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<Abstract>

Extreme preservers of integer matrix pairs

derived from column rank inequalities

In this thesis, we investigate the surjective linear operators that preserve the
sets of integer matrix pairs. These sets are naturally occurred at the extreme
cases for the column rank inequalities relative to the sums and multiplications
of integer matrices. These sets were constructed with the nonnegative integer
matrix pairs which are related with the ranks of the sums and difference of two
integer matrices or compared between their column ranks and their real ranks.

That is, we construct the following sets ;
Can(ZT) ={(X,Y) E Mpn(ZT)? | (X +Y) =n};

Car(Z27) = {(X,Y) € Mpn(Z7)* [ (X +Y) = |p(X) = p(Y)[};
Car2(Z27) = {(X,Y) € Mo (Z27)7 | c(XY) = c(X) 5
Cur(2%) ={(X,Y) € Mu(Z2)* | (X +Y) = p(X) + p(Y) — n};

For these sets, we consider the linear operators that preserve their properties.
We characterize those linear operators as T(X) = PXQ or T(X) = PXP" with
appropriate permutation matrices P and ). We also give some examples of non-

surjective linear maps that preserve these sets.
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Extreme preservers of integer matrix pairs
derived from column rank inequalities

1 Introduction

The linear preserver problems are one of the most active research subjects
in matrix theory during last one hundred years, which concern the charac-
terizations of linear operators on matrix spaces that leave certain functions,
subsets, relations, etc., invariant. For survey of these types of problems, we
refer to the article of Song([12]) and the papers in [11]. The specified frame
of problems is of interest both for matrices with entries from a field and for
matrices with entries from an arbitrary semiring such as Boolean algebra,
nonnegative integers, and fuzzy semiring. It is necessary to note that there
are several rank functions over a semiring that are analogues of the classical
function of the matrix rank over a field. Detailed research and self-contained
information about rank functions over semirings can be found in [2] and [12].

There are some results on the inequalities for the rank function of matri-
ces( see [2] - [6]). Beasley and Guterman ([2]) investigated the rank inequal-
ities of matrices over semirings. And they characterized the equality cases
for some rank inequalities in [5].

In this thesis, we construct the sets of nonnegative integer matrix pairs.
These sets are naturally occurred at the extreme cases for the column rank
inequalities derived from the addition and multiplication of nonnegative in-
teger matrix pairs. We characterize the linear operators that preserve these
extreme sets of nonnegative integer matrix pairs.
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Definition 1.1. A semiring S consists of a set S and two binary operations,
addition and multiplication, such that:

e S is an Abelian monoid under addition (identity denoted by 0);

e S is an Abelian monoid under multiplication (identity denoted by 1);
e multiplication is distributive over addition;

e s0=0s=0forall ses.

Let Z* be the set of nonnegative integers. Then Z* becomes a semiring
under the usual addition and multiplication. In this thesis we will study the
matrices over the semiring Z+.

Definition 1.2. A semiring is called antinegative if the zero element is the
only element with an additive inverse.

It is straightforward to see that the nonnegative integer semiring Z7* is
antinegative.

Let M., »(S) denote the set of m x n matrices with entries from a semiring
S. If m = n, we use the notation M,,(S) instead of M,, ,,(S).

A vector space is usually only defined over fields or division rings, and
modules are generalizations of vector spaces defined over rings. We generalize
the concept of vector spaces to semiring vector spaces defined over arbitrary
semirings.

Definition 1.3. Given a semiring S, we define a semiring vector space, V (S),
to be a nonempty set with two operations, addition and scalar multiplication
such that V(S) is closed under addition and scalar multiplication, addition
is associative and commutative, and such that for all u and v in V(S) and
rsed:

1. There exists a 0 such that 0 4+ v = v,
lv=v=vl,

rsv =r(sv),

(r+s)v=rv+sv, and
rlu+v)=ru+rv.

Cuk
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Definition 1.4. A set of vectors with entries from a semiring is called lin-
early independent if there is no vector in this set that can be expressed as a
nontrivial linear combination of the others.

Definition 1.5. A collection of linearly independent vectors is said to be
a basis of the vector space V over a semiring if its linear span is V. The
dimension of V' is a minimal number of vectors in any basis of V.

The following rank functions are usual in the semiring context.

Definition 1.6. The matrix A € M,,,(S) is said to be of factor rank k
(rank(A) = k) if there exist matrices B € M,,1(S) and C' € My ,.(S)
such that A = BC and k is the smallest positive integer for which such
factorization exists. By definition, the only matrix with factor rank 0 is the
zero matrix, O.

Definition 1.7. The matrix A € M, ,(S) is said to be of column rank k
(c(A) = k) if the dimension of the linear span of the columns of A is equal
to k.

Definition 1.8. The matrix A € M,,,(S) is said to be of row rank k
(r(A) = k) if the dimension of the linear span of the rows of A is equal to k.

Definition 1.9. The matrix A € M,,,(S) is said to be of term-rank k
(t(A) = k) if the least number of lines needed to include all nonzero elements
of A is equal to k.

Example 1.10. It follows that
1 <rank(A) <c(A)<n

for all nonzero matrix A € M,, ,(£7). These inequalities may be strict: let
A=1[3 4] eM(27).

Then rank(A) =1 < 2= c(A).

Definition 1.11. A line of a matrix A is a row or a column of the matrix A.

Collection @ jeju



If S is a subsemiring of a field then there is a usual rank function p(A)
for any matrix A € M,,,(S). Easy examples show that over semirings these
functions are not equal in general. However, the inequalities r(A) > p(A)
and c¢(A) > p(A) always hold.

It is well-known that the behavior of the function p on the matrices over
a field with respect to matrix addition and multiplication is given by the
following inequalities([5]):

e the rank-sum inequalities:

Ip(A) — p(B)| < p(A+ B) < p(A) + p(B),

e Sylvester’s laws:

p(A) + p(B) —n < p(AB) < min{p(4), p(B)},

e and the Frobenius inequality:
p(AB) + p(BC) < p(ABC) + p(B),
where A, B are conformal matrices with entries from a field.

Arithmetic properties of column rank (or row rank, factor rank) depend
on the structure of semiring of entries. It is restricted by the following list of
inequalities established in [2]:

Let & be an antinegative semiring without zero divisors.

Then for 0 # A, B € M, ,(S),
1. 1<e¢(A+ B),r(A+ B);
2. ¢(A+ B) < n;

3. r(A+ B) <m;
If0# A€ Mpn(S),0# Be M,i(S)

4. if ¢(A) 4+ r(B) > n then ¢(AB),r(AB) > 1;
5. ¢(AB) < ¢(B);
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6. r(AB) <r(A);

Let S be a subsemiring of ®", the nonnegative reals. Then for A, B €
M0 (S) one has that

7. (A+ B),r(A+ B) > |p(A) — p(B)].
For A € M,x(S), B € M,,x(S) one has that

8. if p(A) + p(B) < n then ¢(AB),r(AB) > 0;
9. if p(A) + p(B) > n then ¢(AB),r(AB) > p(A) + p(B) —

Collection @ jeju



2 Preliminaries

Let us construct the set of matrix pairs that arise as extremal cases in the
inequalities listed above section on matrices over Z+:

Can(Z27) = {(X,Y) € My aZ%) | c(X +Y) =n};
Car(27) = {(X,Y) € MpnalZF)* [ (X +Y) =1}
Car(2%) = {(X,Y) € Mumn(Z7)* | (X +Y) = |p(X) — p(Y)I};
Cor2(27) = {(X)Y) € Mu(Z27)? | e(XY) = (V) };
Cuo(21) = {(X,Y) € M, (27)" | (XY) = 0}

Conn(ZY) ={(X,Y) € Mo (ZT)? | e(X) +c(Y) >nand ¢(XY) = 1};

Cur(Z27) ={(X,Y) € Mu(2%)* | e(XY) = p(X) + p(Y) — n}.

As it was proved in [2] the inequalities 1 — 9 in section 1 are sharp and the
best possible. The natural question is to characterize the equality cases in the
above inequalities. Even over fields this is an open problem, see [9, 10, 14, 15]
for more details. The structure of matrix varieties which arise as extremal
cases in these inequalities is far from being understood over fields, as well
as over semirings. A usual way to generate elements of such a variety is
to find a tuple of matrices which belongs to it and to act on this tuple by
various linear operators that preserve this variety. The investigation of the
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corresponding problems over semirings for the factor rank function, term and
zero term rank functions was done in [3, 4]. This paper is a continuation of
[3, 4] and is devoted to study linear operators that preserve extremal cases
of rank inequalities with respect to row and column ranks. The complete
classification of linear operators that preserve cases of equalities in various
matrix inequalities over fields was obtained in [1, 5, 6, 8]. For the details on
linear operators preserving matrix invariants one can see [11] and references
therein.

Definition 2.1. An operator T : M,,, ,(Z2T) — M, ,(Z7) is called linear if
TaX)=aTl(X)and T(X +Y)=T(X)+ T(Y) for all X,Y € M, .(Z7),
a€Zt.

Definition 2.2. We say that an operator 7' : M, ,(Z7) — M,,.(Z27)
preserves a set P if X € P implies that T'(X) € P, or, if P is a set of ordered
pairs [triples], that (X,Y) € P [(X,Y,Z) € P] implies (T'(X),T(Y)) € P
(T(X), T(Y), T(Z)) € P].

Definition 2.3. The matrix X oY denotes the Hadamard or Schur product,
i.e., the (7, 7) entry of X oY is x; ;v ;.

Definition 2.4. An operator T : M, ,(Z7) — M, ,(Z27) is called a
(P, Q, B)-operator if there exist permutation matrices P € M,,(Z") and
Q € M,(Z27), and a matrix B = [b; ;| € M,,,(Z7), b; ; are nonzero elements
from Z* for all 4,5, 1 <i <m, 1 <j <n,such that T(X) = P(X o B)Q for
all X € M, n(Z7) or whenm =nT(X) = P(XoB)'Q for all X € M,,(Z%)
where X! denotes the transpose of X. An operator T is called a nontranspos-
ing (P, Q, B)-operator if there exist permutation matrices P € M, (Z7) and
Q € M,(Z27), and a matrix B = [b; ;| € M,,,,(Z%), b; ; are nonzero elements
from Z7* for all 4,5, 1 <i < m, 1 < j <mn, such that T(X) = P(X o B)Q
for all X € M,,,,(Z7). For the case of B = J, (P, Q, B)-operator is called
(P, Q)-operator.

Definition 2.5. We say that the matrix A dominates the matrix B if and
only if b; ; # 0 implies that a;; # 0, and we write A > B or B < A in this
case.
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Definition 2.6. If A and B are matrices and A > B we let A\ B denote the

matrix C' where
0 ifb; #0
Ci,j = a;

,; otherwise

The matrix I, is the n x n identity matrix, J,,, is the m x n matrix of
all ones, O, is the m X n zero matrix. We omit the subscripts when the
order is obvious from the context and we write I, J, and O, respectively.
The matrix E;;, called a cell, denotes the matrix with 1 in (¢, j) position
and zero elsewhere. A weighted cell is any nonzero scalar multiple of a cell,
i.e., al;; is a weighted cell for any 0 # @ € S. Let R; denote the matrix
whose i row is all ones and all other rows are zero, and C; denote the
matrix whose j™ column is all ones and all other columns are zero. We let
|A| denote the number of nonzero entries in the matrix A. We denote by
Alir, ..., iglg1, -+, 1] the k X l-submatrix of A which lies in the intersection
of the iq,...,4; rows and 7jq, ..., 7 columns.

We obtain some basic results on the linear operators on M,, ,(Z7) for
later use.

Theorem 2.7. Let T : M, n(Z27) — M, n(Z27) be a linear operator. Then
the following are equivalent:

1. T 1is bijective.
2. T is surjective.

3. There exists a permutation o on {(i,j) |i=1,2,...,m;j=1,2,...,n}
such that T'(E; ;) = Eg(; ).

Proof. 1t is trivial that (1) implies (2) and (3) implies (1).

We now show that 2) implies 3).

We assume that 7" is surjective. Then, for any pair (i, 7), there exists some
X such that T'(X) = E; ;. Clearly X # O by the linearity of 7. Thus there is
a pair of indices (r, s) such that X =z, (E, s + X’ where (r, s) entry of X’ is
zero and the following two conditions are satisfied: x, s # 0 and T'(E,.5) # O.
Indeed, if in the contrary for all pairs (r,s) either z,, = 0 or T(E, ) = O

8
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then 7'(X) = 0 which contradicts with the assumption 7'(X) = E; ;. Since
Z1 is an antinegative semiring without zero divisors it follows that

T(xr,sEr,s) < T<xr,sEr,s) + T(X \ (xr,sEr,s)) = T(X) = Ei,j-

Hence, z,T(Ers) = T(z,:E,5) < E;; and T(E, ) # O by the above.
Therefore, T'(E, ;) < E;;. Indeed, if on the contrary, T'(E, ) is a sum of
certain multiples of cells then so is x, ;T(E, ), since Z* is an antinegative
semiring without zero divisors.

Let P,; = {E,s | T(E,s) < E;;}. By the above P,; # 0 for all (i, 7).
By its definition P, ; N P,, = () whenever (4, j) # (u,v). That is {P,;} is a
set of mn nonempty sets which partition the set of cells. By the pigeonhole

principle, we must have that | P,; |= 1 for all (¢, j). Necessarily, for each
pair (r,s) there is a unique pair (¢, j) such that T(E, ;) = b,,E; ;. That is
there is some permutation o on {(7,7) i =1,2,---,m;j=1,2,---,n} such

that for some scalars b; j, T(E;;) = b;;Fq ;. We now only need to show
that the b; ; = 1. Since T is surjective and T'(E, ;) £ Ey( ;) for (r,s) # (4, ),
there is some « such that T'(«aE; ;) = E, j). But then, since T is linear,

Eij) = T(aks;) = oT(E; ;) = ab; jEy( 5.

That is, ab; ; =1, or b; j =1in Z%. [

Lemma 2.8. Let T : Mo (Z27) — Mpn(Z7) be an operator which maps
lines to lines and is defined by T(E; ;) = E,q j), where o is a permutation on
the set {(i,j) |i=1,2,...,m;j=1,2,...,n}. Then T is a (P,Q)-operator.

Proof. Since no combination of a rows and b columns can dominate J where
a+b=m unless b = 0 (or if m = n, if @ = 0) we have that either the image
of each row is a row and the image of each column is a column, or m = n and
the image of each row is a column and the image of each column is a row.
Thus, there are permutation matrices P and () such that T'(R;) < PR;Q
and T(C;) < PC;Q or, if m =n, T(R;) < P(R;)'Q and T(C;) < P(C))'Q.
Since each cell lies in the intersection of a row and a column and 7" maps
nonzero cells to nonzero cells, it follows that T'(E; ;) = PE; ;Q, or, if m = n,
T(E;;) = PE;;Q = P(E;;)'Q. |
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Remark 2.9. One can easily check that if m = 1 or n = 1 then all operators
under consideration are (P, Q)-operators, if m = n = 1 then all operators
under consideration are (P, P*)-operators.

Henceforth we will always assume that m,n > 2.

10

Collection @ jeju



3 Linear Operators Preserving Extreme Set
of Integer Matrix Pairs

In this section we investigate the linear operators that preserve the sets
C.x(Z7) defined above section.

Definition 3.1. Let E be the matrix € Msu(Z7).

O = O
_ o O
_ o
O = =

Lemma 3.2. For the matric B € M;4(Z7) in the above Definition 3.1, we
have ¢(E) = 4 and ¢(E"*) = 3 over Z*.

Proof. It is straightforward to check that three rows of E are linearly
independent. Thus ¢(E') = 3. In order to prove the other equality we
consider the column space

0 0 1 1
V=xXall|+8|0|+~7|0|+6]|1||a,8,7,0€S
0 1 1 0

of the matrix E. One can easily check that V is not a space of all 3-element
column vectors with the entries from Z* since [1,0,0]* ¢ V. Suppose that X
is a basis for V' and that X has only three elements, X = {x;, x5, X3}, where
Ti1
Xi= | T2
Li3
Since [0,1,0]" € V, we have that there are ay, as, as € Z* such that
a1xy + asxy + azxz = [0, 1, O]t )
But then,
a1x1,1 + asxro + azrsy = 0,

a1T12 + AaT29 + azr3o = 1,

11
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and
1713 + a2 3 + azrss = 0.

By reordering, if necessary, we can assume that a; # 0, so that z,; = 213 =
0, and since the zero vector is never an element of a basis, z1 9 # 0. Thus we
have X1 = [0, T2, O]t

Further, since [1,1,0]" € V, there are by, by, b3 € Z* such that

b1X1 + b2X2 + b3X3 = [1, 1, O]t .

Since ;7 = 0 we must have that the first coordinate in either x, or x3 is
nonzero since
bizi1 + boxoy +bzxz; = 1.

By renumbering we can assume that xo; # 0 and that by # 0. But then, the
third coordinate in x5 must be zero, since
bix13 + baa s + bswsz = 0.
Thus we must have that xo = [221, T2, O]t where 51 # 0.
Now, [1,0, 1]t €V, so that there are ¢;, ca, c3 € Z* such that

C1X1 + CoXo + €3X3 = [1, 0, 1]t .

Since x5 # 0 we must have that ¢; = 0. Since x; 3 = x93 = 0, we have
C1T1,3 + CaTa3 + C3T33 = c3x33 = 1.

Thus, c3 =1# 0 and 233 =1 # 0.
Since
a1x1,1 + a2 + azrsy = 0,

a1T1,3 + a2 3 + asrzz = 0,

x21 # 0 and z33 # 0, we have that a; = ag = 0. Further b5 = 0 since 233 = 1
and
biz13 + baxa 3 + bgrzz = 0.

Now consider that since [0, 0, l]t € V, we must have that there are
dy,dy,ds € Z* such that

d1X1 -+ d2X2 + d3X3 = [0, O, 1]t .

12
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Since z15 # 0 and x93 # 0 we must have that d; = d; = 0 and hence
[O, 0, 1]t = d3X3. It follows that X3 = [0, O, $373]t.
Also, since
C1T1, + CaTa 1 + C3x31 = Cogy = 1

we have that ¢ # 0. However,
C1T1,2 + CaTa o + C3T32 = Cag g + 332 = 0.

Since ¢y # 0 and
C1X1 + C9Xo + C3X3 = [1, 0, 1]t s
we must have x99 = 0. That is xp = [xQ,l,O,O]t € V, a contradiction since
CoXy = [17070]t ¢ V.
Therefore we have that V' must have dimension 4. Thus ¢(E) = 4. n

3.1 Linear Operators that Preserve Cy(Z%)

Lemma 3.3. If T : M, ,(Z27) = M, (Z27) is a surjective linear operator
which preserves Can(Z7), then T maps lines to lines.

Proof. Suppose that T—! does not map lines to lines. Then, there are two
non collinear cells which are mapped to a line. There are two cases, they are
mapped to two cells in a column or two cells in a row by Theorem 2.7.

If two non-collinear cells are mapped to two cells in a column, we may
assume without loss of generality that T'(Ey 1 + Ess) = E1q1+ Ea. If n <m
it suffices to consider A = Ey1 + Eyo + ...+ E,,. In this case, T(A) has
column rank at most n — 1, i.e., (0, A) € Can(Z7), (0,T(A)) ¢ Can(Z7), a
contradiction. Let us consider the case m < n. Then we choose a matrix A" €
Min—9—2(Z7) such that ¢(A") = n — 2. Let us choose A’ with the minimal
number of non-zero entries. Let A = Oy @ A’ € M,,,(Z%). Thus ¢(A) =
c(A’) =n—2. Hence (Ey 1+ Ea2,A) € Can(Z7). Since T preserves Can(Z7),
it follows that (Ey 1+ Ea1,T(A)) € Can(Z7), 1e., ¢(Ey1+ Ey1 +T(A)) =n.
Therefore ¢(T(A)[1,...,m;3,...,n]) > n — 2. Since the column rank of any
matrix cannot exceed the number of columns, ¢(T(A)[1,...,m;3,...,n]) =
n — 2. Further, |[T(A)[1,...,m;3,...,n]| < |A| = |A'| since T transforms

13
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cells to cells and at least one cell has to be mapped into the 2" column.
Thus we can have an (m — 2) X (n — 2) submatrix of T(A)[1,...,m;3,...,n]
whose column rank is n — 2 and the number of whose nonzero entries are less
than that of A’. This contradicts the choice of A’ with the minimal number
of non-zero entries.

If two non-collinear cells are mapped to two cells in a row, we may assume
without loss of generality that T'(Ey 1 + Ea9) = E11 + Ei . In this case, by
considering the matrices Ey; + E52 and A chosen above, the result follows.

Thus, T" maps lines to lines. |

Theorem 3.4. Let m#n orm=n>4 and T : My, ,(Z7) = My (27)
be a surjective linear operator. Then T preserves Can(Z7) if and only if T
is a nontransposing (P, Q)-operator.

Proof. 1t is easily checked that all nontransposing (P, ())-operators preserve
C ol

Suppose that T preserves Can(Z7). By Lemma 3.3 we have that T
preserves lines and by applying Theorem 2.7 to Lemma 2.8 we have that
T is a (P,Q)-operator. Since all nontransposing (P, ())-operators preserve
Can(Z7) it only remains to show that if m = n then the transposition does
not preserve Cay(Z7). Let

E O
A= |0 Ly | € M, (ZY).
0O 0

Then by Lemma 3.2 we have that ¢(A) = n and ¢(A4") = n — 1, so that
(A,0) € Can(Z27F) while (A", 0) € Can(Z2*). Thus T is a nontransposing
(P, Q)-operator. [ |

3.2 Linear Operators that Preserve C4(Z™")

Lemma 3.5. If T : M, o (Z7) = My n(Z7) is a surjective linear operator
which preserves Ca1(Z%1), then T maps lines to lines.

14
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Proof.  Suppose that T' does not map lines to lines. Then, without loss
of generality, we may assume that either T(Ey; + E12) = Ey1 + Ea2 or
T(Evy + Esq) = Ejq + Eyy by Theorem 2.7. In either case, let Y = O
and X be either E;; + Ey9 or Ejq + Ey;, so that (X,Y) € Cy4y while
(T(X),T(Y)) & Cai, a contradiction. Thus 7" maps lines to lines. m

Theorem 3.6. Let T : My, n(Z1) — Mupma(Z7) be a surjective linear oper-
ator. Then T preserves Ca1(Z7) if and only if T' is a nontransposing (P, Q)-
operator.

Proof. 1t is easily checked that all nontransposing (P, (Q)-operators preserve
Ca1(Z1).

Suppose that T preserves C41(Z7). By applying Lemma 3.5 and Theorem
2.7 to Lemma 2.8 we have that if T preserves C41(Z7) then T is a (P, Q)-
operator. Since all nontransposing (P, ())-operators preserve C41(Z7) it only
remains to show that if m = n then the transposition does not preserve
CAl (Z+) Let

X = [ : ] D Onz01 € Mo(27)

and Y = O, (X,Y) € Ca1(Z7) but (X", Y") ¢ Ca1(Z7). So, transposition
operator does not preserve the set C4;(Z7). Thus T is a nontransposing
(P, Q)-operator. [

3.3 Linear Operators that Preserve C z(Z7)

Lemma 3.7. If T : M, n(Z7) = M n(Z7) is a surjective linear operator
which preserves Car(Z7), min{m,n} > 3, then T maps lines to lines.

Proof. The sum of three distinct weighted cells has column rank at most 3.
Thus T(Ey 1 + E1 2+ Es4) is either a sum of 3 collinear cells, and hence has
column rank 1, or is contained in two lines, and hence has real rank 2, or is
the sum of three cells of column rank 3 and hence of real rank 3. Now, for
X =FEj1+E12+FE>; and Y = Ey 5, we have that (X,Y) € C4r(Z27), and the

15
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image of Y is a single cell, and hence p(T'(Y)) = 1. Now, if p(T(X)) = 3, then
T(X+Y) must have column rank 3 or 4, and hence (T'(X), T(Y)) & Car(Z"),
a contradiction. If p(T(X)) = 1, clearly (T(X),T(Y)) & Car(Z™) since
T(X+Y)# O. Thus p(T(X)) = 2, and ¢(T'(X +Y)) = 1. However it is
straightforward to see that the sum of four cells has the column rank 1 if
and only if they lie either in a line or in the intersection of two rows and two
columns. The matrix T'(X +Y) is a sum of four cells. These cells do not lie
in a line since p(T(X)) = 2. Thus T(X + Y) must be the sum of four cells
which lie in the intersection of two rows and two columns. Similarly, for any
i,j,k,l, T(Eij + Eip + Ei; + E ) must lie in the intersection of two rows
and two columns. It follows that any two rows must be mapped into two
lines. By the bijectivity of T, if some pair of two rows is mapped into two
rows (resp. columns), any pair of two rows is mapped into two rows (resp.
columns). Similarly, if some pair of two columns is mapped into two rows
(resp. columns), any pair of two columns is mapped into two rows (resp.
columns).

Now, the image of three rows is contained in three lines, two of which are
the image of two rows, thus, every row is mapped into a line. Similarly for
columns. Thus, T" maps lines to lines. ]

Theorem 3.8. Letm#n orm=n>4, and T : My, ,(Z7) = My n(Z27)
be a surjective linear operator. Then T preserves Car(Z™) if and only if T
is a nontransposing (P, Q)-operator.

Proof. 1t is easily checked that all nontransposing (P, Q)-operators preserve
Car(Z7).

By applying Lemma 3.7 and Theorem 2.7 to Lemma 2.8 we have that if
T preserves Car(Z7) then T is a (P, Q)-operator. Since all nontransposing
(P, Q)-operators preserve Cag(Z7) it only remains to show that in the case
m = n the operator X — X* does not preserve C4r(Z%). Let

¢
X = []g 8} € M,(2)

and Y = O. Then (X,Y) € Cag(Z") while (X', Y") & Car(Z7). So, trans-
position operator does not preserve the set Cag(Z7). Thus T is a nontrans-
posing (P, Q)-operator. [ |
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3.4 Linear Operators that Preserve Cyp(Z1)

Lemma 3.9. If T : M,(Z7) — M,(Z7) is a surjective linear operator
which preserves Cy2(Z7), then T maps lines to lines.

Proof. Suppose that 7! does not map columns to lines, say, without loss of
generality, that T-'(E; 1+ Ea1) > E11+ Ess. Then T(I) has nonzero entries
in at most n—1 columns. Suppose 7'(I) has all zero entries in column j. Then
for X =T and Y =T *(E;;), we have XY =Y however, T(X)T(Y) = O.
This contradicts the fact that T preserves Cpra(Z1). Suppose that 7! does
not map rows to lines. Say, without loss of generality, that T° _1(E1,1 +E2) >
Ey1+ Es5. That is T(Ey 1 + Esp) = E1q+ Eys. Then for X = Ey 1+ Ey0+
Oy @ I,_5], T(X) has column rank at most n — 1 since either the first two
columns of T'(X) are equal or at least one of the columns from the 3 through
the n' is zero. Let Y = T~Y(I), then we have that (X,Y) € Cp2(Z7), since
c(XZ) = ¢(Z) for any Z, while ¢(T(X)I) = ¢(T(X)) =n—1 < c(I) =
c(T(Y)) so that (T'(X),T(Y)) € Cy2(Z27), a contradiction.

Similarly, if 7-'(E11 + E21) > Ei1 + Ea5 then the second column of
T(X) is zero and the same pair (X,Y) € Cpr2(27) gives the contradiction.

Thus 7! and hence 7" map lines to lines. [ ]

Theorem 3.10. Letn >4, and T : M, (Z7) — M, (Z%) be a surjective lin-
ear operator. Then T preserves Cpo(Z71) if and only if T is a nontransposing
(P, P")-operator.

Proof. 1Tt is easily checked that all nontransposing (P, Q)-operators preserve
Cr2(Z7T).

By applying Lemma 3.9 and Theorem 2.7 to Lemma 2.8 we have that if
T preserves Cp2(Z7) then T is a (P, Q))-operator.

To see that the operator T'(X) = PX'Q does not preserve Cy2(Z7), it
suffices to consider Tp(X) = X, since row and column permutations preserve
CMQ(Z+). Let

O = O O

0
8 @ In—4
1

O O ==
O O = =
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and

o O O

@ I, ..

(@) (o)
— o O
oS O O O

0

Then (X,Y) € Cpr2(Z27) while (X', Y?) & Cpy2(Z7). So, transposition oper-
ator does not preserve the set Cy2(Z27). Thus T is a nontransposing (P, Q)-
operator.

It remains to prove that @ = P'. Assume in the contrary that QP # I.
Suppose that T7(X) = (QP)X transforms the r'" row into the ¢ row for
some r # t. We consider the matrix

X = Z Ei,i7 Y - E,«,T.
it
Then XY = E,, =Y, which implies (X,Y) € Cpa(Z+), but
T(X)T(Y) =PXQPYQ = P(> _ Ei;)E,Q = P(I\E,)E,,Q = POQ =0,
it

which implies that (T(X),T(Y)) ¢ Car2(Z1). Therefore T' does not preserve
the set Cpr2(Z7), a contradiction. Thus @ = P' and T is a nontransposing
(P, P*)-operator. [ |

3.5 Linear Operators that Preserve Cy;(Z")

Lemma 3.11. If T : M,(Z") — M, (2%) is a surjective linear operator
which preserves Cyp1(Z71), then T maps lines to lines.

Proof.  Recall that if (X,Y) € Cpn(Z27) then ¢(X) + ¢(Y) > n. We
assume that there exist indices 1,j,k,l, i # k, j # [ such that nonzero
entries of T(E; ;) and T(Ey,) lie in a line. Let T(E; ;) = E,;. Then either
T(Eg;) = Esp or T(Ey;) = Eyy. In both cases ¢(T(E;; + Ey;)) = 1. Let
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Y’ € M,,(Z%) be amatrix such that Y'+E; ;+ E , is a permutational matrix.
We consider X = E; ; + Ey;, Y =Y'+ Ej;. Then XY = E};, and (X,Y) €
Cui(Z7). However, since ¢(T(X)) = 1 in either case, and ¢(T(Y)) <n —1,
c(T(X)) 4+ ¢(T(Y)) < n. Finally, we have that (T(X),T(Y)) € Cy1(Z7), a

contradiction. ]

Theorem 3.12. Letn > 3, and T : M,(Z2T) — M, (Z7) be a surjective lin-
ear operator. Then T preserves Cp1(Z71) if and only if T is a nontransposing
(P, P")-operator.

Proof. Tt is straightforward that operators under consideration preserve the
set Cpr1(Z7).

By applying Lemma 3.11 and Theorem 2.7 to Lemma 2.8 we have that
if T preserves Cpr1(Z71) then T is a (P, @)-operator. Similar to the proof of
Theorem 3.10 we consider Tp(X) = X*. Let

| O I

o 5]

and o
2 In—l

vk 0]

Then ¢(XY) = ¢(E1,-1) =1 and hence (X,Y) € Cp1(Z27) while ¢(X'Y") =
c([ IO g ]) = 2 and hence (X", Y?*) & Cp1(Z7). This proves that T is a
2
non-transposing (P, Q)-operator.
Let us check that ) = P'. Assume in the contrary that QP # I. Suppose
that T1(X) = (QP)X transforms the p'™ row into the s and the r*® row

into t™ with r # s,t since n > 3. We consider the matrix X = Y Ej;,
1T
Y =E,,+E,,. Then XY = E,, and hence (X,Y) € Cp1(Z7). And we
have that
c(T(X)+ce(T(Y)=n+1>n

and
T(X)T(Y)=PXQPYQ = P(>_ E;;)(Esp+ Ei,)Q.
iF#r
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Thus ¢(T(X)T(Y)) = 2, that is, (T(X),T(Y)) ¢ Cyi1(Z27), a contradiction.
Hence Q = P' and T is a nontransposing (P, P*)-operator. n

3.6 Linear Operators that Preserve Cy/r(Z7)

Lemma 3.13. If T : M,(Z") — M,(27) is a surjective linear operator
which preserves Cyir(Z7), then T maps lines to lines.

Proof. It'T does not preserve lines, then, as in the proof of Lemma 3.11, there
exist indices 4,7, k,l, i # k, j # | such that nonzero entries of T'(E; ;) and
T(E),) liein aline. Let X’ € M, (Z7) be a matrix such that X'+ E; ;4 Ej; is
a permutational matrix, X = X'+ E; ;4 Eg,;. Then (X, O) € Cyg. However,
¢(T(X)) <n—1, and hence p(T(X)) <n—1. Thus (T(X),0) ¢ Cyr(Z"),

a contradiction. ]

Theorem 3.14. Let T : M, (Z27) — M, (Z7) be a surjective linear operator.
Then T preserves Cyr(Z7) if and only if T is a nontransposing (P, P')-
operator.

Proof. 1t is straightforward that operators under consideration preserve the
set Cyr(Z7).

By applying Lemma 3.13 and Theorem 2.7 to Lemma 2.8 we have that if
T preserves Cpp(Z27) then T is a (P, Q))-operator.

Let _ i
01
X - I O O | @ITL—27
and )
1 0
Y=100 ] D s
Then
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and hence (X,Y) € Cyr(Z™"). But

ot 00
XY_[1 0]@Jn_2,

and hence (X%, Y") & Cpyr(Z27T). This proves that T is a non-transposing
(P, Q)-operator.
Let us check that Q = P!. Assume in the contrary that QP # I. Let QP

transforms 7™ row to ™ with r # t. We consider the matrix X = > F,;,
1T
Y =E,,. Thus (X,Y) € Cyr(Z7). But

T(X)T(Y) = PXQPYQ =P(Y_ E;)(E.,)Q #0,
i#£r
which implies that (T(X), T(Y)) ¢ Cur(Z™), a contradiction. Hence Q = P*
and T is a nontransposing (P, P')-operator. ]

3.7 Linear Operators that Preserve C,;((Z7)

Lemma 3.15. If T : M, (Z7) — M, (27) is a surjective linear operator
which preserves Cpro(Z27), then T maps columns to columns and rows to rows.

Proof. Suppose that T' does not map columns to columns. Say 7'(C;) is not
a column. Then T'(J\C;) has no zero column. Then (J\C}, E; ;) € Cpo(Z7),
while (T'(J \ C}),T(E;;)) & Camo(Z7), a contradiction.

Suppose that T" does not preserve rows, then, say, T'(R;) is not a row. It
follows that T'(J \ R;) has no zero row. Then (E;;, J\ R;) € Cpo(Z7), while
(T(Ei;), T(J\ R;)) & Cmo(Z7), a contradiction. u

Theorem 3.16. Let T : M, (Z%) — M, (Z2%) be a surjective linear operator.
Then T preserves Cao(Z%1) if and only if T is a nontransposing (P, P")-
operator.
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Proof. Tt is straightforward that operators under consideration preserve the
set Caro(Z27).

Since, by Lemma 3.15 T" preserves columns and rows, it preserves lines
and hence, by Lemma 2.8, T is a (P, Q)-operator. Since T' maps columns to
columns, T is clearly a nontransposing (P, @)-operator.

We now only need show that Q@ = P’ If not, say QPE,; = E,, with
t # r. Then (Ei 4, E, ) € Cyo(Z27). However,

T(Et,t)T(Er,s) =, PEt,tQPEr,sQ = P(Et,tEt,s>Q 3"é @)

so that (T(Et.), T(E,s)) & Cuo(Z7), a contradiction. Hence @ = P* and T
is a nontransposing (P, P*)-operator. [ |

3.8 Examples of non-surjective Linear Operators that
Preserve C..(Z7)

Let us see that there exists non-surjective linear preservers of the sets C,.(Z7).

Example 3.17. 1. A linear operator T3 defined on the basis by T3(E; ;) =
E;; is a non-surjective Cay(Z7T)-preserver.

2. A linear operator T defined on the basis by T4(E; ;) = E1, is a non-
surjective Ca1(Z7)-preserver.

Proof.

1. By its definition T3 is not surjective. To see that T3 preserves Can(Z7)
we note that for any A, B € M,,,(2%) if ¢(T3(A + B)) < n then
T3(A+ B) has a zero column (since T3(X) is a diagonal matrix for any
X € My,n(27)). Thus the sum of all entries of a certain column of
A+ B is zero. By the antinegativity of Z* it follows that there is a zero
column in A + B, i.e., ¢(A+ B) < n. Therefore if (A, B) € Can(Z7),
then (T3(A),T5(B)) € Can(Z7). Hence, T3 preserves Cay(Z7). Thus
T3 is a non-surjective Cay(Z)-preserver.
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