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< Abstract>
A study on the effect

We introduce the concepts of effects (or called fuzzy events) and observ-
able (or called fuzzy random variable) as the generalizations of event and
random variable, respectively. Also, we introduce the concept of sigma-
morphism and we prove some basic properties and continuity of sigma-
morphism as a probability measure on the set of effects. There are various
types of mean value and variance for fuzzy sets. We study mean value
and variance defined by Christer Carlsson and Robert Fullér. For two
independent random variables A and B, the expectation of AB equals the
product of two expectations of A and B. We investigate the corresponding
property for independence which is one-sided fuzzy set. We show that the
mean value of product AB of two one-sided fuzzy sets A and B equals
the product of two mean values of one-sided fuzzy sets A and B. And, we
calculate the possibilistic mean value, variance and covariance of one-sided

fuzzy sets and their products.

1
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1. Introduction

Since L. A. Zadeh introduced the concept of fuzzy sets, the theory of
fuzzy sets has been developed in various aspects. In some senses, many
theories in fuzzy mathematics can be considered as a generalization of
the original theory. In probability theory, many researchers have tried
to generalize the concepts of events and random variables in probability
theory.

In probability theory, the imprecision comes from our incomplete knowl-
edge of the system but the random variables(measurements) still have
precise values. But, in fuzzy theory, we also have an imprecision in our
measurements, and so random variables must be replaced by fuzzy random
variables and events by fuzzy events. In this sense, S. Gudder introduced
the concepts of effects(fuzzy events), observable(fuzzy random variable)
and their distribution. Also, he introduced the concept of o-morphism on
the set of effects.

In section 2, we introduced the basic concepts of fuzzy sets. And we
introduced the concept of fuzzy numbers and the operations(addition, sub-
traction, multiplication and division) for them. Especially, we introduced
the concepts of triangular fuzzy numbers, trapezoidal fuzzy numbers and
quadratic fuzzy numbers and the results of four operations for these fuzzy
numbers.

In section 3, we introduced the concept of effect, observable and o-
morphism as a probability measure on the set of effects and some ba-
sic properties of o-morphism. And we proved some properties about o-

morphism. The main theorem in section 3 is the continuity of o-morphism
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that can be considered as a generalization of the continuity of probability
measure.

In section 4, we introduced the concepts of possibilistic mean value
and variance of fuzzy numbers defined by C. Carlsson and R. Fullér [7]
and calculate the mean value and variance of some special fuzzy numbers
introduced in section 2. To develop our calculations, we define the concepts
of one-sided fuzzy set. The main result in section 4 is that, in some special
case, the mean of the product of two fuzzy sets is the product of means of
each fuzzy sets. This result can be considered as the similar result which

is well-known in the independence of events in probability theory.
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2. Preliminaries

Let X be a set. A classical subset A of X is often viewed as a char-
acteristic function pa from X to {0,1} such that pa(x) = 1if x € A,
and pa(zr) =0if z ¢ A. {0,1} is called a valuation set. The following

definition is a generalization of this notion.

Definition 2.1. A fuzzy set A on X is a function from X to the interval
[0,1]. The function is called the membership function of A.

Let A be a fuzzy set on X with a membership function 4. Then A is
a subset of X that has no sharp boundary. A is completely characterized

by the set of pairs
A={(z,pa(z) |z € X}.

Elements with a zero degree of membership are normally not listed.

If X is a finite set {x1, - ,z,}, a fuzzy set A on X is expressed as

A= pa(zr) /oy + -+ palan)/fen =Y pale:)/z;.
i=1
If X is not finite, we write

A= /X paa)/z.

Two fuzzy sets A and B are said to be equal, denoted by A = B, if and
only if pa(x) = pp(x), for all x € X.

Definition 2.2. A y-level set of a fuzzy set A on R is defined by [A]7Y =
{z € Rlpa(x) >~} if v >0 and [A]Y = cl{z € Rlpa(x) >~} if y=0.
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Definition 2.3. A fuzzy set A on R is conver if

pa(Ary + (1 = AN)xa) > min(pa(z1), pa(ra))

for all 21,22 in R and A in [0, 1].

Definition 2.4. A convex fuzzy set A on R is called a fuzzy number if
(1) there exists exactly one xg € R such that pa(zg) =1,

(2) pa(z) is piecewise continuous.

Definition 2.5. A triangular fuzzy number is a fuzzy set A having mem-

bership function

0 if r<a—a,a+p<ux,
pa(z) =< (r—a+a)/a if a—a<z<a,
(a+8—2)/8 if a<zx<a+p.

The above triangular fuzzy set is denoted by A = («, a, ().

Definition 2.6. A quadratic fuzzy number is a fuzzy set A having mem-

bership function

0 it z<a,f<z,
—a(z—a)(zr—B)=—alz - k)2 +1 if a<z<p,

uale) = §

where a > 0. The above quadratic fuzzy set is denoted by A = [« k, ).

Definition 2.7. A fuzzy set A on R having membership function
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07 r<ap, a4 <,

z—aq

pa(z) = @ a; < x < a,
]-7 az <x < as,
aq—2XT
aa—as’ 03 <z <ay.

is called a trapezoidal fuzzy set. The above trapezoidal fuzzy set is denoted

by A= (a17a27a37a4)-

The addition, multiplication and scalar multiplication of fuzzy sets are

defined by the extension principle [5].

Definition 2.8. For two fuzzy sets A and B on R, the addition, subtrac-

tion, multiplication and division are defined as
(1) addition A(+)B :

MA(+)B(Z) = SUE min{pa(x), us(y)}, z,y € R,
Z=x+Y

(2) subtraction A(—)B :

pa—yp(z) = sup min{ua(z), up(y)}, =,y € R,

Z=T—yY
(3) multiplication A(:)B :
pac)p(z) = sup min{pa(2), up(y)}s 2,y € R,
z=x-y

(4) division A(/)B :

wa(/)B(2) = Sul; min{pa(z), u(y)}, =,y € R.
z=x/y

Theorem 2.9. ([5]) For two triangular fuzzy numbers A = (a1, as,a3)
and B = (b1, ba, b3), we have
(1) A(+)B = (a1 + by, az + b, az + bs),
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(2) A(=)B = (a1 — b3, az — b2, az — by),
(3) A(-)B and A(/)B need not to be triangular fuzzy numbers.

Example 2.10. Let A =(2,5,7) and B = (1,4, 6) be the triangular fuzzy
numbers. Then we have

(1) A(+)B = (3,9,13),

(2) A(=)B = (-4,1,6),

(3) A(-)B and A(/)B need not to be triangular fuzzy numbers.

Theorem 2.11. ([5]) For two quadratic fuzzy numbers A = [x1,k, x2]
and B = [z3,m, 4], we have

(1) A(+)B = [x1 + 23,k + m, 2 + 24],

(2) A(=)B = [x1 — x4,k — m, 9 — 3],

(3) tacys(x) = 0 on the interval [x123, Tox4]® and pacyp(z) =1 at =

km. Note that A(-)B needs not to be a quadratic fuzzy number,

1 Zx2]c

k.
x4’ T3 [

(4) pa¢yB(x) = 0 on the interval [ and papp(r) =1 at z = =~

Note that A(/)B needs not to be a quadratic fuzzy number.

Example 2.12. Let A =[1,2,3] and B = [2, 7, 12] be the quadratic fuzzy
numbers. Then we have

(1) A(+)B = [3,9, 15],

(2) A(=)B =[=11,=5,1],

(3) A(-)B and A(/)B need not to be quadratic fuzzy numbers.

Theorem 2.13. ([5]) For two trapezoidal fuzzy sets A = (a1, a2, as, aq)
and B = (bl,bg, b3, b4), we have
(1) A(+)B = (a1 + b1, ag + b, az + b3, as + bs),
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(2) A(—=)B = (a1 — b, ag — b3, az — bz, as — by),
(3) A(-)B and A(/)B need not to be trapezoidal fuzzy sets.

Example 2.14. Let A = (1,3,5,8) and B = (—1,2,5,9) be the trape-
zoidal fuzzy sets. Then we have

(1) A(+)B = (0,5,10,17),

(2) A(=)B = (=8,-2,3,9),

(3) A(-)B and A(/)B need not to be trapezoidal fuzzy sets.
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3. o--morphism on the set of effects

3.1 The basic properties of os-morphism on the set of

effects

The basic structure is a measurable space (€2, F) where () is a sample
space consisting of outcomes and F is a o-field of eventsin ) corresponding
to some probabilistic experiment. It is useful to identify an event A with its
indicator function I4. If y is a probability measure on (€2, F), then p(A)
is interpreted as the probability that the event A occurs. A measurable
function f : Q — R is called a random wvariable. The expectation of f is
defined by E[f] = [ fdu. Denoting the Borel o-algebra on the real line R
by B(R), the distribution of f is the probability measure i on (R, B(R))
given by p¢(B) = p(f~1(B)). We interpret u¢(B) as the probability that
f has a value in the set B. Notice that u(l4) = u(A) for any A € A
so the identification of A with I4 carries directly over to probabilities.
In particular, this identification enables us to give simple proofs of basic
properties of probabilities.

The distribution of f can be written

ps(B) = p(fH(B)) = u(lp=1()) = (X (B))
and we call pir(B) = p(X¢(B)) the distribution of Xy.

Definition 3.1. A random variable f : @ — [0,1] is called an effect or

fuzzy event.

Thus, an effect is just a measurable fuzzy subset of 2. The set of effects
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is denoted by £ = £(Q, F).

Definition 3.2. If u is a probability measure on (2, F) and f € &, we
define the probability of f to be its expectation E[f] = [ fdpu.

If (f;) is an increasing sequence in &, then by the monotone conver-
gence theorem, Elim f;] = lim E[f;] so E is countably additive. Stated
in another way, if a sequence (f;) in & satisfies ) f; € &€, then E[>_ f;] =

> Elfil-

We call £.(Q,F) = {I4 : A € F} the set of crisp effects. Since we are
describing probability theory in terms of &.(£2, F), we would also like to
describe random variables in terms of £.(€2, F). If f: Q@ — R is a random
variable, define Xy : B(R) — &.(Q, F) by X;(B) = I;-1(p). Then Xy

satisfies the conditions
and if A; € B(R) are mutually disjoint, then

Xp(UA) = Ip-uay = Topaigay = D0 L1 = D Xy (4).

Conversely, if X¢ : B(R) — &.(£2, F) satisfies these two conditions, then it
can be shown that there exists a unique random variable f : {2 — R such
that Xy = X. We call X the crisp observable corresponding to f.

It is frequently useful to consider more general random variables and
crisp observables. Let (A, ) be another measurable space and let f : ) —

A be a measurable function. we call f a random variable with value space

A and the mapping Xy : B(R) — &£.(2, F) given by X¢(B) — Ip-v(p) is
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the corresponding crisp observable with value space A. We now give the

general definition of an observable.

Definition 3.3. Let B be a o-field of A. An observable is a map X :
B — £(Q,F) such that X(A) = 1g and if B; € B(i = 1,2,3,---) are
mutually disjoint, then X (UB;) = > X (B;) where the convergence of the

summation is pointwise.

If X(B) is crisp for every B € B, then X is crisp. If p is a probability
measure on (2, F), then the distribution of X is the probability measure
pux on (A, B) given by ux(B) = u(X(B)). Note that ux is indeed a prob-
ability measure because px(A) = 1 and if B; € B are mutually disjoint,

then by the monotone convergence theorem,

ux (UB:) = p(X(UB,)) = M(Z X(Bn) =S X (BY) = Y (By)

Example 3.4. If f: (A, B) — (Q,F) is a measurable function, the corre-

sponding crisp observable Xy : F — E(A, B) is given by X;(B) = I;-1(p).

To summarize we can describe probability theory in an equivalent way
by replacing events by crisp effects (A — I4), probabilities by expectations
((A) — p(la)), random variables by crisp observables (f — X¢).

Definition 3.5. A state on (2, F) is a map s : £(2,F) — [0,1] that
satisfies s(1g) = 1 and if (f;) is a sequence in € such that X f; € £(Q, F),
then s(Xf;) = 2s(fi).

A state s corresponds to a condition or preparation of a system and

10
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s(f) is interpreted as the probability that the effect f occurs when the
system is in the condition corresponding to s. If p is a probability measure
on (£, F), then it follows from the monotone convergence theorem that

w:E(Q,F) — [0,1] is a state.

Definition 3.6. X : £(, F) — £(A, B) is a o-morphism if X (1) = 15
and if (f;) is a sequence in & such that $f; € £(Q,F), then X(f;) =
SX(f:)-

Example 3.7. Let Q =[0,1] and A = [1,2]. Let F and B be the o-fields
of Q and A, respectively. Define X : £(€, F) — £(A, B) by

X(f)(x) = fz—1).

Then X is a o-morphism. In fact, X (1o)(z) = 1g(z — 1) = 15(z) and
X (Sfi)(x) = Sfi(x — 1) = SX(fi)(@)-

Example 3.8. Let Q@ = A = [0,1]. Let F and B be the o-fields of Q2 and
A, respectively. Define X : £(Q, F) — E(A, B) by

X(f)(@) = 3@ F0 - o))

Then X is a o-morphism. In fact,

X(1a)(@) = (la(@) + lo(1 - 1) = 1 (1)

and

11
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X(2f)(@) = 5(Sfila) + 241~ )
= 5 (fi(e) + fil1 — )
= Ei(fi)(x)

Theorem 3.9. ([2]) We have the followings.

(1) If X : £(Q, F) — E(A, B) is a o-morphism, then X (\f) = AX(f) for
every A € [0,1] and f € £(Q, F),

(2) If s : E(2, F) — [0, 1] is a state, then there exists a unique probability
measure y on (2, F) such that s(f) = [ fdu for every f € E(Q,F).

The next result shows that there exists a natural one-to-one correspon-

dence between observables and g-morphisms.

Theorem 3.10. ([2]) If X : F — &(A,B) is an observable, then X has
a unique extension to a o-morphism X : E(QL,F) — A, B). If Y :
E(Q,F) — E(A,B) is a o-morphism, then Y|z is an observable.

If f: A — Q is a measurable function, the corresponding crisp observ-
able Xy : F — E(A,B) is given by X;(B) = Is-1(py. The next result
shows that )’Zf : E(Q,F) — E(A, B) has a simple form.

Corollary 3.11. ([2]) If f : A — € is a measurable function, then
)N(f(g) = go f for every g € £(Q, F), where )Aff is an extension of Xy
in Example 3.4.

12
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3.2 The continuity of s-morphism

In section 3.1, we define the concept of effect, observable and o-morphism
as a probability measure on the set of effects. In this section, we prove the

some basic properties of o-morphism and the continuity of o-morphism.

Theorem 3.12. If X : £(Q, F) — £(A, B) is a o-morphism, then
(1) )2(092 =04,

) X(Zfi): Zi(fi),
(3) If f 5 1g e 5(5,:}), then X(f — g) = X(f) — X(g). In particular,

X(1lg —g) = 1a — X(9),

4) f<g= X(f) < X(9),

Proof. (1) Let f1 = 1q, fi =0q (i > 2). Since X(Zf") = X(1g) = 15

and

Z)?<fi)— (f1) +ZX fi) —1A+ZX 0q),
i=1

=2

we have 1, = 15 + Z)Z'(OQ) and thus )Z'(OQ) =i
i=2

(2) Let f; = 0q (i > n+ 1), then > fi => " fi. Thus
=

=1

X(;f) (Zfz) ZX =35 R,

=1

(3) Since X(f) = X(f —g+9) = X(f - g) + X(9),

13
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we have

X(f—g)=X(f) - X(g).

(4) Since X (g) = X(g— f) + X(f), X(g—f) > 0.

Theorem 3.13. If f : (A1,B1) — (A2, B2) and g : (As, B2) — (A3, B3)

are measurable functions, then )Zgo f = IX §0 )?g.

Proof. Note that X; : E(Ag, Bo) — E(A1,By), X, : E(As, Bs) — E(Ay, By)
and Xgop : E(A3, Bs) — E(A1,By). Since Xyoz(h)(w) = ho(go f)(w) for
every h € £(As,Bs) and w € Ay,

Xgor(h)(@) =ho(go f)(w) = (hog)o f(w)
= X;(hog)(w) = Xf o X(h)(w).

Theorem 3.14. Let f : Ay — A; be a measurable function and p; :
(A, B;) — [0,1] be a probability measure (i = 1,2). If 14 = (p2) ¢, then
H2 0 )?f = H1.

n

Proof. Let g = Z ¢iIp, be a simple function in £(A1, B1). Then by Corol-
i=1
lary 3.11,

a0 Xs(9) = [ Xrlo) dpa = [g0 S
= /Z(CiIBi o f) dpa
1=l
= /Zcz’ff—lwodﬂz-
=1

And, by the definition of expectation and distribution,

14
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/ S alpamaduz =S cps(f N (By)
=1

i=1

= Zci(MQ)f(Bi)

Hence, ps o )N(f(g) = p1(g)-

Now for an arbitrary g € £(A1, By), there exists an increasing sequence of
simple functions g, € £(A1, B;1) such that lim g, = g. Then by Corollary
3.11,

a0 X40) = [ Xs(o) duo
:/)?f( lim gn) d,U/Q
:/< lim gnof>du2

By the monotone convergence theorem and the continuity of probability,

/( lim g, Of)duz = lim /(gn o f)dps
= lim 715 0 X(gn)

= lm p11(gy)
n—oo

| :U’l( lim gn)

= p1(9)-

Therefore, o 0 X F =1

15
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Theorem 3.15. Let X : £(, F) — E(A, B) be a o-morphism. If (g,) is
an increasing sequence in £(Q2, F) with lim g, = g, then lim )z(gn) = )?(g)
in E(A, B).

Proof. Let f1 = ¢g1 and f, = gn — gn—1 (n > 2). Then f,, € E(Q,F) for

all n and g, = Zfl Since g = Zf“ we have
i=1 i=1

() =)N<(§::f)

3 Z)N((fi)
=1
= 1m 3 X(f)
=i
= lim X (Zf>
=1
= lim X (gn).

Hence

Corollary 3.16. Let X : £(Q, F) — £(A, B) be a o-morphism. If (g,) is a
decreasing sequence in (L, F) with lim g, = g, then lim X(g,) = X(g)
in £(A, B).

Theorem 3.17. Let X : £(Q, F) — E(A,B) be a o-morphism. If (g,)
is a sequence in £(Q,F) with lim g, = g, then lim )z(gn) = )~((g) in

E(A,B).

16
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Proof. First, we prove that

)Z'(lim infgn) < liminf X (g,,)

n—oo n—oo

< limsup X (g,

n—oo

< X(limsup gn) .

n—oo
Let f, = glfl gi. Since (fy) is an increasing sequence in £(2, F), by The-

orem 3.15, we have

X(lim inf gn> = )z(sup inf gi)

n—o00 n>11t>n

()
n>1

= X( s 1)
= lim X(fn).

n—oo

Let n € N. Then, for each n < i, f, < g;, we have )Z'(fn) < )?(gl) and
hence X (f,) < _ir>1f X (g;). Therefore

sup X (f,,) < sup inf X (¢;) = lim inf X (g,,).
n>1 n>1t>n n— 00

But, since

lim X(f,) =sup X (fn),
n— 00 n>1

we have

n—oo n—oo

X ( lim inf gn> < liminf X (g,).

17
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n—oo n—oo

Similarly, lim sup )N((gn) < )~(<lim sup gn). For g, € £(Q,F), since

lim sup )Af(gn) < X(lim sup gn>

n—oo n—oo

:)Z'( lim gn)

2 )A(:(lim inf gn)

< lim inf X (g,),

n—oo

we have

lim X (gn) = liminf X (g,,)

n—oo

— lim sup X (¢,,)

n—oo

= % Jim on)
= X(g).

Hence

lim )’Z(gn) = X(g)

n—oo

18
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4. The mean value and variance of one-sided
fuzzy sets

In this chapter, we define the one-sided fuzzy set and the mean value
and variance, defined by Christer Carlsson and Robert Fullér, for various

types of one-sided fuzzy sets.

4.1 One-sided fuzzy set

The triangular fuzzy set and quadratic fuzzy set have a continuous
membership function. To develop our calculations, we define the new

fuzzy sets having discontinuous membership functions.

Definition 4.1. A left fuzzy set is a fuzzy set A having membership func-

tion

(2) {0 if r<a-—a,a<ux,

m =

pa flx) if a—a<z<a,

where f(z) is a continuous and increasing function with f(a —«) = 0 and
f(a) = 1. Similarly, a right fuzzy set is a fuzzy set A having membership

function

0 ifwse?<"a,a + 0 < z,
gx) if a<zx<a+p,

pa(z) = {

where g(x) is a continuous and decreasing function with g(a) = 1 and

g(a+ B) = 0. We call these sets one-sided fuzzy sets.

By using this definition, we can define the left triangular fuzzy set as

follows.

19
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Definition 4.2. A left triangular fuzzy set is a fuzzy set A having mem-

bership function

0 if r<a—a,a<uz,
(x—a+a)/a if a—a<z<a.

pa(z) = {

Similarly, a right triangular fuzzy set can be defined.

By the same ways, left(right) quadratic fuzzy set can be defined. And,
to denote these one-sided fuzzy sets, we will use the notations in Definition
2.5 and 2.6. For example, the left triangular fuzzy set in Definition 4.2 is
denoted by («, a,0).

Remark. Let A be a triangular fuzzy set. Then A = B 4+ C where B be

a left triangular fuzzy set and C be a right triangular fuzzy set.

Theorem 4.3. (1) Let A; and Ay be the left fuzzy sets. Then A; + A,
is a left fuzzy set.
(2) Let A; and As be the right fuzzy sets. Then A; + A, is a right fuzzy

set.

Proof. (1) Let A; and As be the left fuzzy sets with membership functions

()_{0 if r<a—a1,0q1 <z,
Hey fi(z) if ey —ag <z <ay.

and

0 if x<as—as,a2 <,

uaate) = {
respectively, where fi(z) and f2(x) are continuous and increasing func-

tions with fi(a1—a1) =0, fi(a1) =1, fa(az — az) = 0 and fa(az) = 1.

fo(z) if ag —as <z < as.

Since
20
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[A]" = [ffl(’Y),al] and [Ap]7 = [f2_1(’7)7f12]7 we have [A; + Ao]7 =
[N (9) + f21(7), a1 + ag]. Hence Ay + Ay is a left fuzzy set.

(2) By the similar manner, (2) can be obtained.

Example 4.4. Let A1 = (2,4,0) and Ay = (3,7,0) be the left triangular
fuzzy sets and By = (0,5,3) and By = (0,7,2) be the right triangular
fuzzy sets. Let [A1]" , [Aa]7, [B1]” and [Bs]” be the ~-level sets of Ay, Aa,

B; and Bs, respectively.
(1) Since [A1]7 = [2y+ 2,4] and [A2]Y = [37+4, 7], we have [A; + A3]7 =
[57 4+ 6,11]. Hence A; + Ay = (5,11,0) is a left triangular fuzzy set,

(2) [B1]” = [5,8 — 3v] and [Bs]” = [7,9 — 29], we have [By + Bs]? =
(12,17 — 5v]. Hence By + By = (0, 12,5) is a right triangular fuzzy set.

Example 4.5. Let A; = [1,2,0] and Ay = [3,4,0] be the left quadratic
fuzzy sets and By = [0, 5, 8] and By = [0, 2, 3] be the right quadratic fuzzy
sets. Let [A1]7, [A2]?,[B1]” and [Bs]? be the v-level sets of Ay, As, By

and By, respectively.

(1) Since [A1]” = [2 — /1 —~,2] and [A2]Y = [4 — /1T —~,4], we have
[A1 + A3]7 = [6—24/1 —7,6]. Hence A; + Ay = [4,6,0] is a left quadratic

fuzzy set,

(2) Since [B1]” = [5,5 4+ 3y/1 —~] and [Bs2]” = [2,2 + /1 — 7], we have
[B1+Bs]|Y = [7,74+4y/1 — q]. Hence B1+ B> = [0, 7,11] is a right quadratic

fuzzy set.
Remark. Let A and B be the left fuzzy set and right fuzzy set, respec-

tively.
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Collection @ jeju



Then A + B may not be an one-sided fuzzy set.

Example 4.6. Let A = (2,4,0) be a left triangular fuzzy set and B =
(0,5,3) be a right triangular fuzzy set. Let [A]” and [B]” be the y-level
sets of A and B, respectively. Since [A]Y = [27+2,4] and [B]” = [5,8—-31],
we have [A+ B]Y = [2y+7,12—3~]. Thus A+ B = (2,9, 3) is a triangular

fuzzy set, but it is not an one-sided fuzzy set.

Example 4.7. Let A = [1,2,0] be a left quadratic fuzzy set and B =
0,5,8] be a right quadratic fuzzy set. Let [A]Y and [B]” be the v-level
sets of A and B, respectively. Since [A]" = [2 — /1 —~,2] and [B]? =
[5,543y/1 — 7], we have [A+ B]? = [T—/1 —7,7+3y/1 —7]. Thus A+ B

is neither an one-sided fuzzy set nor a quadratic fuzzy set.
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4.2 The mean value and variance of one-sided fuzzy

sets

In this section, we introduce the notion of possibilistic mean value and
variance of fuzzy sets defined by C. Carlsson and R. Fullér. And, we

calculate the possibilistic mean value and variance of one-sided fuzzy sets.

Definition 4.8. Let A be a fuzzy set with [A]” = [a1(7),a2(y)]. The

lower possibilistic mean value of A is defined by

M) =2 [y

Similarly, the upper possibilistic mean value of A is defined by

M*(A) = 2/0 vaz(v)dy.

Note that M, (A) is the lower possibility-weighted average of the minima
of the ~y-sets and M*(A) is the upper possibility-weighted average of the

maxima of the ~y-sets.

Definition 4.9. Let A be a fuzzy set. The interval-valued possibilistic
mean of A is defined by

M(A) = [M.(A), M*(A)].

Theorem 4.10. ([7]) Let A and B be two non-interactive fuzzy sets and
let A € R. Then

M(A+ B) = M(A) + M(B), M(AA) = AM(A).
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Definition 4.11. The crisp possibilistic mean value of a fuzzy set A is
the arithmetic mean of its lower possibilistic and upper possibilistic mean

values, i.e.,
M. (A) + M*(A)

M(A) = .

Theorem 4.12. ([7]) Let A and B be the fuzzy sets and A € R. Then

M(A+ B)=M(A) + M(B), M(M) = AM(A).

Example 4.13. Let A = (a,a,0) be a left triangular fuzzy set. Then a
~-level set of A is

[A]" = [a— (1 =")a,a],y € [0,1].

Thus

«

M, (A) :2/0 v(a—(1—vy)a)dy=a— 3

and ,
M*(A) = / v - ady = a.
0

Hence we have

and

- . a
M(A):/0 ’y(a—(l—’y)a+a)dfy=a—€.

The following theorems show the relations between M, (AB) and M, (A)M,(B)
and between M*(AB) and M*(A)M*(B) for triangular fuzzy sets and

quadratic fuzzy sets.
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Theorem 4.14. Let A = (a1,a,61) and B = (as,b, B2) be the trian-
gular fuzzy sets. Then M,(A)M,.(B) < M,(AB) and M*(A)M*(B) <
M*(AB).

Proof. Since [A]Y = [a — (1 —y)as,a+ (1 —)p1] and [B]Y = [b— (1 —
¥)aa, b+ (1 —v)B2], we have

1
M) =2 [ (- (1= Pardy—a =5
0
and
1 P
M(B) =2 [ (b= (1= )as)dy = b= 5
Since

1
M.(AB) = 2/0 v(ab = a(l = y)ag — b(1 — y)ag + (1 — 7)’araz)dy

acvs  bay ajon
=ab— - s ,

3 3 6

we have

3 3 9
acn ba1 19
<ab— -
. 3 "6
= M,(AB).

Similarly, we can show that M*(A)M*(B) < M*(AB).

Theorem 4.15. Let A = [a1,k1,01] and B = [ag, ke, f2] be the qua-
dratic fuzzy sets. Then M,(A)M,.(B) < M,(AB) and M*(A)M*(B) <
M*(AB).
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1— 1-—
[sz[zﬁ— L. 7}
a a
and
1—7 1—7
B]Y = ke — /| —,k -
BP = [k = 5 ka5
Thus
1
-y
M, (A) = ky — _
(4) /7< a>7 -
and
1
e 8
M,.(B) = ko — 4/ —— |d -
(B) /7( b )7 -
Since
1
[1—7 [1— 1—v
M,.(AB :2/ (kk—k — -k + )d
( ) 07 1~h2 1 b 2 . \/% 8
8k 8ko 1
= kiko — a + ,
"2 7 15vh 15va ' 3vab
we have

M. (A)M.(B) = (kl = %) (’“ = %ﬁ)

g Sk Sk G
"2 15vb 15va - 225vab
i T 1
< kiky — _ Y
5 15va | 3vab
— M.(AB).

Similarly, we can show that M*(A)M*(B) < M*(AB).
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Theorem 4.16. Let A be a left fuzzy set with [A]Y = [a1(7),a] and B
be a right fuzzy set with [B]Y = [b, b2(7)], then M (AB) = M (A)M (B).

Proof. Since [A]Y = [a1(7),a] and [B]” = [b, ba(7y)], we have

and

1
M*(A):Q/ v - ady = a.
0

Similarly, we have M, (B) =b and M*(B) = 2 fol ~vba(y)dry. Thus

M. (A)M.(B) = (2 /01 val(v)dv) b= 26/01%1(7)617

and
M*(A)M*(B) =a- (2 /01 vbz(v)dv) =2a /01 Vb2 () dy.

Since [AB]Y = [bai (), aba(7)], we have

M.(AB) = 26/0 yax(y)dy
and
1
M*(AB) = 2 / Aba(1)d.
Hence M, (A)M.(B) = M.(AB) and M*(A)M*(B) = M*(AB). By the

definition of M, M(AB) = M(A)M(B).

Theorem 4.16 can be considered as the similar result which is well-

known in the independence of events in probability theory.
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Example 4.17. Let A be a left triangular fuzzy set with [A]Y = [2y+2, 4]
and B be a right triangular fuzzy set with [B]Y = [7,9 — 2v|. Then

! 10
M, (A) = 2/0 v(2y + 2)dy = 3

and
1

M*(A) = 2/ dvdy = 4.
0

Similarly, we have M, (B) = 7 and M*(B) = 2. Thus M, (A)M,(B) = 2
and M*(A)M*(B) = 2. Since [AB]" = [147 + 14, 36 — 87], we have

1
M.(AB) = 2/ YUy + 1)y =
0

and

‘ J 92
M*(AB)=2 | ~(36 —8y)dy = 3
0

Hence M, (A)M.(B) = M,(AB) and M*(A)M*(B) = M*(AB). By the
definition of M, we have M (AB) = M(A)M(B).

Example 4.18. Let A be a left quadratic fuzzy set with [A]” = [2 —
v1—=7,2] and B be a right quadratic fuzzy set with [B]Y = [5,5 +
3v/1T —~]. Then

1
M. (A) = / @ T )y = 2

and |
M*(A) = 2/ 2vydy = 2.
0
Similarly, we have M, (B) =5 and M*(B) = 33. Thus M, (A)M.(B) = %

and M*(A)M*(B) = %. Since [AB]” = [10 — 5/T = 7,10+ 6/T — 7], we
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have

! 22
M.(AB) = 2/ 110~ 5y/T—7)dy = =
0
and

1
M*(AB) = 2/ v(10 4+ 6+/1 — v)dy = 6—56

0
Hence M,.(A)M,(B) = M.(AB) and M*(A)M*(B) = M*(AB). By the

definition of M, we have

M(A)M(B) = M(AB).

Remark. If A and B are left fuzzy sets (or right fuzzy sets), the equality
M(A)M(B) = M(AB) does not always hold.

Definition 4.19. The variance of fuzzy set A with [A]Y = [a1(7), az(y)]
is defined by

1
Var(d) = 5 [ (e - ()R

Example 4.20. If A = (a,a,0) is a left triangular fuzzy set then

1
Var(4) = 5 [ s = (a—a@=a)Pay = 5.

Definition 4.21. The covariance between fuzzy sets A with [A]Y = [a1(7), a2(7)]
and B with [B]” = [b1(7), b2(7)]) is defined by

Cov(A,B) = / Yaz(y) — a1 (7)) (ba(y) — by (7))d.
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Proposition 4.22. Let A; = (a1,a1,0) and Ay = («ag,a9,0) be the left
triangular fuzzy sets and By = (0,b1, 01) and By = (0, ba, #2) be the right

triangular fuzzy sets. Then

(1) CO’U(A:[,AQ) = Q;ZQ.
(2) Cov(By, By) = 5;52.
(3) COU(Al,BQ) = a;fz.

Proof. (1) Since [A;1]" = [a1—(1—7)au, a1] and [As]7 = [az—(1=7) s, as],

we have
Q1Qo
24

1t
Cov(Ay, Ag) = 5/ aragy(1 —7)3%dy =
0

By the similar method, (2) and (3) can be obtained.

Example 4.23. Let A; = (2,4,0) and As = (3,7,0) be the left triangular
fuzzy sets and By = (0,5, 3) and By = (0,7, 2) be the right triangular fuzzy

sets.
(1) Since [A]7 = [2y+2,4] and [Ay]" = [3y +4,7], Cov(A;, Ap) = L.
(2) Since [B1]” = [5,8 — 39] and [Ba]” = [7,9 — 2], Cov(B1, B2) = 3.

(3) Since [A4]7 = [2y + 2,4] and [Bo]? = [7,9 = 29], Cov(A;, Bo) = £.

Proposition 4.24. Let A; = |1, k1,0] and Ay = [ag, k2,0] be the left
quadratic fuzzy sets and By = [0, mq, #1] and By = [0, ma, (#2] be the right
quadratic fuzzy sets. And put a; = m, as = m, b
Then

1
12\/61,1&2 '

_ 1
L= (Bi—m1)?

and b2 = (ﬁQ_%ITLQ)Q .

(1) COU(Al, AQ) =
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1

12y/b1by
1

12\/ a1b2 '

(2) CO'U(Bl, Bg) =

(3) COU(Al, BQ) =

Proof. (1) Since

= o], e o 7]

we have

1! 1—7d 1
,/alag 12«/@1@2.

By the similar method, (2) and (3) can be obtained.

COU(Al, Ag)

Example 4.25. Let A; = [1,2,0] and Ay = [3,4,0] be the left quadratic
fuzzy sets and By = [0, 5, 8] and By = [0, 2, 3] be the right quadratic fuzzy

sets.

(1)Since [A1]7 =[2—/T =7, 2]and[As]" = [4— /T = 7,4 Cov(A1, Az) = 15
(2)Since [A;]7=[2—y/T—=7,2]and[Bs]? =[2,2++/T = 7] Cov(A1, B2) = .
(3)Since [A3]" =[4—+/T — v,4]and[B,]” =[5, 5+3y/1 = 4] Cov(Az, B1) =
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