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< Abstract>

A study on the effect

We introduce the concepts of effects (or called fuzzy events) and observ-

able (or called fuzzy random variable) as the generalizations of event and

random variable, respectively. Also, we introduce the concept of sigma-

morphism and we prove some basic properties and continuity of sigma-

morphism as a probability measure on the set of effects. There are various

types of mean value and variance for fuzzy sets. We study mean value

and variance defined by Christer Carlsson and Robert Fullér. For two

independent random variables A and B, the expectation of AB equals the

product of two expectations of A and B. We investigate the corresponding

property for independence which is one-sided fuzzy set. We show that the

mean value of product AB of two one-sided fuzzy sets A and B equals

the product of two mean values of one-sided fuzzy sets A and B. And, we

calculate the possibilistic mean value, variance and covariance of one-sided

fuzzy sets and their products.
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1. Introduction

Since L. A. Zadeh introduced the concept of fuzzy sets, the theory of

fuzzy sets has been developed in various aspects. In some senses, many

theories in fuzzy mathematics can be considered as a generalization of

the original theory. In probability theory, many researchers have tried

to generalize the concepts of events and random variables in probability

theory.

In probability theory, the imprecision comes from our incomplete knowl-

edge of the system but the random variables(measurements) still have

precise values. But, in fuzzy theory, we also have an imprecision in our

measurements, and so random variables must be replaced by fuzzy random

variables and events by fuzzy events. In this sense, S. Gudder introduced

the concepts of effects(fuzzy events), observable(fuzzy random variable)

and their distribution. Also, he introduced the concept of σ-morphism on

the set of effects.

In section 2, we introduced the basic concepts of fuzzy sets. And we

introduced the concept of fuzzy numbers and the operations(addition, sub-

traction, multiplication and division) for them. Especially, we introduced

the concepts of triangular fuzzy numbers, trapezoidal fuzzy numbers and

quadratic fuzzy numbers and the results of four operations for these fuzzy

numbers.

In section 3, we introduced the concept of effect, observable and σ-

morphism as a probability measure on the set of effects and some ba-

sic properties of σ-morphism. And we proved some properties about σ-

morphism. The main theorem in section 3 is the continuity of σ-morphism
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that can be considered as a generalization of the continuity of probability

measure.

In section 4, we introduced the concepts of possibilistic mean value

and variance of fuzzy numbers defined by C. Carlsson and R. Fullér [7]

and calculate the mean value and variance of some special fuzzy numbers

introduced in section 2. To develop our calculations, we define the concepts

of one-sided fuzzy set. The main result in section 4 is that, in some special

case, the mean of the product of two fuzzy sets is the product of means of

each fuzzy sets. This result can be considered as the similar result which

is well-known in the independence of events in probability theory.
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2. Preliminaries

Let X be a set. A classical subset A of X is often viewed as a char-

acteristic function µA from X to {0, 1} such that µA(x) = 1 if x ∈ A,

and µA(x) = 0 if x /∈ A. {0, 1} is called a valuation set. The following

definition is a generalization of this notion.

Definition 2.1. A fuzzy set A on X is a function from X to the interval

[0, 1]. The function is called the membership function of A.

Let A be a fuzzy set on X with a membership function µA. Then A is

a subset of X that has no sharp boundary. A is completely characterized

by the set of pairs

A = {(x, µA(x)) | x ∈ X}.

Elements with a zero degree of membership are normally not listed.

If X is a finite set {x1, · · · , xn}, a fuzzy set A on X is expressed as

A = µA(x1)/x1 + · · ·+ µA(xn)/xn =
n∑

i=1

µA(xi)/xi.

If X is not finite, we write

A =
∫

X

µA(x)/x.

Two fuzzy sets A and B are said to be equal, denoted by A = B, if and

only if µA(x) = µB(x), for all x ∈ X.

Definition 2.2. A γ-level set of a fuzzy set A on R is defined by [A]γ =

{x ∈ R|µA(x) ≥ γ} if γ > 0 and [A]γ = cl{x ∈ R|µA(x) > γ} if γ = 0.

3



Definition 2.3. A fuzzy set A on R is convex if

µA(λx1 + (1− λ)x2) ≥ min(µA(x1), µA(x2))

for all x1, x2 in R and λ in [0, 1].

Definition 2.4. A convex fuzzy set A on R is called a fuzzy number if

(1) there exists exactly one x0 ∈ R such that µA(x0) = 1,

(2) µA(x) is piecewise continuous.

Definition 2.5. A triangular fuzzy number is a fuzzy set A having mem-

bership function

µA(x) =





0 if x < a− α, a + β ≤ x,

(x− a + α)/α if a− α ≤ x < a,

(a + β − x)/β if a ≤ x < a + β.

The above triangular fuzzy set is denoted by A = (α, a, β).

Definition 2.6. A quadratic fuzzy number is a fuzzy set A having mem-

bership function

µA(x) =
{

0 if x < α, β ≤ x,

−a(x− α)(x− β)= −a(x− k)2 + 1 if α ≤ x < β,

where a > 0. The above quadratic fuzzy set is denoted by A = [α, k, β].

Definition 2.7. A fuzzy set A on R having membership function
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µA(x) =





0, x < a1, a4 ≤ x,
x−a1
a2−a1

, a1 ≤ x < a2,

1, a2 ≤ x < a3,
a4−x
a4−a3

, a3 ≤ x < a4.

is called a trapezoidal fuzzy set. The above trapezoidal fuzzy set is denoted

by A = (a1, a2, a3, a4).

The addition, multiplication and scalar multiplication of fuzzy sets are

defined by the extension principle [5].

Definition 2.8. For two fuzzy sets A and B on R, the addition, subtrac-

tion, multiplication and division are defined as

(1) addition A(+)B :

µA(+)B(z) = sup
z=x+y

min{µA(x), µB(y)}, x, y ∈ R,

(2) subtraction A(−)B :

µA(−)B(z) = sup
z=x−y

min{µA(x), µB(y)}, x, y ∈ R,

(3) multiplication A(·)B :

µA(·)B(z) = sup
z=x·y

min{µA(x), µB(y)}, x, y ∈ R,

(4) division A(/)B :

µA(/)B(z) = sup
z=x/y

min{µA(x), µB(y)}, x, y ∈ R.

Theorem 2.9. ([5]) For two triangular fuzzy numbers A = (a1, a2, a3)

and B = (b1, b2, b3), we have

(1) A(+)B = (a1 + b1, a2 + b2, a3 + b3),
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(2) A(−)B = (a1 − b3, a2 − b2, a3 − b1),

(3) A(·)B and A(/)B need not to be triangular fuzzy numbers.

Example 2.10. Let A = (2, 5, 7) and B = (1, 4, 6) be the triangular fuzzy

numbers. Then we have

(1) A(+)B = (3, 9, 13),

(2) A(−)B = (−4, 1, 6),

(3) A(·)B and A(/)B need not to be triangular fuzzy numbers.

Theorem 2.11. ([5]) For two quadratic fuzzy numbers A = [x1, k, x2]

and B = [x3,m, x4], we have

(1) A(+)B = [x1 + x3, k + m,x2 + x4],

(2) A(−)B = [x1 − x4, k −m,x2 − x3],

(3) µA(·)B(x) = 0 on the interval [x1x3, x2x4]c and µA(·)B(x) = 1 at x =

km. Note that A(·)B needs not to be a quadratic fuzzy number,

(4) µA(/)B(x) = 0 on the interval [x1
x4

, x2
x3

]c and µA(/)B(x) = 1 at x = k
m .

Note that A(/)B needs not to be a quadratic fuzzy number.

Example 2.12. Let A = [1, 2, 3] and B = [2, 7, 12] be the quadratic fuzzy

numbers. Then we have

(1) A(+)B = [3, 9, 15],

(2) A(−)B = [−11,−5, 1],

(3) A(·)B and A(/)B need not to be quadratic fuzzy numbers.

Theorem 2.13. ([5]) For two trapezoidal fuzzy sets A = (a1, a2, a3, a4)

and B = (b1, b2, b3, b4), we have

(1) A(+)B = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
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(2) A(−)B = (a1 − b4, a2 − b3, a3 − b2, a4 − b1),

(3) A(·)B and A(/)B need not to be trapezoidal fuzzy sets.

Example 2.14. Let A = (1, 3, 5, 8) and B = (−1, 2, 5, 9) be the trape-

zoidal fuzzy sets. Then we have

(1) A(+)B = (0, 5, 10, 17),

(2) A(−)B = (−8,−2, 3, 9),

(3) A(·)B and A(/)B need not to be trapezoidal fuzzy sets.
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3. σ-morphism on the set of effects

3.1 The basic properties of σ-morphism on the set of

effects

The basic structure is a measurable space (Ω,F) where Ω is a sample

space consisting of outcomes and F is a σ-field of events in Ω corresponding

to some probabilistic experiment. It is useful to identify an event A with its

indicator function IA. If µ is a probability measure on (Ω,F), then µ(A)

is interpreted as the probability that the event A occurs. A measurable

function f : Ω → R is called a random variable. The expectation of f is

defined by E[f ] =
∫

fdµ. Denoting the Borel σ-algebra on the real line R

by B(R), the distribution of f is the probability measure µf on (R,B(R))

given by µf (B) = µ(f−1(B)). We interpret µf (B) as the probability that

f has a value in the set B. Notice that µ(IA) = µ(A) for any A ∈ A
so the identification of A with IA carries directly over to probabilities.

In particular, this identification enables us to give simple proofs of basic

properties of probabilities.

The distribution of f can be written

µf (B) = µ(f−1(B)) = µ(If−1(B)) = µ(Xf (B))

and we call µf (B) = µ(Xf (B)) the distribution of Xf .

Definition 3.1. A random variable f : Ω → [0, 1] is called an effect or

fuzzy event.

Thus, an effect is just a measurable fuzzy subset of Ω. The set of effects
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is denoted by E = E(Ω,F).

Definition 3.2. If µ is a probability measure on (Ω,F) and f ∈ E , we

define the probability of f to be its expectation E[f ] =
∫

fdµ.

If (fi) is an increasing sequence in E , then by the monotone conver-

gence theorem, E[lim fi] = lim E[fi] so E is countably additive. Stated

in another way, if a sequence (fi) in E satisfies
∑

fi ∈ E , then E[
∑

fi] =
∑

E[fi].

We call Ec(Ω,F) = {IA : A ∈ F} the set of crisp effects. Since we are

describing probability theory in terms of Ec(Ω,F), we would also like to

describe random variables in terms of Ec(Ω,F). If f : Ω → R is a random

variable, define Xf : B(R) → Ec(Ω,F) by Xf (B) = If−1(B). Then Xf

satisfies the conditions

Xf (R) = If−1(R) = 1

and if Ai ∈ B(R) are mutually disjoint, then

Xf (∪Ai) = If−1(∪Ai) = I∪f−1(Ai) =
∑

If−1(Ai) =
∑

Xf (Ai).

Conversely, if Xf : B(R) → Ec(Ω,F) satisfies these two conditions, then it

can be shown that there exists a unique random variable f : Ω → R such

that Xf = X. We call Xf the crisp observable corresponding to f.

It is frequently useful to consider more general random variables and

crisp observables. Let (Λ,B) be another measurable space and let f : Ω →
Λ be a measurable function. we call f a random variable with value space

Λ and the mapping Xf : B(R) → Ec(Ω,F) given by Xf (B) → If−1(B) is
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the corresponding crisp observable with value space Λ. We now give the

general definition of an observable.

Definition 3.3. Let B be a σ-field of Λ. An observable is a map X :

B → E(Ω,F) such that X(Λ) = 1Ω and if Bi ∈ B(i = 1, 2, 3, · · · ) are

mutually disjoint, then X(∪Bi) =
∑

X(Bi) where the convergence of the

summation is pointwise.

If X(B) is crisp for every B ∈ B, then X is crisp. If µ is a probability

measure on (Ω,F), then the distribution of X is the probability measure

µX on (Λ,B) given by µX(B) = µ(X(B)). Note that µX is indeed a prob-

ability measure because µX(Λ) = 1 and if Bi ∈ B are mutually disjoint,

then by the monotone convergence theorem,

µX(∪Bi) = µ(X(∪Bi)) = µ

(∑
X(Bi)

)
=

∑
µ(X(Bi)) =

∑
µX(Bi)

Example 3.4. If f : (Λ,B) → (Ω,F) is a measurable function, the corre-

sponding crisp observable Xf : F → E(Λ,B) is given by Xf (B) = If−1(B).

To summarize we can describe probability theory in an equivalent way

by replacing events by crisp effects (A → IA), probabilities by expectations

(µ(A) → µ(IA)), random variables by crisp observables (f → Xf ).

Definition 3.5. A state on E(Ω,F) is a map s : E(Ω,F) → [0, 1] that

satisfies s(1Ω) = 1 and if (fi) is a sequence in E such that Σfi ∈ E(Ω,F),

then s(Σfi) = Σs(fi).

A state s corresponds to a condition or preparation of a system and
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s(f) is interpreted as the probability that the effect f occurs when the

system is in the condition corresponding to s. If µ is a probability measure

on (Ω,F), then it follows from the monotone convergence theorem that

µ : E(Ω,F) → [0, 1] is a state.

Definition 3.6. X̃ : E(Ω,F) → E(Λ,B) is a σ-morphism if X̃(1Ω) = 1Λ

and if (fi) is a sequence in E such that Σfi ∈ E(Ω,F), then X̃(Σfi) =

ΣX̃(fi).

Example 3.7. Let Ω = [0, 1] and Λ = [1, 2]. Let F and B be the σ-fields

of Ω and Λ, respectively. Define X̃ : E(Ω,F) → E(Λ,B) by

X̃(f)(x) = f(x− 1).

Then X̃ is a σ-morphism. In fact, X̃(1Ω)(x) = 1Ω(x− 1) = 1Λ(x) and

X̃(Σfi)(x) = Σfi(x− 1) = ΣX̃(fi)(x).

Example 3.8. Let Ω = Λ = [0, 1]. Let F and B be the σ-fields of Ω and

Λ, respectively. Define X̃ : E(Ω,F) → E(Λ,B) by

X̃(f)(x) =
1
2
(f(x) + f(1− x)).

Then X̃ is a σ-morphism. In fact,

X̃(1Ω)(x) =
1
2
(1Ω(x) + 1Ω(1− x)) = 1Λ(x)

and
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X̃(Σfi)(x) =
1
2
(Σfi(x) + Σfi(1− x))

= Σ
1
2
(fi(x) + fi(1− x))

= ΣX̃(fi)(x).

Theorem 3.9. ([2]) We have the followings.

(1) If X̃ : E(Ω,F) −→ E(Λ,B) is a σ-morphism, then X̃(λf) = λX̃(f) for

every λ ∈ [0, 1] and f ∈ E(Ω,F),

(2) If s : E(Ω,F) → [0, 1] is a state, then there exists a unique probability

measure µ on (Ω,F) such that s(f) =
∫

fdµ for every f ∈ E(Ω,F).

The next result shows that there exists a natural one-to-one correspon-

dence between observables and σ-morphisms.

Theorem 3.10. ([2]) If X : F → E(Λ,B) is an observable, then X has

a unique extension to a σ-morphism X̃ : E(Ω,F) → E(Λ,B). If Y :

E(Ω,F) → E(Λ,B) is a σ-morphism, then Y |F is an observable.

If f : Λ → Ω is a measurable function, the corresponding crisp observ-

able Xf : F → E(Λ,B) is given by Xf (B) = If−1(B). The next result

shows that X̃f : E(Ω,F) → E(Λ,B) has a simple form.

Corollary 3.11. ([2]) If f : Λ → Ω is a measurable function, then

X̃f (g) = g ◦ f for every g ∈ E(Ω, F ), where X̃f is an extension of Xf

in Example 3.4.

12



3.2 The continuity of σ-morphism

In section 3.1, we define the concept of effect, observable and σ-morphism

as a probability measure on the set of effects. In this section, we prove the

some basic properties of σ-morphism and the continuity of σ-morphism.

Theorem 3.12. If X̃ : E(Ω,F) → E(Λ,B) is a σ-morphism, then

(1) X̃(0Ω) = 0Λ,

(2) X̃

( n∑

i=1

fi

)
=

n∑

i=1

X̃(fi),

(3) If f − g ∈ E(Ω,F), then X̃(f − g) = X̃(f)− X̃(g). In particular,

X̃(1Ω − g) = 1Λ − X̃(g),

(4) f ≤ g ⇒ X̃(f) ≤ X̃(g),

Proof. (1) Let f1 = 1Ω, fi = 0Ω (i ≥ 2). Since X̃

( ∞∑

i=1

fi

)
= X̃(1Ω) = 1Λ

and ∞∑

i=1

X̃(fi) = X̃(f1) +
∞∑

i=2

X̃(fi) = 1Λ +
∞∑

i=2

X̃(0Ω),

we have 1Λ = 1Λ +
∞∑

i=2

X̃(0Ω) and thus X̃(0Ω) = 0Λ.

(2) Let fi = 0Ω (i ≥ n + 1), then
∞∑

i=1

fi =
n∑

i=1

fi. Thus

X̃

( n∑

i=1

fi

)
= X̃

( ∞∑

i=1

fi

)
=

∞∑

i=1

X̃(fi) =
n∑

i=1

X̃(fi).

(3) Since X̃(f) = X̃(f − g + g) = X̃(f − g) + X̃(g),
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we have

X̃(f − g) = X̃(f)− X̃(g).

(4) Since X̃(g) = X̃(g − f) + X̃(f), X̃(g − f) ≥ 0.

Theorem 3.13. If f : (Λ1,B1) → (Λ2,B2) and g : (Λ2,B2) → (Λ3,B3)

are measurable functions, then X̃g◦f = X̃f ◦ X̃g.

Proof. Note that X̃f : E(Λ2,B2) → E(Λ1,B1), X̃g : E(Λ3,B3) → E(Λ2,B2)

and X̃g◦f : E(Λ3,B3) → E(Λ1,B1). Since X̃g◦f (h)(ω) = h ◦ (g ◦ f)(ω) for

every h ∈ E(Λ3,B3) and ω ∈ Λ1,

X̃g◦f (h)(ω) = h ◦ (g ◦ f)(ω) = (h ◦ g) ◦ f(ω)

= X̃f (h ◦ g)(ω) = X̃f ◦ X̃g(h)(ω).

Theorem 3.14. Let f : Λ2 → Λ1 be a measurable function and µi :

(Λi,Bi) → [0, 1] be a probability measure (i = 1, 2). If µ1 = (µ2)f , then

µ2 ◦ X̃f = µ1.

Proof. Let g =
n∑

i=1

ciIBi be a simple function in E(Λ1,B1). Then by Corol-

lary 3.11,

µ2 ◦ X̃f (g) =
∫

X̃f (g) dµ2 =
∫

(g ◦ f)dµ2

=
∫ n∑

i=1

(ciIBi ◦ f) dµ2

=
∫ n∑

i=1

ciIf−1(Bi)dµ2.

And, by the definition of expectation and distribution,
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∫ n∑

i=1

ciIf−1(Bi)dµ2 =
n∑

i=1

ciµ2(f−1(Bi))

=
n∑

i=1

ci(µ2)f (Bi)

=
n∑

i=1

ciµ1(Bi)

= µ1(g).

Hence, µ2 ◦ X̃f (g) = µ1(g).

Now for an arbitrary g ∈ E(Λ1,B1), there exists an increasing sequence of

simple functions gn ∈ E(Λ1,B1) such that lim
n→∞

gn = g. Then by Corollary

3.11,

µ2 ◦ X̃f (g) =
∫

X̃f (g) dµ2

=
∫

X̃f

(
lim

n→∞
gn

)
dµ2

=
∫ (

lim
n→∞

gn ◦ f

)
dµ2.

By the monotone convergence theorem and the continuity of probability,

∫ (
lim

n→∞
gn ◦ f

)
dµ2 = lim

n→∞

∫
(gn ◦ f)dµ2

= lim
n→∞

µ2 ◦ X̃f (gn)

= lim
n→∞

µ1(gn)

= µ1

(
lim

n→∞
gn

)

= µ1(g).

Therefore, µ2 ◦ X̃f = µ1.
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Theorem 3.15. Let X̃ : E(Ω,F) → E(Λ,B) be a σ-morphism. If (gn) is

an increasing sequence in E(Ω,F) with lim
n→∞

gn = g, then lim
n→∞

X̃(gn) = X̃(g)

in E(Λ,B).

Proof. Let f1 = g1 and fn = gn − gn−1 (n ≥ 2). Then fn ∈ E(Ω,F) for

all n and gn =
n∑

i=1

fi. Since g =
∞∑

i=1

fi, we have

X̃(g) = X̃

( ∞∑

i=1

fi

)

=
∞∑

i=1

X̃(fi)

= lim
n→∞

n∑

i=1

X̃(fi)

= lim
n→∞

X̃

( n∑

i=1

fi

)

= lim
n→∞

X̃(gn).

Hence

lim
n→∞

X̃(gn) = X̃(g).

Corollary 3.16. Let X̃ : E(Ω,F) → E(Λ,B) be a σ-morphism. If (gn) is a

decreasing sequence in E(Ω,F) with lim
n→∞

gn = g, then lim
n→∞

X̃(gn) = X̃(g)

in E(Λ,B).

Theorem 3.17. Let X̃ : E(Ω,F) → E(Λ,B) be a σ-morphism. If (gn)

is a sequence in E(Ω,F) with lim
n→∞

gn = g, then lim
n→∞

X̃(gn) = X̃(g) in

E(Λ,B).
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Proof. First, we prove that

X̃

(
lim inf
n→∞

gn

)
≤ lim inf

n→∞
X̃(gn)

≤ lim sup
n→∞

X̃(gn)

≤ X̃

(
lim sup

n→∞
gn

)
.

Let fn = inf
i≥n

gi. Since (fn) is an increasing sequence in E(Ω,F), by The-

orem 3.15, we have

X̃

(
lim inf
n→∞

gn

)
= X̃

(
sup
n≥1

inf
i≥n

gi

)

= X̃

(
sup
n≥1

fn

)

= X̃

(
lim

n→∞
fn

)

= lim
n→∞

X̃(fn).

Let n ∈ N. Then, for each n ≤ i , fn ≤ gi, we have X̃(fn) ≤ X̃(gi) and

hence X̃(fn) ≤ inf
i≥n

X̃(gi). Therefore

sup
n≥1

X̃(fn) ≤ sup
n≥1

inf
i≥n

X̃(gi) = lim inf
n→∞

X̃(gn).

But, since

lim
n→∞

X̃(fn) = sup
n≥1

X̃(fn),

we have

X̃

(
lim inf
n→∞

gn

)
≤ lim inf

n→∞
X̃(gn).
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Similarly, lim sup
n→∞

X̃(gn) ≤ X̃

(
lim sup

n→∞
gn

)
. For gn ∈ E(Ω,F), since

lim sup
n→∞

X̃(gn) ≤ X̃

(
lim sup

n→∞
gn

)

= X̃

(
lim

n→∞
gn

)

= X̃

(
lim inf
n→∞

gn

)

≤ lim inf
n→∞

X̃(gn),

we have

lim
n→∞

X̃(gn) = lim inf
n→∞

X̃(gn)

= lim sup
n→∞

X̃(gn)

= X̃

(
lim

n→∞
gn

)

= X̃(g).

Hence

lim
n→∞

X̃(gn) = X̃(g).
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4. The mean value and variance of one-sided
fuzzy sets

In this chapter, we define the one-sided fuzzy set and the mean value

and variance, defined by Christer Carlsson and Robert Fullér, for various

types of one-sided fuzzy sets.

4.1 One-sided fuzzy set

The triangular fuzzy set and quadratic fuzzy set have a continuous

membership function. To develop our calculations, we define the new

fuzzy sets having discontinuous membership functions.

Definition 4.1. A left fuzzy set is a fuzzy set A having membership func-

tion

µA(x) =
{

0 if x < a− α, a < x,

f(x) if a− α ≤ x ≤ a,

where f(x) is a continuous and increasing function with f(a−α) = 0 and

f(a) = 1. Similarly, a right fuzzy set is a fuzzy set A having membership

function

µA(x) =
{

0 if x < a, a + β < x,

g(x) if a ≤ x ≤ a + β,

where g(x) is a continuous and decreasing function with g(a) = 1 and

g(a + β) = 0. We call these sets one-sided fuzzy sets.

By using this definition, we can define the left triangular fuzzy set as

follows.
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Definition 4.2. A left triangular fuzzy set is a fuzzy set A having mem-

bership function

µA(x) =
{

0 if x < a− α, a < x,

(x− a + α)/α if a− α ≤ x ≤ a.

Similarly, a right triangular fuzzy set can be defined.

By the same ways, left(right) quadratic fuzzy set can be defined. And,

to denote these one-sided fuzzy sets, we will use the notations in Definition

2.5 and 2.6. For example, the left triangular fuzzy set in Definition 4.2 is

denoted by (α, a, 0).

Remark. Let A be a triangular fuzzy set. Then A = B + C where B be

a left triangular fuzzy set and C be a right triangular fuzzy set.

Theorem 4.3. (1) Let A1 and A2 be the left fuzzy sets. Then A1 + A2

is a left fuzzy set.

(2) Let A1 and A2 be the right fuzzy sets. Then A1 + A2 is a right fuzzy

set.

Proof. (1) Let A1 and A2 be the left fuzzy sets with membership functions

µA1(x) =
{

0 if x < a1 − α1, a1 < x,

f1(x) if a1 − α1 ≤ x ≤ a1.

and

µA2(x) =
{

0 if x < a2 − α2, a2 < x,

f2(x) if a2 − α2 ≤ x ≤ a2.

respectively, where f1(x) and f2(x) are continuous and increasing func-

tions with f1(a1− α1) = 0, f1(a1) = 1, f2(a2 − α2) = 0 and f2(a2) = 1.

Since
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[A1]γ = [f−1
1 (γ), a1] and [A2]γ = [f−1

2 (γ), a2], we have [A1 + A2]γ =

[f−1
1 (γ) + f−1

2 (γ), a1 + a2]. Hence A1 + A2 is a left fuzzy set.

(2) By the similar manner, (2) can be obtained.

Example 4.4. Let A1 = (2, 4, 0) and A2 = (3, 7, 0) be the left triangular

fuzzy sets and B1 = (0, 5, 3) and B2 = (0, 7, 2) be the right triangular

fuzzy sets. Let [A1]γ , [A2]γ , [B1]γ and [B2]γ be the γ-level sets of A1, A2,

B1 and B2, respectively.

(1) Since [A1]γ = [2γ + 2, 4] and [A2]γ = [3γ + 4, 7], we have [A1 + A2]γ =

[5γ + 6, 11]. Hence A1 + A2 = (5, 11, 0) is a left triangular fuzzy set,

(2) [B1]γ = [5, 8 − 3γ] and [B2]γ = [7, 9 − 2γ], we have [B1 + B2]γ =

[12, 17− 5γ]. Hence B1 + B2 = (0, 12, 5) is a right triangular fuzzy set.

Example 4.5. Let A1 = [1, 2, 0] and A2 = [3, 4, 0] be the left quadratic

fuzzy sets and B1 = [0, 5, 8] and B2 = [0, 2, 3] be the right quadratic fuzzy

sets. Let [A1]γ , [A2]γ ,[B1]γ and [B2]γ be the γ-level sets of A1, A2, B1

and B2, respectively.

(1) Since [A1]γ = [2 − √
1− γ, 2] and [A2]γ = [4 − √

1− γ, 4], we have

[A1 +A2]γ = [6− 2
√

1− γ, 6]. Hence A1 +A2 = [4, 6, 0] is a left quadratic

fuzzy set,

(2) Since [B1]γ = [5, 5 + 3
√

1− γ] and [B2]γ = [2, 2 +
√

1− γ], we have

[B1+B2]γ = [7, 7+4
√

1− γ]. Hence B1+B2 = [0, 7, 11] is a right quadratic

fuzzy set.

Remark. Let A and B be the left fuzzy set and right fuzzy set, respec-

tively.
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Then A + B may not be an one-sided fuzzy set.

Example 4.6. Let A = (2, 4, 0) be a left triangular fuzzy set and B =

(0, 5, 3) be a right triangular fuzzy set. Let [A]γ and [B]γ be the γ-level

sets of A and B, respectively. Since [A]γ = [2γ+2, 4] and [B]γ = [5, 8−3γ],

we have [A+B]γ = [2γ +7, 12−3γ]. Thus A+B = (2, 9, 3) is a triangular

fuzzy set, but it is not an one-sided fuzzy set.

Example 4.7. Let A = [1, 2, 0] be a left quadratic fuzzy set and B =

[0, 5, 8] be a right quadratic fuzzy set. Let [A]γ and [B]γ be the γ-level

sets of A and B, respectively. Since [A]γ = [2 − √1− γ, 2] and [B]γ =

[5, 5+3
√

1− γ], we have [A+B]γ = [7−√1− γ, 7+3
√

1− γ]. Thus A+B

is neither an one-sided fuzzy set nor a quadratic fuzzy set.
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4.2 The mean value and variance of one-sided fuzzy

sets

In this section, we introduce the notion of possibilistic mean value and

variance of fuzzy sets defined by C. Carlsson and R. Fullér. And, we

calculate the possibilistic mean value and variance of one-sided fuzzy sets.

Definition 4.8. Let A be a fuzzy set with [A]γ = [a1(γ), a2(γ)]. The

lower possibilistic mean value of A is defined by

M∗(A) = 2
∫ 1

0

γa1(γ)dγ.

Similarly, the upper possibilistic mean value of A is defined by

M∗(A) = 2
∫ 1

0

γa2(γ)dγ.

Note that M∗(A) is the lower possibility-weighted average of the minima

of the γ-sets and M∗(A) is the upper possibility-weighted average of the

maxima of the γ-sets.

Definition 4.9. Let A be a fuzzy set. The interval-valued possibilistic

mean of A is defined by

M(A) = [M∗(A),M∗(A)].

Theorem 4.10. ([7]) Let A and B be two non-interactive fuzzy sets and

let λ ∈ R. Then

M(A + B) = M(A) + M(B), M(λA) = λM(A).

23



Definition 4.11. The crisp possibilistic mean value of a fuzzy set A is

the arithmetic mean of its lower possibilistic and upper possibilistic mean

values, i.e.,

M(A) =
M∗(A) + M∗(A)

2
.

Theorem 4.12. ([7]) Let A and B be the fuzzy sets and λ ∈ R. Then

M(A + B) = M(A) + M(B), M(λA) = λM(A).

Example 4.13. Let A = (α, a, 0) be a left triangular fuzzy set. Then a

γ-level set of A is

[A]γ = [a− (1− γ)α, a], γ ∈ [0, 1].

Thus

M∗(A) = 2
∫ 1

0

γ(a− (1− γ)α)dγ = a− α

3

and

M∗(A) = 2
∫ 1

0

γ · adγ = a.

Hence we have

M(A) =
[
a− α

3
, a

]

and

M(A) =
∫ 1

0

γ(a− (1− γ)α + a)dγ = a− α

6
.

The following theorems show the relations between M∗(AB) and M∗(A)M∗(B)

and between M∗(AB) and M∗(A)M∗(B) for triangular fuzzy sets and

quadratic fuzzy sets.
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Theorem 4.14. Let A = (α1, a, β1) and B = (α2, b, β2) be the trian-

gular fuzzy sets. Then M∗(A)M∗(B) ≤ M∗(AB) and M∗(A)M∗(B) ≤
M∗(AB).

Proof. Since [A]γ = [a − (1 − γ)α1, a + (1 − γ)β1] and [B]γ = [b − (1 −
γ)α2, b + (1− γ)β2], we have

M∗(A) = 2
∫ 1

0

γ(a− (1− γ)α1)dγ = a− α1

3

and

M∗(B) = 2
∫ 1

0

γ(b− (1− γ)α2)dγ = b− α2

3
.

Since

M∗(AB) = 2
∫ 1

0

γ(ab− a(1− γ)α2 − b(1− γ)α1 + (1− γ)2α1α2)dγ

= ab− aα2

3
− bα1

3
+

α1α2

6
,

we have

M∗(A)M∗(B) =
(

a− α1

3

)(
b− α2

3

)

= ab− aα2

3
− bα1

3
+

α1α2

9

≤ ab− aα2

3
− bα1

3
+

α1α2

6
= M∗(AB).

Similarly, we can show that M∗(A)M∗(B) ≤ M∗(AB).

Theorem 4.15. Let A = [α1, k1, β1] and B = [α2, k2, β2] be the qua-

dratic fuzzy sets. Then M∗(A)M∗(B) ≤ M∗(AB) and M∗(A)M∗(B) ≤
M∗(AB).
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Proof. Let a = 4
(α1−β1)2

and b = 4
(α2−β2)2

. Then

[A]γ =
[
k1 −

√
1− γ

a
, k1 +

√
1− γ

a

]

and

[B]γ =
[
k2 −

√
1− γ

b
, k2 +

√
1− γ

b

]
.

Thus

M∗(A) = 2
∫ 1

0

γ

(
k1 −

√
1− γ

a

)
dγ = k1 − 8

15
√

a

and

M∗(B) = 2
∫ 1

0

γ

(
k2 −

√
1− γ

b

)
dγ = k2 − 8

15
√

b
.

Since

M∗(AB) = 2
∫ 1

0

γ

(
k1k2 − k1

√
1− γ

b
− k2

√
1− γ

a
+

1− γ√
ab

)
dγ

= k1k2 − 8k1

15
√

b
− 8k2

15
√

a
+

1
3
√

ab
,

we have

M∗(A)M∗(B) =
(

k1 − 8
15
√

a

)(
k2 − 8

15
√

b

)

= k1k2 − 8k1

15
√

b
− 8k2

15
√

a
+

64
225

√
ab

≤ k1k2 − 8k1

15
√

b
− 8k2

15
√

a
+

1
3
√

ab

= M∗(AB).

Similarly, we can show that M∗(A)M∗(B) ≤ M∗(AB).
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Theorem 4.16. Let A be a left fuzzy set with [A]γ = [a1(γ), a] and B

be a right fuzzy set with [B]γ = [b, b2(γ)], then M(AB) = M(A)M(B).

Proof. Since [A]γ = [a1(γ), a] and [B]γ = [b, b2(γ)], we have

M∗(A) = 2
∫ 1

0

γa1(γ)dγ

and

M∗(A) = 2
∫ 1

0

γ · adγ = a.

Similarly, we have M∗(B) = b and M∗(B) = 2
∫ 1

0
γb2(γ)dγ. Thus

M∗(A)M∗(B) =
(

2
∫ 1

0

γa1(γ)dγ

)
· b = 2b

∫ 1

0

γa1(γ)dγ

and

M∗(A)M∗(B) = a ·
(

2
∫ 1

0

γb2(γ)dγ

)
= 2a

∫ 1

0

γb2(γ)dγ.

Since [AB]γ = [ba1(γ), ab2(γ)], we have

M∗(AB) = 2b

∫ 1

0

γa1(γ)dγ

and

M∗(AB) = 2a

∫ 1

0

γb2(γ)dγ.

Hence M∗(A)M∗(B) = M∗(AB) and M∗(A)M∗(B) = M∗(AB). By the

definition of M , M(AB) = M(A)M(B).

Theorem 4.16 can be considered as the similar result which is well-

known in the independence of events in probability theory.
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Example 4.17. Let A be a left triangular fuzzy set with [A]γ = [2γ+2, 4]

and B be a right triangular fuzzy set with [B]γ = [7, 9− 2γ]. Then

M∗(A) = 2
∫ 1

0

γ(2γ + 2)dγ =
10
3

and

M∗(A) = 2
∫ 1

0

4γdγ = 4.

Similarly, we have M∗(B) = 7 and M∗(B) = 23
3 . Thus M∗(A)M∗(B) = 70

3

and M∗(A)M∗(B) = 92
3 . Since [AB]γ = [14γ + 14, 36− 8γ], we have

M∗(AB) = 2
∫ 1

0

γ(14γ + 14)dγ =
70
3

and

M∗(AB) = 2
∫ 1

0

γ(36− 8γ)dγ =
92
3

.

Hence M∗(A)M∗(B) = M∗(AB) and M∗(A)M∗(B) = M∗(AB). By the

definition of M , we have M(AB) = M(A)M(B).

Example 4.18. Let A be a left quadratic fuzzy set with [A]γ = [2 −
√

1− γ, 2] and B be a right quadratic fuzzy set with [B]γ = [5, 5 +

3
√

1− γ]. Then

M∗(A) = 2
∫ 1

0

γ(2−
√

1− γ)dγ =
22
15

and

M∗(A) = 2
∫ 1

0

2γdγ = 2.

Similarly, we have M∗(B) = 5 and M∗(B) = 33
5 . Thus M∗(A)M∗(B) = 22

3

and M∗(A)M∗(B) = 66
5 . Since [AB]γ = [10− 5

√
1− γ, 10 + 6

√
1− γ], we
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have

M∗(AB) = 2
∫ 1

0

γ(10− 5
√

1− γ)dγ =
22
3

and

M∗(AB) = 2
∫ 1

0

γ(10 + 6
√

1− γ)dγ =
66
5

.

Hence M∗(A)M∗(B) = M∗(AB) and M∗(A)M∗(B) = M∗(AB). By the

definition of M , we have

M(A)M(B) = M(AB).

Remark. If A and B are left fuzzy sets (or right fuzzy sets), the equality

M(A)M(B) = M(AB) does not always hold.

Definition 4.19. The variance of fuzzy set A with [A]γ = [a1(γ), a2(γ)]

is defined by

V ar(A) =
1
2

∫ 1

0

γ(a2(γ)− a1(γ))2dγ

Example 4.20. If A = (α, a, 0) is a left triangular fuzzy set then

V ar(A) =
1
2

∫ 1

0

γ(a− (a− α(1− γ)))2dγ =
α2

24
.

Definition 4.21. The covariance between fuzzy sets A with [A]γ = [a1(γ), a2(γ)]

and B with [B]γ = [b1(γ), b2(γ)]) is defined by

Cov(A,B) =
1
2

∫ 1

0

γ(a2(γ)− a1(γ))(b2(γ)− b1(γ))dγ.
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Proposition 4.22. Let A1 = (α1, a1, 0) and A2 = (α2, a2, 0) be the left

triangular fuzzy sets and B1 = (0, b1, β1) and B2 = (0, b2, β2) be the right

triangular fuzzy sets. Then

(1) Cov(A1, A2) =
α1α2

24
.

(2) Cov(B1, B2) =
β1β2

24
.

(3) Cov(A1, B2) =
α1β2

24
.

Proof. (1) Since [A1]γ = [a1−(1−γ)α1, a1] and [A2]γ = [a2−(1−γ)α2, a2],

we have

Cov(A1, A2) =
1
2

∫ 1

0

α1α2γ(1− γ)2dγ =
α1α2

24
.

By the similar method, (2) and (3) can be obtained.

Example 4.23. Let A1 = (2, 4, 0) and A2 = (3, 7, 0) be the left triangular

fuzzy sets and B1 = (0, 5, 3) and B2 = (0, 7, 2) be the right triangular fuzzy

sets.

(1) Since [A1]γ = [2γ + 2, 4] and [A2]γ = [3γ + 4, 7], Cov(A1, A2) = 1
4 .

(2) Since [B1]γ = [5, 8− 3γ] and [B2]γ = [7, 9− 2γ], Cov(B1, B2) = 1
4 .

(3) Since [A1]γ = [2γ + 2, 4] and [B2]γ = [7, 9− 2γ], Cov(A1, B2) = 1
6 .

Proposition 4.24. Let A1 = [α1, k1, 0] and A2 = [α2, k2, 0] be the left

quadratic fuzzy sets and B1 = [0,m1, β1] and B2 = [0, m2, β2] be the right

quadratic fuzzy sets. And put a1 = 1
(α1−k1)2

, a2 = 1
(α2−k2)2

, b1 = 1
(β1−m1)2

and b2 = 1
(β2−m2)2

. Then

(1) Cov(A1, A2) =
1

12
√

a1a2
.
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(2) Cov(B1, B2) =
1

12
√

b1b2

.

(3) Cov(A1, B2) =
1

12
√

a1b2

.

Proof. (1) Since

[A1]γ =
[
k1 −

√
1− γ

a1
, k1

]
, [A2]γ =

[
k2 −

√
1− γ

a2
, k2

]
,

we have

Cov(A1, A2) =
1
2

∫ 1

0

γ
1− γ√
a1a2

dγ =
1

12
√

a1a2
.

By the similar method, (2) and (3) can be obtained.

Example 4.25. Let A1 = [1, 2, 0] and A2 = [3, 4, 0] be the left quadratic

fuzzy sets and B1 = [0, 5, 8] and B2 = [0, 2, 3] be the right quadratic fuzzy

sets.

(1)Since [A1]γ =[2−√1− γ, 2]and[A2]γ =[4−√1− γ, 4],Cov(A1, A2)= 1
12 .

(2)Since [A1]γ =[2−√1− γ, 2]and[B2]γ =[2, 2+
√

1− γ],Cov(A1, B2)= 1
12 .

(3)Since [A2]γ =[4−√1− γ, 4]and[B1]γ =[5, 5+3
√

1− γ],Cov(A2, B1)= 1
4 .
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<국문초록>

 이펙트에 대한 硏究

  본 논문에서는 사건과 확률변수의 일반화로서 각각 이펙트(또는 퍼지사

건)과 가관찰량(또는 퍼지확률변수)를 소개하였다. 아울러, 이팩트들의 집

합 위에서 확률측도로서의 시그마-모피즘을 소개하였고 그것의 연속성과 

몇가지 기본적인 성질들을 증명하였다.

  퍼지 집합들을 위한 다양한 형태의 평균과 분산들이 존재한다. 본 논문

에서는 크리스터 칼슨과 로버트 펄러에 의해 정의된 평균과 분산을 연구

하였다. 서로 독립인 확률변수 와 에 대하여 가 

성립한다. 그리고 한쪽-방면 퍼지 집합들의 독립성에 대한 성질을 탐구하

였고 두 개의 한쪽-방면 퍼지 집합 와 에 대하여

 

가 성립하는 것을 증명하였다. 또한 한쪽-방면 퍼지 집합들과 그들의 곱

집합에 대한 파서블릭 평균값, 분산 그리고 공분산을 계산하였다.   
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