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<Abstract>

Linear Preservers of Regularity and Extreme Sets
of Matrix Inequalities over Boolean Algebras

In this thesis, we research two topics on linear preserver problems.

One topic is to characterize the linear operators that preserve the
regularity of binary Boolean matrices. A matrix M is called regular if there
exists a matrix X such that AXAM= M. We obtain that a linear operator 7T
strongly preserves regularity of binary Boolean matrices if and only if 7" has
the forms that 7/(X)= UXV or T(X)= UX'V with invertible matrices U and
V.

Another topic is to characterize the linear operators that preserve the sets
of matrix pairs over general Boolean algebras which satisfy the extreme
cases for certain Boolean rank inequalities. For this purpose we construct the
following 8 sets of matrix pairs;

Rsa(Br) = { (X.Y) € Mina(Be)?| (X +Y) = b(X) + b{¥)},

Rsi(By) = {(X.Y) € M,,,,(By)?| b(X+Y) =1}

Rsp(Br) = {(X.Y) € M,,,(Bi)?| bOX +1) = [b(X) = b},

Ranr(Bi) = {(X,Y) € M, (By)?| b(XY) = min{ b(X), b(Y)}},

Raro(Bi) = {(X,Y) € M,,(By)?| b(XY) = 0},

Ran(Bi) = {(X.Y) € My(B,)% b(XY) = 1},

Raa(Bi) = {(X,Y) € M,(B;.)?| b(XY) =b(X) + b(Y) — n},

Ras(Br) = {(X. Y, Z) € My (Bi)?| B(XYZ)+b(Y) = b(XY) + (Y Z)}.

We characterize those linear operators that preserve these 8 sets as
T(X)=PXQ TX)=PXP" or T(X)=PX'Q with invertible Boolean

matrices P and Q.
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1 Introduction

There are many papers on linear operators that preserve certain properties of matrices
([1] -[16], [24] -[27]). We call such topic of research as “Linear Preserver Problems”. This
linear preserver problems have been studied for the various characterizations of matrices
during a century. In 1887, Frobenius characterized the linear operators that preserve
determinant of matrices over real field, which was the first results on linear preserver
problems. After his result, many researchers have studied the linear operators that
preserve some matrix functions, say, rank and permanent of matrices and so on([20]).

Recently, Beasley & Pullman began to research the matrices over semirings or Boolean
algebras([9] -[11]). There are many semirings such that nonnegative integers, nonnegative
reals, fuzzy semirings and (non)binary Boolean algebra and so on([11]).

The results on linear preserver problems over semirigs are more applicable to linear
preserver problems and combinatorics than those results over fields. The researches over
a semiring are not easy to generalize those results over field since the system of semiring
does not assume the additive inverse element for any element in the semiring. So we have
to re-define many concepts for the properties of matrices over semiring to generalize the
known definitions over field.

Now, almost all researches on linear preserver problems have dealt with those semir-
ings without zero-divisors to avoid the difficulties of multiplication arithmetic for the
elements in those semirings([3], [4], [9], [14]). But general Boolean algebra is not the
case. That is, all elements except 0 and 1 in the general Boolean algebra are zero-
divisors. So there are few results on the linear preserver problems for the matrices over
general Boolean algebra([16], [25] , [27]). Although there are many arithmetic difficulties
of matrices over general Boolean algebra, we study the Boolean rank of matrices over
general Boolean algebra and that we characterize the linear operators that preserve pairs
of matrices over general Boolean algebra which satisfy some rank inequalities.

In this thesis, we research two topics on the linear preserver problems. One topic is to
characterize the linear operators that preserve the regularity of binary Boolean matrices.

Another topic is to characterize the linear operators that preserve the sets of matrix pairs
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over general Boolean algebra which satisfy the extreme cases for certain Boolean rank
inequalities. For this purpose, we study the inequalities of Boolean rank for the sum or
multiplication of matrices over general Boolean algebra. We also construct the sets of
matrix pairs that satisfy the equalities for those Boolean rank inequalities.

The contents of this thesis are as follows:

In Chapter 2, we study the regularity of matrices over binary Boolean algebra and
characterize the linear operators that preserve the regularity.

In Chapter 3, we study the extreme sets of matrix pairs for the Boolean rank inequal-
ities over general Boolean algebra and characterize the linear operators that preserve the

extreme sets of matrix pairs.
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2 Regularity preservers of matrices over binary Boolean
algebra

2.1 Properties of regularity and singularity of Boolean matrices

The binary Boolean algebra([15]) is the set B; = {0,1} equipped with two operations,

addition(+) and multiplication(-), defined as follows:

O+1=1+0=1 0-1=1-0=
1+1=1 14 =1.

For all a,b € By, we suppress the dot of a - b and simply write ab. Let M,, ,(B;) denote
the set of all m x n Boolean matrices with entries in the binary Boolean algebra B;.
The usual definitions for addition and multiplication of matrices over fields are applied
to Boolean matrices as well. If m = n, we use the notation M,,(B) instead of M, ,,(B1).

Boolean matrices play an important role in linear algebra, combinatorics, graph the-
ory and network theory. And many problems in the theory of nonnegative matrices
depend only on the distribution of nonzero entries. In such cases the relevant property
of each entry is whether it is zero or nonzero, and the problem can be often simplified by
substituting for the given matrix the Boolean (0, 1)-matrix.

Several authors characterized those linear operators on M, ,(B;) that (strongly)
preserve various properties and functions defined on My, »(B1)([9], [24], [25]).

In this chapter, we study some properties of Boolean regular matrices. We also deter-
mine the linear operators on M, ,(B) that strongly preserve Boolean regular matrices.

The matrix I, is the n x n identity matrix, .J,, ,, is the m x n matrix of all ones, Oy, ,,
is the m x n zero matrix. We will suppress the subscripts on these matrices when the
orders are evident from the context. For any matrix A € M, ,(B;), AT is denoted by
the transpose of A. A matrix in M, ,,(B;) with only one nonzero entry is called a cell. If

the nonzero entry occurs in the i** row and the j** column, we denote this cell by E;;.

Definition 2.1.1. A matrix in M, ,(B1) is called an it" row matriz, denoted by R;, if

n
Ri = Y. E;j for some i € {1,...,m}. Similarly, a matrix in M,,,(B;) is called a j
j=1
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m
column matriz, denoted by Cj, if C;j = 3 E;; for some j € {1,...,n}. A line matriz is
i=1

an i" row matrix or a j** column matrix.

Let A = [a;;] be any matrix in M, ,(B;). Then A can be written uniquely as
m n
> > a;;E;;, which is called the canonical form of A. If a; j = 1 for some i and j, then
i=1j=1
we say that the cell F; ; is in the matrix A. Since a;; € {0, 1}, the canonical form of A

shows that A is a sum of cells.

For A = [a; ;|, B = [bi ;] € Myun(B1), we say that B dominates A (written B > A or
A < B) if b;j = 0 implies a; ; = 0 for all ¢ and j. This provides a reflexive and transitive

relation on M, ,(B1).

k

Definition 2.1.2. Cells Ey, Es, ..., E} are called collinear if >  E; < L for some line
i=1

matrix L.

Definition 2.1.3. A matrix A € M,,(B;) is said to be invertible if there exists a matrix

B € M,,(B;) such that AB = BA = I,.

In 1952, Luce([17]) showed that a matrix A € M,,(B;) possesses a two-sided inverse
if and only if A is an orthogonal matrix in the sense that AA”T = I,,, and that, in this
case, AT is a two-sided inverse of A. In 1963, Rutherford([23]) showed that if a matrix
A € M,,(B;) possesses a one-sided inverse, then the inverse is also a two-sided inverse.
Furthermore such an inverse, if it exists, is unique and is A”. Also, it is well known that
the n x n permutation matrices are the only n x n invertible Boolean matrices.

The notion of generalized inverse of an arbitrary matrix apparently originated in
the work of Moore([19]), and the generalized inverses have applications in network and

switching theory and information theory([12]).
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Definition 2.1.4. Let A be a matrix in M, ,(B1). Consider a matrix X € M, ,,(B1) in
the equation

AXA = A (2.1.1)

If (2.1.1) has a solution X, then X is called a generalized inverse of A. Furthermore A

is called regular if there exists a solution of (2.1.1); Otherwise, A is called singular.

Clearly Jp,, and Oy, , are regular in M, ,(B1) because JpndnmImn = Jmn and
Om,non,mOm,n = Om,n-

In general, a solution of (2.1.1), although it exists, is not necessarily unique. For
10

0 0} € Mpy(B;). Then we can easily show that

example, consider a matrix A = [

X — [ll) Z] € My(B,) are generalized inverses of A for all a,b,c € By.

The equation (2.1.1) have been studied by several authors ([19, 21, 22]). Plemmons
([21]) published algorithms for computing generalized inverses of Boolean matrices under

certain conditions. Also Rao and Rao([22]) had characterizations of regular matrices in

M, n(B1).

Proposition 2.1.5. Let A be a matriz in My, n(B1). If U € M,,,(B;) and V' € M, (B;)

are invertible, then the following are equivalent:
(a) A is regular in My, ,,(B1);
(b) UAV is reqular in My, ,(B1);
(c) AT is regular in M, ., (B;);
(d) UATV is regular in M, (By) (if m = n).

Proof. 1t is obvious. [ |

Also we can easily show that

A is regular if and only if [ é g } is regular (2.1.2)
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for all matrices A € M, ,(B1) and for all regular matrices B € M), ,(B1).

In particular, all idempotent matrices in M, (B;) are regular.

Definition 2.1.6. ([9]) The Boolean rank, b(A), of a nonzero m x n Boolean matrix A
is defined as the least integer k for which there exist m x k and k x n Boolean matrices

B and C with A = BC. The Boolean rank of a zero matrix is zero.

We can easily obtain that
0 <b(A) <min{m,n} and b(AB)<min{b(A),b(B)} (2.1.3)

for all A € M, ,(B1) and for all B € M, 4(B1).
Let A =[a; ay --- a,] be a matrix in M, ,,(B1), where a; is the 4t column of A
n
for all j = 1,...,n. Then the column space of A is the set { > aja; ’ affe Bl}, and
j=1

denoted by < A >; the row space of A is < AT >.

Definition 2.1.7. ([22]) Let A be a matrix in M, ,(B1) with b(A) = k. Then A is said
to be space decomposable if there exist matrices B € My, ;(B1) and C € My, (By) such

that A= BC, < A>=< B> and < AT >=< CT >.
Theorem 2.1.8. ([22]) A is reqular in M, ,(B1) if and only if A is space decomposable.

Proposition 2.1.9. If A is a matriz in M, ,(B1) with b(A) <2, then A is regular.

Proof.  If b(A) = 0, then A = O is clearly regular. If b(A) = 1, then there exist

J O
O O

by (2.1.2). It follows from Proposition 2.1.5 that A is regular.

permutation matrices P and ) such that PAQ = [ ], and hence PAQ is regular

Suppose that b(A) = 2. Then there exist m x 2 matrix B = [b; bg] and 2 x n

T

matrix C' = [c; c2]' such that A = BC, where b; and bg are distinct nonzero columns

of B, and ¢y and ¢y are distinct nonzero columns of CT. Then we can easily show that all
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columns of A are of the forms 0, by, bs and by + bs so that < A >=< B >. Similarly, all
columns of AT are of the forms 0, ¢1, co and ¢ +c» so that < AT >=< CT >. Therefore

A is space decomposable and hence A is regular by Theorem 2.1.8. [

The weight of a matrix A in M, ,(B;) is the number of nonzero entries of A and will

be denoted by #(A). The number of elements in a set S is also denoted by #(S).

Corollary 2.1.10. Let A be a matriz in My, ,,(B1) with #(A) < 4. Then A is regular.

Proof. By Proposition 2.1.9, we lose no generality in assuming that b(A4) = 3 or 4. Con-
A O
O O

can easily show that there exist permutation matrices P € M,,,+1(B;) and @ € M, 1(By)

g g} for some idempotent matrix C' in My (B;) with #(C) = 3 or

4. By (2.1.2) and Proposition 2.1.5, we have that B is regular and hence A is regular by

sider a matrix B = [ ] in My,41,n+1(B1). Since #(A) < 4 and b(A) = 3 or 4, we

such that PBQ = {

(2.1.2). [
1 10

Example 2.1.11. Consider a matrix A = [0 1 1|. Then we can easily show that
0 0 1

b(A) = 3.

Now we show that A is not space decomposable. If A is space decomposable, then
there exist 3 x 3 matrices B and C such that A = BC, < A >=< B > and < AT >=<
CT >. Tt follows from (2.1.3) that b(B) = b(C) = 3, and hence both B and C have
neither a zero row nor a zero column. Also, there exists a permutation matrix P such

that A = DE, where D = [d; ;| = BP, E = [e; ;] = PTC and D > I3. Then we have

<A>=<B>=<BP>=<D> (2.1.4)
and
<Al >=< T >=< TP >=< ET > . (2.1.5)
Furthermore we have that
E has neither a zero row nor a zero column (2.1.6)
7
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because b(E) = b(PTC) = b(C) = 3. From A = DE with a1 3 = a1 =az1 = azz = 0,

we have e;3 = ea1 = e31 = e32 = 0. It follows from (2.1.6) that e; ; = e33 = 1. Thus,

1 €1,2 0
E =10 e2 ez3|. If eg0 =0 or eg3 = 0, then we have ez = 1 by (2.1.6). Then
0 O 1
0 0
we have [1| €< ET >, while |1| ¢< AT >, a contradiction to (2.1.5). Thus we may
0 0
1 1 0
assume that e;o = ex3 = 1 so that £ = |0 eg2 1|. If ego = 0, then b(E) = 2, a
0D FO ¥ 1
10 0
contradiction. Hence ess = 1. It follows from A = DE that D= |0 1 dy3|. In this
0 0 1
0 0
case, |1| €< D >, while |1| ¢< A >, a contradiction to (2.1.4). Therefore A is not
0 0

space decomposable.

In the following, we give some properties of Boolean regular matrices.
If A and B are matrices in M, ,(B1), we define A\ B to be the matrix C' = [¢; ;] in
My, (B1) such that ¢; ; =1 if and only if a; ; = 1 and b;; = 0.

Define an upper triangular matrix A,, in M, (B;) by

11 -+ 10

. 1 -« 1 1

An = [Nij] = <Z Em) \ Bl = SR
= 11

- 1_

Then the following Lemma shows that A,, is not regular for n > 3.

Lemma 2.1.12. A,, is regular in M,,(By) if and only if n < 2.

Proof. If n < 2, then A, is regular by Corollary 2.1.10.

Conversely, assume that A, is regular for some n > 3. Then there exists a nonzero
n—1 n
matrix B = [b; ;] in M,,(B1) such that A,, = A,BA,. From 0 = X\, = > > b j, we
i=1 j=2
obtain that all entries of the second column of B are zero except for the entry b, 2. From
n

0 = X271 = > bi1, we have that all entries of the first column of B are zero except for
i=2

Collection @ jeju



n 2
bi1. Also, from 0 = A32 = > > b;;, we obtain that b, 2 = 0. If we combine these three
i=3j=1
results, we conclude that all entries of the first two columns are zero except for by ;. But
n 2
we have 1 = X = > > b;; =0, a contradiction. Hence A, is singular for all n > 3. m

i=2j=1
110
In particular, A3 = |0 1 1] is singular. By Proposition 2.1.5, we have that the
0 01
lower triangular matrix A’ is singular for n > 3, while A, + AL is regular by Proposition

2.1.9 because b(A,, + AT) = 2. Let

A3 O
P = [O O] (2.1.7)

for all min{m,n} > 3. Then ®,, ,, is singular by (2.1.2).

Corollary 2.1.13. Let E and F be distinct cells in My, »,(B1) with min{m,n} > 3. Then
there exists a matriz A in My, »(B1) such that #(A) =3 and A + E + F is singular in
Mm,n(Bl)-

Proof. Since E and F are distinct cells, there exist permutation matrices P and () such
that

PE+F)Q=Ei1+FEi2 FEip+Ey or Eijj+Eop.

Consider a matrix A € M, ,(B1) such that
PAQ =FE32+ Ea3+ E33, Ei11+Ess+Es3 or Ejo+ Ess+ Es3

according as P(E + F)Q = E11 + E12, E12+ Es3 or By 1 + Ez9. Then we have that
P(A+E+F)Q = @, is singular in M, ,,(B1). Hence A+ E+ F is singular in M, ,(B1)

by Proposition 2.1.5. ]

Corollary 2.1.14. Let A be a matriz in M, ,(B1) with #(A) = 3. If b(A) = 2 or 3,

then there exist cells E and F such that A+ E + F is singular.
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Proof. Consider the singular matrix ®,, ,, in (2.1.7). If b(A) = 2 or 3, then we can easily
show that there exist permutation matrices U and V such that UAV < @,, ,,. Let E’
and F’ be cells satisfying UAV + E' + F' = ®,, ,,. Then we obtain that

A+UTEVT +UTFVT =0T, VT

is singular by Proposition 2.1.5. If we let £ = UTE'VT and F = UTF'VT, then the

result follows. [

Theorem 2.1.15. For m > 3 and n > 3, let A be a matriz in My, n(B1) with #(A) =k
and b(A) =k, where 0 < k < min{m,n}. Then J\ A is reqular if and only if k < 2.

Proof. If k < 2, then there exist permutation matrices P and @ such that P(J\ A)Q =

J\ (aE1 1+ bE332), where a,b € {0,1}, and hence

10
1 0 1 --- 1
Y 7 4F [1 Lo 1}’
il
-
1
101 1
| 1%
T\ Bz Y [111 1]’
_11_
-1y
sl g
011
J\E+Ep=|11 [101 1]

._1 1_

Thus b(J \ A) = b(P(J \ A)Q) < 2. Therefore we have J \ A is regular by Proposition

2.1.9.
Conversely, assume that J \ A is regular for some k > 3. It follows from #(A) = k

and b(A) = k that there exist permutation matrices U and V' such that

k
U(Jimn \ AV =T\ Eyy.
t=1

10
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k
Let J\ ( > Etyt) = X = [z;;]. By Proposition 2.1.5, X is regular, and hence there exists
=1
a nonzero matrix B = [b; ;| € M, ,,(B1) such that X = XBX. Then the (¢, ) entry of
X BX becomes

> by (2.1.8)

iel jeJ
forallt =1,...,k, where I = {1,...,n}\ {t} and J ={1,...,m} \ {t}. From z;; =0
and (2.1.8), we have that

h; 5 Oh Wroll (S=27 8 & 28 (2.1.9)

Consider the first row and the first column of B. It follows from 35 = 0 and (2.1.8)
that

bin=0=by,; forall i=1,3,4,...,n; j=1,34,...,m. (2.1.10)

Also, from z33 = 0, we obtain by 2 = bg; = 0, and hence B = O by (2.1.9) and (2.1.10).

This contradiction shows that k < 2. [ ]

Proposition 2.1.16. Let A be a matriz in My, ,(B1) with #(A) = 5. If A has a row or

a column that has at least 3 nonzero entries, then A is regqular.

Proof. Suppose that A has a row or a column that has at least 3 nonzero entries. Then
we can easily show that b(A) < 3. By Propesition 2.1.9, we may assume that b(A) = 3.
Then A has either a row or a column that has just 3 nonzero entries. Suppose that a
row of A has just 3 nonzero entries. Since b(A) = 3, there exist permutation matrices U
and V such that

UAV = F11+Ei19+ E13+ Eo; + Es

for some 7,7 € {1,...,n} with i < j. If j > 4, then UAV is regular by Corollary 2.1.10
and (2.1.2), and hence A is regular by Proposition 2.1.5. If 1 < ¢ < j < 3, then there

exist permutation matrices U’ and V' such that

y , _|B O
voavv =[5 9],

11
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111

where B= |0 1 0. We can easily show that B is idempotent in M3(B), and hence
0 0 1

B is regular. It follows from (2.1.2) and Proposition 2.1.5 that A is regular.

If a column of A has just 3 nonzero entries, a parallel argument shows that A is

regular. [ |

12
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2.2 Linear operators that preserve Boolean regular matrices

In this section we have characterizations of the linear operators that strongly preserve

regular matrices over the binary Boolean algebra.

Definition 2.2.1. An operator 7" on M, ,,(B;) is said to be

(1) linear if T(aA + BB) = oT(A) + ST(B) for all o, € By and for all A;B €

My, o (B1).

(2) preserve regularity if T'(A) is regular whenever A is regular in M, ,,(B1).

Example 2.2.2. Let A be any regular matrix in M, ,,(B;). Define an operator T on
M (B1) by

1= (5304

i=1 j—1
for all X = [mi,j] S Mm,n(Bl)-

Then we can easily show that 7' is a linear operator that preserves regularity because
T(X) is either O or A for all X € M, ,(B;). But 7' does not preserve any singular

matrix in M, ,,(B;).

Thus, we are interested in a linear operator 7' on M., ,,(B1) such that T'(X) is regular

if and only if X is regular over M, ,(B1).

Definition 2.2.3. A linear operator T' on M, ,,(B1) is said to be strongly preserve reg-

ularity if T(A) is regular if and only if A is regular in M, ,,(B;).

Theorem 2.2.4. Let T be a linear operator on My, ,(B1), where min{m,n} < 2. Then

T strongly preserves all reqular matrices.

13
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Proof.  If min{m,n} < 2, then all matrices in M, ,,(B;) are regular by (2.1.3) and
Proposition 2.1.9. Hence T'(A) is always regular for all A in M, ,,(B1). Thus the result

follows. n

Definition 2.2.5. A linear operator 7" on M, ,,(B1) is said to be singular if T'(X) = O

for some nonzero matrix X in M, ,(B;); Otherwise, T is called nonsingular.

Lemma 2.2.6. If T is a linear operator on M, ,(B1) that strongly preserves reqularity

form >3 and n > 3, then T is nonsingular.

Proof. 1f T'(X) = O for some nonzero matrix X in M, ,(B;), then we have T'(E) = O
for all cells E < X. Let F be a cell different from E. By Corollary 2.1.13, there exists
a matrix A with #(A) = 3 such that A + F + F is singular, while A + F' is regular
by Corollary 2.1.10. Nevertheless, T(A + E + F') = T(A + F'), a contradiction to the
fact that T strongly preserves regularity. Hence T'(X) # O for all nonzero matrix X in

M5 (B1). Therefore T' is nonsingular. |

Forany i € {1,2,...,mn}, let S; denote a sum of arbitrary distinct i cells in M, ,,(B;)

with #(S;) = i. Hereafter, we let min{m,n} = o and max{m,n} = j.

Proposition 2.2.7. Let T be a linear operator on M, ,(B1) that strongly preserves

regularity, where min{m,n} = o > 3. Then we have
#(T(S;) <20+
for all S; € My, »,(B1), where i € {1,2,...,a(8 —2)}.

Proof. We lose no generality in assuming that « = m and 8 = n. Thus we will show

that #(7°(S;)) < 2m +i for all S; € M, ,(B1), where i € {1,2,...,m(n —2)}.
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Collection @ jeju



If i = m(n—2) then clearly #(7T°(S;)) < mn = 2m+i. For arbitrary i € {1,2,...,m(n—
2)—1}, suppose that #(7°(S;)) > 2m+i+1 for some S; € My, ,,(B1). Then J\T'(S;) dom-
inates at most mn— (2m+i+1) cells. Thus we have #(T(J)\T(S;)) < mn—(2m+i+1).
Now for each cell G with G < T'(J)\ T(S;), let H be a cell such that G < T(H), and let

X be the sum of all such cells H. Then we have
#(X) <H#(T(I)\T(S:) <mn— (2m+i+1).

Now we claim that T'(J) = T(S;) + T(X). It suffices to show T'(J) < T(S;) + T(X).
Let G be any cell such that G < T'(J). If G < T(S;), then we are done. If G £ T'(S;),
then there exists a cell H with H < X such that G < T(H) by the construction of
X. Thus, G < T(H) < T(X). Therefore we have T'(J) < T(S;) + T(X), and hence
T(J) = T(S;) + T(X) = T(S; + X).

Since #(X 4+ 5;) < mn — (2m + 1), there exist distinct cells Fy, Fh, F3 such that they
are not dominated by X + S; and b(ﬁ:l Fj) = 3. It follows from T'(J) = T'(X + S;) and

3
X—i—SiSJ\Zthhat
j=1

3
T(J) =T(X +5) <T(J\ D Fj) ST()),

j=1
3
and hence T'(J) = T(J \DN Fj), a contradiction to the fact that T strongly preserves
j=1

3
regularity because J is regular, while J\ )" F} is not regular by Theorem 2.1.15. There-

7j=1
fore we have #(7T'(S;)) < 2m + i for all S;. We conclude that #(7°(S;)) < 2m + i for all

i=1,2,....,m(n—2). ]

The next Lemma will be important in order to show that if E is any cell in M, ,,(B)
with min{m,n} > 3, then T'(E) is also a cell for any linear operator on M,, ,,(B;) that

strongly preserves regularity.
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Lemma 2.2.8. Let min{m,n} = o > 3 and T be a linear operator on My, ,(B1) that

strongly preserves reqularity. Then for any h € {0,1,2,..., 2a}, we have
#(T(S;)) <2a+i—h
for all S; € My, n(B1), wherei € {1,2,...,20 — h + 1}.

Proof. Without loss of generality, we assume that a = m. Thus we will show that if
h €{0,1,2,...,2m}, then we have #(T'(S;)) < 2m + i — h for all S; € M, ,,(B1), where
i€f{1,2,....2m—h+1}.

The proof proceeds by induction on h. It follows from Proposition 2.2.7 that #(7°(.S;))
<2m+i for all S; € M, ,(B1), where i € {1,2,...,2m+1}. Thus if h = 0, the result is
obvious. Next, we assume that for some h € {0,1,2,...,2m — 1}, the argument is true.
That is, we have

#(T(S;)) <2m+i—h (2.2.1)

for all S; € M, ,(B1), wherei € {1,2,...,2m—h+1}. Now we will show that #(7(S;)) <
2m+ i — h — 1 for all S; € M, ,(By1), where ¢ € {1,2,...,2m — h}. For arbitrary
ie€{l,2,...,2m — h}, suppose that #(7'(S;)) > 2m + i — h for some S; € M, ,(B;). By

(2.2.1), we have
#(T(S;)) =2m+i—h and #T(S;+F)) =2m+i—hor 2m+i—h)+1

for all cells F' with F' £ S;. If #(T'(S; + F1)) = 2m + i — h for some cell F} with F} € S;,
then we have T'(S; + F1) = T'(5;). Let Fy and F3 be distinct cells different from F; such

that they are not dominated by S; and b(

7]

3
Y € My, »n(B1) such that S; +Y = J\ ) Fj, and hence S;+Y + Fy = J \ (Fo + F3). It
=1

3
Fj) = 3. Then we can select the matrix
=1

follows from T'(S; + F1) = T(S;) that T(S; + F1) + T(Y) = T(S;) + T(Y), equivalently

T(J\ (Fy +F3)) - T<J\§:Fj>,

3
a contradiction because J \ ) Fj is singular, while J \ (F3 + F3) is regular by Theorem
j=1
2.1.15. Thus we may assume that #(7(S; + F)) = (2m + i — h) + 1 for all cells F' with

16
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F £ S;. This means that for any cell F' with F' € S;, there exists only one cell Cr such
that
Cr ﬁ T(SZ‘), Cr < T(F) and T(Sz + F) = T(SZ) +CFg (2.2.2)

because #(7'(S;)) =2m + i — h. Let E,, ,, be the set of all cells in M, ,(B1) and let
Q={Cp|F ek, and F £S5}

Suppose that Cy # Cp for all distinct cells F' and H that are not dominated by S;.
Then we have #(2) = mn —i. Since Crp £ T(S;) for any cell F' with F' £ S;, we have
#(Q) < mn — (2m + i — h) because #(1'(S;)) = 2m + i — h. This is impossible. Hence
Cy = Cp for some distinct cells F' and H that are not dominated by S;. It follows from
(2.2.2) that

T(S;+ F+H)=T(S; +F) +T(S;+H)=T(S;))+Cp=T(S; + F). (2.2.3)

Let H; and Hs be distinct cells different from H such that they are not dominated
by S; + F and b(H + Hy + Hy) = 3. Let Y’ be the matrix such that S; + F + Y’ =
J\ (H + Hy + H3). Then we have S; + F + H+Y' = J\ (H, + Hz). It follows from
(2.2.3) that

T(J\ (Hi+ H)) =T(J\ (H + Hy + Hy)),

a contradiction because J \ (H; + Ha) is regular, while J \ (H + H; + H») is singular by
Theorem 2.1.15. Consequently, we have #(7°(S;)) < 2m + i — h for all S; € M, ,(B1),

where i € {1,2,...,2m — h}. Hence the result follows. [

Corollary 2.2.9. Let T' be a linear operator on My, ,(B1) that strongly preserves regu-
larity, where min{m,n} > 3. Then T(E) is a cell for all cells E in M, ,(B;).

Proof. Let h = 2m in Lemma 2.2.8. Then we have #(7°(S1)) < 1 for all S} € M, »,(B1).
It follows from Lemma 2.2.6 that #(7°(S1)) = 1 for all S; € M,, »,(B;), equivalently
#(T(F)) =1 for any cell E in M, ,,(B;). Therefore we have that T'(E) is a cell for any
cell £ in M, »(B1). [ ]
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As shown in Theorem 2.2.4, if T' is a linear operator on M, ,(B1) with min{m,n} < 2,
then T' (strongly) preserves regularity because all matrices in M, ,,(B1) are regular by
Proposition 2.1.9.

If min{m,n} > 3, there exists a linear operator on M, ,,(B1) such that 7" preserves
regularity, while T does not strongly preserve regularity, see Example 2.2.2.

The next Lemmas are necessary to prove the main theorem of this section.

Lemma 2.2.10. Let T' be a linear operator on M, »(B1) that strongly preserve reqularity

for min{m,n} > 3. Then T is bijective on the set of cells.

Proof. By Corollary 2.2.9, we suffice to show that T'(E) # T'(F) for all distinct cells E
and F in M, »,(B;1). Suppose that T(E) = T'(F') for some distinct cells E' and F. Then
we have T'(E + F) = T(E). By Corollary 2.1.13, there exists a matrix A in M, ,(B1)
with #(A) = 3 such that A+ E + F is singular. Since T(E + F') = T(E), we have

T(A+ E+F)=T(A+ B),

a contradiction to the fact that T strongly preserves regularity because A + E is regular

by Corollary 2.1.10. Therefore T is bijective on the set of cells. [

Let A € M, ,(B1) be a nonzero matrix dominated by a line matrix. Then we have
b(A) = 1. If #(A) = s, then we say that A is a s-star matriz. Therefore all s-star

matrices are regular by Proposition 2.1.9.

Lemma 2.2.11. Let T be a linear operator on M, (B1) that strongly preserve reqularity

for min{m,n} > 3. Then T preserves all 3-star matrices.

Proof.  Suppose that T' does not preserve a 3-star matrix A in M,, ,(B;). Then we
have that b(T(A)) = 2 or 3. By Corollary 2.1.14, there exist cells E and F' such that
T(A) 4+ E + F is singular. By Lemma 2.2.10, we can write £ = T'(H;) and F = T(H3)

for some cells Hy and Hs. Thus we have

T(A)+ E+ F=T(A+ H, + H»).

18
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But A + Hy + Hs is regular by Proposition 2.1.16. This contradicts to the fact that T

strongly preserves regularity. Hence T preserves all 3-star matrices. [ |

Corollary 2.2.12. Let T be a linear operator on My, ,(B1) that strongly preserve regu-

larity for min{m,n} > 3. Then T preserves all line matrices.

Proof. Suppose that T does not preserve a line matrix A in M, ,(B1). Then there exist
two cells E and F' dominated by A such that two cells T'(E) and T'(F') are not collinear.
Let G be a cell such that £+ F'+ G is a 3-star matrix. By Lemma 2.2.11, T(E + F + G)
is a 3-star matrix, and hence b(T(E + F + G)) = 1. Thus, the three cells T'(E), T(F)
and T'(G) are collinear. This contradicts to the fact that the two cells T'(E) and T'(F)

are not collinear. Therefore T preserves all line matrices. [ |

We say that a linear operator T' on M, ,(B;) is a (U, V)-operator if there exist

invertible matrices U € M,,,(B;) and V € M, (B;) such that either
T(X)=UXV forall X eM,,,(B;), or

m=n and T(X)=UXTV foral X €M,,,(B).

We remind that the n x n permutation matrices are the only n x n invertible Boolean

madtrices.

Theorem 2.2.13. Let T be a linear operator on My, »,(B1) with min{m,n} > 3. Then

T strongly preserves reqularity if and only if T is a (U, V')-operator.

Proof. The sufficiency follows from Proposition 2.1.5. To prove the necessity, assume
that T strongly preserves regularity. Then T is bijective on the set of cells by Lemma
2.2.10 and T preserves all line matrices by Corollary 2.2.12. Since no combination of s
row matrices and ¢ column matrices can dominate J,, , where s+t = min{m, n} unless

s =0 or t =0, we have that either
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(1) the image of each row matrix is a row matrix and the image of each column matrix

is a column matrix, or

(2) the image of each row matrix is a column matrix and the image of each column

matrix is a row matrix.

If (1) holds, then there exist permutations o and 7 of {1,...,m} and {1,...,n},

respectively such that T'(R;) = Ry(;) and T(Cj) = Cpr;) for all i = 1,...,m and j =

)
1,...,n. Let U € M,,,(B1) and V € M,,(B1) be permutation (i.e., invertible) matrices

corresponding to ¢ and 7, respectively. Then we have
T(Eij) = Eqi) () = UE;V

m n
for all cells E; ; in M, ,(B;1). Let X = Y > x;;E;; be any matrix in M, ,(B;). By
i=15=1
the action of T" on the cells, we have that T'(X) = UXV. If (2) holds, then m = n and
a parallel argument shows that there exist invertible matrices U and V' in M, (B) such

that T(X) = UXTV for all X in M,(B1). Therefore T is a (U, V)-operator. [ ]

Thus, as shown in Theorems 2.2.4 and 2.2.13, we have characterizations of the linear

operators that strongly preserve Boolean regular matrices.
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3 Extreme sets of matrix pairs over general Boolean alge-
bra and their preservers

3.1 Preliminaries and Basic results

Definition 3.1.1. ([11]) A semiring S consists of a set S and two binary operations,

addition(+) and multiplication(-), such that:
e S is an Abelian monoid under addition (the identity is denoted by 0);
e S is a monoid under multiplication (the identity is denoted by 1);
e multiplication is distributive over addition on both sides;

e s0=0s=0forall seS.

Definition 3.1.2. ([11]) A semiring S is called antinegative if the zero element is the

only element with an additive inverse.

Definition 3.1.3. ([11]) A semiring S is called a general Boolean algebra if S is equivalent
to a set of subsets of a given set M, the sum of two subsets is their union, and the product

is their intersection. The zero element is the empty set and the identity element is the

whole set M.
Let Sk = {a1,a9, --- ,ax} be a set of k-elements, P(Sk) be the set of all subsets of
Si and By be a general Boolean algebra of subsets of Sy = {ai,as, ‘- ,ax}, which is

a subset of P(Sk). It is straightforward to see that a general Boolean algebra By is a
commutative and antinegative semiring. Let M, ,(Bj) denote the set of m x n matrices
with entries from the general Boolean algebra By. If m = n, we use the notation M,, (By)

instead of M, ,,(Bg).

Throughout the thesis, we assume that m < n. The matrix I, is the n x n identity
matrix, Ji,, is the m x n matrix of all ones and O,,, is the m x n zero matrix. We

omit the subscripts when the order is obvious from the context and we write I, J and O,
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respectively. The matrix F; ;, which is called a cell, denotes the matrix with exactly one
nonzero entry, that being a one in the (i, j)!* entry. A weighted cell is any nonzero scalar
multiple of a cell, that is, aEj; ; is a weighted cell for any 0 # « € By. Let R; denote the

matrix whose it"

row is all ones and is zero elsewhere, and C; denote the matrix whose
4% column is all ones and is zero elsewhere. We denote by #(A) the number of nonzero
entries in the matrix A. We denote by Ali,j|r,s] the 2 x 2 submatrix of A which lies in

the intersection of the i*" and j** rows with the 7*" and s columns.

Definition 3.1.4. (][9], [13]) The matrix A € M, ,(By) is said to be of Boolean rank r
if there exist matrices B € M, »(By) and C € M, ,,(By) such that A = BC and r is the

smallest positive integer that such a factorization exists. We denote b(A4) = r.

By definition, the unique matrix with Boolean rank equal to 0 is the zero matrix O.
If F is a field, then there is the usual rank function p(A) for any matrix A €
M, n(F). These rank functions are not equal in general. However, the inequality

b(A) >p(A) always holds for any matrix A € My, ,(F) ()M, (S). Consider the ma-

1 001
g 1 100
trix M = 011 0|E€ My 4(Bg). Then M has Boolean rank 4 and has real rank 3
0 011
by Example 4.3 in [6].

The behavior of the function p with respect to matrix multiplication and addition is

given by the following inequalities([2] and [18]):

e the rank-sum inequalities:
|p(A) = p(B)| < p(A + B) < p(4) + p(B),
e Sylvester’s laws:
p(A) + p(B) —n < p(AB) < min{p(4), p(B)},

e and the Frobenius inequality:

p(AB) + p(BC) < p(ABC) + p(B),

22

Collection @ jeju



where A, B and C are conformal matrices with entries from a field.

The arithmetic properties of Boolean rank are restricted by the following list of in-
equalities([2]), since the Boolean algebra is antinegative:

(1) b(A+ B) < b(A) + b(B);

(2) b(AB) < min{b(4), b(B)};

(A) it B =0,
(3)b(A+B)>{ (B) itA=0,

b
b
1 if A+ O and B # 0;
if b(A) + b(B) < n,

if b(A

0
1 (A) +b(B) > n.

(@ () > {

Below, we use the following notation in order to denote sets of matrices that arise as
extremal cases in the inequalities listed above:

Rsa(By) = { (X,Y) € My, n(Bg)*| B(X +Y) =b(X) +b(Y) },

Rs1(Br) = {(X,Y) € Mypn(Bi)? b(X +Y) =1},

Rsp(Br) = {(X,Y) € M, (Bg)?| b(X +Y) = [b(X) = b(Y)[},

R (Br) = {(X,Y) € My (By)?| b(XY) = min{ b(X),b(Y)}},

Raro(Br) = {(X,Y) € My, (Bg)?| b(XY) = 0},

Rari(Br) = {(X,Y) € M,,(Bg)?| b(XY) =1},

Rua(Br) = {(X,Y) € My(By)?| b(XY) = b(X) +b(Y) —n},

Rus(Br) = {(X,Y, Z) € M,(B,)?| (XY Z)4+b(Y) = b(XY) + b(Y Z)}.

Definition 3.1.5. ([4]) We say that an operator 1" preserves aset P if X € P implies that
T(X) € P or if P is the set of ordered pairs (triples) such that (X,Y’) € P (respectively,
(X,Y,Z) € P) implies ((T'(X),T(Y)) € P (respectively, (T(X),T(Y),T(Z)) € P).

Definition 3.1.6. An operator T strongly preserves the set P if X € P if and only if
T(X) € P orif P is the set of ordered pairs (triples) such that (X,Y) € P (respectively,
(X,Y,Z) € P) if and only if (T(X),T(Y)) € P (respectively, (I'(X),T(Y),T(Z)) € P).
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Definition 3.1.7. ([4]) For X,Y € M,, »(S), the matrix X oY denotes the Hadamard

or Schur product, i.e., the (i,7)"entry of X oY is T Vi

Definition 3.1.8. ([4]) An operator T is called a (P, @, B)-operator if there exist per-
mutation matrices P and @ and a matrix B € M, ,,(S) with no zero entries such that
T(X) = P(X o B)Q for all X € M,,,(S) or if for m = n, T(X) = P(X o B)TQ for all
X € M, »(S). A (P,Q, B)-operator is called a (P, Q)-operator if B = J, the matrix of

all ones.

Definition 3.1.9. ([4]) Let By, be a general Boolean algebra. An operator T : My, ,(Bj) —
My, o (Bg) is called linear if it satisfies T(X +Y) =T(X) +T(Y) and T(aX) = oT'(X)
for all X,Y € M, ,(By) and a € By.

Definition 3.1.10. A line of a matrix A is a row or a column of the matrix A.

Definition 3.1.11. ([4]) We say that the matrix A dominates the matrix B if and only

if b; ; # 0 implies that a; ; # 0, and we write A > B or B < A.

Lemma 3.1.12. Let P and Q be permutation matrices of m-square and n-square respec-
tively. If T : Mpn(S) — My n(S) is defined by T(X) = PX or T'(X) = XQ for any
X € My, n(Bg). Then T preserves Boolean rank. That is, b(T(X)) = b(X).

Proof. Let A,B € M, ,(S) and P be an m X m permutation matrix. Since, in any

semiring S,
b(AB) < min{b(A),b(B)}, b(PX) < min{b(P), b(X)} <b(X).
And

b(X) = b(IX) = b((PTP)X) = b(PT(PX)) <b(PX).
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Hence b(PX) = b(X). Similarly b(X@Q) = b(X) for all n x n permutation matrix (). m

a b

Lemma 3.1.13. If A= [ e d } € My o(By) has Boolean rank 1, then ad = bc.

Proof. Suppose that b(A) = 1. Then there exist vectors x = [x1,x2]T and y = [y1, y2]

such that A = xy. Thus
la b| | mm _ | Ty T1y2
A_[Cd]_[m][yl y2]_[9323/1 Toy2 |

Hence ad = z1x2y1ys = be. [ ]

a b

Lemma 3.1.14. If ad # bc, then A = [ A ] € My o(By) has Boolean rank 2.

Proof. = Suppose that ad # bc and b(A) # 2. Then b(A) = 1 and there exist vectors

X = [x1,%2]T and y = [y1,y2] such that A = xy. Thus
a b x1 T1Y1  T1Y2 ]
A = = = .
[ c d ] [ L2 } Lor w2 ] [ ToY1  T2Y2

Hence ad = z122y1y2 = be, a contradiction to ad # be. [ |

The inverse of Lemma 3.1.13 is not true. Consider the following example:

Example 3.1.15. Let By = P({a,b,c,d}) and A = [ EZ}% %Z?}r } be a 2 x 2 matrix over
By. Then {a} - {d} = 0= {b} - {c}, but b(A) =2 # 1.

Lemma 3.1.16. Let A € M, ,(By), where m,n > 2. b(A) = 1 if and only if b(A’) = 1

for any 2 x 2 submatriz A’ of A.

Proof. =) Suppose that b(A) = 1, then there exist vectors a = [a1, as, ..., a,]’ and
b = [by,ba,...,by] such that A = ab, ie., a;; = a;b; forall1 <i<mand 1< j <n.

Thus for any 2 x 2 submatrix

I .. . aibT aibs o (473
a3 3] (3] 1
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e, b(4") =

<) Suppose that b(A) = r > 1. Then there exist matrices B € M, ,(By) and
C € M, ,(By) such that A = BC. Thus there exist matrices B’ € M, 2(By) and
C" € My ,,(By,) with Boolean rank 2 such that A’ = B'C’. Therefore there exist matrices
B"” ¢ B' and C"” C C" in M3 5(By,) such that A” = B"C" € My 2(By,) with b(A”) =2, a

contradiction. m

Theorem 3.1.17. Let T : My, ,(Br) — My, (Bi) be a linear operator. Then the follow-
ing conditions are equivalent:

(a) T is bijective;

(b) T is surjective;

(c) T is injective;

(d) there exists a permutation o on {(i,7)]t = 1,2,...,m;j = 1,2,...,n} such that
T(Eij) = Esj) forall1 <i<m and 1 <j <n.

Proof.  (a), (b) and (c) are equivalent since M, ,,(By) is a finite set.
(d)=(b) For any D € M,,(By), we may write
m n
D=) ) di;Bij.
i=1 j=1
Since ¢ is a permutation, there exist o1(, 5) and
m n
D'=%.2 doriBr i
i=1 j=1

such that

sz ~1(i,j) Eg=1 J))

e
m
szw 1i.j) Eoo1(i.5)
=1 j=1
m n
=> > dijE; =D
i=1 j=1

(a)=>(d) We assume that T is bijective. Suppose that T'(E; ;) # Ey(; ) where o be

a permutation on {(4,7)]i = 1,2,...,m;j = 1,2,...,n}. Then there exist some pairs
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(¢,7) and (r,s) such that T'(E; ;) = aF, (o # 1) or some pairs (4,j), (r,s) and (u,v)
((r,s) # (u,v)) such that T'(E; ;) = aFrs+ fEyy + Z(a # 0,8 # 0,Z € My, n(Bg)),
where the (r,s)" and (u,v)"" entries of Z are zeros.

Case 1) Suppose that there exist some pairs (i,j) and (r,s) such that T(E; ;) =
aFE, (a # 1). Since T is bijective, there exist X, s € My, »(By) such that T'(X, s) = Ey .
Then oT (X, ) = aE, s = T(E;;), and T(aX,s) = T(E; ;). Hence aX, s = E; j, which
contradicts the fact that o # 1.

Case 2) Suppose that there exist some pairs (7, j), (7, s) and (u,v) such that T'(E; ;) =
QB s+ BBy, + Z(a # 0,8 # 0,Z € My, »(By.)), where the (r,s)" and (u,v)" entries
of Z are zeros. Since T is bijective, there exist X, s, Xy, and Z’ € M, »(B) such that

T(X,s) =aE.s, T(Xyy) = BEyuy, and T(Z') = Z. Thus
T(Ei,j) =al, s+ BBy, +7Z = T(Xr’s) + T(Xu,v) + T(Z,) = T(an + Xyt Z’).

So Ejj = X5 + Xu + Z', a contradiction. -

Remark 3.1.18. One can easily verify that if m = 1 or n = 1, then all operators
under consideration are (P, @, B)-operators and if m = n = 1, then all operators under

consideration are (P, P, B)-operators.

Henceforth we will always assume that m,n > 2.

Lemma 3.1.19. Let T : M, »,(Bi) — My, (Bg) be a linear operator which maps a line
to a line and T be defined by the rule T(E; ;) = bijEo(ij), where o is a permutation
on the set {(i,7)|i =1,2,...,m;j = 1,2,...,n} and b;; € By, are nonzero elements for

i=1,2,....,m;5=1,2,...,n. Then T be a (P,Q, B)-operator.

Proof. Since no combination of p rows and ¢ columns can dominate J for any nonzero p
and ¢ with p + ¢ = m, we have that either the image of each row is a row and the image
of each column is a column, or m = n and the image of each row is a column and image

of each column is a row. Thus there are permutation matrices P and () such that

T(R;) < PRiQ, T(Cy) < PC;Q
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or, if m = n,
T(R;) < P(R)TQ, T(C;j) < P(C)"Q.
Since each nonzero entry of a cell lies in the intersection of a row and a column and T

maps nonzero cells to nonzero (weighted) cells, it follows that
T(Ei;) = PbijE; jQ = P(E; ;o B)Q,
or, if m = n,
T(E; ;) = P(bi;Bi;)"Q = P(BijoB)'Q

where B = (b; ;) is defined by the action of 7" on the cells. ]

Lemma 3.1.20. IfT(X) = X o B for all X € M, ,(By) and b(B) = 1 then there exist
diagonal matrices D and E such that T(X) = DXE for all X € M, »(Bg).

Proof.  Since b(B) = 1, there exist vectors d = [d;,d2,...,dm|T € M1 and e =
lej,e2,...,en] € My, such that B = de or by; = djej. Let D = diag{di,da,...,dpn}
and B = diag{e1, e, ...,e,}. Now the (7)™ entry of T(X) is b; jz;; and the (4,5)™

entry of DXFE is d;x; jej = b; ja; j. Hence T(X) = DXE. [ ]

Example 3.1.21. Consider the linear operator T' : M 3(B3s) — M3 3(B3) defined by
T(X)= X oB for all X € M33(B3) with B3 = P({a,b,¢}). Then b(B) = 1 but T does

not preserves the Boolean rank.

{a,0} {a,b,c}  {a,b} ] {a} {0} {a}
Consider X = | {a,c} {a,b} {a,¢} | and B= | {a} {b} {a}
{a} b {a,b,c} | {a} {0} {a}

Then b(X) = 3, but

{a} {0} {a}] 1
T(X)=XoB=|{a} {b} {a} | =|1|[{a} {0} {a}].
{a} {0} {a} | 1

That is, b(T(X)) = b(X o B) =1 # 3 =b(X). Thus b(B) = 1 but T does not preserves

the Boolean rank.
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3.2 Linear preservers of Rga(By)

Recall that

Rsa(Br) = {(X,Y) € My (Bi)?| b(X +Y) =b(X) +b(Y) }.

Example 3.2.1. We show that Rg4(B2) is not an empty set.

Let Bo = P({a,b}) = {9, {a}, {b},{a,b}}. Consider two matrices X and Y over Bs:

AR [ )

and

EIPoT L FAY IRCC TR
Then b(X) = b(Y) = 1 and

Y A [ b By ]

has Boolean rank 2 by Lemma 3.1.14. Thus (X,Y) € Rga(B2). That is Rga(B2) # ¢.

We begin with some general observations on linear operators of special types that

preserve Rga(By).

Lemma 3.2.2. Let o be a permutation of the set {(i,7)]i =1,2,..., m;5=1,2,...,n},
and T : My n(Bi) = Moy n(Br) be a linear operator defined by T(E; ;) = bijEq; ;) for
some nonzero scalars b; j, 1 <i<m and 1 < j <n. If T preserves Rga(By), then T is

a (P,Q, B)-operator.

Proof. We examine the action of 7" on rows and columns of a matrix. Suppose that
the image of two cells are in the same line, but the cells are not, say, F and F are
cells such that b(E + F) = 2 and b(I'(E + F)) = 1. Then (E,F) € Rsa(Bx) but

(T(E), T(F)) ¢ Rsa(Byg), a contradiction since T preserves Rga(Bg). Thus 7' maps any
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line to a line. By Lemma 3.1.19, we obtain the result. [ |

Lemma 3.2.3. Let T : M, ,,(Br) — My, n(Bg)be a linear operator. If for some B =
(bi’j), where b; j are nonzero scalars for all 1 <i < m and 1 < j < n, T(X)=XoB
preserves Rga(Byg), then b(B) = 1. Moreover, T(X) = DXE for diagonal matrices D

and E of appropriate sizes.

Proof. If b(B) > 2, then by Lemma 3.1.16, there is a 2 X 2 submatrix B[z, j|r, s] such
that b(B[i, j|r, s]) = 2. Let Y = E; , + Ejr + Ei s+ Ejs. Thus T(Y) = bi By +bjr B +
bisEis +bjsE;j s = Z has Boolean rank 2 from b(B[i, j|r,s]) = 2. Then for ¢ # r, s, we
have b(E; ,+Y) =2 =Db(E;,) + b(Y), so that (E;,Y) € Rga(By), while b(T(E; ,+Y))
=b(bigFEiqg+Z) =2#Db(bjgEiq) +b(Z) =1+ 2 =3, a contradiction since T" preserves
Rsa(Bg). Thus b(B) = 1. Moreover, by Lemma 3.1.20, there exist diagonal matrices D
and E such that T'(X) = DXE. |

Theorem 3.2.4. Let T : My, (By) — M, (Bi) be a surjective linear operator. The

operator T preserves Rga(By) if and only if T is a (P, @ )-operator.

Proof. =) If T is surjective, then by Theorem 3.1.17, we have that T is defined by a
permutation o on the set {(i,7)|i = 1,2,...,m;j =1,2,...,n} such that T(E; ;) = E,(; ;
forall1 <i<m and 1 <j <n. By Lemma 3.2.2, we have that T is a (P, Q, J)-operator.
Thus T is a (P, Q)-operator.

<) Assume that T is a (P, Q)-operator. For any (X,Y) € Rga(Bx), we have b(X+Y)

= b(X) + b(Y). Thus

b(T(X) + T(Y)) = b(T(X +Y)) = b(P(X +Y)Q) = b(X +Y)
= b(X) + b(Y) = b(PXQ) + b(PYQ) = b(T(X)) + b(T(Y)).

Hence the operator T preserves Rga(By). ]
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Lemma 3.2.5. Let T' : M, ,(Br) — M, ,(Br) be a linear operator. Then there is a

power of T which is idempotent.

Proof.  Since By, is finite, there are only finitely many linear operators from M, ,,(By)
into My, ,,(By). Thus the sequence {T,T?,T3, ..., T™,...} is finite for sufficiently large
n. That is, there exist integers N > 1 and d > 1 such that for m,n > N with m =
n (mod d), T™ = T". Let p = Nd. Then 2p = p(mod d). Hence (TP)%? = T? = TP,

That is, TP is idempotent. u

Theorem 3.2.6. Let T' : My, ,,(Bx) — My, n(Bg) be a linear operator. If T strongly

preserves Rsa(Bg), then T is a (P, Q, B)-operator, where B € M, ,,(By).

Proof. By Lemma 3.2.5, there is a power of T' which is idempotent. Say L = TP
with L2 = L. If X € M,,,(Bg) and (X, X) € Rsa(Bg), then b(X) = b(X + X) =
b(X) 4 b(X). Thus b(X) = 0, X = Oy, . Similarly, if (T(X), T(X)) € Rea(Bg), then
T(X) = Opmp. Thus (X, X) € Rga(By) if and only if (L(X), L(X)) € Rga(By) since T
strongly preserves Rga(By). So, b(X) = 0 if and only if b(L(X)) = 0. That is, X = Oy,
if and only if L(X) = Oy, »n. Hence, if A # O, then we have L(A) # O since T' strongly
preserves Rsa(By). We examine the action of L on rows and columns. Assume that
L(R;) is not dominated by R;. Then there is some (r,s) such that E, ; < L(R;) while

E,.s £ R;. Then it is easy to see that
(R,’, aEr,S) € RSA(Ek). (3.2.1)

Since E, s < L(R;), we can find a matrix X = (z; ) € My, ,(By) with z, ¢ = 0 such that

L(R;) = aE, s+ X for nonzero a in By. We have
L(R; + aE, ) = L(R;) + L(aE, ) = L*(R;) + L(aE, ;)

=L(aE,s+ X)+ L(aE, ) = L(X) + L(aE,s) + L(aE, )
_ L(X) + L(aBys) = L(X + aBy,) = L(L(RY) = I(R:) = L(R).

That is,
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b(L(R;) + L(aEys)) = b(L(R; + aE;.s)) = b(L(R;)).

But if b(L(R;)) + b(L(aErs)) = b(L(R;) + L(aFE,s)) = b(L(R;)), then b(L(aE,s)) = 0.
Then L(aFE; ) = 0and aE, s = 0; which is impossible. Thus (L(R;)), L(aE;s) ¢Rsa(Bg),
contradiction from (3.2.1), since T' and L strongly preserves Rga(Bg). Therefore we
have established that L(R;) < R; for all 4. Similarly, L(C;) < Cj for all j. By con-
sidering that E;; is dominated by both R; and Cj, we have that L(E;;) < R; and
L(E;;) < Cj, and hence L(F; ;) < E; ;. Since By, is antinegative, T also maps a cell to
a weighted cell and T'(J) has all nonzero entries. So, T' induces a permutation o on the
set {(4,7)]1 =1,2,...,m;j =1,2,...,n}. That is, T(E; ;) = b; jE, ;) for some nonzero

scalars b; ; in By. By Lemma 3.2.2, T is a (P, Q, B)-operator. [
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3.3 Linear preservers of Rg(By)

Recall that
Rs1(Br) = {(X,Y) € M, (Bg)?| b(X +Y) = 1}.

Example 3.3.1. We show that Rg1(B2) is not an empty set.

Consider two matrices X and Y over Bs = P({a,b}):

T

and

v= 3 =)

Then b(X +Y) = 1 and hence Rg1(Bg) # ¢.

Theorem 3.3.2. Let T : My, »(Bg) — My, n(By) be a surjective linear operator. Then
T preserves Rs1(By) if and only if T is a (P, Q )-operator.

Proof. If T is a surjective linear operator, by Theorem 3.1.17, we have that T'(E; ;) =
Esij for all 1 < i < mand1 < j < n. It is easy to see that the weighted cells
aF; j and BE, , are in the same line if and only if b(aF;; + SE, ) = 1 if and only if
(aE;;, BEys) € Rs1(Bg). If T preserves Rgi(By), then (T'(aE; ;), T(BE,s)) € Rsi(Bx)
for (aE;;,BE;s) € Rs1(By). And hence b(T(aF;;) + T(BEys)) = 1 which implies
T(aE; ;) and T(BE,s) are weighted cells in the same line. Thus lines are mapped to
lines by T', and we have that T is a (P, @), B)-operator by Lemma 3.1.19. Here we have
B = J from T(E; ;) = E,( ;. Thus T be a (P, Q)-operator.

Conversely let T be a (P, Q)-operator and consider any (X,Y) € Rg1(By). Then
b(X +Y) = 1. Thus

b(T(X)+T(Y)) =b(T(X +Y)) = b(P(X +Y)Q) = b(X +Y) = 1.

That is, (T(X),T(Y)) € Rs1(Bx). Hence T preserves Rg1(By). ]

33

Collection @ jeju



Theorem 3.3.3. Let T : My, ,(By) — My, (By) be a linear operator preserving Rs1(Bg).
Then the following conditions are equivalent:

(a) T is bijective;

(b) T is injective;

(c) T is surjective;

(d) T strongly preserves Rg1(Byg);

(e) T is a (P,Q)-operator.

Proof. (a), (b) and (c) are equivalent by Theorem 3.1.17.

(c)=(e) If T is a surjective linear operator preserving Rgi(By), then T is a (P, Q)-
operator by Theorem 3.3.2.

(e)=(d) Assume that T is a (P, @)-operator. Then (X,Y) € Rg1(Bg) if and only if
b(X +Y) = 1if and only if b(P(X +Y)Q) = 1 if and only if b(T'(X +Y)) =1 if and
only if b(T'(X) + T(Y)) = 1 if and only if (T(X),T(Y)) € Rs1(Bg). That is T strongly
preserves Rgi(Bg).

(d)=(c) Suppose T" strongly preserves Rgi(Bx). We claim that 7' is surjective. As-
sume that T is not surjective. Then, by Theorem 3.1.17, T is not injective and hence T
is not injective on the set of all mn cells in M, ,,(By). Therefore there exists two distinct
cells E; j, B € My, »(Bg) such that T'(E; j) = T(Eh,;) = Ers. Then we have 3 cases as
follows:

Case 1) Two cells in distinct lines are mapped to a cell. That is T(E; ;) = E,s =
T(Ep;) with @ # h, j # 1. Let X = E;jj; ¥ = Ep;. Then b(X +Y) = 2, but
b(T'(X)+T(Y)) = b(Eys) = 1; contradicts the fact that 7" strongly preserves Rg1(B).

Case 2) Two cells in a row are mapped to a cell. That is T(E; ;) = E, s = T(E;)

with j # [. Since T strongly preserves Rgi(By), i row are mapped to 7" row or s

" row or s column. Say T'(E, ;) = E, s with

column and j** column are mapped to r*
i#u. Let X = Ey; + E;y and Y = E, ;. Then b(X +Y) = 2, but b(T(X) + T(Y)) =
b(E, s + E, ) = 1; contradicts the fact that T" strongly preserves Rg1(By).

Case 3) Two cells in a column are mapped to a cell. We have a similar contradiction

as in the Case 2). Therefore these 3 cases implies that 7' is injective and hence T is
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3.4 Linear preservers of Rgp(By)

Recall that

Rsp(Br) = {(X,Y) € My, n(Bi)*| b(X +Y) = [b(X) —b(Y)]}.

Example 3.4.1. We show that Rgp(By) is not an empty set.

Consider

181 0 0
X:I:l 0],Y—|:O 1:|€M272(Bk).

Then b(X +Y) =1, b(X) =2, b(Y) =1. Hence b(X +Y) = | b(X) — b(Y) |. Thus

Rsp(By) contains (X,Y) € My o(Bx)? and hence Rsp(By) is not an empty set.

Lemma 3.4.2. Let o be a permutation of the set {(i,7)]i =1,2,..., m;j5=1,2,...,n},
and T : My, n(Bg) — M (By) be defined by T(E; ;) = bijEqq ;) with nonzero b; j € By,
foralll <i<mandl < j<mn, and min{m,n} > 3. If T preserves Rsp(By), then T

maps a line to a line.

Proof.  Since the sum of three weighted distinct cells has Boolean rank at most 3, it
follows that b(T(E11+ E12+ E21)) < 3. Now, for X = By 1+ FE1 2+ Es; and Y = Es 9,
we have that (X,Y) € Rgp(Bg), and the image of Y under T is a single weighted cell,
and hence b(T'(Y)) = 1. Now, if b(T'(X)) = 3, then T'(X) is the sum of three weighted
cells that lie in distinct lines. Thus T'(X + Y) must have Boolean rank 3 or 4, and hence
(T(X), T(Y)) ¢ Rsp(Bx), a contradiction. If b(7T(X)) = 1, then T(X +Y) # O and
(T(X), T(Y)) ¢ Rsp(Bg), a contradiction. Consequently we have that b(T(X)) = 2,
and hence b(T(X +Y)) =1 from (T'(X),T(Y)) € Rsp(Bx). However it is obvious that
if a sum of four cells has the Boolean rank 1, then they lie either in a line or in the
intersection of two rows and two columns. The matrix 7'(X 4+ Y) is a sum of four cells.
These cells do not lie in a line since b(7T(X)) = 2. Thus T'(X + Y) must be the sum of
four cells which lie in the intersection of two rows and two columns. Similarly, for any

i,j,h and I, T(E; j + E;p + Epj + E; ;) must lie in the intersection of two rows and two
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columns. It follows that any two rows must be mapped into two lines. By the bijectivity
of T, if some pair of two rows is mapped into two rows (resp. columns), any pair of two
rows is mapped into two rows(resp. columns). Similarly, if some pair of two columns is
mapped into two rows(resp. columns), any pair of two columns is mapped into two rows
(resp. columns). Now, the image of three rows is contained in three lines, two of which
are the image of two rows, thus every row is mapped into a line. Thus 7" maps a line to

a line. [

Theorem 3.4.3. Let m,n > 2 and T be a surjective linear operator on My, ,(By). Then

T preserves Rsp(By) if and only if T is a (P, Q)-operator.

Proof. <) Assume that T is surjective and a (P, Q)-operator. For any (X,Y) €

Rsp(By), we have
b(X +Y) = b (X)- b(Y)].
Thus
b(T'(X)+T(Y)) =b(T(X+Y)) =bP(X+Y)Q) =b(X+Y)
= | b(X)~ b(Y)] = | B(PXQ)~ b(PYQ)| = | BT(X))~ b(T(Y))]

Hence ((T'(X),T(Y)) €Rsp(Bk). Therefore T preserves Rsp(By).

=) Assume that T preserves Rgp(By). Since T is a surjective linear operator, there
exists permutation o on {(i,7)[i = 1,2,...,m;j = 1,2,...,n} such that T(E; ;) = E, ;
forall1 <¢<mand 1< j <n by Theorem 3.1.17. Hence T maps any line to a line by
Lemma 3.4.2. Therefore T is a (P, Q)-operator by Lemma 3.1.19 since all the entries of

B are 1. [ ]
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3.5 Linear preservers of R (By)
Recall that

Rarv (By) = {(X,Y) € My (By,)?| b(XY) = min{b(X), b(Y)}}.

Example 3.5.1. We show that R (Bg) is not an empty set.

Consider

1 1
il

Then b(XY) = 1, b(X) = 1 and b(Y) = 1. Hence b(XY) = min(b(X), b(Y)). Thus

X=Y= [ ] € My 5(By,).

Rarm (By) contains (X,Y) € Mao(Bg)? and hence Rasas (Bg) is not an empty set.

Theorem 3.5.2. Let T : M,,(Bg) — M,,(Bg)be a linear operator. Then T is surjective
and preserves Ry (Br) if and only if there exists a permutation matriz P such that

T(X) = PXPT for all X € M,,(Bg).

Proof. <) Let T : M, (B)) — M, (Bg)be defined by T(X) = PXPT and (X,Y) €
Rarm(By). Then b(XY) = min{b(X), b(Y)} and hence

b(T(X)T(Y)) = b(PXPTPYPT) = b(PXYPT) = b(XY) = min{b(X),b(Y)}.

Thus (T'(X),T(Y)) € Ryum(Bg). That is T preserves Razar(Br).

=) Assume that T" is surjective and preserves Raras(Bj). By Theorem 3.1.17, we
have that T'(E; ;) = Eg(; ;) for a permutation o on {(i,j)[1 < 4,5 < n}. Consider
(Eij, Ejn) € Rym(By) for all h. Then b(T'(E; ;)T (E; ) = min{b(T'(E; ;), b(T'(jx))} =
L, but T'(E; ;)T (Ejn) = Eo(,j)Esjn)- It follows that E,(;py is in the same row as Ey(; 1)
for any h = 1,2,...,n. That is, T maps rows to rows; similarly 7" maps columns to
columns. By Lemma 3.1.19 with b; ; = 1, it follows that T'(X) = PX@ for some permu-
tation matrices P and Q. Let us show that @ = PT. Indeed T(E; ;) = Er(i)(j), Where
7 is the permutation corresponding to P and 7 is the permutation corresponding to Q7.
But (E14, Ei1) € Ryum(Bg); thus (Erq)r)s Eri)r)) € Rym(Bg) and hence m = 7.
Therefore Q = PT. [ |
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3.6 Linear preservers of R (By)

Recall that
Raro(Br) = {(X,Y) € M, (B:)?| b(XY) = 0}.

Example 3.6.1. We show that Rpso(By) is not an empty set.

Consider X = Ej2 and Y = Eq 1. Then (X,Y) € Ryo(Bg). Thus Rao(Byg) is not

an empty set.

Theorem 3.6.2. Let T : M, (By) — M, (Bg) be a nonsingular (T(X) =0 = X = 0)
linear operator. Assume that T(J) > Py, a permutation matriz. Then T preserves
Raro(Br) if and only if there exists a permutation matriz P such that T(X) = PXPT

for all X € M,,(By).

Proof. <) Let T : M, (By) — M, (By)be defined by T(X) = PXPT and (X,Y) €
Raro(Bg). Then b(XY) = 0 and hence

b(T(X)T(Y)) = b(PXPTPYPT) = b(PXYPT) = b(XY) = 0.

Thus (T(X),T(Y)) € Ruo(Bg). That is, T preserves Razo(By).

=) Assume that T" preserves Ro(Bx). Since T'(J) > Py, a permutation matrix, there
are n different cells whose images have nonzero entries in every column. Assume that
these cells can be chosen such that their nonzero entries are in fewer than n columns,
say X = E1 + Ey + ...+ E,, is the sum of n such cells and X has no nonzero entry
in column h. Then (X, Rp) € Rao(Bk) and hence (T(X),T(Rp)) € Raro(By), since
T preserves Rps0(Bg). But T(X) has nonzero entry in every column, which implies
T(X)T'(Rp) # O, a contradiction. Thus, if 7" maps a column into two columns, then
we have a contradiction from above. Furthermore, if T maps two columns into one
column, there must be a column whose image is at least two column from 7'(J) > Py
for some permutation matrix P;. Thus in this case, we also have a contradiction as

above. Consequently 7" maps a column into a column and all columns into all columns
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respectively. Hence T induces a permutation on the set of columns. Similarly 7" induces
a permutation on the set of rows, i.e., T(X) = P(X o B)Q for all X € M, (B) and
some permutation matrices P and Q. Let us show that Q = PT. Indeed we have that
T(Eij) = bijEr) 1) If Q # PT, then 7 # 7. Thus, for some i, we have 7 (i) # 7(i)

and hence for some j # 4, we have 7(j) = 7(i). Here (E;;, E;;) € Raro(By) but
T(Eii)T(Eji) = biibji By 2 (i) Br(g),r(6) = biibsi Eri) r(i) # O,

ie., (T(Ei;i),T(Ej:)) ¢ Rmo(Bg); a contradiction. Thus 7 = 7 and hence T'(X) =
P(X oB)PT for all X € M,,(By,). Since T is nonsingular, all entries of B are nonzero and

not zero divisors. But every elements a in By, is a zero divisor if o # 1. Thus b; ; = 1.

Hence B = J. Consequently T(X) = PXPT. ]

Corollary 3.6.3. Let T : M, (Bg) — M, (B) be a surjective linear operator. Then T
preserves Ryro(Bg) if and only if there exists a permutation matrixz P such that T(X) =

PXPT for all X € M, (By,).

Proof.  If T be a surjective linear operator, then T is a bijective by Theorem 3.1.17.
Thus T is a nonsingular. Hence, T' preserves Ryso(By) if and only if T(X) = PXPT by

Theorem 3.6.2. m

Corollary 3.6.4. Let T : M,,(Bx) — M, (Bx) be a linear operator. Then T strongly
preserves Ryro(Bg) if and only if there exists a permutation matriz P such that T'(X) =

PXPT for all X € M, (By,).

Proof. <) It is easy to see that operator of the form T'(X) = PX P” strongly preserves
Raro(Bg).

=) Suppose that T strongly preserves Ryso(Br). We claim that (1) T'(J) > Pj, some
permutation matrix, i.e., T'(J) has a nonzero element in each row and each column and
(2) T is a nonsingular operator. Then we apply Theorem 3.6.2.

Claim (1): T'(J) > Pj. Assume, on the contrary, that 7'(J) has a zero column (For

the case of a zero row, the proof is quite similar). Up to a multiplication with permutation
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matrices, we may assume that there are nonzero elements in columns 1,2,...¢ of T'(J)
and all elements in the column (¢ +1),...,n are zero. Then there exist column matrices
Cj,,Cj,, ..., Cj, whose images dominate all nonzero entries in columns 1 through ¢. Let
l# jpforall h, 1 <h <s. Thus (Cj,Cj,,...,Cj,)R; = O. Since T strongly preserves
Raro(By), it follows that T'(Cy,, Cj,,...,Cj,)T(R;) = O. Then all the entries in rows 1
through t of T'(R;) are zero, since in each of the first ¢ columns of T'(C},,Cj,, ..., Cj,)
there is a nonzero element. Therefore T'(E; ;) has nonzero entries only in rows t+1, ..., n
and only in columns 1,2, ... ¢. Thus T(Ey;)? = O, i.e., (T(Ey,),T(E1)) € Rao(Bg). This
is a contradiction since T' strongly preserves Ryo(Bx) and (Ey, Ep ;) € Raro(Bg). Thus
T'(J) has neither a zero row nor a zero column, that is 7'(J) > Pj.

Claim (2): T is a nonsingular operator. Assume that there exists O # X such that
T(X) = 0. Then (T(X),T(I)) € Ruo(B). But (X,I) ¢ Rao(Bg). This contradicts
the fact that T strongly preserves Ryo(Bg). Thus 7' is a nonsingular.

Hence Theorem 3.6.2 is applicable, since claims (1) and (2) satisfy the condition in
Theorem 3.6.2. Consequently we obtain T'(X) = PXPT for all X € M, (B;) and for

some permutation matrix P. [ |
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3.7 Linear preservers of R (By)

Recall that
R (Be) = {(X,Y) € M,,(B;,)?| b(XY) = 1}.

Example 3.7.1. We show that R/ (By) is not an empty set.

Consider X = E19 + Ey1 and Y = Fs5. Then XY = Fj 5 has Boolean rank 1 and

hence (X,Y) € Ry (Bx). Thus Rasi(Bg) is not an empty set.

Lemma 3.7.2. Let T : M, (B;) — M, (By) be a linear operator defined by T(E;;) =
bij By iy for some permutation o of {(i,)|1 < i,j < n} and nonzero scalars b; j € By.
Then T strongly preserves Ry (By) if and only if there exists a permutation matriz P

such that T(X) = PXPT for all X € M, (By,).

Proof. <) Clearly linear operators of the form T(X) = PXP” strongly preserves
R (Bg).

=) Assume that 7" strongly preserves R (By). Consider (E;;, E;p) € Ran(By) for
allh =1,...,n. fT(E;;) = b;;Ey s for some r and s, then T(E; ;,) = b; , Es - (1), where T
is some permutation, since (T'(E;;), T(E;p)) € Ran(Bg). That is, T(R;) < Rs. Thus T
induces a permutation on the rows. Similarly T induces a permutation on the columns.
Thus, for some permutations 7 and 7, T(E; ;) = bijEr;) rj)- Now b(T(E;;)T(E;;))
must be 1 and hence 7 (i) = 7(7). Therefore # = 7 and we have that T(X) = P(X oB)PT
for all X € M, (Bg), where P is the permutation corresponding to w. Now, if B # J,
then b,, # 1 for some (p,q). But then, (E;; + Ejg+ Epi + bpqEpq, 1) ¢ Ran(Br),
while (E;; + Ei g+ Epi+ Epq, 1) € Ran(Bg). However T(E;; + Ei g+ Epi +bpgEpq) =
T(Eii+E;q+E,;+E,,), which contradicts the fact that T" strongly preserves Rys1(Bx).
Thus B = J and hence T(X) = PXPT for all X € M,,(By). n
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Theorem 3.7.3. Let T : M, (By) — M, (Bg) be a surjective linear operator. Then T
strongly preserves Ry (Bg) if and only if there exists a permutation matriz P such that

T(X) = PXPT for all X € M, (Byg).

Proof. =) Assume that T strongly preserves Ry (By). Since T is surjective, we have
T(E;;) = Eqj for all i and j with 1 <4,j < n by Theorem 3.1.17. By Lemma 3.7.2
with b; ; = 1, we obtain the result.

<) If T(X) = PXPT for all X € M,,(Bg) and some permutation matrix P, then
T(XY)=P(XY)PT = PXPTPYPT =T(X)T(Y).
Thus
b(T(X)T(Y)) = b(T(XY)) = b(PXYPT) = b(XY).

Hence (X,Y) € Rani(By) if and only if (T'(X),T(Y)) € Ra1(Bg). Therefore T' strongly

preserves R (By). ]
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3.8 Linear preservers of R 4(By)

Recall that

Rara(Br) = {(X,Y) € My(By)?| b(XY) = b(X) +b(Y) —n}.

Example 3.8.1. We show that Rps4(By) is not an empty set.

Consider X = I, and Y = E; ;. Then b(XY) = b(E;;) = 1 and hence b(XY) =
b(X) + b(Y) —n. That is (X,Y") € Rara(Bi). Thus Rara(By) is not an empty set.

Theorem 3.8.2. Let T : M, (By) — M, (Bx), n > 4, be a surjective linear operator.

Then T preserves Rasa(By) if and only if there exists a permutation matriz P such that

T(X)=PXPT for all X € M,,(By,).

Proof. <) If T(X) = PXPT for all X € M,(B},) and some permutation matrix P, then
T(XY)=P(XY)PT = PXPTPYPT = T(X)T(Y)

for all X, Y € M,,(Bg). Thus for all (X,Y) € Rya(By),

b(T(X)T(Y)) = b(T(XY)) = b(PXYPT) = b(XY) = b(X) + b(Y) —n
= b(PXPT) + b(PYPT) —n =b(T(X)) + b(T(Y)) —n

That is, (T(X),T(Y)) € Rya(Bg). Hence T preserves R4 (By).

=) Assume that T preserves Ryr4(By). Since T is surjective, by Theorem 3.1.17
we have that T'(Ej;) = E,(; jy for some permutation o. If b(A) = n, then (E;;, A) €
Rara(Byg). Since b(T'(E; ;)) = 1 by Theorem 3.1.17 and T preserves Rysa(By), it follows
that b(T(A)) = n. Therefore T' maps the set of matrices with Boolean rank n to itself.
If the preimage of a row is not dominated by any line, then there exist cells F, s and
E, 4 such that T(E, s+ Epq) < E;, + E;; with 7 # p,s # ¢q. By extending E, s + E, 4
to a permutation matrix by adding n — 2 cells, we find a matrix which is the image of a
permutation matrix but is dominated by n — 1 lines; a contradiction since 7" maps the

set of matrices with Boolean rank n to itself. Thus the preimage of every row is a row or
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column and, similarly, the preimage of every column is a row or a column. Hence T maps
any line to a line. By Lemma 3.1.19, we have that T is a (P, Q, B)-operator with B = J.
That is, T' is a (P, Q)-operator. Since (E11,FE21 + E32+ ...+ Epn_1) € Rara(Byg)
while (E11,E12 + B2z + ...+ En—1n) € Ryma(Bi), we have that the transpose op-
erator does not preserve Rps4(By), thus there exist permutation matrices P and @
such that T(X) = PXQ. Without loss of generality, we may assume that P = I. If
Q # I, we assume that @ corresponds to the permutation 7 and (1) # 1. Without
loss of generality, T(Ey1) = Eip. Then (Ei1,Faoo + E33 4+ ... + Enn) € Rara(Bg),
while (T'(E11), T(Ea2 + E33+ ...+ Enn)) € Rua(By) since (E12)(Eo2) + E3x3) +
coo t By rn)) = B12E522) # O. This contradiction gives that @ = PT and hence
T(X)=PXPT. n
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3.9 Linear preservers of R3(By)

Recall that
Rus(Bi) = {(X,Y, Z) € M,(B,)3|b(XY Z) + b(Y) = b(XY) + b(Y Z)}.

Example 3.9.1. We show that Rjs3(By) is not an empty set.

Consider X = Ey1,Y = F13and Z = Ep3. Then b(XYZ) = b(E;3) =1, b(XY) =
b(E12) =1and b(YZ) = b(Eg13) = 1. Thus (X,Y,Z) € Rar3(By) and hence Ryr3(By)

is not an empty set.

Lemma 3.9.2. Let T : M, (By) — M, (B), n > 4, be a surjective linear operator. If T
preserves Rar3(By), then there exists a permutation matriz P such that T(X) = PXPT
for all X € M, (By,).

Proof.. By Theorem 3.1.17, we have that T'(E; ;) = Eq(; ;) for a certain permutation o
on {(7,7)[1 <14,j < n}. It can be easily proved that (Ej;, Ejp, Ep;) € Rars(By) for all [

and arbitrary fixed ¢, 7 and h. Thus
b(T(Ei;)T(Ejn)) + b(T(Ejp)T(Enpg))

=b(T(Ei ;)T (Ejn)T(Eny) + b(T(E; 1)) (3.9.1)

Now, by Theorem 3.1.17, we may assume that T'(F; ;) = Epq, T(E;1) = E, s, T(Epy) =
E,, for subscripts p,q,r,s,u, and v. Since b(E,s) = 1 # 0, it follows from equality
(3.9.1) that either ¢ = r or s = w or both. If, for all [ = 1,...,n, both equalities
hold, then for fixed 4, j, and h, all matrices T'(Ep;), | = 1,...,n, have their nonzero
elements lying in one row. Thus T maps rows to rows. Similarly, it is easy to see
that T maps columns to columns. Assume now that there exists an index [ such that
only one of the above equalities holds for the triple (E; ;, Ejp, Ep;). Without loss of
generality, assume that s = u and ¢ # r. Thus for arbitrary m, 1 < m < n, one has

that (E;;, Ejn, Enm) € Rus(Bi). Let T(Epm) = Ew,. for certain w and z depending
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on h and m. In the above notation, (Epq, By, Ew.) € Rus(Bg) since T preserves
Ras(Bg). Since g # r, it follows that w = s for any w. Thus, in this case, we also
obtain that rows are transformed to rows. By the same arguments with the first matrix,
it is easy to see that columns are transformed to columns. In the other case (s # u
and ¢ = r), one obtains similarly that rows are transformed to rows and columns to
columns. By Lemma 3.1.19, it follows that there exist permutation matrices P and @
such that T'(X) = P(X o B)Q with B = J. (Le., T(X) = PXQ for all X € M, (By).)
In order to show that Q = P7T it suffices to note that (E; ;, E;j, E;;) € Ras(Bg). Let m

be the permutation corresponding to P and 7 be the permutation corresponding to Q.

Therefore
(T'(Ei ), T(Ej;), T(Ej:)) = (PE;;Q, PE;;Q, PE;;Q)
= (Exi)r()s Bn()ir () B () w0)) € Rws(Br)-
Thus # = 7 and Q = P”. [ |

Theorem 3.9.3. Let T : M, (B;) — M, (B), n > 4, be a surjective linear operator.
Then T preserves Ry3(By) if and only if T(X) = PXPT for all X € M,,(By,), where P

is a permutation matri.
Proof. <) If (X,Y, Z) € Ry3(By), then b(XY Z) + b(Y) = b(XY) + b(YZ). Thus
WT(X)T(Y)T(Z)) +b(T(Y)) = b(PXPTPYPTPZPT) + b(PYPT)
= b(PXY ZPT) + b(PYPT) = b(XY Z) + b(Y).
Similarly
(T (X)T(Y)) 4+ b(T(Y)T(Z)) = b(PXPTPY PT) + b(PY PT PZPT)
= b(PXYPT)+b(PYZPT) =b(XY)+b(Y Z).

Hence

b(T(X)T(Y)T(Z)) +b(T(Y)) = b(T(X)T(Y)) + b(T(Y)T(Z2)).

That is, (T'(X),T(Y),T(Z)) € Ram3(By). Therefore T' preserves Rs3(By).
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=) Assume that T preserves Rjps3(By). Then, by Lemma 3.9.2, T has the form

T(X) = PXPT for some permutation matrix P. ]

As a concluding remark, we have characterized the linear operators that preserve
the extreme sets of matrix pairs over general Boolean algebra which come from certain

Boolean rank inequalities.
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Rsa(Bi) = {(X.Y) € M (Bi)?| b(X + V) =b(X) +b(Y)},

Ra1(By) = {(X.Y) € M, .(B.)2| b(X +Y) =1},

Rep(By) = {(X.Y) € M, .(Bj,)?| b(X +Y) = [b(X) — b(Y)[},

Ra(Br) = {(X,Y) € M,,(B.,)?| b(XY) = min{ b(X),b(Y)}},
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Raro(Br) = {(X.Y) € M,,(By)?| b(XY) = 0},

Rann(Be) = {(X,Y) € M,,(By)?| b(XY) =1},
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