform crossover and mutation operations on the selected 

programs to generate new programs. 

5) Repeat the above procedure (2-5) until the termination criterion is met. 

3.3 Advanced evolutionary algorithms 

This section discusses a few evolutionary algorithms with some advanced features, 

such as complex mutation or crossover steps and the participation of more than two 

parents in an offspring generation. In particular, two of the most recently introduced 

evolutionary algorithms are presented here 

· differential evolution algorithm 

· biogeography based optimization. 

3.3.1 Differential evolution algorithm 

The Differential evolution (DE) algorithm is an evolutionary algorithm which uses 

the distance and direction information derived from the current population to explore 

the search space (Storn and Price 1997). DE employs three control parameters for its 

operation: NP, the size of the population, F, the mutation scaling factor and CR, the 

probability of crossover. Although DE is a simple, yet powerful evolutionary 

algorithm, its optimum performance is dependent upon the fine tuning of its control 

parameters. This issue, however, can be resolved by using self adaptive variants of 

DE (Brest et al. 2006, 2007). In DE, a new solution replaces the previous solution 

only if the former is more suitable than the latter. Although it follows a greedy 
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selection schemes, DE is an extremely efficient algorithm to establish the global 

minimum and often performs better than other evolutionary algorithms.  

The general mechanism of DE resembles that of the genetic algorithms (GAs) 

(Goldberg 1989, Rolnik  and  Seleghim  2006) which constitute another popular class 

of EAs, nonetheless, it has certain distinctive features of its own. For example, the 

GA replaces a small subset of all candidate solution whereas DE attempts to replace 

all the previous solutions in each generation. Another key difference is that in GA, 

the mutation step consists of a small modification in each of the selected individual 

solution while the DE mutation comprises of a more complex arithmetic combination 

of the individuals. A comparison of the DE with other EAs including GA can be 

found in the reference (Ali and Törn 2004).  The pseudo-code of the DE algorithm 

applied to EIT boundary estimation is given below (Rashid et al. 2010c).  

 

  Generate the initial population P 

  Evaluate the fitness for each individual in P 

  while Exit condition is not satisfied do 

       for i = 1 to NP (for all population) do 

          Select uniformly distributed random numbers         

            r1 ≠ r2 ≠ r3 ≠ i 

           for c = 1 to NC do 

               if   rand[0, 1] < CR  or c = Crand then 

                   ( )iY c  = 
1
( )rX c  + F × (

2
( )rX c  − 

3
( )rX c ) 

                else 

                    ( )iY c  = ( )iX c  

              end if 

           end for 

        end for 

        for i = 1 to NP do 

             Evaluate the offspring Yi 

             if Yi is better than the parent Xi then 

                Xi = Yi 
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             end if 

        end for 

       end while 

 

Here, cN  is the number characteristic features of each individual ( )iX c  is the 

cth variable of the individual solution, Xi and Yi are the ith parent and offspring 

solutions respectively, and rand[0, 1] is a uniformly distributed random real number 

between 0 and 1. 

It should be noted that DE algorithm is very good at exhausting the global 

search space in order to establish the location of the global minimum. However, it 

fails to properly exploit the solution, which can result in convergence to a local 

minimum around the global minimum. This issue can be addressed with the use of a 

hybrid algorithm, combining DE with another algorithm such as BBO which is good 

in exploitation of the solution space (Gong et al. 2010).  

3.3.2 Biogeography based optimization 

Biogeography is the study of nature’s way of distribution of biological species. 

Several algorithms have been developed and mathematical models have been 

incorporated to describe the evolution of species over time and space. Biogeography-

based optimization (BBO) is a recently proposed application of biogeography to 

optimization problems (Simon 2008). BBO is basically a population-based heuristic 

algorithm which consists of a set of distinctive candidate solutions to a problem. The 

set of candidate solutions, referred to as “habitats”, consequently evolve to reach the 

best solution. The feasibility of each solution is measured by a habitat suitability 

index (HSI) and is characterized by the suitability index variables (SIVs). Here, SIVs 

are the independent variables while the HSI is the dependent variable. A good 

solution is expected to have a high HSI while a bad solution shall have a low HSI. 

While the HSI of a rich habitat sharing its solution with a poor habitat will remain 

unaffected, the HSI of the latter will change due to this transition.  The evolution of 

the population i.e., the candidate solutions in BBO is analogous to the concept of 

immigration and emigration. 
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Figure 3.3. Linear immigration and emigration curves for candidate solutions to 
some problem, sorted by fitness. S1 is like a low HSI island; it has a high 
immigration rate and a low emigration rate whereas S2 is like a high HSI island that 
has a low immigration rate and a high emigration rate. Smax is the maximum possible 
number of species in the habitat (adapted from Simon 2008). 
 

In figure 3.3, m  is the emigration rate, l  is the immigration rate, E is the 

maximum emigration rate, I is the maximum immigration rate and Smax is equal to 

the maximum possible number of species in the habitat. Here, S1 is like a low HSI 

island. It has a high immigration rate and a low emigration rate, as it is more likely to 

share its features with relatively poorer solutions. S2 is like a high HSI island. It has a 

low immigration rate and a high emigration rate as it is more likely to accept features 

from more suitable solutions. The emigration rate km  and the immigration rate kl  for 

the kth individual can be calculated as follows (Simon 2008) 

k
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N
m =                  (3.1) 
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N
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è ø
                (3.2) 

where max  SN º . The immigration and emigration curves in figure 3.3 are shown as 

straight lines. Although more complicated migration curves are possible, this thesis 

considers the simplest model in which the two migration curves are similar to each 

other, i.e., E = I, which consequently leads to 

S Sl m+ = E                  (3.3) 

Further details regarding the BBO algorithm can be found in the reference (Simon 

2008). 
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3.3.2.1 BBO algorithm 

Let PNH  be a group of NP habitats, also referred to as the BBO population, such that 

SIVmH Î  is a vector of size m representing a suitable solution to a problem.  A 

suitability index variable SIV  is any number that is allowed in a habitat. For 

, {1,2,..., }Pi j NÎ , the probability of modification in a habitat iH  is proportional to 

its immigration rate il  while the emigration probability jm  is proportional to the 

likelihood that the habitat jH  is the source of this modification. As stated before, it is 

assumed that il  and jm  are linear with the same maximum values, i.e., E = I. Of 

course, better optimization can be achieved if these assumptions are relaxed, 

nonetheless, at the cost of increased complexity.   

 

 

Figure 3.4. Flow chart description of BBO algorithm. 
 

Figure 3.4 gives a Flow chart description of BBO algorithm, while the basic steps 

of BBO are as follows 
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1) Initialize the BBO parameters (i.e., Smax, E, I and etc. The SIVs are mapped to the 

decision variables, while the cost functional is chosen as the habitat suitability 

index, HSI.) 

2) Initialize a set of NP potential solutions (habitats) for the problem. Also, compute 

the cost for each of the habitat in the initial population set. 

3) Compute the immigration rate l  and emigration rate m  for each solution.  

4) Probabilistically perform immigration and emigration to modify non-elite 

habitats. 

5) Perform mutation on non-elite habitats based upon the mutation probability. 

6) Calculate the cost of each new solution. 

7) Go to step 3 for the next iteration, if needed. 

 

Figure 3.5. Schematic description of a BBO migration step. The immigrating 
solution (in the middle) is accepting characteristic (decision) variables (a1, b2, c3 and 
c4, respectively) from four emigrating sol utions, scattered around it. The decision 
variable e0 belongs to the immigrating solution and is retained in the new solution. 

The concept of migration/HSI modification (step 4) can be implemented in 

several ways. This thesis retains the concept prescribed in the original BBO paper, 

known as the partial immigration-based BBO (Simon 2008, 2009a, Simon et al. 

2009b). In this approach, the migration is based on the immigration rate of each 

island and it is probabilistically decided whether or not to immigrate each SIV 

independently. The migration step is elaborated in the algorithmic way as follows 

 

a1    b1      c1        d1           e1 

a1    b2      c3        d4           e0 

a2    b2      c2        d2           e2 

a3    b3      c3        d3           e3 a4    b4      c4        d4           e4 
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for i = 1 to NP (for each habitat) 

      for c = 1 to m (m is the number of decision variables) 

 Use the probability il  to decide whether to immigrate to island iH  

 If island iH  selected for immigration 

            Randomly pick an island iH  with emigration probability im  

                       ( ) ( )i jH c H c= (replace the decision variable c in iH  with the             

                        respective  variable c in jH ) 

           end if  

      end for 

end for 

 

It should be noted that in BBO the migration steps involves more than two 

parents, i.e., the immigrating solution is probabilistically combined with a number of 

emigrating solutions to generate a new solution (see figure 3.5 for schematic 

description). 

3.4 Hybrid evolutionary algorithms 

The hybrid evolutionary algorithms usually outperform the autonomous evolutionary 

algorithms. (Tseng and Liang 2006, Grosan et al. 2007, Du et al. 2009). This section 

looks at two hybrid versions of the most recently introduced and an increasingly 

popular evolutionary algorithm, i.e. biogeography-based optimization. They are 

· biogeography-based optimization combined with evolutionary strategies  

· oppositional biogeography-based optimization 

3.4.1 Biogeography-based optimization combined with evolutionary strategies 

Du et al. (2009) have incorporated the features of evolutionary strategy (Beyer and 

Schwefel 2002) into BBO and suggested the hybrid algorithm namely biogeography-

based optimization combined with evolutionary strategy (BBO/ES). They applied the 

BBO/ES algorithm to several benchmarks and after carrying out an extensive 

statistical analysis, they concluded that the BBO/ES has statistically better 

performance as compared to that of the original BBO. The main idea behind BBO/ES 
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algorithm is that while executing the migration step, for a given generation, NP 

habitats form the previous generation remain unaltered while the 

immigration/emigration results into NP new habitats. This is in contrast to the 

original BBO algorithm in which the original habitats are modified as a result of the 

migration step. After the completion of the current generation step, NP most feasible 

habitats are retained out of a total of 2 NP (NP parents and NP children) habitats for 

the next generation. This is especially suitable for the problems for which the cost 

functional calculation is computationally expensive and accounts for the major 

portion of the running time of the algorithm. With the given approach the feasibility 

of the NP parents has already been calculated in the previous generation. Therefore, 

the burden of cost function calculation does not increase relative to the original BBO 

algorithm, resulting in a superior performance due to a larger pool of feasible 

solutions at its disposal. The key steps of the BBO/ES algorithm are as follows  

1) Initialize the BBO parameters.  

2) Initialize a set of NP habitats and compute the cost for each of the habitat in the 

initial population.  

3) Compute the immigration rate l  and emigration ratem  for each solution.  

4) Probabilistically perform immigration and emigration on NP parent habitats to 

generate NP new child habitats. 

5) Perform mutation based upon the mutation probability for each child habitat. 

6) Calculate the cost  of each child habitat. 

7) Retain the NP most feasible habitats out of a total of 2NP (NP parents and NP 

children) habitats for the next generation. Keep the elite habitats in the new 

population by replacing the least feasible habitats. 

8) Go to step 3 for the next iteration, if needed. 

3.4.2 Oppositional-biogeography-based optimization 

Ergezer et al. (2009) have incorporated the opposition-based learning (OBL) into the 

BBO algorithm to introduce the hybrid algorithm named oppositional biogeography-

based optimization (OBBO). The OBL makes use of the opposite numbers to fast 

approach the solution. It is claimed by its inventors that a number’s opposite is closer 
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to the solution as compared to a random number, thus the use of opposite numbers 

significantly reduces the search space required to reach at the correct solution. 

FurtHermore, Ergezer et al (2009) have introduced a new opposition method named 

quasi-reflection and have mathematically demonstrated that a quasi-reflected number 

has the highest expected probability of being closer to the correct solution among all 

OBL methods. Figure 3.6 illustrates the schematic description of the quasi-reflection. 

 

Figure 3.6. The schematic description of an estimated point ˆ { , }x a bÎ , its opposite 

0x̂ , its quasi-opposite 0
ˆ

qx and the quasi-reflected point ˆ
qrx , respectively. c  is the 

centre of the domain { , }a b  (adapted from Ergezer et al. 2009).  

 

Here, ˆ { , }x a bÎ   is an estimated solution, 0x̂ a b x= + -  is the opposite of x̂ , 

and 0 0
늿 rand( , )qx c x=  and 늿 rand( , )qrx c x=  are the quasi-opposite and the quasi-

reflected points of x̂ , respectively. c  is the centre of the domain { , }a b . 

3.4.2.1 OBBO algorithm 

The key steps of the OBBO algorithm for EIT boundary estimation are as follows  

1) Initialize the BBO parameters. 

2) Initialize a set of NP potential solutions (habitats) for the problem and compute 

the cost for each of the habitat in the initial population set. 

3) Compute the immigration rate l  and emigration rate m  for each candidate 

solution.  

4) Probabilistically perform immigration and emigration to modify non-elite 

habitats. 

5) Perform mutation based upon the mutation probability.  

6) Calculate the cost of each new solution. 

7) Generate a quasi-reflected opposition population and calculate the cost of each 

opposite solution. 

x̂ 0x̂a bc

ˆ
qrx

0
ˆ

qx



 

30 
 

8) Compare the BBO generated solutions (steps 3-6) with their quasi-reflected 

solutions and retain the NP most feasible solutions for the next generation. Keep 

the elite habitats in the new population by replacing the least feasible solutions. 

9) Go to step 3 for the next iteration, if needed. 

 

The migration/HSI modification (step 4) is similar to the one explained in the BBO 

algorithm. The step 7 i.e., the generation of a quasi-reflected population can be 

elaborated in the algorithmic form as follows 

 

a) Decide with a (randomly generated) jumping probability, Jr, whether to skip 

the quasi-reflection step. 

if  Jr > rand 

     skip the quasi-reflection step 

end if 

b) Calculate the minimum, maximum and the median of the current population. 

c) Generate a reflection weight wi based upon the fitness of each candidate 

solution 

d) Now execute the quasi-reflection step 

for i = 1 to NP (for each habitat) 

           for c = 1 to m  

    if Hi(c) < Median(c) 

   OHi(c) = Hi(c) + (Median(c) – Hi(c))wi 

                      else 

   OHi(c )= Median(c) + (Hi(c) – Median(c))wi 

                      end if 

                      end for         

    end for 

 

where OHi denotes the ith solution in the opposite population and Median(c) denotes 

the median of the population for the cth Fourier coefficient cg . The reflection weight 

wi for the ith individual solution Hi is calculated based upon the fitness of that 



 

31 
 

solution. A simple way to do this would be to calculate wi using the index i of the 

given solution. More specifically, wi can be calculated as follows 

 

if Hi(c) < Median(c) 

wi = (i / NP ) × rand 

else 

wi = [(NP – i) / NP] × rand  

end if 

 

where the random number rand Î  [0, 1] has been incorporated into the weight wi in 

order to generate a different quasi-reflected solution in each subsequent repeat step, 

in case an individual solution was found to be infeasible in the previous quasi-

reflection step. Since the population (before entering the quasi-reflection step) has 

been sorted with respect to the cost of each solution, the above approach will make 

sure that the (BBO generated) best fit individual solutions will generate quasi-

reflected solutions in their close proximity whereas the least fit solutions will be 

reflected to the farthest possible solutions. 
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4. OBBO applied to reconstruct organ boundaries in 

human thorax using EIT 

 
Cardiac imaging plays a significant role in the diagnosis and treatment of the 

cardiac diseases and thus remains the focus of many researchers. Although most of 

the cardiac-related research has been concentrated on the characteristics of the 

individual cardiac chambers, the estimation of the total size of the heart has its own 

physiological significance and has been studied well by many researchers (Ziegler et 

al., 1962, Cotes et al., 1980). Total heart size variations have been linked to the 

efficiency of cardiac pumping (Hoffman and Ritman, 1987, Carlsson et al., 2004, 

Carlsson et al. 2005, Steding et al., 2007). Another technique often to detect the heart 

size enlargement is the cardiothoracic ratio (Hammermeister et al. 1979, Cohn et al. 

1993, Hemingway et al. 1998, Philbin et al.  1998, Browne et al. 2004), defined as 

the transverse diameter of the heart and is usually calculated with the help of an X-

ray. Several cardiac imaging techniques exist today; Ultrasound (US), single-photon 

emission computed tomography (SPECT), computed tomography (CT) and magnetic 

resonance imaging (MRI) being the most popular and established ones. However, 

most of these techniques are expensive, complex in operation and are often invasive 

in nature.  

This chapter presents an oppositional biogeography-based optimization 

algorithm (OBBO) (Du et al. 2009) to  determine the overall size and the shape of 

human heart using 2D EIT, while simultaneously estimating the lung boundaries as 

well with an objective to reduce the estimation errors introduced due to the 

inaccurate a priori knowledge of the latter boundaries (Rashid et al. 2011). The 

estimation scenario depicts the situation in which a patient holds his/her breathe 

therefore the boundary of the lungs as well as that of the chest remain stationary. The 

organ boundaries are expressed as coefficients of truncated Fourier series and the 

conductivity distribution inside the thorax region is assumed to be known a priori. 

The proposed method is tested by doing numerical simulations using a realistic chest 

shape mesh structure, and with the help of an experimental phantom resembling 

human chest. 
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4.1 Biogeography-based optimization applied to EIT 

The basic idea behind the application of BBO to the EIT image reconstruction is that 

one can start from an initial set of perspective solutions and then refine them 

iteratively until the calculated voltages match the measured voltages with an 

acceptable error margin. The initial set of candidate solutions is usually referred to as 

the initial population and the subsequent iteration steps in the BBO algorithm are 

called generations. Within each BBO generation, a series of operations are performed 

on the candidate solutions, which include 

· an emigration/immigration step for each of the candidate solutions, 

· a mutation step for a small set of selected solutions, 

· a feasibility check for each of the solutions, 

· a cost functional evaluation step for each of the candidate solutions, and 

· a rank evaluation step.  

The detailed explanation of the BBO algorithm and its application to the EIT 

boundary estimation can be formulated as follows. 

The first and foremost step in the BBO algorithm is the generation of an 

effective initial population, i.e., PNH  with NP individuals, each of them represented 

by m number of characteristic features SIV. In the current EIT boundary estimation 

problem, an SIV represents a Fourier coefficient g  which can assume any real value. 

The initial population in BBO is usually generated by incorporating the a priori 

information for the given problem. The ability of the BBO algorithm to incorporate 

the a priori information into the algorithm is one of its most important characteristics, 

particularly useful for EIT boundary estimation, and is often necessary to achieve 

satisfactory performance. The a priori information in the EIT image reconstruction 

can be the knowledge of the general size and shape of the internal organs and the 

conductivity values of the constituent tissues.  This a priori information can easily be 

obtained from other measurement/imaging sources such as X-ray, ultrasound images 

and etc.   

The migration step in BBO can be implemented in several ways. This paper 

retains the concept prescribed in the original BBO paper, known as the partial 

immigration-based BBO (Simon 2008, 2009, Simon et al. 2009). In this approach, 
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the migration is based on the immigration rate of each island, and it is 

probabilistically decided whether or not to immigrate each SIV independently. In the 

BBO-EIT implementation, this step consists in randomly selecting a subset of the 

Fourier coefficients from the solution selected as the donor (i.e., emigrating island), 

and then replacing them in the recipient solution (i.e., immigrating island). 

As the BBO algorithm proceeds, the solutions with a high probability of 

success, i.e., the best fit solutions, tend to dominate the least fit solutions. This would 

be unfair in the sense that the solutions with a lower fitness (consequently of higher 

cost) value will not get much chance to improve even if they have more potential 

than the other solutions. In BBO, there is a remedy available for this in the form of 

mutation. The mutation step aims to keep the search space open to new solutions, 

thus maximizing the chance to reach at the best solution. This is particularly 

beneficial for the EIT boundary estimation due to the fact that the EIT measurement 

noise might suppress the feasibility of the solutions which, otherwise, would have 

been better suited. Another reason for this is that the Fourier representation of the 

boundary is a complex notation and even a small change in the coefficients may 

result in the significant improvement of a relatively weaker solution. (The mutation 

step in the current study is implemented by simply replacing the solution, which is 

selected based upon a mutation probability, with a new randomly generated solution).  

The fitness of each solution in EIT is measured by evaluating the cost 

functional (2.22), which serves as the HSI in the BBO algorithm. The sensitivity of 

the cost functional to the variations in the inverse parameters i.e., the Fourier 

coefficients g  is key to the success of any optimization algorithm and is presented in 

the beginning of the results section. 

The feasibility step ensures that each individual solution conforms to any 

constraints imposed by the given problem. In the current organ boundary estimation 

problem, it is also known a priori that the organs do not intersect each other and, of 

course, they always stay within the domain (i.e., the human chest) boundary. The 

incorporation of the prior information regarding the intersection of organs has been 

integrated in the feasibility-check step of the algorithm and will be explained later.  
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Finally, the population is ranked based upon the cost of each of the candidate 

solutions. This step is used to calculate the migration rates for each individual in the 

next step. 

4.2 OBBO applied to EIT boundary estimation 

The key steps of the OBBO algorithm for EIT boundary estimation are as follows  

1) Initialize the BBO parameters i.e., Smax, E, I and etc. The SIVs are mapped to the 

Fourier coefficients 2MN
k

qg ÎÂ , while the EIT cost functional ( )kgF  is chosen 

as the HSI. 

2) Initialize a set of NP potential solutions (habitats) for the problem. Also, compute 

the cost ( )kgF  for each of the habitat in the initial population set. 

3) Compute the immigration rate l  and emigration rate m  for each candidate 

solution.  

4) Probabilistically perform immigration and emigration to modify non-elite 

habitats. 

5) Perform mutation based upon the mutation probability.  

6) Calculate the cost ( )kgF  of each new solution. 

7) Generate a quasi-reflected opposition population and calculate the cost ( )kgF  of 

each opposite solution. 

8) Compare the BBO generated solutions (steps 3-6) with their quasi-reflected 

solutions and retain the NP most feasible solutions for the next generation. Keep 

the elite habitats in the new population by replacing the least feasible solutions. 

9) Go to step 3 for the next iteration, if needed. 

The migration/HSI modification (step 4) can be elaborated in the pseudo-

algorithmic way as follows 

 

  for i = 1 to NP (for each habitat) 

        repeatCount=0 

        feasibilityFlag = false 

        repeat while feasibilityFlag = false and repeatCount <= NP/2 



 

36 
 

            for c = 1 to m (for each of the m = 2MNq  Fourier coefficients) 

      Use the probability il  to decide whether to immigrate to habitat Hi 

       if habitat Hi selected for immigration 

                     Randomly pick an habitat Hj with emigration probability im  

                     Hi(c) = Hj(c) (replace the coefficient c in Hi with the coefficient c in Hj) 

                  end if  

            end for 

            Check the feasibility of the solution Hi  

             if Hi is feasible 

                  Set feasibilityFlag = true 

              end if    

              repeatCount = repeatCount+1 

        end repeat 

  end for 

 

while the step 7 i.e., the generation of a quasi-reflected population can be elaborated 

in the algorithmic form as follows 

 

1) Decide with a (randomly generate) jumping probability, Jr, whether to 

skip the quasi-reflection step. 

if  Jr > rand 

     skip the quasi-reflection step 

end if 

2) Calculate the minimum, maximum and the median of the current 

population. 

3) Generate a reflection weight wi based upon the fitness of each candidate 

solution 

4) Now execute the quasi-reflection step 

for i = 1 to NP (for each habitat) 

                  repeatCount=0 

                  feasibilityFlag = false 
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                  repeat while feasibilityFlag = false and repeatCount <= NP/2 

                      for c = 1 to m (for each of the m = 2MNq  Fourier coefficients) 

                            if Hi(c) < Median(c) 

                                OHi(c) = Hi(c) + (Median(c) - Hi(c))wi 

                            else 

                                OHi(c )= Median(c) + (Hi(c) - Median(c))wi 

                            end if 

                      end for 

                      Check the feasibility of the solution OHi  

                      if OHi is feasible 

                            Set feasibilityFlag = true 

                      end if    

                      repeatCount = repeatCount+1 

      end repeat  

end for 

 

The migration and opposition jumping steps have already been discussed in the 

chapter 3. Notice the inclusion of repeat statement inside the outermost loops, for 

both the migration and the opposition population jumping steps, respectively. This 

statement has been incorporated in order to ensure the feasibility of the OBBO-

generated solutions. (A solution is assumed to be feasible if the organs do not 

intersect each other and they stay within the domain.) This statement implies that the 

immigration/opposition population jumping step is attempted repetitively until the 

new solution is found to be feasible. However, in order to avoid an infinite loop, the 

step is only repeated for NP/2, times, i.e., half of the population size (chosen 

arbitrarily). In the case of migration step, if a solution is still infeasible after NP/2 

attempts, it is left up to the next stage i.e., the opposite population jumping step, to 

resolve this issue. If the individual solution is still infeasible after NP/2 opposite 

population jumping attempts, the OBBO-generated solution OHi is then replaced 

with a new randomly generated feasible OHi. This last step, however, is expected to 

take place very infrequently. Although the feasibility step is very effective in 

enforcing the a priori information, its premature introduction (i.e., avoiding the 
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organ crossing scenarios) in the case of organ boundary estimation may result in 

losing the diversity of the population at an early stage of the BBO algorithm. More 

specifically there may be one or more candidate solutions which offer excellent 

estimation of the lung boundaries but the estimated heart boundary may be dislocated 

to intersect with one of the lungs. These solutions will inherit from other solutions in 

the due course of OBBO generations and can potentially become the best solution in 

the end. In order to avert this scenario, the feasibility enforcement step in the current 

implementation of the OBBO algorithm has been postponed until the second last 

generation. Since the last two iteration steps are deemed enough to enforce the 

feasibility of the solutions, the possibility of an unexpected infeasible final solution 

has been effectively eliminated. Moreover, a 25% penalty has been added to the cost 

of the infeasible solutions in the early generations before they are subsequently 

discarded or replaced by the feasible solutions. 

An alternative approach to enforce the feasibility of the solution could have 

been reverting the infeasible solution to the original solution and consequently 

attempting the migration and the quasi-reflection for that particular solution in the 

next generation, if any. However, the latter approach is bound to slow down the 

convergence process.  

An important characteristic of OBBO is the addition of dynamic domain 

scaling to accelerate the estimation process. The dynamic domain scaling means that 

the quasi-reflected population is generated in the same solution space as the current 

(BBO generated) population. This has the obvious advantage of shrinking the 

solution space with each iteration step, thus leading to a quicker convergence. The 

disadvantage, however, is the possibility of a premature convergence to the wrong 

local minimum. The remedy for this is already available in the form of mutation step. 

It should be reminded that the mutation step had been skipped in the original version 

of OBBO (Ergezer et al. 2009), however, the authors have included it for in order to 

keep the population diversity intact. It should also be noted that the introduction of 

the opposite population inevitably leads to extra computational burden within each 

iteration step. However, since OBBO converges much faster than BBO, the former 

requires substantially lesser number of generation steps to reach the best solution as 

compared to the later.  
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Even with all the tools available in OBBO to accelerate the convergence 

process, one would like to keep the best solutions at hand, always with an option to 

revert back to them in case the migration/mutation/opposition jumping steps malign 

the original solution beyond repair. This step has been incorporated into the OBBO 

algorithm in the form of elitism (in steps 4 and 8). In this step, a predefined number 

of the best fit solutions (referred to as the elitism count) are retained at the end of 

each generation step and replace the worst fit solutions before the next generation 

step. The mutation and elitism schemes have been explained well in the literature 

(Simon 2008, Simon et al. 2009). 

4.3 Results and discussions 

4.3.1 Numerical results 

This section presents a detailed analysis of the proposed OBBO-based EIT boundary 

estimation scheme using numerical simulations. In order to carry out the numerical 

simulations, we have chosen two test cases. In the first test case, a big sized heart 

surrounded by two lungs has been considered, while in the second case a small heart 

along with the two lungs is considered. The estimation scenario portrays the situation 

in which a patient holds his/her breathe so that the chest and the lung boundaries are 

fixed while we concentrate on the correct estimation of the size and the location of 

the heart. A chest-shaped mesh structure resembling the cross section of actual 

human torso is considered to verify the performance of the proposed method. The 

radius of the chest mesh structure is 16 cm in the x-direction and 13 cm in the y-

direction. In order to simulate the true voltage measurements, a forward finite 

element mesh with true boundaries of the heart and the lungs embedded in the mesh 

structure has been used. Next, to solve the inverse problem, an inhomogeneous mesh 

structure, concentrated in the regions of the heart and lung boundaries has been used. 

The inhomogeneous forward mesh structure minimizes the errors introduced in the 

calculated voltages due to the boundary crossing elements, for which an area 

averaging technique has to be used. On the other hand, the inhomogeneous inverse 

mesh structure is solely introduced to speed up the calculation time, using a coarse 

mesh of elements in the regions where an organ boundary is unlikely to be found. 
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This is justifiable since the region of interest, i.e., the region in which the lungs and 

the heart are located, is assumed to be well known. Such a speedup is also very 

important since the time spent on the cost functional calculation in EIT (which in 

turn depends upon the size of the FEM mesh structure) accounts for the major 

portion of the running time of this optimization algorithm. The mesh used to solve 

the forward problem consists of 4372 triangular elements with 2315 nodes. The mesh 

used for the inverse problem is composed of 3610 triangular elements with 1934 

nodes. The mesh structures are shown in figure 4.1. Even though the shape of the 

forward and inverse inhomogeneous mesh structures resemble each other, a close 

look into the mesh structure makes it clear that the constituent triangular elements in 

the two mesh structures are totally different from each other. The different mesh 

structure for the forward and the inverse solvers was used to avoid the so called 

inverse crime (Wirgin 2004). The authors have also analyzed the performance of the 

OBBO algorithm with the use of a homogenous inverse mesh structure, and the 

results have been summarized at the end of this section. The simulations have been 

carried out on an AMD Athlon Core 2 Duo machine. Open source libraries providing 

the basic framework of the BBO algorithm (Simon 2009) and the FEM-based EIT 

forward solver EIDORS-2D (Vauhkonen et al. 2001) have been used in this work. 

MATLAB random number generators are used to generate the uniforms distributions 

used as the initial population for OBBO. 

 
 

 

Figure 4.1. Forward FEM mesh (left) and inverse FEM mesh (right) structures. The 
forward mesh structure has the boundaries of the heart, the lungs and the backbone 
embedded into it, while the inverse mesh structure is inhomogeneous concentrated in 
the regions of interest. 
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It should be further noted that the number of Fourier coefficients required to 

express the organ boundaries is not exactly known. Therefore, a different number of 

the Fourier coefficients are used in the inverse problem than the number used while 

generating the true data. In this thesis, we use 7Nq =  to express the true heart as 

well as the true lung boundaries. For the inverse problem, the heart is assumed to 

have an elliptic boundary ( 3Nq = ) while the two lungs have non-elliptic boundaries 

( 5Nq = ). Clinically correct conductivities are assigned to the region, i.e., the 

conductivities of the heart, lungs and the background are 0.65 S/m, 0.12 S/m and 

0.18 S/m respectively (Faes et al. 1999, Witsoe and Kinnen 1967). 

An effective current injection protocol is vital to achieve good convergence in 

the EIT image reconstruction. Kim et al. (2005) have presented a comparison of 

various current injection schemes in EIT. They concluded that the trigonometric 

current pattern with lower modes performs better than other types of current patterns. 

In this study, the trigonometric current injection patterns are injected into 32 

electrodes attached to the chest mesh structure. The complete electrode model with 

effective contact impedance of 0.005 Ωcm2 has been used to enforce the boundary 

conditions for the EIT problem. In EIT, the voltage measurements are often noisy in 

nature. Therefore, zero-mean Gaussian noise with a standard deviation of one percent 

relative to the corresponding measured voltages has been added to the observed 

voltage data to simulate realistic measurements.  

As explained before, the OBBO algorithm attempts to reconstruct the 

boundaries of the organs by minimization the cost functional (2.22). The 

performance of the algorithm thus depends upon the sensitivity of the cost functional 

to the variations in the conductivity distribution (or more specifically the variations 

in the geometry of the organs, in the current case) inside the domain with the given 

current injection mechanism. Therefore, as a first step, the sensitivity of the cost 

functional has been analyzed by performing series of translations and scaling of the 

organ boundaries, and then calculating the VoltageRMSE  for each of the variations. 
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The response of the cost functional to these variations is then plotted in the graphical 

format in figure 4.2 and figure 4.3. A similar approach has been considered in other 

related studies (de Munck et al. 2000, Rolnik Seleghim Jr P 2006). The global 

minimum in the case of scaling errors in all the organs is reasonable prominent, and 

is generally located near the true boundary locations. However, in the case of 

translation errors, global minimum sometimes resides quite away from the true 

boundary location, and may not be easily distinguishable from the local minima. 

Also, most of the RMSE values in this case stay low, making it more difficult for a 

location search algorithm to detect the true boundary location. This problem is more 

critical in the case of the heart boundary location. This seems to suggest that the 

sensitivity of the EIT measurements is relatively low to the variations in the location 

of the organs, especially in the case of heart. The heart is located located relatively 

away from the outside boundary to which the electrodes have been attached. 

Moreover, heart is more conductive compared to the background and is surrounded 

by the lungs which are even more resistive than the background. All these factors 

make the sensitivity of the EIT boundary measurements low with respect to the 

variations in the heart boundary. The problem becomes even more critical for the 

smaller heart which is also further away from the boundary electrodes. 
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Figure 4.2. Voltage RMSE for different location errors in the organ boundaries. (a) 
Voltage RMSE  plotted against x-translation errors. (b) Voltage RMSE  plotted 
against y-translation errors. (c) Voltage RMSE  plotted against x & y- translation 
errors. 
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(d) 

Figure 4.3.  Voltage RMSE for different scaling errors in the organ boundaries. (a) 
Voltage RMSE  plotted against x-scaling errors. (b) Voltage RMSE plotted against y-
scaling errors. (c) Voltage RMSE  plotted against x & y- translation errors. (d) 
Voltage RMSE plotted against due to simultaneous expansion/shrinking of different 
organs.  
 

An important consideration in the OBBO algorithm is the selection of the initial 

population. The size and the range of the initial population are problem dependent 

and strongly affect the performance of the algorithm. In the EIT boundary estimation, 

this is one of the most critical decisions in order to achieve an effective solution due 

to the high computational requirements of the underlying algorithm. The initial 

population size and the range of the Fourier coefficients to generate the initial set of 

feasible solutions should be chosen wisely in order to achieve a fast convergence. For 

the first set of simulations, it is assumed that the approximate shape and location of 

the true organs are known a priori. This information can easily be obtained from the 

statistical data gathered from readily available chest images such as the MRI scans 

and etc. It can then be utilized to identify a region of interest (ROI) and an initial set 
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of population concentrated in the ROI can be generated. Such an approach 

significantly reduces the search space required by the OBBO algorithm to reach the 

final solution, requiring a much smaller population size, thus reducing the running 

time and improving the performance of the algorithm.  

A uniformly distributed initial population comprising of 50 habitats has been 

chosen for this study. The uniform distribution has been generated such that the 

Fourier coefficients representing the radii and the locations (x- and y-coordinates) of 

the organs are distributed with a maximum deviation of 2 cm from their respective 

mean values. The mean values, as in the case of the lungs, are at an absolute distance 

of 0.5 cm from their respective best true values. In the case of the heart, the mean of 

the uniformly distributed initial population (for location and size parameters) is 

chosen as near the near average of the respective Fourier coefficients for the two 

heart sizes. The rest of the Fourier coefficients, which express the shape and 

orientation of the organ boundaries, have a maximum deviation of 1 cm from the 

respective mean values. The initial population has been selected based upon the 

assumption that a good prior knowledge of the general shape of the organs is 

available, with a relatively poor knowledge of their size and the location. Another 

important parameter affecting the performance of the OBBO algorithm is the 

generation count, i.e., the maximum number iterations for the main algorithm. The 

selection of the generation count is problem dependent and also depends upon the 

size and the range of initial set of population. The statistical nature of OBBO is such 

that the initial population transforms towards a flat population (with all individual 

solutions having the same value) with each iteration step. In general, as the 

population size increases, a higher number of iterations are needed to reach a uniform 

population (Simon 2009). However, we are interested in only one good solution and 

a uniform population is not our final goal at all. Therefore, considering the high 

computational requirement, we have chosen an absolute generation count of 10 to 

reach the final solution. Although better performance can be achieved for a higher 

generation count, the algorithm exhibits satisfactory performance with this 

generation count for a carefully selected population. The value of the OBBO jumping 

probability, Jr, has been fixed as 0.6 throughout the simulations, while an elitism 

count of two has been used. In order to verify the robustness of the proposed 
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algorithm Monte Carlo type simulations of h  = 20 runs (each run with a different 

noise seed, and a different set of initial population) was performed.  Five statistical 

parameters, namely the mean ĝ , mean absolute error MAEg , the error standard 

deviation es ,  the mean error squared gMES , and the mean root mean square error 

RMSEg  of the estimated Fourier coefficients for the numerical scenario have been 

reported in Tables 4.1-4.4. MAEg  and RMSEg  give provide a measure of the 

estimation error with respect to the corresponding true values. The error standard 

deviation es  calculates the dispersion of the error ie  in the estimated parameters, 

whereas gMES  is the square of the bias of the error (Bendat and Piersol 1971). The 

statistical formulae for each of these parameters are given as follows 
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where ĝ  is the estimated values, while trueg  is the true value of the respective Fourier 

coefficient and. A comprehensive analysis of the OBBO algorithm with the help of 

aforementioned statistical parameters follows here. 
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Figure 4.4.  Estimated organ boundaries in a simulated human chest cross section 
using OBBO and mNR. The solid line is used to draw the true organ boundaries 
while the broken line is used to show the (mean) estimated boundaries using OBBO 
(left) and mNR (right). The results in the top row are for the big heart case while the 
bottom results are for small heart. 
 

The statistical parameters reported in the Tables 4.1-4.4 provide useful information 

regarding the stability and accuracy of the algorithm. Especially, the performance of 

the algorithm with respect to the Fourier coefficients accounting for the size and the 

location of the organs should be analyzed very carefully. (The coefficients 

1

1
xg , 1

1
yg , 2

1
xg , 2

1
yg , 3

1
xg  and 3

1
yg  correspond to the x- and y-coordinates of the Lung1, 

Lung2 and Heart respectively, while the coefficients 1

2
xg , 1

3
yg , 2

2
xg , 2

3
yg , 3

2
xg  and 

3

3
yg correspond to the radii in the x- and y- directions, respectively, of these organs.) 

The statistical parameters ĝ , MAEg  , MES g  and es  have thus only been calculated 

for the location and size estimates while the RMSEg  has been calculated for the 

aggregated Fourier coefficients for each of the organ. As reported in Tables 4.2 and 

4.4, 
1LungRMSE  , 

2LungRMSE  and HeartRMSE   are the aggregated RMSEg  values, 

calculated for Lung1, Lung2 and Heart, respectively, while the OverallRMSE  
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corresponds to the mean RMSE of all the coefficients for the three organs, aggregated 

together. The mean Fourier boundaries are plotted in the graphical format in figure 

4.4. 

Table 4.1. Simulation scenario 1 (big heart case): mean ĝ , error standard deviation 

es , mean error squared MES g and the mean absolute deviation MAEg of the Fourier 

coefficients estimated using OBBO and mNR.  
Estimated mean, standard deviation and mean absolute deviation 

OBBO mNR 
Fourier 

coeff. 

True 

value 
ĝ  MAEg  MES g  es  ĝ  MAEg  MES g  es  

1

1g
x  -6.00 -6.2017 0.3407 0.0407 0.3535 - 7.5546 3.2535 2.4167 3.8112 

1

2g
x  4.40 4.5711 0.2828 0.0293 0.3254 0.1793 4.3844 17.8141 4.2363 

1

1g
y  -0.50 0.2049 0.7645 0.4969 0.4395 2.4766 5.3897 8.8600 6.6539 

1

3g
y  9.20 9.2249 0.2357 0.0006 0.2943 11.1994 6.8828 3.9977 8.9175 

2

1g
x  7.70 7.6448 0.1405 0.0030 0.1733 9.5220 0.7800 3.3197 3.9325 

2

2g
x  3.60 3.6301 0.1979 0.0009 0.2528 -0.6465 4.4758 18.0325 4.1793 

2

1g
y  -1.20 -0.9609 0.3817 0.0572 0.4074 -3.6869 4.2339 6.1848 4.8577 

2

3g
y  8.60 8.7598 0.4213 0.0256 0.5538 6.3621 6.4916 5.0081 8.1106 

3

1g
x  1.20 1.5079 0.3577 0.0948 0.2881 2.0442 1.6979 0.7127 1.7829 

3

2g
x  5.20 4.9927 0.2234 0.0430 0.2385 5.6400 1.6490 0.1936 1.9407 

3

1g
y  -5.80 -5.9049 0.1800 0.0110 0.2224 -8.7596 3.1838 8.7591 3.3121 

3

3g
y  5.20 4.8659 0.3584 0.1116 0.2685 1.0969 4.4203 16.8357 4.4177 

 

Table 4.2. Simulation scenario 1 (big heart case): mean RMSE of the aggregated 
Fourier coefficients for the Lung1, Lung2 and Heart, respectively, estimated using 
OBBO and mNR. 

Mean RMSE values of the aggregated Fourier coefficients 
 

OBBO mNR 

1LungRMSE  0.0959 1.4502 

2LungRMSE  0.0757 1.5309 

HeartRMSE  0.0865 0.7361 

OverallRMSE  0.0882 1.4296 
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Table 4.3. Simulation scenario 2 (small heart case): mean ĝ , error standard 

deviation es , mean error squared MES g and the mean absolute deviation MAEg of 

the Fourier coefficients estimated using OBBO and mNR.  
Estimated mean, standard deviation and mean absolute deviation 

OBBO mNR 
Fourier 

coeff. 

True 

value 
ĝ  MAEg  MES g  es  ĝ  MAEg  MES g  es  

1

1g
x  -6.00 -5.5043 0.4957 0.2457 0.1918 -5.6139 1.8902 0.1491 2.4314 

1

2g
x  4.40 4.9875 0.5875 0.3451 0.1624 3.7160 1.8566 0.4679 2.6065 

1

1g
y  -0.50 0.3703 0.8703 0.7575 0.3754 0.8105 2.8396 1.7175 3.3287 

1

3g
y

 9.20 9.5993 0.5044 0.1594 0.3855 9.2064 3.5929 0 4.4820 

2

1g
x  7.70 7.2773 0.4227 0.1787 0.2099 7.8412 2.8949 0.0199 3.6862 

2

2g
x  3.60 4.0498 0.4604 0.2024 0.2493 1.2483 5.2611 5.5304 6.0190 

2

1g
y  -1.20 -0.8913 0.4120 0.0953 0.3923 -1.3666 5.0833 0.0278 5.8828 

2

3g
y  8.60 8.7594 0.2853 0.0254 0.3074 5.9963 4.4964 6.7793 4.5839 

3

1g
x  1.20 1.2287 0.2771 0.0008 0.3591 1.1320 3.6216 0.0046 4.7901 

3

2g
x  3.50 3.7496 0.3074 0.0623 0.2484 5.6548 2.7577 4.6430 2.9905 

3

1g
y  -5.80 -5.1661 0.6339 0.4019 0.3504 -10.468 4.8197 21.7914 4.5548 

3

3g
y  3.50 3.9980 0.5205 0.2480 0.3694 -2.3314 6.3733 34.0053 5.0113 

 

Table 4.4. Simulation scenario 2 (small heart case): mean RMSE of the aggregated 
Fourier coefficients for the Lung1, Lung2 and Heart, respectively, estimated using 
OBBO and mNR. 

Mean RMSE values of the aggregated Fourier coefficients 
 

OBBO mNR 

1LungRMSE  0.1134 0.8487 

2LungRMSE  0.1017 1.2192 

HeartRMSE  0.1508 1.4140 

OverallRMSE  0.1180 1.1670 

 

In order to do a comparative analysis, mNR, which is a conventional algorithm 

used for the static imaging, was also used to solve the same problem. The mNR has 

also been repeated for h  = 20 runs and the same statistical parameters, as for OBBO, 
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have been gathered. In contrast to the OBBO algorithm, mNR requires a single initial 

guess for each run. However, the initial guess for the mNR method is different for 

each subsequent run, by randomly choosing a value for the Fourier coefficients 

representing the radii and the locations (x- and y-coordinates) of the organs from a 

uniform distribution with a standard deviation of 1.0 centred at its respective true 

value, while the rest of the Fourier coefficients have a maximum deviation of 0.5 cm 

from the respective mean values. Note that this initial guess is chosen from a 

distribution which is closer to the true value as compared to that of OBBO. Even 

with a relatively closer initial guess the estimated results for mNR have been very 

poor (see figure 4.4). The RMSEg , es , and MAEg  values for mNR are very high 

compared to those of OBBO. The major reason behind the poor performance of the 

mNR algorithm is that it requires the calculation of the Jacobian for all the 

coefficients. The Jacobian for the higher order coefficients is extremely sensitive to 

the initial guess, and even a small deviation from the respective true value leads to 

large deviations in the results. It should be further noted that when using mNR for 

this case, the estimation goes out of bound when the solution is iterated, 

consequently leading to a meaningless reconstructed results. Therefore, for 

comparison purposes, all the reconstructed results shown in the paper are using one-

step mNR.  

The mean estimated boundaries using OBBO are much closer to the true 

boundaries. It can easily be observed from the results that the proposed estimation 

algorithm can clearly distinguish between the two heart sizes, besides the same initial 

population chosen for both the cases. The values of the error calculated in terms of 

MAEg , MES g  and es  is very low for OBBO as compared to that of mNR. Also, for 

OBBO the relative magnitude of error for most of the Fourier coefficients compared 

to their original values is reasonably low. The relative magnitude of the error 

compared to the respective true values in the case of some of the Fourier coefficients, 

for example the coefficient corresponding to a few location parameters, is a bit high.  
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Table 4.5. Big heart case: different sets of uniformly-distributed initial populations 
to verify the robustness of OBBO algorithm to a varying range of initial guess. 

Range of Fourier coefficients for the uniformly distributed initial population No.  

Location parameters 

1

1
xg , 1

1
yg , 2

1
xg , 2

1
yg , 3

1
xg , 3

1
yg  

Radius Parameters 

1

2
xg , 1

3
yg , 2

2
xg , 2

3
yg , 3

2
xg , 3

3
yg  

All other parameters 

1

3
xg , 1

4
xg , 1

5
xg , 1

2
yg , 1

4
yg , 

1

5
yg , 2

3
xg , 2

4
xg , 2

5
xg , 2

2
yg , 

2

4
yg , 2

5
yg 3

3
xg , 3

2
yg  

1 1.5 2.5true trueg g g- £ £ +  1.5 2.5true trueg g g- £ £ +  0.9 1.1true trueg g g- £ £ +  

2 2 3true trueg g g- £ £ +  2 3true trueg g g- £ £ +  1 1.5true trueg g g- £ £ +  

3 2.5 3.5true trueg g g- £ £ +  2.5 3.5true trueg g g- £ £ +  1.25 1.75true trueg g g- £ £ +  

4 3 4true trueg g g- £ £ +  3 4true trueg g g- £ £ +  1.5 2true trueg g g- £ £ +  

5 3.5 4.5true trueg g g- £ £ +  3.5 4.5true trueg g g- £ £ +  1.75 2.25true trueg g g- £ £ +  

6 4 5true trueg g g- £ £ +  4 5true trueg g g- £ £ +  2 2.5true trueg g g- £ £ +  

7 4.5 5.5true trueg g g- £ £ +  4.5 5.5true trueg g g- £ £ +  2.25 2.75true trueg g g- £ £ +  

 

This fact is also reflected in the aggregated RMSEg  values, which provides a 

popular measure of the relative error with respect to the true value. This is not 

entirely unexpected. In fact, the comparison of the magnitude of the error with 

respect to the respective true values does not truly reflect the performance of the 

algorithm, especially in the case of location parameters in which the true value 

depends upon the choice of the origin of the coordinates. It would be more 

meaningful to compare the magnitude of the error with respect to the size of the 

respective organ or the size of the domain. For instance, it has been calculated that 

the magnitude of the calculated error ( MAEg , MES g  and es ) for all of the 

coefficients estimated by OBBO normalized with respect to the chest radius stays 

within 0.05; in fact, most of the normalized values are within 0.03. On the other hand, 

the deviations for the parameters estimated by mNR are significantly higher. In fact, 

the results demonstrate that the mNR algorithm is not a suitable reconstruction 

algorithm in the case of multiple non-elliptic boundaries, very close to each other. 

The shortcoming of the OBBO algorithm as compared to mNR is its computational 

complexity. With the current selection of OBBO population, the average running 
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time of an OBBO generation is approximately ten times of that of a single iteration in 

mNR. Although the order of running time is quite high, the OBBO algorithm is 

robust to initial guess and outperforms OBBO algorithm, which justifies its use here. 

Moreover, the nature of OBBO is such that the migration/mutation/opposition 

jumping steps for each candidate solution can be executed independent of each other. 

This flexibility makes it a perfect algorithm to be run in parallel mode. The 

availability of computers with high computational power and offering parallelism, 

both at the hardware and the software levels, reduces the significance of high 

computational complexity of the OBBO algorithm. 

The plotted results and the respective statistical analysis verify the performance 

of OBBO for the scenario when a good a priori knowledge of the size, location and 

shape of the organs is available and thus the initial population has been generated 

relatively close to the true values. In order to verify the robustness of the algorithm 

further analysis of the algorithm needs to be done, when the initial population has 

been generated with more flexibility, depicting the scenario when the prior 

knowledge of size, location and shape is not so correct. More specifically, the 

performance of the OBBO algorithm has been tested in the case of big heart for 

seven different types of initial population distribution. The first population is the 

same for which a detailed statistical analysis has already been presented, and it is 

only included here in for its comparative purposes. The range of the Fourier 

coefficients chosen for each of the uniformly distributed initial population has been 

given in Table 6.5 and the results have been plotted in figure 4.5. Notice the mean of 

the uniform distributions for all the initial populations has been chosen away from 

the respective true values. This measure has been taken in order to generate an 

unbiased initial population distribution, considering the fact that exact knowledge of 

the true values is not available. Another thing to consider here is that the limiting 

values given in Table 6.5 do not give the absolute range of the initial populations; 

instead these are the ranges from which the initial population distributions are chosen. 

The actual ranges of the initial sets of Fourier coefficients, especially for the widely 

distributed populations, may be smaller given the fact that the each candidate 

solution in the initial population is subject to a well known a priori constraint that all 

the organs should stay within the domain. 
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(h) 

Figure 4.5. RMSEg  for different sets of initial populations. (a) – (g) show the 

RMSEg  values calculated for all three organs, plotted iteratively for each OBBO 

generation. (h) summarizes the best RMSEg  values, as obtained at the end of the 

10th OBBO generation, plotted against each set of the initial population. 
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Figure 4.6. RMSEg  for different conductivity errors. (a)-(d) plot the best RMSEg  

values, as obtained at the end of OBBO generations, for different (percentage) errors 
in the conductivity of Lung1, Lung2, Heart, and all the three organs, respectively. 
 

The plots in figure 4.5(a)–(g) show the iterative progress of RMSEg  values 

calculated for all three organs, throughout the OBBO generations for seven different 

kinds of initial population distributions. RMSEg  values for all these cases have been 

calculated by repeating the execution of the algorithm for 20 times, and then 

calculating and plotting the average values for each iteration step individually. The 

final RMSEg  values, calculated at the end of OBBO generations, have been 

summarized for all the initial population sets in figure 4.5(h). As expected, the 

estimation performance of OBBO deteriorates as the range of initial population 

distribution increases with respect to the true values. It has been emphasized time and 

again that the EIT boundary estimation problem (especially the non-elliptic 

boundaries so close to each other) is extremely hard to be solved and the lack of a 



 

54 
 

good a priori knowledge significantly affects the performance of any optimization 

algorithm selected in this case. In fact, the conventional gradient-based inverse 

algorithms, such as mNR, fail to solve this problem if the initial guess is not very 

close to the true target. OBBO, on the other hand, still offers a solution (though a 

weak one) even for a quite far away initial population distribution. The progressive 

decline of RMSEg  values for all the population distributions clearly shows the 

effectiveness of the OBBO in reaching the global minimum.  
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Figure 4.7. Estimated size of the organs for different conductivity errors, expressed 

as Fourier coefficients corresponding to their radii. (a) plots the radii 1

2
xg  and 1

3
yg of 

Lung1, (b) plots the radii 2

2
xg  and 2

3
yg of Lung2, (c) plots the radii 3

2
xg  and 3

3
yg  of 

Heart and (d) plots the radii of all the organs, against different (percentage) errors in 
the conductivity of the respective organs. 
 
Another test to verify the performance of OBBO is to check its robustness against the 

conductivity errors, i.e., when the a priori knowledge of the conductivity of the 
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organs is inaccurate. RMSEg values have been plotted for different conductivity 

errors, calculated as percentage errors with respect to the true conductivity values 

(see figure 4.6). The RMSEg  values for each of these cases have been obtained by 

repeating the execution of the algorithm for 10 times, and then plotting the mean of 

the final RMSEg  values obtained so. It can clearly be observed that the RMSEg  

values increase with the increase in the conductivity error. This is not unexpected at 

all. It is to be reminded that the conductivity of the lungs is less than that of the 

background, while the reverse is true for the conductivity of the heart. Therefore, if 

the given conductivity of a lung is larger than the respective true value, it results in 

the overestimation of its size due the presence of a more conductive region around it, 

whereas a smaller given conductivity value results in the underestimation its size (de 

Munck et al. 2000). Conversely, a larger a priori conductivity of the heart results in 

the underestimation of its size and a smaller given conductivity value, in turn, results 

in the overestimation of the heart size due to the presence of a less conductive region 

around it. The effect of the conductivity errors on the size of the organs, expressed as 

Fourier coefficients corresponding to their radii in the x and y directions respectively, 

has been plotted in figure 4.7. In general, the error (expressed, either as RMSEg , or 

in terms of the size of the organ) is reasonably small if the a priori conductivity error 

is within 20% of the respective true value. The smaller HeartRMSE  values for the 

smaller a priori conductivity of the heart seem to suggest that the estimation 

performance OBBO increases for the heart shape. However, incidentally the mean 

estimated size of the heart for the correct conductivity is slightly smaller than its true 

size. Therefore an overestimation of the heart size, due to the reasons explained 

before, happens to match closely with the true size. 

Finally, all the simulations results presented so far have been obtained using 

an inhomogeneous inverse mesh structure, shown in figure 4.1. In order to further 

verify the robustness of the OBBO-EIT algorithm against different mesh structures, 

the authors have also performed a set of simulations when a homogeneous inverse 

mesh structures is used instead. The homogeneous mesh is composed of 4864 

triangular elements with 2561 nodes. These simulations were performed for the big-

heart numerical scenario and the uniform distribution marked as population 1 in 
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Table 6.5 is used as the initial population distribution. The performance of OBBO 

was found to be independent of the type of mesh structure. However, it was noted 

that the density of the finite elements in the regions of interest, where the boundaries 

are located, significantly affects the performance of the algorithm. In the current 

selection of the homogenous mesh structure, a higher number of total mesh elements 

is selected in order to keep the density of the elements in the regions of interest, close 

to the inhomogeneous mesh structure (in which case the density of the finite 

elements was more in the region of interest as compared to the other regions). 

However, a 20% rise in the mean running time of the algorithm in this case, as 

compared to the case when an inhomogeneous mesh structure was used, has been 

noticed. 

4.3.2 Experimental results 

This section analyses the performance of the proposed EIT boundary estimation 

scheme using 2D EIT measurement data obtained from a chest-type experimental 

setup with two lungs and a heart. The experiments have been performed using the 

ACT3 system at Electrical Impedance Imaging lab, RPI, USA. The radius of the 

chest phantom is 15 cm with 32 electrodes, each of 2.54 cm width, attached around 

the surface of the phantom. The saline level in the phantom is 2.3 cm and the 

amplitude of the injected current is 0.5 mA. Note that EIT is essentially a 3D 

phenomenon, whereas the current results have been obtained using a 2D EIT 

measurement  setup in which the problem domain is assumed to be a single 

measurement plane. 3D EIT is a complex problem and is computationally expensive 

(Chateaux and Nadi 2000). Since the physical electrodes are 3-dimensional, the 

current injected into the electrodes is not limited to a single measurement plane and 

is subject to variable measurement noise arising due to the inhomogeneities present 

around the measurement plane. In the 2D formulation, the magnitude of the current is 

adjusted by dividing it with the electrode height (or more specifically the saline level 

in the phantom) resulting in further measurement error. The quality of the 2D EIT 

image can be improved by increasing the number of measurement electrodes, 

introducing several layers of electrode planes (Gadd 1992), or by using the 3D 
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measurements and then correcting them with the 2D and 3D calculated 

measurements (Ider 1990). 

Similar to the simulation scenarios, trigonometric current pattern has been used 

and two different heart sizes have been considered. The big heart is 9.4 cm wide and 

10 cm long, while the small heart has a width of 5.5 cm and a length of 6.1 cm (see 

figure 4.8). The background in chest phantom is composed of saline solution with a 

conductivity of 0.64 S/m while the lungs and the heart are constructed using agar 

with a conductivity of 0.40 S/m and 1.51 S/m respectively. Only the real components 

of the measured admittivity have been considered because the imaginary part of the 

admittivity of the agar is negligible and can be considered as part of measurement 

noise.  
 

 

a 

 

b 

Figure 4.8.  Chest-like EIT experimental setup: (a) Two lungs and a big heart. (b) 
Two lungs and a small heart. The experiments have been performed using the ACT3 
system at Electrical Impedance Imaging lab, RPI, USA. 
 

Note that the conductivity values of the experimental setup are different from the 

clinically true values considered for the numerical scenarios. This is because of the 

difficulty of constructing exactly same conductivity values using the experimental 

setup. However, the contrast ratio of the organs and the background resembles 

closely to that of clinically true values. It should be reminded that in EIT 

reconstruction, the contrast ratio, rather than the actual conductivity values, 

determines the performance of the reconstruction algorithm. 
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Figure 4.9. The inverse mesh structure used with the experimental setup. It is 
inhomogeneous concentrated in the regions of interest.  

 

The mesh structure used to solve the inverse problem for the experimental 

scenarios, and all the OBBO related parameters, such as the initial population 

selection and the generation counts, have been chosen in the same way as in the case 

of the numerical scenarios. The only difference is that there is no forward mesh 

structure this time, since the true voltage data has been obtained through 

experimental measurements. The mesh used for the inverse problem is composed of 

2894 triangular elements with 1512 nodes and is shown in figure 4.9. The 

performance of OBBO in the case of experimental scenarios is also compared with 

that of mNR and the results have been plotted in figure 4.10, while the statistical 

analysis of the results has been presented in Tables 4.6 – 4.9. Note that the true 

values of the Fourier coefficients to express the organ boundaries in the experimental 

scenario are not exactly known. Therefore, prior to the application of OBBO on the 

experimental data, best approximate of the true values is calculated using a trial-and-

error approach, and then the statistical parameters, namely, ĝ , MAEg  , MES g  es , 

and RMSEg are calculated with respect to the best true values. Clearly, the 

experimental results confirm the robustness of the proposed estimation scheme to 

estimate the organ boundaries inside a human chest-like structure. 

Similar to the numerical scenario, the performance of the OBBO algorithm for 

the first experimental scenario (big heart case) has been tested for seven different 

types of initial population distribution, summarized in Table 5, and the progress of 

RMSEg  throughout the OBBO generations has been plotted (in figure 4.11) for each 
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type of the population. Furthermore, the RMSEg values for this experimental 

scenario have also been plotted for different conductivity errors (see figure 4.12) and 

the effect of the conductivity errors on the size of the organs has been plotted in 

figure 4.13. RMSEg  values for all these cases have been calculated by repeating the 

execution of the algorithm, similar to the numerical scenario. These results 

demonstrate the robustness of the OBBO algorithm to varying initial guess, 

sometimes subject to incorrect a priori knowledge of the conductivities of the organs, 

in the experimental conditions. 

 
 

100 200 300
  

 

 

Figure 4.10. OBBO and mNR estimated organ boundaries using EIT measurement 
data obtained from an experimental setup with two lungs and a big heart. The broken 
line is used to show the (mean) estimated boundaries using OBBO (left) and mNR 
(right). The results in the top row are for the big heart case while the bottom results 
are for small heart. 
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Table 4.6. Experimental Scenario 1 (big heart case): mean ĝ , error standard 

deviation es , mean error squared MES g and the mean absolute deviation MAE g of 

the Fourier coefficients estimated using OBBO and mNR.  
Estimated mean, standard deviation and mean absolute deviation 

OBBO mNR 
Fourier 

coeff. 

True 

value 
ĝ  MAEg  MES g  es  ĝ  MAEg  MES g  es  

1

1g
x  -6.00 -6.1665 0.2662 0.0277 0.2957 -5.7895 0.7648 0.0443 0.8979 

1

2g
x  4.40 4.2027 0.2118 0.0389 0.2042 2.3651 2.1559 4.1406 1.3170 

1

1g
y  -0.50 0.0990 0.5990 0.3588 0.2776 1.9661 2.4661 6.0814 0.5291 

1

3g
y

 9.20 9.1714 0.3224 0.0008 0.3727 7.4177 1.7823 3.1768 0.8381 

2

1g
x  8.00 7.4484 0.5628 0.3042 0.2622 7.7035 0.7099 0.0879 0.8585 

2

2g
x  3.60 3.0358 0.5642 0.3183 0.1770 2.6048 1.4592 0.9905 1.2940 

2

1g
y  -1.20 -0.3555 0.8550 0.7131 0.4301 2.1492 3.3492 11.2174 0.9863 

2

3g
y  8.60 9.1042 0.5424 0.2542 0.4289 8.5028 1.9381 0.0162 2.3764 

3

1g
x  2.00 1.7092 0.3609 0.0846 0.3157 1.6015 1.2468 0.1588 1.4958 

3

2g
x  4.70 4.8247 0.2642 0.0155 0.2724 5.1470 1.2659 0.1998 1.5174 

3

1g
y  -6.40 -5.7161 0.6839 0.4678 0.3664 -6.4337 0.5774 0.0011 0.7654 

3

3g
y  5.00 5.1327 0.2370 0.0176 0.2593 3.7509 1.3925 1.5603 1.1949 

 

Table 4.7. Experimental Scenario 1 (big heart case): mean RMSE of the aggregated 
Fourier coefficients for the Lung1, Lung2 and Heart, respectively, estimated using 
OBBO and mNR. 

Mean RMSE values of the aggregated Fourier coefficients 
 

OBBO mNR 

1LungRMSE  0.0956 0.5347 

2LungRMSE  0.1217 0.5219 

HeartRMSE  0.1121 0.3158 

OverallRMSE  0.1116 0.4951 
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Table 4.8. Experimental Scenario 2 (small heart case): mean ĝ , error standard 

deviation es , mean error squared MES g and the mean absolute deviation MAEg of 

the Fourier coefficients estimated using OBBO and mNR.  
Estimated mean, standard deviation and mean absolute deviation 

OBBO mNR 
Fourier 

coeff. 

True 

value 
ĝ  MAEg  MES g  es  ĝ  MAEg  MES g  es  

1

1g
x  -6.00 -5.4676 0.6301 0.2834 0.4422 -5.9392 0.5704 0.0037 0.7777 

1

2g
x  4.40 4.8350 0.4504 0.1892 0.3406 1.7288 2.6712 7.1352 0.8473 

1

1g
y  -0.50 -0.3414 0.3265 0.0252 0.3898 1.3586 1.8586 3.4545 0.7234 

1

3g
y

 9.20 9.7761 0.6451 0.3319 0.3893 8.2709 1.1631 0.8633 0.9456 

2

1g
x  8.00 6.8391 1.1609 1.3478 0.4640 8.0873 0.5661 0.0076 0.6664 

2

2g
x  3.60 3.6264 0.1435 0.0007 0.1763 0.9362 2.6638 7.0959 0.8116 

2

1g
y  -1.20 -0.5896 0.6112 0.3726 0.3107 1.3753 2.5753 6.6323 1.1649 

2

3g
y  8.60 9.5169 0.9385 0.8407 0.5600 9.9841 1.8212 1.8336 1.9224 

3

1g
x  1.60 1.8987 0.4793 0.0892 0.4907 -0.6167 2.3625 4.9138 1.8393 

3

2g
x  2.80 3.4242 0.6414 0.3896 0.3861 1.3945 1.9387 1.9753 1.8575 

3

1g
y  -4.00 -3.9693 0.4763 0.0009 0.5942 1.6747 5.6747 32.2023 1.1758 

3

3g
y  3.00 3.3928 0.4750 0.1543 0.3917 1.8540 1.3686 1.3134 1.1707 

 

Table 4.9. Experimental Scenario 2 (small heart case): mean RMSE of the 
aggregated Fourier coefficients for the Lung1, Lung2 and Heart, respectively, 
estimated using OBBO and mNR. 

Mean RMSE values of the aggregated Fourier coefficients 
 

OBBO mNR 

1LungRMSE  0.1185 0.5381 

2LungRMSE  0.1483 0.5089 

HeartRMSE  0.2164 1.2190 

OverallRMSE  0.1473 0.6327 
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(h) 

Figure 4.11. Experimental Scenario 1 (big heart case): RMSEg  for different sets of 

initial populations. (a) – (g) show the RMSEg  values calculated for all three organs, 

plotted iteratively for each OBBO generation. (h) summarizes the best RMSEg  

values, as obtained at the end of the 10th OBBO generation, plotted against each set 
of the initial population. 
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Figure 4.12. RMSEg  for different conductivity errors. (a)-(d) plot the best RMSEg  

values, as obtained at the end of OBBO generations, for different (percentage) errors 
in the conductivity of Lung1, Lung2, Heart, and all the three organs, respectively. 

 

The performance of the algorithm can be further improved by using a larger set of 

initial population and increasing the maximum number of iterations allowed by the 

algorithm to reach the final solution. Nevertheless, it will further increase the 

computational complexity of the algorithm. Another point to consider, while 

analyzing the performance of OBBO, is that the worst half of its total population is 

discarded at the end of each iteration step. The population disposal step is totally 

based upon the value of the cost functional, without any regard to the distribution of 

the population. A more intelligent population selection approach resulting in a more 

evenly distributed population at the start of each new iteration step should further 

increase the performance of the algorithm. Several population distribution schemes 

have been discussed in the literature (Simon 2009, Simon et al. 2009). Selection of 
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the best suitable population is problem dependent and remains an open research 

problem. 
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Figure 4.13. Experimental Scenario 1 (big heart case): Estimated size of the organs 
for different conductivity errors, expressed as Fourier coefficients corresponding to 

their radii. (a) plots the radii 1

2
xg  and 1

3
yg of Lung1, (b) plots the radii 2

2
xg  and 2

3
yg of 

Lung2, (c) plots the radii 3

2
xg  and 3

3
yg  of Heart and (d) plots the radii of all the organs, 

against different (percentage) errors in the conductivity of the respective organs. 
 

 

 

 

 

 

 

5. Dynamic optimization 
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When the optimum solution of a problem varies through time, such a problem is 

called a dynamic optimization problem (DOP). The dynamic change in the optimum 

solution may occur either due to an uncertainty in the decision space or uncertainty in 

the fitness/objective function of the problem. If the gravity of change is small the 

standard optimization algorithms, such as the standard evolutionary algorithms, 

should be able to find the optimal solution with reasonable accuracy. However, if the 

change is significant, a static search and optimization technique to solve such a 

problem would result in suboptimum solution and may completely fail to solve the 

problem if the frequency or severity of the dynamic change is too severe. Under such 

circumstances, the need of a dynamic optimization technique, such as a dynamic 

evolutionary algorithm (DEA) is imminent. This section summarizes the important 

features of DOPs, the desired characteristics of a DEA suitable to solve DOPs and, 

finally, presents the most common evolutionary approaches to solve them. 

5.1 The uncertainties in DOPs 

In general, there are four major categories of uncertainties in dynamic optimization 

problems (DOPs) (Jin and Branke 2005, Woldesenbet et al. (2009) 

1) uncertainty in the decision space due to perturbations in the design variables, 

2) uncertainty in the fitness/objective function caused by the noise in the fitness 

function and the approximation in the fitness function, 

3) uncertainty in the fitness/objective function caused by the approximation in the 

fitness function, and 

4) uncertainty in the location, height, and shape of the optimal solutions through 

time due to the dynamism in optimal solutions. Such changes often result in 

global optima becoming local optima and vice versa. The dynamic changes in the 

height, shape and location of the optimal solution, are graphically shown in 

figures 5.1, 5.2 and 5.3, respectively. The left side of each of these pictures shows 

the peaks before the dynamic change whereas the right hand side shows the peaks 

after change. The convergence to the optimal solution becomes even more 

difficult if the peaks move independent of each other. 
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Figure 5.1.  Changing fitness peak heights. The left side shows the peaks before the 
dynamic change whereas the right hand side shows the peaks after change. 

 

Figure 5.2. Changing fitness peak shapes. The left side shows the peaks before the 
dynamic change whereas the right hand side shows the peaks after change. 
 

 

Figure 5.3. Changing fitness peak locations. The left side shows the peaks before the 
dynamic change whereas the right hand side shows the peaks after change. 

5.3 Important features of DOPs 

The dynamic optimization problems can be classified based upon the following 

features/aspects (Branke 2001, Weicker 2003) 

· severity of change 

· frequency of change 

· observability of change 
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· detectability of change 

· dynamics of change 

A brief description of the aforementioned DOP classifications and their effect on the 

ability of dynamic optimization algorithms (namely the DEAs) to find an optimal 

solution follows. 

5.3.1 Severity of change 

Severity of change requires DEAs to increase the diversity of population in order to 

improve its ability to explore the solution space. If the change is too severe for the 

DEA to handle it properly, it may get trapped in a local optimum or may not be able 

to track the change at all. 

5.3.2 Frequency of change 

If the optimum solution is changing very frequently with time, the convergence 

speed of the DEA needs to be adjusted accordingly. Otherwise, the DEA may trail 

behind the changing optimal solution and will potentially lose the track of the 

solution if preemptive steps are not taken in time. 

5.3.3 Observability and detectability of change 

Assuming that the change is observable, the detection of the change can be done 

explicitly or implicitly. The detection is implicit if, for example, it is observed that 

the average performance of the DEA worsens over a period of time. On the other 

hand, the detection is explicit if the DEA is implemented using fixed-interval time 

steps assuming that the environment changes noticeably after each time step. The 

explicit approach is often preferred over the implicit approach since it separates the 

problem to handle the uncertainty of change from its detection, effectively handling 

the core issue, i.e., the uncertainty handling (Branke 2001). 

5.3.4 Dynamics of change 

The behavior of the dynamic change in the environment can be distinguished as 

variable or constant, linear or nonlinear, random or systematic, cyclic (circular, 

revolving, periodic or etc) or non-cyclic, and etc (Branke 2001). A good DEA is 
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expected to adapt to the dynamic environment without having an explicit knowledge 

of the nature of change (Woldesenbet et al. 2009). However, certain DEAs have been 

proposed to work better in certain environments. For example, memory based DEAs, 

to be discussed later, are expected to perform better in cyclically changing 

environments. 

5.4 Desired characteristics of a DEA suitable to solve a DOP 

In the case of DOPs, when an evolutionary algorithm converges to an optimum 

solution of the problem at any time instant, the diversity of population vanishes, 

severely affecting its ability to further explore the solution space after the change in 

the environment. Unless and until an adaptation scheme is introduced, the EA will be 

unable to offer a reasonable solution in the dynamic environment and may get stuck 

in a local optimum. The standard EAs thus need to be modified so that their 

populations are automatically adapted according to the changing environment. The 

desired characteristics of a DEA suitable to solve dynamic optimization problems are 

as follows (Woldesenbet et al. 2009) 

· reusability 

· better adaptation 

· faster convergence 

· higher accuracy 

· improved performance 

· easier implementation 

Reusability refers to the ability of DEA to utilize the current population to find the 

optimal solution in the changing environment, while the adaptation means modifying 

the current set of solutions to make them fit in the new environment. Effective reuse 

of the old population accelerates the speed of convergence and consequently leads to 

better adaptation. However, if the change is too severe, the reusability of current 

population reduces drastically, requiring a new population which can explore the 

solution space more efficiently. Similarly, if the change is occurring very frequently, 

the ability of DEA to detect and observe the changes diminishes and the faster 

convergence and the adaptation ability of the algorithm becomes more relevant. 

Adaptation can be achieved either through specifically introduced evolutionary 
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operators, such as hyper-mutation and etc., or by incorporating the historical 

evolutionary data into the evolutionary process. 

 

Figure 5.4. The desired characteristics of the DEAs and their effect on the different 
features of the DOPs, as well as, on each other The DEAs’ desired characteristics 
have been shaded to distinguish them from the DOP features. 

 

Accuracy of the optimal solution is usually measured based on some error 

measure, calculated as the difference between the true solution and the best found 

solution, using DEA. The need for an improved accuracy may have a negative effect 

on the convergence speed of the algorithm; therefore, DEA should be designed and 

implemented with caution, finding a balance between the computational complexity 

and the expected performance of the algorithm. Figure 5.4 provides a schematic 

perspective of the desired characteristics of the DEAs and their effect on the other 

characteristics as well as different features of the DOPs. In this figure, the single 

arrow is drawn to show that a given characteristic, if present in the DEA, 

automatically leads to the existence of the other characteristic pointed out by the 

arrow. The double arrows towards a certain feature of DEA (i.e., frequency of 

change) are used to link them to the characteristics which are necessary to be present 

in the DEA in order to achieve a reasonable performance. The arrows with a cross 

mounted on them means that the existence of a certain DOP feature has a negative 

impact on other important features of the DOP or on some desired characteristic of 

the DEA. The double-sided arrow with a cross means those characteristics which are 
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difficult to coexist at the same time, i.e., the presence of one characteristic is very 

likely to compromise the other characteristic. The unconnected 

feature(s)/characteristic(s) do not mean that they are isolate from each other; it only 

means that a direct relation with other features /characteristics of DOP/DEA may not 

be available. 

5.5 Evolutionary approaches to solve DOPs 

This subsection summarizes the evolutionary approaches developed to solve the 

DOPs. These approaches can be broadly categorized into six different types of 

strategies to cope up with the dynamic changes occurring in the system (Weicker 

2003)  

1. reinitialization 

2. memory-based approaches 

3. multiple population approaches 

4. mutation and self-adaptation 

5. local variation 

6. other diversity preserving techniques 

5.5.1 Reinitialization 

It is the simplest approach to solve the DOPs. In this approach, the evolutionary 

process is reinitialized whenever a change occurs. However, the major shortcoming 

of this approach is that all of the evolutionary progress so far is lost and, therefore, it 

may significantly affect the speed of convergence. 

5.5.2 Memory-based approaches 

The memory based approaches can be further categorized into 

· explicit memory approaches, and 

· implicit memory approaches 

In the implicit memory approaches there is no external memory, rather the system 

contains some form of implicit memory. One such form of memory is the redundant 

representation, which is usually used to slower the convergence rate, thus keeping the 

population diversity intact. The most common redundant representation approach is 
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the diploid scheme, which is used by many researchers (Ng and Wong 1995, 

Dasgupta and McGregor 1992, Lewis et al. 1998, Ryan 1997). In the diploid scheme, 

each individual contains multiple times of information as compared to the haploid, 

which contains only one set of information, i.e., a single set of values or 

characteristic features of each individual in the population.  

The explicit memory approaches make use of the external memory to store the 

historical evolutionary data, potentially useful in the upcoming evolutionary steps. 

One particular benefit of the explicit memory-based approach is that it allows the 

population to jump to a solution space which may not be achievable within an 

iteration using other evolutionary approaches such as hyper-mutation. The explicit 

memory-based approach results in a more directed population jumping step as 

compared to the hyper-mutation which may require several iterations to reach to that 

point in the solution space. The explicit memory can be a local memory or it can be a 

shared memory.  

 Trojanowski and Michalewicz (1999) applied a short-term local memory. Their 

main idea was to remember and recall some of the solutions of an individual’s 

ancestors. In the case of a dynamic change in the environment, each solution is 

compared with its stored ancestor solutions, thus incorporating the best solution into 

the current populations, while keeping the others in the memory. The size of the 

memory is fixed and the individuals from the first generation start with an empty 

memory buffer. For each of the following generations the parent solution is stored in 

memory and if the memory is already full the oldest memory solution is replaced 

with the newest parent.  

In one of the simplest shared memory-based approaches, whenever a change 

occurs the population is re-initialized with a seed from the previous populations, 

rather than starting from the scratch. The same approach had been considered by 

Louis and XU (1996). The memory in this approach is not a permanent memory; 

instead, it is only temporarily filled with a few solutions from the old population and 

is discarded and refilled with a new seed after each dynamic change.  

Alternatively, the shared memory can be permanently filled with historical data 

obtained over a period of time. For example, in a DEA approach considered by 

Ramsey and Greffenstette (1993) a few good candidate solutions for a robot 
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controller are stored in a permanent memory along with the information about the 

robot environment. The relevant memory sections can be incorporated into the 

population of the EA if the robot environment resembles the corresponding stored 

environment. The disadvantage, however, is that it is assumed that one can measure 

the similarity of the robot environment.  

In the real-world problems, an old solution stored in the memory rarely receives 

the identical fitness in the future. However, the optimal solution may be in the 

vicinity of an old solution after the dynamic change in the environment. Therefore, 

under the realistic conditions the static memory may be redundant and of little or no 

use at all. Bendtsen and Krink (2002) introduced a dynamic memory model in which 

the memory is frequently updated during the evolutionary process. The best 

individuals during the time between dynamic changes are stored in the memory, 

while allowing the stored individuals to evolve by small amounts of Gaussian 

mutation in the direction of the current best individual. In this approach the best 

individual in the current population is selected and is matched with the nearest stored 

solution in the memory. The closest stored solution then gradually moves in the 

direction of the current best solution in the evolutionary population. The result is that 

the stored candidate solutions trace optimal solution in the dynamic environment, by 

creating colonies of solutions in different locations. If the optimal solution returns to 

one of these colonies in future, the memory automatically adjusts accordingly and 

results in much faster convergence. 

5.5.3 Multiple population approaches 

The fundamental idea behind this approach is to divide the total population into a 

number of subsets such that each subpopulation explores a different region in the 

solution space, thus simultaneously tracking multiple optima at a time. Such an 

approach was proposed by Branke et al. (2000) in which a small portion of the total 

population, termed as the child population, tracks the most promising peaks found so 

far, whereas the remaining population searches for other peaks. The motivation was 

to simultaneously track different regions of the solution space having a strong 

potential to converge to the optimal solution in the dynamic environment. In a similar 

approach known as the shifting balance genetic algorithm (Oppacher and Wineberg 
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1999) a core population is used to further optimize the current best solution while 

other portions of the population, termed as colonies, explore the search space. The 

fitness of the colonies is evaluated using a diversity measure, namely the distance to 

the core population. Ursem (2000) proposed a multinationals genetic algorithm using 

a hill valley detection procedure. A hill valley describes the boundaries of the 

subpopulations and is detected if the fitness of a sample point is less than that of the 

end points.  

The major challenge faced by the multiple population approaches is their ability 

to communicate between the subpopulations. Higher communication means 

improved performance, however, it inevitably results in significant increase in the 

computational cost of the algorithm. 

5.5.4 Mutation and self-adaptation 

These are among the most popular and successful techniques used in the case of 

static optimization problems. Therefore, a straightforward extension and application 

of these techniques to the dynamic optimization problems makes a lot of sense. 

Weicker and Weicker (2000) compared a number of self adaptation techniques, 

namely, the uniform self-adaptation, different mutation level for each dimension, 

mutation with covariance matrix adaptation and sphere mutation. Brest et al. (2009) 

proposed the dynamic optimization using self-adaptive differential evolution in 

which the DE control parameters F and CR were self-adapted. Bäck (1997) and 

(Salomon and Eggenberger, 1997) also studied self-adaptive evolutionary strategies 

with the lognormal update rule. 

In a related technique, termed as the hypermutation (Cobb and Grefenstette 

1993) a higher mutation probability is used whenever a dynamic change in the 

environment occurs. A drastic raise in the mutation rate increases the population 

diversity, thus making it more suitable for the dynamic environment. Similarly 

Angeline (1997) introduced the multiplicative update rule to adapt the mutation level 

in the case of the change in environment.  
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5.5.5 Local variation 

If the magnitude of the change in environment is relatively small, a localized change 

in the characteristic variables of the current set of individual solutions may give a 

better performance to other approaches. The local variation can be introduced with 

the help of certain mutation operators, such as some Gaussian update rule (Saleem 

and Reynolds 2000) or a lognormal update rule (Bäck 1997, Salomon & Eggenberger, 

1997) or special variable local search operator (Vavak et al. 1996). Weicker (2003) 

presented a detail analysis of an exemplary local operator using a theoretical model, 

leading to ten qualitative design rules for the application of local variation to 

dynamic tracking problems. He proposed using certain local parameters such as 

directed mutations, small mutation penalizing steps and etc. In a fairly recent study, 

Woldesenbet et al. (2009) proposed to use the evolutionary progress history to 

relocate and adapt the current set of individual solutions to the new environment. The 

details of this particular technique will be covered in the next chapter. 

5.5.6 Diversity preserving techniques 

The objective of all the dynamic evolution techniques introduced so far is to preserve 

the diversity of the evolutionary population in order to avoid its premature 

convergence. This subsection enlists a few of those diversity enhancing techniques 

which have not been covered before. 

Andersen (1991) used fitness sharing to favor less populated areas. The fitness 

of the individuals lying in the densely populated areas is shared by a larger number 

of individuals as compared to the individuals lying in the sparsely populated areas, in 

which case the fitness is shared by a smaller number of individuals. The result is that 

the solutions lying in the less congested areas of the solution space will have a 

relatively higher chance of selection as compared to the solutions lying in the densely 

populated areas, thus preserving the diversity of the population. 

Weicker (2003) categorized the diversity preserving techniques into three broad 

categories namely, diversity increasing techniques which introduce random 

immigrants in population at each generation, niching techniques which prevent 

premature convergence and restricted mating which divide the population into 
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several subpopulations, limiting the recombination operator to the individuals 

belonging to the same subpopulation. 

Grefenstette (1992) introduced random immigrants in population at each 

generation, in order to keep its diversity intact. Although it is a very straight forward 

algorithm, it unable to quickly adapt the population to dynamic changes in the 

environment due to its unpredictable randomness. Moreover, the number of random 

immigrates required to track severe changes in the environment are quite high, thus 

leading to an inferior performance of the algorithm.   

Other diversity preserving techniques include favoring the middle aged 

individuals over other individuals (Ghosh et al. 1998) and adding an artificial 

objective function to transform a single objective optimization problem into a multi-

objective optimization (Bui et al. 2005). 
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6. Dynamic OBBO with variable relocation 

 

This chapter presents an evolutionary approach to estimate the shape, size and 

location of non-stationary region boundaries inside an object domain using 2D EIT. 

The evolutionary algorithm selected for this purpose is the oppositional 

biogeography-based optimization (OBBO) and the dynamic optimization is achieved 

by incorporating the concept of variable relocation, proposed by Woldesenbet et al. 

(2009), to OBBO. The proposed algorithm uses the evolutionary progress history to 

relocate and adapt the current set of individual solutions to the new environment. The 

relocation of decision variables introduces some sort of uncertainty in the decision 

space and aims to account for the estimated change in the objective space. The 

ultimate effect is the introduction of a diversified population and an accelerated 

exploration of the solution space and faster convergence to the optimal solution 

under dynamic and uncertain environments. It should be noted that the selected 

dynamic evolutionary technique falls under the category of location variation and 

may also be considered to belong to the general category of mutation and self 

adaptation. It is computationally less expensive as compared to many other DEAs.  

In this algorithm, each of the decision variables is relocated on the basis of a 

special parameter known as the relocation radius. The distinctive feature of this 

technique is that the scope of the relocation radius used in the algorithm is local to 

each individual solution in the populations which results in a population which is 

more adaptable to the new dynamic environment as compared to those adaptive 

techniques which use global relocation/adaptation. The relocated population is 

specifically far more superior and more adaptive compared to randomly-generated 

new population.  

6.1 Variable relocation 

Let cxD denote the evolutionary progress in cth decision variable of a newly 

generated solution with respect to its parents, measured as the difference between the 

cth decision variable of the new solution and that of the centroid of its parents 

(Woldesenbet et al. 2009)  
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1 2( ) ( )
( ) ( )

2
c c

c c

x parent x parent
x child x child

+
D = -             (6.1) 

The evolutionary progress fD  in the fitness function of the new solution is calculated 

as the difference of the fitness of the new solution and the interpolated fitness of its 

parents  

2 1

1 2

1 2. ( ) . ( )
( ) ( )

C P C P

C P C P

X f parent X f parent
f child f child

X X
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where 
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X X child X parent i

x child x parent

-

=

D = - =

= -å
           (6.3) 

The cumulative average evolutionary progress in the cth decision variable and fitness 

of the newly generated solution are calculated as the weighted sum of the child’s 

evolutionary progress and the average evolutionary progress in the parents’ cth 

decision variable/fitness values, denoted as cxD and fD , respectively , can be 

computed as 

1 2( ) ( )
( ) . .

2( )
. 1

c c
c

c

x parent x parent
x child w nGen

x child
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D + D
D +
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          (6.4) 
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X f parent X f parent
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X X
f child

w nGen

- -

- -

D D + D D
D +

D + D
D =

+
(6.5) 

 

where nGen is the total number of generations so far, starting from the beginning of 

the evolutionary process or since the last dynamic change in the environment, if any. 

w is the relative weight given to the past evolutionary progress compared to the most 

recent one. It is not difficult to note that a value of w less than one gives more 

importance to the most recent evolutionary progress as compared to the previously 

computed progress.  
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The average evolutionary progress XD  in the decision space of an individual 

can be calculated as  

2

1

( )
m

c
c

X x
=

D = Då                 (6.6) 

Average sensitivity XS  of the decision space to change in the objective space is 

defined as 

X f
S

X

D
=
D

                 (6.7) 

The average x
cs  sensitivity of the cth decision variable to change in the objective 

space, in turn, can be calculated as follows 

2

1

.
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x X c
c c m

c
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D D
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D
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               (6.8) 

Now we are ready to calculate the relocation radius which is the anticipated 

uncertainty in the decision space of an individual and is used to estimate the required 

offsets in the decision variables matching the fitness changes caused by the 

environment 

2 1
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            (6.9) 

 

Where, 1ef  and 2ef  are the fitness values of an individual solution in the old 

environment 1e  and new environment 2e , respectively. 2e
bestf  is the fitness value of the 

least cost/best fit individual solution in the new environment. The relocation radius 

for the cth decision variable is then calculated as 

.
x
c c

c X

s x
r R R

XS

D
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where max
crD  and min

crD  are the maximum and minimum values of the relocation 

radius allowed in the cth decision variable. The new offspring is then generated as 

follows 

.new old
c c cx x rand r= + D               (6.12) 

where the random number rand Î [0,1]. The last step (6.12) will be repeated for each 

of the decision variables. 

The above technique to generate the new set of initial population in the case 

of a dynamic environmental change has been developed for the general evolutionary 

algorithms for which the new offspring is generated using exactly two parents. In the 

case of OBBO, however, this is not true and the above algorithm has to be modified 

accordingly. In fact OBBO, which has been derived from BBO, does not include the 

reproduction or the generation of children in the classical sense, rather, it maintains 

and evolves a set of candidate solutions from one iteration to the next, relying on 

migration as well as opposition jumping to probabilistically adapt those solutions 

(Simon 2008, Ergezer et al. 2009). Therefore, in order to apply the concept of 

variable location introduced by Woldesenbet et al. (2009) to OBBO, some simplistic 

assumptions have to be made. To be more specific, the dynamic variable relocation 

step has to be adjusted to cater for two different kinds of offspring generations in the 

OBBO, i.e., 

· the migration step involves more than two parents, and 

· the opposite jumping step involves only one parent. 

The calculations for evolutionary progresses in the cost functional, defined as (6.2) 

and (6.5), have to reformulated in for each of the above two cases. Moreover, in the 

case of opposite jumping step, the evolutionary progress of the decision variables, 

defined as (6.1) and (6.4), have to be modified as well. 

In the case of migration step, the parent1 is the probabilistically selected 

solution for the immigration, while the parent2 corresponds to a set of 

probabilistically selected characteristic variables belonging to more than one 

solutions selected as emigrating islands. It means that the values of 2( )f parent  and 

2( )f parentD  depend upon the cost functional calculated for each of the individual 
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solutions selected as emigrants. For simplistic reasons, this step is implemented by 

taking the average of the cost functional of all the donors, respectively, i.e. 

1
2
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, and            (6.13) 
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           (6.14) 

where emN  is the number of individuals participating in the emigration process for a 

particular immigrating individual solution. Since each of decision variable, in the 

case of migration, is evolved separately involving two parents at a time, their 

evolutionary progress, given in (6.1) and (6.4), does not need to be modified. 

In the case of opposite jumping, the evolutionary progress in the decision space 

and the fitness values is modified as follows 

( ) ( ) ( )c c cx child x opposite x childD = -            (6.15) 

( ) ( ) ( )f child f opposite f childD = -             (6.16) 

( ) . . ( )
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. 1
c c

c

x child w nGen x opposite
x child
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D + D
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+
          (6.17) 

 

( ) . . ( )
( )

. 1

f child w nGen f opposite
f child

w nGen

D + D
D =

+
          (6.18) 

6.2 Dynamic OBBO algorithm 

The key steps of the Dynamic OBBO algorithm for EIT boundary estimation with 

variable relocation are as follows  

1) Initialize the BBO parameters i.e., Smax, E, I and etc. The SIVs are mapped to the 

Fourier coefficients 2MN
k

qg ÎÂ , while the EIT cost functional ( )kgF  is chosen 

as the HSI. 

2) Initialize a set of NP potential solutions (habitats) for the problem. Also, compute 

the cost ( )kgF  for each of the habitat in the initial population set. 

3) Repeat the following until the end of criteria is met 

While in steady state: 
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a. Compute the immigration rate l  and emigration rate m  for each candidate 

solution.  

b. Probabilistically perform immigration and emigration to modify non-elite 

habitats. 

c. Calculate mean evolutionary progresses XD  in the decision space and fD  as 

in the fitness values of the newly created solutions. 

d. Perform mutation based upon the mutation probability.  

e. Calculate the cost ( )kgF  of each new solution. 

f. Generate a quasi-reflected opposition population and calculate the cost 

( )kgF  of each opposite solution. 

g. Calculate mean evolutionary progresses XD  in the decision space and fD  in 

the fitness values of the quasi-reflected opposition solutions. 

h. Compare the BBO generated solutions with their quasi-reflected solutions 

and retain the NP most feasible solutions for the next generation. Keep the 

elite habitats in the new population by replacing the least feasible solutions. 

While in the transient state: 

a. Calculate the average sensitivity x
cs  of the decision variables to the change in 

the objective space 

b. Calculate the relocation radius crD for each individual solution. 

c. Relocate the individual solutions using crD  a number of times. 

d. Calculate the cost ( )kgF  for each of the relocated individual in the new 

environment. 

e. Generate a set of new solutions. 

f. Select the best NP solutions to be used as OBBO initial population for the 

new dynamic environment. 

Note that the steps ‘e’ and ‘f’ in the transient state provide an additional 

measure to add fresh blood to the OBBO population. This step is aimed at 

establishing a hybrid dynamic evolutionary approach which is based upon the self-

adaptation as well as new population generation in case of a change in the 

environment. Such an approach is expected to perform better than a raw variable 
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relocation approach in which case all the individuals may be relocated potentially 

leading to a population of infeasible solutions, if the relocation step goes wrong. 

Note that this step is in contrast to the original scheme by Woldesenbet et al. (2009) 

for this kind of situation, which retained the least-cost individual from an OBBO-

generated solution and its relocated solution. The currently proposed measure is 

specifically suitable for the case in which the sensitivity x
cs  of the decision variables 

to the change in the objective space is very low. 
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 7. Dynamic OBBO applied to dynamic heart 

boundary estimation using EIT 

 

The fourth chapter focused on the estimation of organ boundaries inside the human 

chest while assuming that a full frame of independent EIT measurements can be 

obtained while the boundaries remain stationary. This assumption may hold true for 

the case of lung boundaries if the subject is told to hold breathe while the current is 

injected to the electrodes attached to the chest boundary and voltages across the 

electrodes are measured. However, this assumption may not be accurate in the case 

of heart boundary estimation since the heart of a living human being cannot be 

stopped. When the full target inside an object moves before the full frame of 

independent measurements is available, the EIT imaging problem transforms into a 

dynamic image reconstruction problem. In order to solve such a problem, a dynamic 

optimization algorithm is needed. This chapter presents a study of dynamic OBBO 

applied to dynamic heart boundary estimation using EIT.  

7.1 Results and discussions 

7.1.1 Numerical results 

This section presents a detailed analysis of the dynamic OBBO-based EIT boundary 

estimation scheme using numerical simulations. In order to carry out the numerical 

simulations, a scenario depicting a full heart cycle, i.e., a heart contraction followed 

by an expansion, has been chosen. The boundaries of the lungs are fixed, depicting 

the situation in which a patient holds his/her breathe so that we concentrate on the 

dynamic estimation of the size and the location of the heart. The number of Fourier 

coefficients to represent the organ boundaries, both for the forward and the inverse 

problems, as well as the conductivity of the organs is the same as given in the last 

section. The size and the shape of the simulated chest phantom is also the same as 

considered before. However, the number of elements in the region where heart is 

likely to be found is increased. This change has been done in order to accommodate 
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different shapes and sizes of the heart. The simulation scenario considers a total of 

nine iterations, five for the heart expansion and four for the contraction, respectively.  

 

OBBO Iteration 1  

 

EKF Iteration 1 

 

OBBO Iteration 6 

 

EKF Iteration 6 

 

OBBO Iteration 2 

 

EKF Iteration 2 

 

OBBO Iteration 7 

 

EKF Iteration 7 

 

 
OBBO Iteration 3 

 

EKF Iteration 3 

 

OBBO Iteration 8 

 

EKF Iteration 8 

 

OBBO Iteration 4 

 

EKF Iteration 4 

 

OBBO Iteration 9 

 

EKF Iteration 9 

 

OBBO Iteration 5 

 

EKF Iteration 5 

 

 

 

 

Figure 7.1. Result with 1% measurement noise. Estimated organ boundaries in a 
simulated human chest cross section using dynamic OBBO and EKF. The solid line 
is used to draw the true organ boundaries while the broken line is used to show the 
(mean) estimated boundaries, estimated at each iteration, using dynamic OBBO (left) 
and EKF (right).  
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OBBO Iteration 1  

 

EKF Iteration 1 
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EKF Iteration 6 
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OBBO Iteration 5 

 

EKF Iteration 5 

 

 

 

 

Figure 7.2. Result with 2% measurement noise. Estimated organ boundaries in a 
simulated human chest cross section using dynamic OBBO and EKF. The solid line 
is used to draw the true organ boundaries while the broken line is used to show the 
(mean) estimated boundaries, estimated at each iteration, using dynamic OBBO (left) 
and EKF (right).  
 
The mesh used to solve the forward problem consists of 4580 triangular elements 

with 2419 nodes. The mesh used for the inverse problem is composed of 3994 

triangular elements with 2126 nodes. Once again, the trigonometric current injection 

protocol has been used for the simulated dynamic heart boundary estimation. With 
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32 electrodes, sixteen cosine and fifteen sine current patterns are possible. However, 

in order to simulate a dynamic environment, out of all the possible trigonometric 

current patterns, only the first two modes of cosine and sine current patterns were 

used at each iteration considering that they are more sensitive compared to the other 

modes (Kim et al. 2007). Furthermore, to simulate the noisy EIT measurements, 

zero-mean Gaussian noise with 1% and 2% standard deviations, respectively, relative 

to the corresponding measured voltage has been added to the simulated voltage data. 

In order to compare the performance of the dynamic scenario, the organ boundaries 

have also been reconstructed using the extended Kalman filter (EKF) which is one of 

the most popular dynamic estimation algorithms. The EKF has also been repeated for 

h  = 20 runs and the same statistical parameters, as for OBBO, have been gathered. 

Similar to mNR, and in contrast to OBBO, EKF also requires a single initial guess 

for each run. Thus, for EKF a different initial guess is chosen for each subsequent 

run, by randomly choosing a value for the Fourier coefficients representing the radii 

and the locations (x- and y-coordinates) of the organs from a uniform distribution 

which is similar to that of the initial population chosen for the dynamic OBBO. A 

uniformly-distributed initial population comprising of 30 habitats has been chosen 

for this study. The uniform distribution has been generated such that the Fourier 

coefficients representing the radii and the locations (x- and y-coordinates) of the 

organs are distributed with a maximum deviation of 1.75 cm from their respective 

mean values. The mean values, as in the case of the lungs, are at an absolute distance 

of 0.25 cm from their respective best true values. In the case of the heart, the mean of 

the uniformly-distributed initial population (for location and size parameters) is 

chosen as an average of the respective Fourier coefficients for the two extreme cases, 

i.e., when the heart size is full and when it is of the smallest size. The rest of the 

Fourier coefficients, which express the shape and orientation of the organ boundaries, 

have a maximum deviation of 0.5 cm from the respective mean values. The initial 

population for the dynamic case has been selected based upon the same assumption 

as that of the static case, i.e., a good prior knowledge of the general shape of the 

organs is available, with a relatively poor knowledge of their size and the location. 

The number of generations for the first iteration is five while three OBBO 

generations are used for the rest of the iterations. A higher number of generation 
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count is used for the first iteration in order to get a better solution since the initial 

population for this iteration step is randomly generated, given the fact that the 

variable relocation step is not available at this time due to the absence of any 

evolutionary data so far. The variable relocation step introduces a better adapted and 

closely located population for the later iterations, thus requiring relatively lesser 

number of iterations to reach to the optimal solution. It should, however, be 

remembered that a larger population with a higher number of generation steps, in 

general, improves the performance of evolutionary algorithms, though at additional 

computational cost. The value of the OBBO jumping probability Jr has been set to 

1.0 for the first two generations, while Jr = 0 after the second generation within each 

iteration. The idea is to adjust the jumping step according to the situation, i.e., 

jumping should be done more frequently during the early stages of evolution, when 

most of the individual solutions in the population are less optimal, and jump less 

frequently after the population starts to converge. Finally, an elitism count of two has 

been used again. In order to verify the robustness of the proposed algorithm Monte 

Carlo type simulations of h  = 20 runs (each run with a different noise seed, and a 

different set of initial population) has been performed. A quantitative analysis of the 

algorithm has been carried by plotting the mean 
1
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å  of the estimated parameters in the graphical format. 

The mean is plotted with a broken line whereas the standard deviation is plotted 

using the error bars. In addition, the RMSEg  values (i.e., the RMSE of the Fourier 

coefficients, aggregated for each of the organs individually) have been calculated for 

each of the 20 runs of the algorithm. The mean RMSE of the aggregated coefficients, 

i.e., RMSEg  values are then shown in a graphical format, by calculating and plotting 

the average for each iteration step individually. 

The mean reconstructed boundaries, using dynamic OBBO (left side) as well as 

EKF (right side), for the 1% measurement noise are plotted in figure 7.1, while the 

figure 7.2 shows the reconstructed results for the 2% noise case. Figure 7.3 plots the 

mean and standard deviation of the estimated Fourier coefficients 3

2
xg  and 
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3

3
yg corresponding to the heart radii in the x- and y- directions, respectively, for each 

iteration. Figure 7.4 plots the evolution of the mean and standard deviation of the 

estimated area of the heart, and figure 7.5 iteratively plots the mean and standard 

deviation of Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, 

respectively, of the heart estimated with 1 % measurement noise. The aggregated 

RMSEg  values for the three individual organs as well the total aggregate of all the 

organs are plotted for each iteration in figure 7.6. Next, the figures 7.7 to 7.9 

iteratively plot the mean and standard deviation of the radii, area and location of the 

heart, respectively, calculated for the 2% measurement noise case. The aggregated 

RMSEg  values for the 2% noise case are then plotted in figure 7.10. 
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Figure 7.3. Dynamic heart estimation results with 1% measurement noise. The 

Fourier coefficients 3

2
xg  and 3

3
yg corresponding to the radii in the x- and y- directions, 

respectively, of the heart plotted iteratively.  The solid lines show the true evolution 
of these parameter while the broken lines are used to plot the mean estimates using 
dynamic OBBO (left) and EKF(right) respectively. The error bars show the standard 
deviation s of the estimated parameters at each measurement instance. 
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Figure 7.4. Heart area estimation results with 1% measurement noise. The solid line 
shows the true evolution of area of the heart while the broken line is used to plot the 
mean estimated area using dynamic OBBO (left) and EKF(right) respectively. The 
error bars show the standard deviation s of the estimated parameters at each 
measurement instance. 
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Figure 7.5. Dynamic heart estimation results with 1% measurement noise. The 

Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, respectively, 

of the heart plotted iteratively.  The solid lines show the true evolution of these 
parameter while the broken lines are used to plot the mean estimates using dynamic 
OBBO (left) and EKF(right) respectively. The error bars show the standard deviation 
s of the estimated parameters at each measurement instance. 
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Figure 7.6. Error analysis with 1% measurement noise. RMSEg  values calculated 

for all three organs, plotted iteratively for OBBO (left) and EKF (right) respectively.  
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Figure 7.7. Dynamic heart estimation results with 2% measurement noise. The 

Fourier coefficients 3

2
xg  and 3

3
yg corresponding to the radii in the x- and y- directions, 

respectively, of the heart plotted iteratively.  The solid lines show the true evolution 
of these parameter while the broken lines are used to plot the mean estimates using 
dynamic OBBO (left) and EKF(right) respectively. The error bars show the standard 
deviation s of the estimated parameters at each measurement instance. 
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Figure 7.8. Heart area estimation results with 2% measurement noise. The solid line 
shows the true evolution of area of the heart while the broken lines is used to plot the 
mean estimated area using dynamic OBBO (left) and EKF(right) respectively. The 
error bars show the standard deviation s of the estimated parameters at each 
measurement instance. 
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Figure 7.9. Dynamic heart estimation results with 2% measurement noise. The 

Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, respectively, 

of the heart plotted iteratively.  The solid lines show the true evolution of these 
parameter while the broken lines are used to plot the mean estimates using dynamic 
OBBO (left) and EKF(right) respectively. The error bars show the standard deviation 
s of the estimated parameters at each measurement instance. 
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Figure 7.10. Error analysis with 2% measurement noise. RMSEg  values calculated 

for all three organs, plotted iteratively for OBBO (left) and EKF (right) respectively.  
 

It can be very easily noticed from the simulation results that the dynamic 

OBBO has been able to reconstruct the organ boundaries with far superior accuracy 

as compared to that of EKF. The mean estimates of EKF are comparable to those of 

the dynamic OBBO; however, the standard deviations in the case of EKF are very 

high. The reason for this is that EKF is extremely sensitive to initial guess. As 

mentioned before, a different initial guess has been chosen for each of the 20 EKF 

runs. If the initial guess is incidentally chosen close to the true boundaries, the EKF 

performance is quite reasonable; however, if the initial is not so close, the estimation 

performance of EKF is significantly affected, thus resulting in a higher standard 

deviation. It can thus be concluded that EKF is not a reliable algorithm to estimate 

the organ boundaries unless and until a very close initial guess at the start of 

simulation scenario is available. Dynamic OBBO, on the other hand, has been found 

robust enough to estimate almost all the heart parameters considered for the 

simulation. The RMSEg  comparisons for the two algorithms reaffirm the 

aforementioned conclusion. Although the performance of dynamic OBBO is 

relatively poorer in the case of 2% measurement noise resulting in higher standard 

deviations of estimated parameters, the results are still reasonable and far superior to 

those of EKF. The deteriorated performance of the chosen DEA in the case of 2% 

noise is not unexpected at all, due to the extreme sensitivity of the EIT measurements 

to the presence of noise. It should also be noted that the standard deviation of the 

heart area estimates is quite low compared to the heart radii. It means than an 
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overestimate in the radius of the heart in the x-direction is compensated by an 

underestimate in the y-direction, thus keeping the estimated area close to the true one. 

This is good news in the sense that the area of the heart, which in turn can be used to 

estimate to total size of the heart, has a greater physiological significance as 

compared to individual radii. (Ziegler et al., 1962, Cotes et al., 1980, Hoffman and 

Ritman, 1987, Carlsson et al., 2004, Carlsson et al. 2005, Steding et al., 2007). 

Another thing which may be noticed here is the evolution of the mean estimated 

heart location parameters, which show relatively weak reconstruction performance. 

This is not unexpected as well, due to a very low sensitivity of EIT voltage 

measurements to heart dislocations, explained in a previous chapter. 

7.1.2 Experimental results 

This section analyses the performance of the dynamic OBBO-EIT boundary 

estimation scheme using 2D EIT measurement data obtained from a chest-type 

experimental setup with two lungs and a heart. The experiments for the dynamic 

scenario have been performed in the EIT lab at Jeju National University. The radius 

of the chest phantom is 14 cm with 32 electrodes, each of 1 cm width, attached 

around the surface of the phantom. The saline level in the phantom is about 2 cm and 

the amplitude of the injected current is 0.5 mA.  The EIT measurement setup is 

shown in figure 7.11.  

For the experimental scenario, opposite current patterns has been used. The 

conventional opposite current injection system for a 32-elctrode EIT system is 

composed of 16 opposite current patterns. However, since the objective of this 

specific study is the dynamic heart estimation, it is assumed that a full set of 

independent measurements cannot be measured before the boundary of the heart is 

changed. The current study, therefore, only considers four opposite current patterns 

for each iteration. Similar to the numerical scenario, a full heart cycle with a total of 

nine iterations is considered to create the experimental scenario. The biggest heart is 

10.4 cm wide and 10 cm long, while the smallest heart has a width of 6.2 cm and a 

length of 6 cm (see figure 7.12). The background in chest phantom is composed of 

saline solution with a conductivity of 0.19 S/m while the lungs and the heart are 

constructed using a mixture of agar and saline with a conductivity of 0.14 S/m and 



 

94 
 

0.55 S/m respectively. The organ-like structures had been prepared by mixing 

appropriate proportions of agar and potassium chloride (NaCl) salt in hot water and 

then letting it cool down and solidify at room temperature. The conductivity, 

however, was measured using the conductivity meter when the organs were in the 

liquid form. The exact values of the conductivity of organs in the solid form cannot 

be measured using the conductivity meter and thus are not known accurately. That is 

why only approximate values are considered which inevitably leads to estimation 

errors. 

 

Figure 7.11.  EIT experimental setup for dynamic heart estimation. 
 

 

a 

 

b 

Figure 7.12.  (a) Two lungs with the biggest heart. (b) Two lungs with the smallest 
heart.  



 

95 
 

 
OBBO Iteration 1  

 

EKF Iteration 1 

 

OBBO Iteration 6 

 

EKF Iteration 6 

 

OBBO Iteration 2 

 

EKF Iteration 2 

 

OBBO Iteration 7 

 

EKF Iteration 7 

 

OBBO Iteration 3 

 

EKF Iteration 3 

 

OBBO Iteration 8 

 

EKF Iteration 8 

 
OBBO Iteration 4 

 

EKF Iteration 4 

 

OBBO Iteration 9 

 

EKF Iteration 9 

 

OBBO Iteration 5 

 

EKF Iteration 5 

 

 

 

 

Figure 7.13. Experimental Results. Estimated organ boundaries in a simulated 
human chest cross section using dynamic OBBO and EKF. The solid line is used to 
draw the true organ boundaries while the broken line is used to show the (mean) 
estimated boundaries, estimated at each iteration, using dynamic OBBO (left) and 
EKF (right). 
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Figure 7.14. Dynamic heart estimation results for the experimental scenario. The 

Fourier coefficients 3

2
xg  and 3

3
yg corresponding to the radii in the x- and y- directions, 

respectively, of the heart plotted iteratively.  The solid lines show the true evolution 
of these parameter while the broken lines are used to plot the mean estimates using 
dynamic OBBO (left) and EKF(right) respectively. The error bars show the standard 
deviation s of the estimated parameters at each measurement instance. 
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Figure 7.15. Heart area estimated for the experimental scenario. The solid line shows 
the true evolution of area of the heart while the broken lines is used to plot the mean 
estimated area using dynamic OBBO (left) and EKF(right) respectively. The error 
bars show the standard deviation s of the estimated parameters at each measurement 
instance. 
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Figure 7.16. Dynamic heart estimation results for the experimental scenario. The 

Fourier coefficients 3

1
xg  and 3

1
yg corresponding to the x- and y- locations, respectively, 

of the heart plotted iteratively.  The solid lines show the true evolution of these 
parameter while the broken lines are used to plot the mean estimates using dynamic 
OBBO (left) and EKF(right) respectively. The error bars show the standard deviation 
s of the estimated parameters at each measurement instance. 
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Figure 7.17.  Error analysis for the experimental scenario. RMSEg  values calculated 

for all three organs, plotted iteratively for OBBO (left) and EKF (right) respectively.  
 

Similar to the simulations and experiments presented in previous sections, this 

experimental scenario has also been repeated for 20 times and the aforementioned 

statistical parameters have been gathered and plotted. The reconstructed boundaries 

using dynamic OBBO and EKF for the experimental case have been shown in figure 

7.13. Figure 7.14 iteratively plots the mean and standard deviation of the heart radii 

in the x- and y- directions, respectively, while figure 7.15 plots the evolution of these 

statistical parameters for the area of the heart, estimated for the experimental 

scenario. Figure 7.16 plots, for each iteration, the mean and the standard deviation of 
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the heart location parameters. Finally, figure 7.17 plots the iterative evolution of the 

aggregated RMSEg  values, calculated for all the three organs in the experimental 

scenario. These results demonstrate that dynamic OBBO is a robust algorithm in 

experimental conditions. Although the performance of OBBO is weaker for the 

experimental case, it is still significantly better than that of EKF.  The relatively 

weak performance of OBBO in the experimental conditions can be attributed to 

several factors such as noise measurements, inaccurate knowledge of the 

conductivity values, using a 2D EIT measurement setup for an intrinsically 3D 

problem and etc.  
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Conclusions 

 
This paper presents a biogeography-based optimization technique to reconstruct 

the region boundaries inside an object, expressed as truncated Fourier series 

coefficients, using 2D EIT. The characteristic feature of this algorithm is its strong 

ability to exhaust the solution space, converging to the desired solution with 

reasonable accuracy. The stability and accuracy of the algorithm has been analyzed 

with the help of several statistical parameters gathered through repetitive execution 

of the algorithm using a realistic chest-shaped mesh structure, each time generating a 

different set of initial population and adding a zero-mean Gaussian-distributed 

measurement noise with a different seed. The accuracy of the algorithm has also been 

verified using chest-shape experimental setups.  First of all, a static scenario has been 

considered such that all the organ boundaries are assumed be constant while a full 

frame of independent measurements is obtained. In the second situation, the 

boundaries of the lungs are fixed while a heart expansion/contraction cycle is 

considered, depicting the scenario in which a patient is told to hold his/her breathe 

while EIT measurements are taken. In this case, a partial subset of the full 

measurement frame is assumed to be available at each instance. A dynamic version 

of the OBBO is used to reconstruct the non-stationary organ boundaries in this case. 

An extensive statistical analysis of the estimated parameters using OBBO and its 

comparison with the traditional mNR and EKF algorithms is presented. The results 

demonstrate that OBBO has significantly better estimation performance as compared 

to the traditional algorithms, in the case of non-elliptic multiple boundaries located 

near to each other. The robustness of the algorithm has also been verified for several 

different types of initial population distributions, depicting the scenario when the 

prior knowledge of the size, location and shape is not so correct. Additionally, the 

accuracy of estimation has been tested for different conductivity errors, i.e., when the 

a priori knowledge of the conductivity of the organs is assumed to be inaccurate. The 

proposed algorithm has shown reasonable performance in situations when the a 

priori information is relatively poor. 

One of the major challenges posed by the proposed technique is its high 

computational complexity due to the iterative nature of the underlying algorithm. 
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However, the advent of high performance computing machines offering parallelism, 

both at the hardware and the software levels, has opened up the possibility of online 

deployment of evolutionary algorithms which at the moment has been prescribed for 

an offline use only. Currently, the conductivity values of regions are assumed to be 

known constants. Future work includes the simultaneous reconstruction of region 

boundaries and their conductivities, the extension of the method to 3D EIT for real 

time measurement, and the study and comparison of the best suitable population 

distribution and dynamic evolution schemes.  
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 Summary  

 

Electrical impedance tomography (EIT) is a non-invasive imaging modality which 

has been actively studied for its industrial as well as medical applications. However, 

the performance of the inverse algorithms to reconstruct the conductivity images 

using EIT is often sub-optimal. Several factors contribute to this poor performance 

which includes high sensitivity of EIT to the measurement noise, the rounding-off 

errors, the inherent ill-posed nature of the problem and the convergence to a local 

minimum instead of the global minimum. Moreover, the performance of many of 

these inverse algorithms heavily relies on the selection of initial guess as well as the 

accurate calculation of a gradient matrix. Considering these facts the need of an 

efficient optimization algorithm to reach the correct solution cannot be overstated. 

This thesis presents an oppositional biogeography-based optimization (OBBO) 

technique to estimate the shape, size and location of the region boundaries inside an 

object domain using 2D EIT. The region boundaries are expressed as coefficients of 

truncated Fourier series while the conductivities of the regions are assumed to be 

known a priori. OBBO is first applied to reconstruct the static organ boundaries 

inside a chest like structure, when a full set of independent measurements is available 

at the measurement instance. A dynamic version of OBBO is then applied to estimate 

the non-stationary heart boundaries, assuming that only a partial subset of EIT 

measurement frame is available at a particular instance. The robustness of the 

algorithm, for static as well as dynamic cases, has been verified - first through 

repetitive numerical simulations by adding randomly generated measurement noise 

to the simulated voltage data, and then with the help of experimental setups. An 

extensive statistical analysis of the estimated parameters using OBBO and its 

comparison with the traditional mNR and EKF algorithms is presented. OBBO has 

shown far superior performance as compared to the traditional algorithms. 

Furthermore, it has been found that OBBO is robust to measurement noise and the 

initial guess of the size and location of the boundaries as well as it offers reasonable 

solution when the a priori knowledge of the conductivity is not very accurate. 
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