

A DOCTORAL DISSERTATION

Molecular Cloning, Characterization and Expression Analysis of Innate Immune-related Genes in Rock Bream (*Oplegnathus fasciatus*)

Ilson Whang

1952

Department of Life Science

Graduate School Jeju National University

December, 2010

돌돔에서 선천성 면역관련 유전자들의 특성분석 및 발현 연구

지도교수 김 세 재

황 일 선

이 논문을 이학 박사학위 논문으로 제출함

2010년 12월

제주대학교 대학원

2010년 12월

Molecular Cloning, Characterization and Expression Analysis of Innate Immune-related Genes in Rock Bream (*Oplegnathus fasciatus*)

Ilson Whang

(Supervised by Professor Se-Jae Kim)

A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy

December, 2010

This dissertation has been examined and approved by

Chairperson of the Committee

Date

Department of Life Science GRADUATE SCHOOL JEJU NATIONAL UNIVERSITY

SUMMARY

The immune system defends the host against infection. Innate immunity is the earliest defense mechanism but lacks the ability to recognize certain pathogens and to provide the specific protective immunity against recurrent infection. Adaptive immunity is based on clonal selection from a repertoire of lymphocytes bearing highly diverse antigen-specific receptors that enable the immune system to recognize any foreign antigen.

In fish immunity, the innate system is of primary importance in combating infections. The strength of innate defense against pathogens is impressive, despite the limited pathogen recognition machinery. This is demonstrated by the very efficient immune defense of fish, which mostly depend on innate parameters for coping with a large variety of pathogens in diverse environmental conditions. The innate immune response of fish is also important in activating an acquired immune response. Although less studied in fish, the available information indicates that the activation of innate recognition components, through the stimulation of phagocytes, production of cytokines and chemokines and activation of the complement system and various cell receptors, stimulates T- and B-cells and antigen presenting cell in fish.

Next-generation sequencing has become a powerful and efficient high throughput technique in whole transcriptome analysis. Rock bream is an economically important cultured marine fish in Korean which frequently affected by diseases such as vibriosis, edwardsiellosis, scuticociellosis, and iridovirus infection. Hence, there is an urgent need to develop and characterize transcriptome of rock bream for providing the extensive genomic information.

To sequence the rock bream whole transcriptome, we employed the Roche 454 pyrosequencing platform on cDNAs constructed using pooled mRNA isolated from

various tissue types (multi-tissue) of un-challenged fish. Nearly, 672,000 reads (average read size: 400 bp) were resulted in a single GS-FLX sequencing which was assembled to \sim 36,000 contigs. Results showed that pyrosequencing has covered wide range of contig sizes (95-6175 bp) which were assembled into \sim 1.1 Kb average contig size.

Final aim of present study is to identify and obtain full-length sequences of immune functional genes in rock bream for better understanding of host pathogen interactions. Therefore, this thesis has been focused on molecular characterization, transcriptional analysis and functional aspects of immune-relevant genes such as goose-type lysozyme (g-type lysozyme), myeloid differentiation factor 88 (MyD88), interferon (IFN) regulatory factor-1 (IRF-1), IFN gamma inducible lysosomal thiol reductase (GILT), Cathepsin B and L cystein proteases in rock bream fish.

1) Characterization and expression analysis of a g-type lysozyme and antimicrobial activity of its recombinant protein

Lysozyme (muramidase) represents an important defense molecule of the fish innate immune system. Known for its bactericidal properties, lysozyme catalyzes the hydrolysis of β -(1,4)-glycosidic bonds between the *N*-acetyl glucosamine and *N*-acetyl muramic acid in the peptidoglycan layer of bacterial cell walls. In this study, the complete coding sequence of g-type lysozyme from the rock bream (RBgLyz) was identified and characterized as being composed of 669 bp, with a 567 bp open reading frame that encodes 188 amino acids. Protein motif searches indicated that RBgLyz contains the soluble lytic transglycosylase domain involved in balancing cell wall integrity. Furthermore, RBgLyz shares significant identity (81.4%) with Chinese perch *Siniperca chuatsi*. Quantitative real-time PCR (qRT-PCR) analysis results confirmed that RBgLyz transcriptional expression is constitutively expressed in various

tissues from healthy rock breams. RBgLyz expression was analyzed in head kidney following immune challenges with several distinct pathogens, including LPS, poly I:C, *Edwardsiella tarda, Streptococcus iniae* and rock bream iridovirus (RBIV). Compared to non-injected control fish, a significant up-regulation of RBgLyz transcripts was observed in response to LPS and *E. tarda* challenge. Poly I:C stimulated a moderate expression of RBgLyz, as did *S. iniae* but to a lesser extent. However, specific time-dependent effects on RBgLyz mRNA expression results indicated a role for g-type lysozyme in innate immune response against LPS, poly I:C, *E. tarda* and *S. iniae* in rock bream. Thus, we generated recombinant RBgLyz in an *Escherichia coli* expression system and characterized its antimicrobial activity. Our results indicated that recombinant RBgLyz had lytic activity against Gram-negative *Vibrio salmonicida*, Gram-positive *Listeria monocytogenes*, *S. iniae* and *Micrococcus lysodeikticus*. In addition, observations by scanning electron microscope (SEM) confirmed that the cell morphology of *M. lysodeikticus* was altered in the presence of recombinant RBgLyz.

2) Characterization and expression analysis of MyD88

Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein able to activate nuclear factor-kappa B (NF-kB) through interactions with interleukin-1 receptor (IL-1R) and the Toll-like receptors (TLRs), with the exception of TLR3. The cDNA of rock bream MyD88 was found to be composed of 1626 bp, with an 867 bp open reading frame that encodes 288 amino acids. The deduced amino acid sequence of MyD88 possessed both a conserved death domain at the amino terminus and a typical Toll-IL-1 receptor (TIR) domain at the carboxyl terminus, similar to that found in other fishes, amphibians, avians, mammals and invertebrates. The mRNA expression pattern of MyD88 in healthy and bacterially-challenged rock bream

were examined using qRT-PCR. MyD88 transcripts were found to be strongly expressed in blood, gill, liver, spleen, head kidney and kidney, moderately expressed in skin, brain and intestine, and weakly expressed in muscle. Expression levels of MyD88 in blood, spleen and head kidney were dramatically up-regulated upon exposure to LPS and *E. tarda*, suggesting that MyD88 plays an important role in rock bream defenses against bacterial infection.

3) Molecular analysis and transcriptional responses of IRF-1 and GILT

Activation of the interferon (IFN) system and its down-stream IFN-stimulated genes (ISGs) play important roles in innate and adaptive immune responses to pathogens. The cDNA sequence of rock bream IRF-1 (named as RbIRF-1) showed significant evolutionary conservation of its N-terminal 113 amino acids, which encompassed a DNA binding domain (DBD) containing five conserved tryptophan repeats. Meanwhile, the GILT cDNA sequences from rock bream (RbGILT cDNA) had the characteristic GILT signature sequence composed of a functional domain (⁹⁷CQHGEQECLGNMIETC¹¹²), active site ⁷⁴C-XX-C⁷⁷ motif and seven putative disulfide bonds. Therefore, the newly identified rock bream IRF-1 and GILT proteins are similar to those in other fish and mammals as revealed by molecular characterization and phylogenetic analysis. The qRT-PCR analysis revealed that expression of RbIRF-1 and RbGILT transcripts was constitutive in tissues selected from un-challenged rock bream, with the highest levels observed blood and gills. Immune challenge with synthetic poly I:C up-regulated the RbIRF-1 and RbGILT mRNA in blood, gills, spleen and head kidney; however, the magnitude of RbGILT up-regulation was lower than that of RbIRF-1. Only a moderate up-regulation (compared to poly I:C) of RbIRF-1 and RbGILT mRNA was observed in gills and head kidney at the early stage of RBIV challenge, although, in blood, both

- 4 -

transcripts were found to be continuously up-regulated throughout the 48 h observation. The transcriptional up-regulation in response to poly I:C and RBIV strongly suggest that RbIRF-1 and RbGILT are related to IFN signaling and may indicate essential roles in subsequent adaptive immunity in rock bream.

4) Molecular characterization and expression analysis of Cathepsin B and L cysteine proteases

Cathepsins are lysosomal cysteine proteases of the papain family that play an important role in intracellular protein degradation. The rock bream cathepsin B (RbCathepsin B) was composed of 330 amino acid residues and having 36 kDa molecular mass. The rock bream cathepsin L (RbCathepsin L) contained 336 amino acid residues encoding for a 38 kDa molecular mass protein. The sequencing analysis results showed that both cathepsin B and L contain the characteristic papain family cysteine protease signature and active sites for the eukaryotic thiol proteases cysteine, asparagine and histidine. In addition, RbCathepsin L contained EF hand Ca²⁺ binding and cathepsin propeptide inhibitor domains. The rock bream cathepsin B and L showed the highest amino acid identity of 90 and 95% to Lutjanus argentimaculatus cathepsin B and Lates calcarifer cathepsin L, respectively. By phylogenetic analysis, cathepsin B and L exhibited a high degree of evolutionary relationship to respective cathepsin family members of the papain superfamily. The qRT-PCR analysis results confirmed that cathepsin B and L gene expression was constitutive in all examined tissues isolated from un-induced rock bream. Moreover, challenge with LPS and E. tarda resulted in significant up-regulation of RbCathepsin B and L mRNA in liver and blood, indicating a role for cathepsin B and L in immune responses against bacteria in rock bream

CONTENTS

LIST OF ABBREVIATIONS	Page 11
PART 1	14
Characterization and expression analysis of a goose-type lysozyme from the	
rock bream Oplegnathus fasciatus, and antimicrobial activity of its recombinant	
protein	
1.1 ABSTRACT	15
1.2 LIST OF TABLES	17
1.3 LIST OF FIGURES	18
1.4 INTRODUCTION	19
1.5 MATERIALS AND METHODS	21
1.5.1 Experimential fish	21
1.5.2 Identification of rock bream g-type lysozyme	21
1.5.3 Sequence characterization and phylogenetic analysis of RBgLyz	22
1.5.4 Tissue collection, total RNA extraction and cDNA synthesis	22
1.5.5 Immune challenge	23
1.5.6 RBgLyz mRNA expression analysis by real-time PCR	24
1.5.7 Cloning of RBgLyz coding sequences into pMAL-c2X	25
1.5.8 Purification of the recombinant RBgLyz protein (rRBgLyz)	27
1.5.9 Determination of optimum pH on the activity of rRBgLyz	28
1.5.10 Antimicrobial activity of rRBgLyz	28
1.5.11 Scanning electron microscope (SEM) observation	29
1.6 RESULTS	31
1.6.1 Molecular characterization of RBgLyz	31
1.6.2 Phylogenetic analysis of RBgLyz	32

1.6.3	Expression of RBgLyz in healthy rock breams	32
1.6.4	Expression of RBgLyz in rock breams induced with LPS, poly	
	I:C, E. tarda, S. iniae and RBIV	33
1.6.5	Expression and purification of recombinant rRBgLyz	40
1.6.6	Lysozyme activity	40
1.7 DISCU	JSSION	46
1.8 REFE	RENCES	52
	NAL - WA	

PART 2		56
Characterizat	on and expression analysis of the myeloid differentiation factor	
88 (MyD88)	in rock bream <i>Oplegnathus fasciatus</i>	
2.1 ABS	TRACT	57
2.2 LIST	OF TABLES	58
2.3 LIST	OF FIGURES	59
2.4 INTR	ODUCTION	60
2.5 MAT	ERIALS AND METHODS	63
2.5.1	Identification of rock bream MyD88	63
2.5.2	Sequence alignments and phylogenetic analysis of MyD88	63
2.5.3	Experimental fish and tissue collection	64
2.5.4	Immune challenge	64
2.5.5	Total RNA extraction and cDNA synthesis	65
2.5.6	MyD88 mRNA expression analysis by qRT-PCR	66
2.6 RESU	JLTS	68
2.6.1	Molecular characterization and phylogeny of the rock bream	
	MyD88	68
2.6.2	Expression of the rock bream MyD88 in untreated individuals	68
2.6.3	Expression of the rock bream MyD88 in individuals infected	
	with Gram (-) bacteria	69

2.7 DISCUSSION	78
2.8 REFERENCES	82
PART 3	87
Molecular analysis and transcriptional responses of interferon (IFN) regulatory	
factor-1 and IFN gamma inducible lysosomal thiole reductase (GILT) from	
rock bream (<i>Oplegnathus fasciatus</i>)	
3.1 ABSTRACT	88
3.2 LIST OF TABLES	90
3.3 LIST OF FIGURES	91
3.4 INTRODUCTION	92
3.5 MATERIALS AND METHODS	95
3.5.1 Fish and tissue isolation	95
3.5.2 Construction of normalized cDNA library	95
3.5.3 GSFLX-454 sequencing and identification of RbIRF-1 and	
RbGILT	96
3.5.4 Molecular characterization of RbIRF-1 and RbGILT	96
3.5.5 Immune challenge of rock bream	97
3.5.6 cDNA synthesis for transcriptional analysis of RbIRF-1 and	
RbGILT	97
3.5.7 Transcriptional analysis of RbIRF-1 and RbGILT by qPCR	98
3.6 RESULTS	100
3.6.1 Analysis of pyrosequencing and identification of RbIRF-1 and	

- RbGILT cDNA sequences1003.6.2Sequence characterization of RbIRF-11003.6.3Sequence characterization of RbGILT101
- 3.6.4 Phylogenetic analysis of RbIRF-1 and RbGILT 102

3.6.5	Transcri	ptional analysis	of RbIRF-	-1and	RbGILT	by real tir	ne R	
	T-PCR							110
	3.6.5.1	Tissue-specific	expression					110
	3.6.5.2	Transcriptional	regulation	again	st polyI:	C challenge	e	111
	3.6.5.3	Transcriptional	regulation	again	st RbIv	challenge		112
3.7 DISCU	U SSION .		••••••			••••••	•••••	117
3.8 REFE	RENCES		••••••	•••••		•••••	•••••	123
		1AL				C		
PART 4				•••••				128

PART 4		128
Molecular cl	aracteriation and expression analysis of Cathepsin B and L	
cysteine prot	eases from rock bream (<i>Oplegnathus fasciatus</i>)	
4.1 ABS	FRACT	129
4.2 LIST	OF TABLES	130
4.3 LIST	OF FIGURES.	131
4.4 INTE	RODUCTION	132
4.5 MAT	ERIALS AND METHODS	134
4.5.1	Animal rearing and RNA isolation	134
4.5.2	Multi-tissue cDNA synthesis and normalization	134
4.5.3	Pyrosequencing, sequence processing, assembly and identification	
	of RbCathepsin B and L	135
4.5.4	Molecular characterization of RbCathepsin B and L	135
4.5.5	LPS and bacterial challenge	136
4.5.6	cDNA	136
4.5.7	Expression analysis of RbCathepsin B and L by qPCR	137
4.6 RESU	JLTS	141
4.6.1	Identification and characterization of RbCathepsin B and L	
	cDNA sequences	141
4.6.2	Tissue expression profiles of RbCathepsin B and L	143

4.6.3 Transcriptional analysis of RbCathepsin B and L after LPS and	
E. tarda challenge	143
4.7 DISCUSSION	153
4.8 REFERENCES	156
SUMMARY IN KOREAN	160

LIST OF ABBREVIATIONS

aa	amino acid	
ANOVA	analysis of variance	
β	beta	
BHI	brain heart infusion	
BLAST	Basic Local Alignment Tool	
bp	base pair(s)	
cDNA	complementary deoxyribonucleic acid	
c-type	chicken-type	
DNA	deoxyribonucleic acid	
dNTP	deoxynucleotide-triphosphate	
E. tarda	Edwardsiella tarda	
E. coli	Escherichia coli	
EDTA	ethylene diamine tetra acetic acid	
x g	gravity	
GS-FLX	Genome Sequencer FLX System	
g-type	goose-type	
h	hour	
HEWL	hen egg white lysozyme	
i.p.(ip)	intraperitoneal	
IFN	interferon	
IL	interleukin	
IL-1R	interleukin-1 receptor	
IPTG	isopropyl-β-thiogalactopyranoside	
IRAK	IL-1R-associated kinase	

i-type	invertebrate-type		
Kb	kilo base(s)		
KDa	kilo dalton		
КССМ	Korean Culture Center of Microorganisms		
КСТС	Korean Collection for Type Cultures		
LB medium	Luria broth medium		
LPS	lipopolysaccharide		
LycGL	large yellow croaker g-type lysozyme		
MBP	maltose binding protein		
mg	miligram(s)		
mL	milliliter(s)		
mRNA	messenger RNA		
MEGA	Molecular Evolutionary Genetics Analysis		
MyD88	Myeloid differentiation factor 88		
MW	molecular weight		
μL	microlitre(s)		
NAM	N-acetyl muramic acid		
NCBI	National Center for Biotechnology Information		
NF-κB	nuclear factor-kappa B		
NGS	next-generation DNA sequencing		
OD	optical density		
ORF	open reading frame		
PAGE	polyacrylamide gel electrophoresis		
p.i.	post-infection		
PAMPs	pathogen-associated molecular patterns		

PBS	phosphate buffered saline
p <i>I</i>	isoelectric point
PGN	peptidoglycan
poly I:C	polyinosinic:polycytidylic acid
PRRs	pattern recognition receptors
qRT-PCR	quantitative real-time RT-PCR
S.D.	standard deviation
SDS	sodium dodecyl sulphate
SEM	scanning electron microscopy
SLT	soluble lytic transglycosylase
SMART	Simple Modular Architecture Research Tool

EJU

PART 1

Characterization and expression analysis of a goose-type lysozyme from the rock bream *Oplegnathus fasciatus*, and antimicrobial activity of its recombinant protein

1.1 ABSTRACT

Lysozyme (muramidase) represents an important defense molecule of the fish innate immune system. Known for its bactericidal properties, lysozyme catalyzes the hydrolysis of β -(1,4)-glycosidic bonds between the N-acetyl glucosamine and N-acetyl muramic acid in the peptidoglycan layer of bacterial cell walls. In this study, the complete coding sequence of g-type lysozyme from the rock bream fish, Oplegnathus fasciatus, (RBgLyz) was identified by multi-tissue normalized cDNA pyrosequencing using the Roche 454 GS-FLXTM technology. RBgLyz was characterized as being composed of 669 bp, with a 567 bp open reading frame that encodes 188 amino acids. Protein motif searches indicated that RBgLyz contains the soluble lytic transglycosylase domain involved in balancing cell wall integrity. Furthermore, RBgLyz shares significant identity (81.4%) with Chinese perch Siniperca chuatsi. Quantitative real-time RT-PCR analysis results showed that RBgLyz transcripts are constitutively expressed in various tissues from healthy rock breams. RBgLyz expression was analyzed in head kidney following immune challenges with several stimulants or pathogens, including LPS, poly I:C, Edwardsiella tarda, Streptococcus iniae and rock bream iridovirus (RBIV). Compared to non-injected control fish, a significant up-regulation of RBgLyz transcripts was observed in response to LPS and E. tarda challenge. Poly I:C stimulated a moderate expression of RBgLyz, as did S. iniae but to a lesser extent. However, specific time-dependent effects on RBgLyz mRNA expression in response to RBIV infection were not observed. Taken together, the gene expression results indicated a role for g-type lysozyme in innate immune response against LPS, poly I:C, E. tarda and S. iniae in rock bream. Thus, we generated recombinant RBgLyz in an Escherichia coli expression system and

characterized its antimicrobial activity. Our results indicated that recombinant RBgLyz had lytic activity against Gram-negative *Vibrio salmonicida*, Gram-positive *Listeria monocytogenes*, *S. iniae* and *Micrococcus lysodeikticus*. In addition, observations by scanning electron microscope (SEM) confirmed that the cell morphology of *M. lysodeikticus* was altered in the presence of recombinant RBgLyz.

Keywords: Oplegnathus fasciatus, Goose-type lysozyme, innate immunity, gene expression, lytic activity

1.2 LIST OF TABLES

1.3 LIST OF FIGURES

Figure	1.1	Nucleotide (GenBank accession no. HM035063) and deduced amino	Page
		acid sequences of RBgLyz in Oplegnathus fasciatus	34
Figure	1.2	ClustalW2 multiple alignment of RBgLyz with g-type lysozymes	
		from various fish species	35
Figure	1.3	Phylogenetic tree based on the amino acid sequences of lysozymes	36
Figure	1.4	Relative mRNA expression of RBgLyz in different tissues,	
	Ľ	including blood, gill, liver, spleen, head kidney (H. kidney),	
		kidney, skin, muscle, brain, and intestine	38
Figure	1.5	Relative RBgLyz mRNA expression in head kidney (H. kidney) in	
		response to challenges with LPS, poly I:C, <i>E. tarda, S. iniae</i> or	
		RBIV at 3, 6, 12, 24 and 48 h post-injection	39
Figure	1.6	Expression and purification of recombinant RBgLyz fusion	
_		protein	42
Figure	1.7	Optimal pH of recombinant RBgLyz as measured by a lysoplate	7
		assay	43
Figure	1.8	Antimicrobial activity (UL) of the recombinant RBgLyz, as	
		measured by turbidimetric assay	44
Figure	1.9	SEM images of <i>M. lysodeikticus</i> after treatment with the	
		recombinant RBgLyz	45
		~ ~ CH 94 /	

1.4 INTRODUCTION

The immune system is an important physiological mechanism that protects the organism against invading pathogens. The immune system is broadly categorized as either innate or adaptive immunity. Innate immunity plays a critical role in host defense against infectious diseases by discriminating between self and foreign particles, and provides the necessary signals to activate the subsequent adaptive immune response which leads to immunological memory [1]. Fish mostly depend on innate immunity, and as such their immune system is considered less well developed than that of mammals [2].

Lysozyme (muramidase) is an important defense molecule of the fish innate immune system. Its bactericidal properties result from the ability to catalyze the hydrolysis of β -(1,4)-glycosidic bonds between the *N*-acetyl glucosamine (NAG) and *N*-acetyl muramic acid (NAM) in the peptidoglycan layer of bacterial cell walls [3]. Lysozyme is known to act directly on Gram-positive bacteria, causing lysis of their outermost peptidoglycan layer. Gram-negative bacteria, however, are not directly damaged by lysozyme as their outer membrane is significantly coated with lipopolysaccharide (LPS) moieties; instead, the outer membrane of Gram-negative bacteria is disrupted by cationic antimicrobial peptides that act to expose the inner peptidoglycan layer of bacteria, facilitating the activity of lysozyme [4]. Lysozyme is also known to be an opsonin and can activate the complement system and phagocytes [3,5]. In addition to an antibacterial function, some lysozymes have been demonstrated to have antiviral or anti-inflammatory activities [3,6-9], and these may function as multipurpose defense factors.

Based on the differences in structural, catalytic and immunological characteristics, lysozymes are generally classified among six main types: chicken-type (c-type)

lysozyme [10], goose-type (g-type) lysozyme [11], invertebrate (i-type) lysozyme [12], T4 phage (phage-type) lysozyme [13], bacterial lysozyme [14], and plant lysozyme [15]. The g-type lysozyme was initially identified as an antibacterial enzyme located in egg whites from the Embden goose [16], but was later found in the egg whites of several other bird species [17]. Recently, though, the g-type lysozyme has also been identified in vertebrate species, including mammals and fishes [18-28], as well as in invertebrates like scallop [29].

Rock bream *Oplegnathus fasciatus* is one of the most valuable marine fish species in Korean aquaculture. In recent years, the rapid development of the rock bream culture industry has been accompanied by a concomitant increase in prevalence and virulence of infectious diseases afflicting this species, and the economic impact has been significant [30]. At present, information on the genetic and immunological basis of the rock bream fish is limited. Better understanding of the mechanism of the innate immune response in rock bream will facilitate the development of effective approaches for disease prevention.

In the present study, we have identified and characterized the g-type lysozyme from rock bream (denoted as RBgLyz). Phylogenetic analysis was conducted to determine the evolutionary relationships. Gene expression analysis was performed in several tissues from healthy rock bream, and the expression responses were also analyzed following challenge with LPS, polyinosinic:polycytidylic acid (poly I:C), bacteria and virus. To understand the lytic activity of RBgLyz, we purified the recombinant protein using a prokaryotic system, and determined its spectrum of activity against different types of microorganisms. In addition, the morphological changes of bacteria treated with the recombinant RBgLyz were observed by scanning electron microscopy (SEM).

1.5 MATERIALS AND METHODS

1.5.1 Experimental fish

Healthy rock breams with an average body weight of 30 g were obtained from the Jeju Special Self-Governing Province Ocean and Fisheries Research Institute (Jeju, Republic of Korea). Rock breams were maintained in 400 L tanks with aerated sand-filtered seawater (salinity $34\pm0.6\%$, pH 7.6 ±0.5) at $23\pm1^{\circ}$ C, and no feeds were supplied. During the experimental challenge, no mortality was observed in experimental tanks.

1.5.2 Identification of rock bream g-type lysozyme

We have established a rock bream cDNA sequence database by using the Roche 454 Genome Sequencer FLX System (GS-FLXTM), a next-generation DNA sequencing technology using the GS-FLX Titanium instrument [31]. Briefly, total RNA was isolated using Tri ReagentTM (Sigma, USA) from pooled tissues (pituitary gland, brain, gill, blood, liver, spleen, head kidney and kidney) of three healthy rock breams. Then, the mRNA was purified using an mRNA isolation kit (FastTrack[®] 2.0; Invitrogen, USA). The first strand cDNA synthesis and normalization were carried out with the CreatorTM SMARTTM cDNA library construction kit (Clontech, USA) and Trimmer cDNA normalization kit (Evrogen, Russia), respectively. Thereafter, the sequencing of rock bream cDNA was performed by Roche GS-FLXTM system (DNA Link, Inc.). From the rock bream cDNA sequence database, we identified a g-type lysozyme gene by means of the Basic Local Alignment Tool (BLAST) program in the National Center for Biotechnology Information (NCBI) web-based query system

(http://www.ncbi.nlm.nih.gov/BLAST).

1.5.3 Sequence alignments and phylogenetic analysis of RBgLyz

The open reading frame and amino acid sequence of RBgLyz were obtained by using DNAssist 2.2 (Version 3.0). The sequences of g-type lysozyme from different species were compared by the NCBI BLAST search program (http://www.ncbi.nlm.nih.gov/).

Pairwise and multiple sequence alignment (http://www.ebi.ac.uk/Tools/emboss/align) (http://www.ebi.ac.uk/Tools/clustalw2) were performed using the ClustalW version 2.0 program [32]. Identification of putative secretion features of the amino acid sequences was performed using SignalP3.0 server (http://www.cbs.dtu.dk). The deduced amino acid sequence was analyzed with the Expert Protein Analysis System (http://www.expasy.org/), while protein domain features of RBgLyz were determined by the Simple Modular Architecture Research Tool (SMART) program [33]. The phylogenetic relationship of g-type lysozyme was determined using the Neighbor-Joining method and MEGA version 4 [34].

1.5.4 Tissue collection, total RNA extraction and cDNA synthesis

Collection @ jeju

To study the differential expression of RBgLyz *in vivo*, blood (1 mL per fish) was collected from the caudal fin of three healthy rock breams. The sample was immediately centrifuged at 3000×g for 10 min at 4°C to facilitate blood cell collection, and samples were stored in liquid nitrogen until further use. Various tissues (gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine) were excised and immediately snap-frozen in liquid nitrogen and stored at -80°C until the

total RNA was isolated. All samples were obtained and analyzed from three biological replicates.

Total RNA was extracted from rock bream tissues by means of the Tri ReagentTM (Sigma), as described in the manufacturer's protocol. RNA concentration was determined at 260nm in a UV-spectrometer (Bio-Rad, USA) and diluted to 1 µg/µL concentration before synthesis of cDNA was carried out. A sample of 2.5 µg RNA was used to synthesize cDNA. The respective cDNAs from selected tissues were synthesized by the SuperScriptTM III First Strand cDNA Synthesis kit (Invitrogen). Briefly, RNA was incubated with 1 µL of 50 µM oligo(dT)₂₀ and 1 µL of 10 mM dNTPs for 5 min at 65°C. After incubation, 2 µL of 10× cDNA synthesis buffer, 4 µL of 25mM MgCl₂, 2 µL of 0.1M dithiothreitol (DTT), 1 µL of RNaseOUTTM (40 U/µL) and 1 µL of SuperScriptTM III reverse transcriptase (200 U/µL) were added and the mixture was incubated for 50 min at 50°C. The reaction was terminated by adjusting the temperature to 85°C for 5 min. Then, 1 µL of RNase H was added to each cDNA reaction and incubated at 37°C for 20 min. Finally, the newly synthesized cDNA was diluted 40 times (total 800 µL) before storage at -20°C until use in further analysis.

1.5.5 Immune challenge

Collection @ jeju

Rock breams were immune-challenged using several stimulants or pathogens in time course experiments.

For the mitogen stimulation experiment, each rock bream was administered a single intraperitoneal (i.p.) injection of 100 μ L LPS in phosphate buffered saline (PBS) suspension (1.25 μ g/ μ L, *E. coli* 055:B5; Sigma) or 100 μ L poly I:C in PBS suspension (1.5 μ g/ μ L Sigma). For the bacterial-challenge experiment, *E. tarda* and *S.*

iniae were obtained from the Department of Aqualife Medicine, Chonnam National University, Korea. The bacteria were incubated at 25°C for 12 h using a brain heart infusion (BHI) broth (Eiken Chemical Co., Japan) supplemented with 1% sodium chloride. The cultures were resuspended in sterile PBS, and then diluted to a desired concentration. Each rock bream was i.p. injected with 100 µL live E. tarda in PBS $(5 \times 10^3 \text{ CFU/}\mu\text{L})$ or 100 μL live S. iniae in PBS (1×105 CFU/ μL). For the virus challenge experiment, kidney tissue specimens obtained from the moribund rock bream infected with RBIV were homogenized in 20 volumes of PBS. The tissue homogenate was centrifuged at 3000×g for 10 min at 4°C, and the supernatant of a RBIV sample was filtered through a 0.45 µm membrane. Each rock bream was infected with a single i.p. injection of 100 µL RBIV in PBS. A negative control group was established as non-injected, while a positive control group was injected with an equal volume (100 µL) of PBS. Rock bream head kidney samples were collected at 3, 6, 12, 24 and 48 h post-injection from LPS-, poly I:C-, E. tarda-, S. iniae- or RBIV-infected rock breams. PBS-injected control samples were isolated at 3 h and 48 h post-injection. Three replicate rock breams were obtained for each time point and the pooled tissues from each group were subjected to total RNA extraction and cDNA synthesis according to the procedure described in section 2.4.

1.5.6 RBgLyz mRNA expression analysis by quantitative real-time PCR (qRT-PCR)

The mRNA expression of RBgLyz was analyzed by qRT-PCR. qRT-PCR was carried out using the Real Time System TP800 Thermal Cycler DiceTM (TaKaRa, Japan) in a 20 μ L reaction volume containing 4 μ L of diluted cDNA (3.125 ng/ μ L) from each respective tissue, 10 μ L of 2× TaKaRa Ex TaqTM SYBR premix, 0.5 μ L of each primer (10 pmol/ μ L) and 5 μ L dH₂O. The qRT-PCR cycle profile included

one cycle of 95°C for 10 s, followed by 35 cycles of 95°C for 5 s, 58°C for 10 s and 72°C for 20 s, and a final single cycle of 95°C for 15 s, 60°C for 30 s and 95°C for 15 s. The baseline was set automatically by the Thermal Cycler DiceTM Real-Time System Software (version 2.00). G-type lysozyme expression was determined by the Livak ($2^{-\Delta\Delta CT}$) method [35]. The same qRT-PCR cycle profile was used for the reference gene, rock bream β -actin (GenBank accession no. FJ975146). The primers used in this study are presented in Table 1. All data have been presented in terms of relative mRNA expressed as means ± standard deviation (S.D.). The data were subjected to a one-way analysis of variance (ANOVA), followed by Duncan's Multiple Range test, using the SPSS 11.5 program (USA). P values less than 0.05 were considered statistically significant.

1.5.7 Cloning RBgLyz coding sequences into pMAL-c2X

Two primers RBgLyz-F5 and RBgLyz-F6 were designed after checking the restriction enzymes sites of coding sequences of RBgLyz (Table 1.1). Then, RBgLyz coding sequences were cloned into maltose binding protein (MBP)-fused expression vector pMAL-c2X (NEB, USA). Briefly, a 50 μ L PCR reaction was carried out with 2.5 U of LA Taq polymerase (TaKaRa), 5 μ L of 10× LA PCR buffer II (Mg²⁺ free), 5 μ L of 25 mM MgCl₂, 8 μ L of 2.5 mM dNTP mixture, 25 ng of template (cDNAs from head kidney) and 30 pmol of each primer. The reaction was carried out with an initial incubation at 94°C for 2 min, 30 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 60 s, and followed by a final extension at 72°C for 5 min. The PCR product (approximately 564 bp) was analyzed on a 1% agarose gel stained with ethidium bromide. Then, the PCR product was purified using the AccuprepTM gel

Collection @ jeju

Table 1.1 Primer sequences and their use

Fable 1.1 Primer sequences and their use				
Primer name	Purpose	Primer sequences $(5' \rightarrow 3')$		
RBgLyz-F1	qRT-PCR amplification	GGATCCGCAACAAATTTCCTGGCT		
RBgLyz-R2	qRT-PCR amplification	TACCACTGAGCTCTGGCAACAACA		
β-actin-F3	qRT-PCR reference gene	TCATCACCATCGGCAATGAGAGGT		
β-actin-R4	qRT-PCR reference gene	TGATGCTGTTGTAGGTGGTCTCGT		
RBgLyz-F5	ORF amplification	(GA)3 <u>GAATTC</u> ATGGGTTACGGAAACATCATGATGGT(<i>EcoRI</i>)		
RBgLyz-R6	ORF amplification	(GA) <u>3CTGCAG</u> TTAAAAGCCTCCGTTGGTTTGGTAC(<i>Pst</i> I)		
RBgLyz-F7	Sequencing	GGTCGTCAGACTGTCGATGAAGC		
RBgLyz-R8	Sequencing	GATGTGCTGCAAGGCGATTAAGTTGG		

The number of identical base pair repeats is indicated within parentheses with the appropriate subscripted number.

Restriction enzyme sites of the cloning primers are underlined. TH OL I

purification kit (Bioneer Co., Korea), after which both insert (PCR product) and vector (pMAL-c2X) were digested with the restriction enzymes *EcoR*I and *Pst*I. Ligation was carried ou tat 16°C overnight with 50 ng of vector, 100 ng of insert, 1 μ L of 10× ligation buffer and 0.5 μ L of 1× T4 DNA ligase (TaKaRa). The ligated product was transformed into DH5a cells and the correct recombinant product (as confirmed by sequencing with RBgLyz-F7 and RBgLyz-F8) was transformed into competent *E.coli* BL21(DE3) cells for protein expression.

1.5.8 Purification of recombinant RBgLyz protein (rRBgLyz)

The recombinant RBgLyz protein was expressed in E. coli BL21 (DE3) cells by isopropyl-β-thiogalactopyranoside (IPTG) induction. Briefly, 10 mL volume of E. coli BL21 (DE3) starter culture was inoculated in 100 mL of Luria broth (LB) medium with ampicillin (100 μ g/mL final concentration) and glucose (2% final concentration) and grown overnight at 37°C with shaking at 200 rpm. Overnight culture was diluted 1:10 into a larger volume of fresh medium and further cultured at 37°C until the optical density (OD) at 600nm reached 0.5. Cells (500 µL aliquots: uninduced cells) were then induced by IPTG (0.5 mM final concentration) for 3 h at 30°C (500 µL aliquots: induced cells). The cells were harvested by centrifugation at 3000×g for 30 min at 4°C, and resuspended with column buffer (Tris-HCl, pH 7.4, 200 mM NaCl, 0.5 M EDTA). The recombinant RBgLyz (rRBgLyz) was purified in the form of fusion protein with MBP by pMALTM protein fusion and purification system (NEB, USA). Briefly, the resuspended E. coli BL21 (DE3) cells were placed in an ice-water bath and sonicated 6-8 times in short pulses for 15 s. Then, the sonicated cell suspension was centrifuged at 15000 rpm for 30 min at 4 °C and the resulting supernatant considered as crude rRBgLyz extract. Meanwhile, amylase resin was poured into a 1×5 cm size column and washed with eight volumes of column buffer. In the final purification step, the crude extract was loaded onto the column and

allowed to settle for 20 min, followed by washing with 12 volumes of column buffer. Finally, the rRBgLyz fusion protein was eluted by applying 3 ml of elution buffer (column buffer plus 10 mM maltose) in 500 μ L aliquots, and then subsequently analyzed on 12% SDS-PAGE with a protein molecular weight marker (Takara). Protein was visualized by staining with 0.05% Coomassie Blue R-250, followed by the standard de-staining procedure. All of the activity tests performed in this study were conducted using this purified rRBgLyz fused with MBP. The concentration of the purified protein was determined at 280nm in a UV-spectrometer (Bio-Rad).

1.5.9 Determination of optimum pH on the activity of the recombinant rRBgLyz

The optimal pH of the recombinant RBgLyz was measured by lysoplate assay, as described by Minagawa *et al.*[36]. Briefly, a gel plate was prepared that contained 1% agarose in 50 mM sodium phosphate buffer with pH's ranging from 4.5 to 8.5 (at intervals of 0.5) and *Micrococcus lysodeikticus*. The concentration of *M. lysodeikticus* was adjusted to 0.4 at OD₆₀₀. Fifty microliters of MBP, standard hen egg white lysozyme (HEWL, sigma) or RBgLyz (500 μ g/mL) or a standard hen egg white lysozyme (HEWL) were applied to a well (diameter: 5 mm) in the agarose plate and incubated at 30°C. After 24 h, the diameter of the clearing zone was measured (mm).

1.5.10 Antimicrobial activity of rRBgLyz

Antimicrobial activity of the recombinant lysozyme was assessed with turbidimetric assay, as described by Hultmark [10]. Several bacterial strains and one fungus (yeast) were obtained from the Korean Culture Center of Microorganisms (KCCM) and Korean Collection for Type Cultures (KCTC), including Gram-negative bacteria *Vibrio alginolyticus* (KCCM 40513), *V. salmonicida* (KCCM 41663), *V.*

parahaemolyticus (KCCM 11965), Escherichia coli (KCCM 70089), Gram-positive bacteria Listeria monocytogenes (KCCM 40307), *M. lysodeikticus* (KCTC 1056), and yeast *Pityrosporum ovale* (KCCM 11894). These microbial cells were used as substrates and suspensions of each were prepared in 50 mM sodium phosphate buffer (pH 4.5) adjusted to various concentrations ($OD_{600}=0.1-0.6$). Fifty microliters of MBP (500 µg/mL), HEWL (500 µg/mL) and rRBgLyz (500 µg/mL) were mixed separately with 150 µL of the suspensions, and the initial OD_{600} (designated as OD_i) was measured using a spectrophotometer (Bio-Rad). The mixture was incubated in a water bath in 37°C for 30 min and transferred to an ice bath to stop the reaction immediately. OD_{600} was measured again and designated as OD_f . A blank sample was prepared using sodium phosphate buffer (200 µL). Lytic activity (UL) was calculated by using the difference between the initial (OD_i) and final (OD_f) turbidity, according to the following formula: UL = (OD_i-OD_f)/OD_f. Triplicate measurements were performed.

1.5.11 Scanning electron microscope (SEM) observation

A suspension of *M. lysodeikticus* ($OD_{600}=0.2$) was prepared in 50 mM sodium phosphate buffer (pH4.5). Then, 300 µL aliquots of the suspension were dispensed into sterile tubes and 500 µL of MBP (500 µg/mL), rRBgLyz (500 µg/mL), or HEWL (500 µg/mL) were added. All tubes were incubated in a water bath for 30 min at 37°C. The third tube for each was used as control. After the incubation, samples were fixed for 10 h at 4°C with 2.5% glutaraldehyde containing 0.1 M sodium phosphate buffer (pH 7.3). After being washed with 0.1 M sodium phosphate buffer (pH 7.3), fixed cells were dehydrated by passage through a graded series (30%, 50%, 70%, 90%, and 100%) of ethanol and then followed by substitution processes using the same concentration series of isoamyl acetate. Next, the samples were dried with liquid CO₂ at a critical point followed by platinum coating by a sputter coater at 10 mA for 2 min. Finally, morphology differences of *M*. *lysodeikticus* cells in response to the recombinant RBgLyz treatment were examined by field emission SEM (JEOL Ltd., Japan) and compared to the untreated controls.

1.6 RESULTS

1.6.1 Molecular characterization of RBgLyz

The nucleotide and deduced amino acid sequences of RBgLyz are shown in Figure 1.1; the 669 bp nucleotide sequence of RBgLyz was deposited in GenBank under accession no. HM035063. The sequence contained an open reading frame (ORF) of 567 bp which encoding a polypeptide of 188 amino acid residues, a 5' -terminal untranslated region (UTR) of 4 bp, a 3'-terminal UTR of 98bp with a stop codon (TAA), and a putative polyadenylation consensus signal (AATAAA) at the 70 bp followed by the stop codon. The calculated molecular mass was 20 kDa with a theoretical isoelectric point of 6.0. SignalP program was unable to detect any signal peptide sequence. The deduced RBgLyz possessed no cysteine residues that would be expected to generate disulfide bridges in the avian and mammalian g-type lysozyme.

Three amino acid residues (Glu71, Asp84 and Asp95), potentially important for the lysozyme catalytic activity, were found to be completely conserved in RBgLyz (Fig. 2, light gray underlay). Four amino acid residues (Leu91, Leu115, Leu122 and Gly145) that were considered to be involved in binding the substrate were also identified in the corresponding site of RBgLyz (Fig. 1.2, dark gray underlay). In addition, the catalytic bacterial soluble lytic transglycosylase (SLT) domain, located from Ser48 to Ser172, in RBgLyz was found to be well conserved (Fig. 1.2, boxed).

BLAST search indicated that the deduced amino acid sequences of RBgLyz shared significant identity with other reported g-type lysozymes. RBgLyz presented 54.2% identity with common carp *Cyprinus carpio* (BAB91437), 55.3% with grass carp *Ctenopharyngodon idella* (ACF41165), 66.1% with Atlantic cod *Gadus morhua* (EU377606), 73.0% with Japanese flounder *Paralichthys olivaceus* (BAB62406), 75.8% with large yellow croaker *Larimichthys crocea* (ABR66916), 77.3% with brill *Scophthalmus rhombus* (BAF75845), and 81.4% with Chinese perch *Siniperca chuatsi*

(AAU86896) (Fig. 1.2).

1.6.2 Phylogenetic analysis of RBgLyz

To classify and analyze the molecular evolution of RBgLyz, a phylogenetic tree of lysozyme amino acid sequences was constructed using 19 lysozymes with 13 g-type, four c-type and two i-type lysozymes by the Neighbor-Joining method. As expected, RBgLyz was clearly grouped in the same clade as other g-type lysozymes. The c- and i-type lysozymes also formed each cluster individually. The relationship revealed in the phylogenetic tree was in agreement with homology comparison with other g-type lysozymes of teleosts; RBgLyz presented the closest distant relationship with sequences from Chinese perch g-type lysozyme. In this way, the closer distant relationship corresponded to brill g-type lysozyme, followed by Japanese flounder, large yellow croaker, Atlantic cod, grass carp and common carp (Fig. 1.3).

1.6.3 Expression of RBgLyz in healthy rock breams

Distribution of RBgLyz mRNA transcripts was examined by qRT-PCR in tissues of blood, gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine of healthy individuals (Fig. 1.4). The expression level of each tissue examined was normalized to that of β -actin. Relative expression fold differences were calculated based on the expression in muscle to determine the tissue expression profile. RBgLyz was found to be constitutively expressed in all the tissues examined, although its level of expression was variable. The mRNA expression levels in blood, gill and kidney were higher than in the muscle by 112.7-fold, 85.6-fold and 74.1-fold, respectively. A higher mRNA level was also detected in head kidney (H. kidney), liver, intestine and spleen (35.0-fold, 32.8-fold, 32.0-fold and 31.9-fold higher than in muscle, respectively). Lower expression levels (<12-fold of that in muscle) were found in other tissues.

1.6.4 Expression of RBgLyz in rock breams induced with LPS, poly I:C, *E. tarda*, *S. iniae* and RBIV

In order to determine whether RBgLyz expression was elevated in rock bream fish after several immune challenges, six groups of fish were i.p. injected with either LPS, poly I:C, *E. tarda*, *S. iniae*, RBIV or PBS, and then the transcriptional response of RBgLyz in head kidney was analyzed at 3, 6, 12, 24 and 48 h post-infection. No significant difference was observed in non-injected control and PBS-injected controls at 3 and 48 h p.i. Therefore, non-injected sample was used to determine the transcriptional regulation in this study.

Diverse expression patterns were induced by different stimuli (Fig. 1.5). Among the five stimulators, LPS and *E. tarda* were the most capable of inducing the expression of RBgLyz. Up-regulation of RBgLyz transcription by LPS treatment was first detected at 3 h p.i., being 2.3-fold higher than the expression level of non-injected control, then enhanced to 7.0-fold at 6 h post-infection, and reaching the highest level (13.0-fold) at 12 h. With *E. tarda* infection, RBgLyz transcription slightly increased at 12 h post-infection (1.3-fold compared to control), then reached its highest level at 24 h (5.9-fold) and decreased (to 0.9-fold) at 48 h. In comparison with LPS and active *E. tarda*, polyI:C stimulated a moderate expression of RBgLyz; the highest transcription levels were detected at 6 h (2.5-fold) and 12 h (2.4-fold). The other stimuli, *S. iniae*, also slightly stimulated the expression pattern of RBgLyz induced by active RBIV infection was quite different from those of the other stimuli. Specific time-dependent effects on RBgLyz mRNA expression after RBIV infection were not observed.

AACA 4 ATGGGTTACGGAAACATCATGATGGTTGAAACTACTGGTGCCTCATGGCAAACAGCTCAGCAGGACAGG 73 23 CTGGGATACTCAGGTGTGAGGGCATCACACACTATGGCAGAGACCGATGCTGGCAGAATGGAAAAGTAC 142 46 AGGTCTAAAGTCAACACAGTGGGAGGTAAATATGGAATCACTCCGGCTCTCATTGCCGCCATCATCTCC 211 69 AGAGAGTCCAGGGCTGGAAATACACTAGAGAATGGCTGGGGGAGATTCACATAACGCCTGGGGACTGATG 280 R--**E**--S--R--A--G--N--T--L--**E**--N--G--**W**--G--**D**--S--H--N--A--W--G--L--M--92 ${\tt CAGGTTGATGTTAATCCACACGGAGGTGGACACACTGCACGGGGAGCATGGGACAGTGAGGAACACCTC}$ 349 115 418 <u>C</u>--Q--A--T--E--I--L--V--Y--F--I--K--R--I--R--N--K--F--P--G--W--S--S--138 GAGCAGCAGCTGAAAGGAGGGATAGCAGCCTACAACATGGGGGACGGAAACGTCCATTCCTATGAAAAC 487 E--Q--Q--L--K--G--G--I--A--A--Y--N--M--G--D--G--N--V--H--S--Y--E--N--161 GTGGACGGTAGCACAACAGGTGGAGACTACTCCAATGATGTTGTTGCCAGAGCTCAGTGGTACCAAACC 556 V--D--G--S--T--T--G--G--D--Y--S--N--D--V--V--A--R--A--Q--W--Y--Q--T--184 AACGGAGGCTTTTTAACAGCTGAAGCTGTCCACAAATAACAAAGGAAACATTCTGTAATGTCTGCCCTGT 625 N--G--F--* 188 669

Figure 1.1 Nucleotide (GenBank accession no. HM035063) and deduced amino acid sequences of RBgLyz in *Oplegnathus fasciatus*. The nucleotide and amino acids are numbered along the right margin. The boxed letters indicate the start codon (ATG), the stop codon (TAA) and the putative polyadenylation signal (AATAAA). The SLT domain in the C-terminus extends from position 48-172 (gray underlay). The catalytic residues are denoted by bold italicized letters (Glu⁷¹, Asp⁸⁴ and Asp⁹⁵).

of Il

Rock bream	MGYGNIMMVETTGASWQTAQQDRLGYSGVRASHTMAETDAGRMEKYRSKVNTVGGKYG 58
Common carp	MAYIYGDTMKIDTTGASEATAKQDKLTIKGVEAPKKLAEHDLARGEKYKMMITKVGKAKK 60
Grass carp	MACIYGDVMKIDTTGASDSTAKQDNLTVKGVEASRKLAEHDLARMEKYKSIIIKVGRAKQ 60
Atlantic cod	MGYGDITQVETSGASSKTSRQDKLEYDGVRASHTMAQTDAGRMEKYKSFINNVAKKHV 58
Japanese flounder	MSYGQIRLVETSGASGATSQQDNLGYSGVKASHKMAEIDSGRMSKYK5KINKVGQSYG 58
Large yellow croaker	MGYGNIMRVQTTGASEKTSQQDKLGYSGVKASQAMAELDAGRMEKYRSKINSVGRRYD 58
Brill	MGYANIKDVQTTGASWQTAKQDKLGYSGVEASHTMAETDSGRMSKYKSKIFNVGQTCG 58
Chinese perch	MGYGNIMRLETTGASWETAQQDSLAYSGERASHTMAKTDAGRMEKYRSKINSVGAKYG 58
I	*, *,; ;;*;*** *;;** * .* .*,; ;*; * .* .*;, ; .*.
Rock brea	ITPALIAAIISRESRAGNTLENGWGDSHNAWGLMOVDVNPHGGGHTARGA 108
	MDPAVIAAMISRESRAGAVLKNGWEPAGNGFGLMOVDKRSHTPVGA 106
Common carp Grass carp	MDPAVIAANISRESRAGAALIDGWGDHGYAFGIMOIDKRYHTPVGA 106
Atlantic cod	VDPAVIAAIISRESRAGAALIDGWGDHGYAGTMQ1DKKIHIPVGA 106 VDPAVIAAIISRESRAGNVIFNTTPPGWGDNYNGFGIMQVDKRYHEPRGA 108
Japanese flounder	IEPALIAAIISRESRAGNQLKDGWGDWNPQRQAYNAWGLMQVDVNPNGGGHTAVGG 114
Large yellow croaker	IDPALIAAIISRESRAGNALTNGWGDYSPARGQYNAWGLMQVDVNPQGGGHTAKGA 114
Brill	IDPALIAAIISRESRAGNALHDGWGDWNPHRNAYNAWGLMQVDVNFSGGGHTAKGA 114
Chinese perch	IDPALIAAIISRESRAGNALHDGWGDYDSKRGAYNGWGLMQVDVNPNGGGHTAQGA 114
Rock bream	
	WDSEEHLCQATEILVYFIKRIRNKFPGWSSEQQLKGGIAAYNMGDGNVHSYENVDGSTTG 168
Common carp	WDSEQHVTQATEILIGFIKEIKVNFPKWTQEQCFKGGIAAYNKGVSRVTSYENIDVKTTG
Grass carp	CDSEQHITQGTEILIGFIKEIKAKFPQWTQEQCFKGSISAYNAGPGNVRTYERMDVGTAA 166
Atlantic cod	WNSEEHIDQATGILVNFIQLIQKKFPSWSTEQQLKGGIAAYNTGDGRVESYESVDSRTTG 168
Japanese flounder	WDSEDHLRQATGILVTFIERIRTKFPGWSKEKQLKGGIAAYNMGDKNVHSYEGVDENTTG 174
Large yellow croaker	WDSEEHLCQATGILVHFIKVIRNKFPGWSTEEQLKGGIAAYNMGDGSVEDRD-VDKNTTG 173
Brill	WDSEEHLCQGTGILVHFIGRIRNKFPGWSGEQHLKGGIAAYNMGDGNVHSYAEVDANTTG 174
Chinese perch	WDSEEHLROGTEILVHFINRIRNKFPGWSTEQQLKGCIAAYNMGDGNVHSYENVDENTTG 174
	:**:*: *.* **: ** *: :** *: :: :****:*** * * :* *:.
-	Identity/similarity (%)
Rock bream	GDYSNDVVARAQWYQTNGGF 188
	LDYSSDVVARAQWFRSK-GY 185 54.2/67.4
Common carp	GDYSNDVVARAQWYKSK-GY 185 55.3/67.9
Grass carp	
Atlantic cod	KDYSNDVVARAQWYKKN-GF 187 66.1/78.1
Japanese flounder	RDYSNDVTARAQWYRDN-GYSG 195 73.0/81.6
Large yellow croaker	SDYSNDVVARAQWYKNNKNY 193 75.8/85.1
Brill	GDYSNDVVARAQWYKRN-GF 193 77.3/84.0
Chinese perch	KDYSNDVVARAQWYKNNEGF 194 81.4/88.7
	.**.**:: : .:

Figure 1.2 ClustalW2 multiple alignment of RBgLyz with g-type lysozymes from various fish species. The amino acids are numbered along the right margin. Identical residues in all sequences are indicated by asterisks (*) under the column. Residues strongly and weakly conserved are indicated by colons (:) and dots (.), respectively. The dashes indicate the gaps introduced to maximize alignment. Light gray and dark gray underlays indicate the proposed catalytic residues and the substrate binding sites of g-type lysozymes, respectively. The SLT domain is boxed.

Figure 1.3 Phylogenetic tree based on the amino acid sequences of lysozymes. The tree was constructed by the Neighbor-Joining method using MEGA version 4 and based on sequence alignment using ClustalW2. Bootstrapping was performed 1000 times. The scale bar corresponds to 0.2. GenBank accession numbers of the selected g-type lysozyme sequences are shown as follows: rock bream *Oplegnathus fasciatus* (RBgLyz) HM035063; Chinese perch *Siniperca chuatsi* AAU86896; brill *Scophthalmus*

Collection @ jeju

rhombus BAF75845; Japanese flounder *Paralichthys olivaceus* BAB62406; large yellow croaker *Larimichthys crocea* ABR66916; Atlantic cod *Gadus morhua* EU377606; common carp *Cyprinus carpio* BAB91437; grass carp *Ctenopharyngodon idella* ACF41165; chicken *Gallus gallus* CAA43319; black swan *Cygnus atratus* P00717; goose *Anser anser anser* P00718; bay scallop *Arogopecten irrradians* AAX09979; mouse *Mus musculus* AAI19397; human *Homo sapiens* AAH29126. The accession numbers of c-type lysozyme are common carp *Cyprinus carpio* AB027305; zebrafish *Dinio rerio* NP_631919; Japanese flounder *Paralichthys olivaceus* AB050469; turbot *Scophthalmus maximus* AJ250732. The i-type lysozymes are sea cucumber *Stichopus japonicas* EF036468 and starfish *Asterias rubens* AY390770.

Figure 1.4 Relative mRNA expression of RBgLyz in different tissues, including blood, gill, liver, spleen, head kidney (H. kidney), kidney, skin, muscle, brain, and intestine. Expression values were normalized to those of rock bream β -actin. The bars indicate the mean fold change (mean \pm S.D., n=3) from the calibrator group (muscle). Means with different letters are significantly different (P<0.05).

4 12

Figure 1.5 Relative RBgLyz mRNA expression in head kidney (H. kidney) in response to challenges with LPS, poly I:C, *E. tarda, S. iniae* or RBIV at 3, 6, 12, 24 and 48 h post-injection. Con(-) and con(+) indicate non-injected and PBS-injected control samples, respectively. The bars indicate the mean fold change (mean \pm S.D., n=3) from non-injected controls. Means with different letters are significantly different (P<0.05).

1.6.5 Expression and purification of recombinant RBgLyz

The cloned RBgLyz coding sequence was inserted down-stream from *malE* gene of *E. coli*, which encodes the MBP under the strong tac promoter and *malE* translation initiation signal of pMAL-c2X. The re combinant RBgLyz/pMAL-c2X protein was expressed in *E. coli* BL21(DE3) cells by IPTG induction, and a 62.5 kDa fusion protein (RBgLyz 20 kDa + MBP 42.5 kDa) was purified by exploiting MBP's affinity for maltose. Aliquots of different steps during the purification process were analyzed by 12% SDS-PAGE with Coomassie Blue (Fig. 1.6).

We observed a strong fusion RBgLyz band in the induced extract (lane 2) compared to the uninduced crude protein extract (lane 1). The sample containing the fusion protein was characterized by gel analysis as being of high purity (lane 3).

1.6.6 Lysozyme activity

The lytic activity of the recombinant RBgLyz was determined by lysoplate assay at different pH's. The results showed that RBgLyz possessed the highest lysozyme activity at relatively low pH value (pH = 4.5), and the activity gradually decreased at pH's above pH 4.5. MBP showed no lytic activity against *M. lysodeikticus*, while HEWL activity at pH 8 was clearly detected (Fig. 1.7).

The antimicrobial activity of the recombinant RBgLyz was evaluated by turbidimetric assay carried out with different types of microorganisms, including Gram-positive, Gram-negative bacteria and yeast. MBP and HEWL was used as control. The results indicated that lytic activity of the recombinant RBgLyz was active against Gram-negative bacteria V. salmonicida, Gram-positive bacteria L. *monocytogenes*, S. *iniae* and M. *lysodeikticus* (P<0.05) (Fig. 1.8). On the other hand, HEWL possessed high (P<0.05) activity against M. *lysodeikticus*, but low activity against L. *monocytogenes* (Fig. 1.8), V. *alginolyticus*, V. *parahaemolyticus* and P. *ovale* (data not shown). Neither RBgLyz nor HEWL showed any antimicrobial effect

against *E. tarda* or *E.coli* (data not shown). MBP possessed no antimicrobial activity against all microorganisms used in this study.

In addition, we examined the morphology change of *M. lysodeikticus* in response to the recombinant RBgLyz treatment, under different concentrations, as evidenced by SEM imaging. As shown in Figure 1.9, deformed cells with rough, wrinkled surfaces were present in rRBgLyz- or HEWL- treated samples (C, D), as compared to the untreated or MBP control (A, B).

Figure 1.6 Overexpression and purification of recombinant RBgLyz fusion protein. Protein samples were separated by 12% SDS-PAGE and stained with Coomassie Blue. Lane M: protein molecular weight marker (Takara). Lane 1: total cellular extract from *E. coli* BL21 (DE3) before induction. Lane 2: total cellular extract after induction with 0.5 mM IPTG. Lane 3: purified recombinant RBgLyz fusion protein. The target protein is indicated by an arrow.

TH

Figure 1.7 Optimal pH of recombinant RBgLyz as measured by a lysoplate assay.

Figure 1.8 Antimicrobial activity (UL) of the recombinant RBgLyz, as measured by turbidimetric assay. Lytic activities are expressed as the mean UL (mean \pm S.D., n=3).

Figure 1.9 SEM images of M. lysodeikticus after treatment with the recombinant RBgLyz. A, a: untreated control cells (A: magnification \times 45,000, a: \times 20,000); B, b: cells treated with 500 µL of MBP (500 µg/mL) (B: \times 80,000, b: \times 20,000); C, c: cells treated with 500 µL of rRBgLyz (500 µg/mL) (C: \times 80,000, c: \times 20,000). D, d: cells treated with 500 µL of MBP (500 µg/mL) (B: \times 80,000, b: \times 25,000).

1.7 DISCUSSION

The innate immune system in fish has become a focus as researchers attempt to establish a firm understanding of disease resistance in these species. Lysozyme has been characterized as an important protein of the innate immune response, and has been evolutionarily conserved throughout vertebrates, invertebrates, phages, bacteria and plants [2]. Even though lysozyme has been shown to play a significant role in defense against infectious disease in fish, its underlying functional mechanisms remain to be completely understood [2]. In fish, the g-type lysozyme has been identified in Japanese flounder [20], common carp [21], orange-spotted grouper [22], Chinese perch [23], large yellow croaker [24], Atlantic salmon [25], brill [26], Atlantic cod [27], and grass carp [28] and rohu [29].

In the present study, we performed transcriptome sequencing of rock bream using Roche 454 GS-FLX sequencing technology, and we identified a g-type lysozyme that exists in rock bream, designated as RBgLyz. The RBgLyz was characterized as being 567 bp in length, encodes a protein of 188 amino acids, and has a theoretical molecular weight of 20 kDa. Interestingly, this RBgLyz did not include a putative signal peptide, as did the g-type lysozymes found in birds [17], mammals [11] and the recently published two fish species, Atlantic salmon (GenBank accession no. CAM35431) [25] and Atlantic cod (Codg1; GenBank accession no. EU377606) [27]. This fact suggested that the encoded RBgLyz protein(s) were not secreted. However, one particular structural feature was conserved among the g-type lysozymes from birds and mammals, that being four conserved cysteine residues that are involved in two pairs of disulfide bridges (Cys4-Cys60 and Cys18-Cys29) [19]. Kawamura et al. [37] described that the formation of these two disulfide bonds in g-type lysozyme

conformation, but was crucial for structural stability. The authors also described the formation of the two disulfide bonds of g-type lysozyme as occurring late in the folding process, and in an independent rather than sequential manner. Since Atlantic cod and Atlantic salmon live at temperatures close to the freezing point, the lack of the disulfide bonds could create a more flexible structure necessary for the g-type lysozymes to support their continued function at low temperatures [25,27]. However, the lack of disulfide bridges was a common trait of most fish g-type lysozymes, even for more temperate fish species [37]. In all these cases, the observation that RBgLyz lacked the disulfide bonds supported the presumption that RBgLyz was likely an intracellular protein.

The three amino acid residues (Glu71, Asp84 and Asp95) in RBgLyz were well conserved in other fish [20,22-24,26-28] and avian species [19]. The only exception was that the second catalytic residue, Asp84, in common carp was replaced by Pro86. Kawamura et al. [38] verified that Glu73 (corresponding to Glu71 in RBgLyz) was essential for catalytic activity and structural stability of ostrich g-type lysozyme, based on a site-directed mutational analysis and X-ray structural studies. Likewise, Helland et al. [39] demonstrated similar crucial roles in the structural stability and catalytic activity of Atlantic cod g-type lysozyme. The other two aspartic acid residues of g-type lysozymes in Atlantic cod were also shown to be involved in catalysis, but the third catalytic residue, aspartic acid, appeared to be more critical to the function than the second one [39]. The three conserved residues (Glu71, Asp84 and Asp95) in the RBgLyz presented in this study are theorized to have similar catalytic activity with those of other fish and avian species. SMART program analysis revealed that RBgLyz contained the SLT domain which is known to be involved in the cleavage of most bacterial cell walls by acting upon the β -(1,4)-glycosidic bonds between the NAG and NAM in the peptidoglycan layer.

- 47 -

Originally, the SLT domain was defined as the catalytic region of a bacterial Slt70 enzyme, and was also characterized as a novel class of lysozyme [40,41]. Thunnissen et al. [41] also concluded that the g-type lysozyme, in contrast to the c- and phage-type lysozymes, commonly harbored an SLT domain.

The expression pattern of the g-lysozyme gene has previously been investigated in various organisms. In chicken, a restricted expression pattern of the g-type lysozyme was found. It was only expressed in bone marrow and lung, and not in the oviduct, providing an explanation as to why its absence was observed in chicken egg white [18]. In contrast, g-lysozyme was quite abundant in the egg white of many other birds, including geese, ostriches and swans [19]. Nile et al. [42] identified a second chicken g-type lysozyme sequence (chicken g2) that was expressed in liver, kidney and intestine. In humans, two g-type lysozymes were identified, but neither of these genes was widely nor highly expressed in fetal and adult tissues [19]. Irwin and Gong showed that the mouse also carried two g-type lysozyme genes in its genome. The murine lysozyme gl was found to be expressed at high level only in the tongue, whereas g2 was expressed in skin [19]. These restricted distribution patterns in birds and mammals contrasted with the broad expression patterns of g-type lysozyme in fish species. The g-type lysozyme has been detected in spleen, kidney, gill, skin, heart, intestine and blood of Japanese flounder, orange spotted grouper, large yellow croaker, Atlantic cod and grass carp [20,22,24,27,28], suggesting that g-type lysozyme was an intracellular protein. This finding was also consistent with the lack of disulfide bridges and a signal peptide. In this study, we also found that the RBgLyz was ubiquitously expressed in all analyzed tissues, including blood, gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine. The level of RBgLyz mRNA was highest in blood, gill and kidney, which was consistent with previous suggestions that the g-type lysozyme gene in Japanese flounder and large

yellow croaker is expressed predominantly in tissues of organs exposed to the external environment or in hematopoietic tissues [20, 24].

Expression of g-type lysozyme has been shown to be up-regulated in fish treated with LPS or infected with bacteria. The expression of g-type lysozyme was increased in the intestine, heart and blood of Japanese flounder injected with *E. tarda* [20]. Orange-spotted grouper g-type lysozyme transcripts were up-regulated in the stomach, spleen, kidney, heart, brain and leukocytes after *V. alginolyticus* injection [22]. The mRNA levels of g-type lysozyme in large yellow croaker (called LycGL) were up-regulated in intestine, spleen and head kidney after induction by bacterial vaccine [24]. A clear g-type lysozyme expression response to LPS or *Photobacterium damselae* subsp. *piscicida* inoculation was observed in head kidney of brill [26]. Furthermore, expression level of g-type lysozyme was up-regulated in spleen, liver, head kidney and gill of grass carp challenged with *A. hydrophila* [28].

In the study presented herein, we also detected whether RBgLyz expression was elevated in rock bream fish after several immune challenges with either LPS, poly I:C, *E. tarda*, *S. iniae* or RBIV injection at different time points. As a major component of the Gram-negative bacterial cell wall, the LPS endotoxin elicits a defense response from the innate immune system [43]. The most robust up-regulation we detected for RBgLyz mRNA level in response to LPS exposure occurred in head kidney. *E. tarda*, (responsible for edwardsiellosis, and a Gram-negative bacterium) and *S. iniae* (causing streptococcosis, and a Gram-positive bacterium) have become one of the most problematic infectious outbreaks in rock bream, as well as in many other fresh and marine fish [30]. In rock bream injected with active *E. tarda*, RBgLyz transcripts were found to increase significantly at 24 h post-infection. Only slightly higher mRNA levels were observed after active *S. iniae* inoculation. Taken together, the observed patterns generally agreed with other previously published

- 49 -

information on g-type lysozyme responses to LPS or bacteria injection in other fish species [20,22,24,26,28], thus supporting a defensive role for RBgLyz against bacteria in rock bream.

Poly I:C, a synthetic double-stranded (ds) RNA, has been widely used as an inducer to study the antiviral state triggered by the immune system [44]. Our results showed RBgLyz moderately up-regulated transcripts after poly I:C induction. However, no increase or even a reduction of RBgLyz mRNA levels, was observed after injection of RBIV (ds DNA virus). To our knowledge, the expression of g-type lysozyme detected by qRT-PCR in our present study represents the first report of such in fish treated with poly I:C or infected with virus.

Saurabh and Sahoo [45] have reported that fish are poikilothermic organisms and, therefore, their lysozyme activity may not be as sensitive to temperature. But, pH is known to be an influential factor affecting the enzymatic activity of lysozyme in fish. The recombinant RBgLyz was found to possess the highest lysozyme activity at pH 4.5, with a decrease in activity observed above pH 4.5. This pH activity profile was different from those obtained for other g-type lysozymes using *M. lysodeikticus* as substrate. The Atlantic cod and salmon g-type lysozymes, studied previously by others, showed optimum activity occurred at pH 4.8 and pH 5.2, respectively [25,27], while the g-type lysozymes of Japanese flounder and grass carp have an optimum activity at pH 6.0 and pH 6.5 [22,28].

Other recombinant fish g-type lysozymes have been shown to have antimicrobial activities against fish pathogenic bacteria [20,22,24,28]. In the present study, recombinant RBgLyz also exhibited antimicrobial activity against bacteria *M. lysodeikticus*, and fish pathogenic bacteria, such as *L. monocytogenes*, *S. iniae* and *V. salmonicida*. The SEM observation carried out here provided evidence that recombinant RBgLyz is able to cause considerable morphological damage to treated

- 50 -

M. lysodeikticus cells.

In summary, we identified g-type lysozyme sequences from rock bream, for the first time, by applying a pyrosequencing technique. RBgLyz was constitutively expressed in various tissues, but the level of RBgLyz mRNA expression was highest in blood, gill, and kidney, which represent organs exposed to the external environment or hematopoietic tissues. Furthermore, RBgLyz transcription was up-regulated in response to exposure to LPS, poly I:C, *E. tard*a, or *S. iniae*. The recombinant RBgLyz also showed antimicrobial activity against bacteria *M. lysodeikticus*, and a variety of pathogenic bacteria. Additionally, SEM observation results confirmed that *M. lysodeikticus* cells were damaged by recombinant RBgLyz in the innate immune defense system of rock bream.

\$1 3

F IL

1.8 REFERENCES

[1] Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000;173:89–97.

[2] Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol 2006;20: 137-51.

[3] Jollès P, Jollès J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 1984;63:165-89.

[4] Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 2000;97:8856-61.

[5] Grinde B. Lysozyme from rainbow trout, *Salmo gairdneri* Richardson, as an antibacterial agent against fish pathogens. J Fish Dis 1989;12:95–104.

[6] Samarayanake YH, Samaranayake LP, Wu PC, So M. The antifungal effect of lactoferrin and lysozyme on *Candida krusei* and *Candida albicans*. APMIS 1997;105:875-83.

[7] Lee-Huang S, Huang PL, Sun Y, Huang PL, Kung HF, Blithe DL, et al. Lysozyme and RNases as anti-HIV components in β -core preparations of human chorionic gonadotropin. Proc Natl Acad Sci US A 1999;96:2678-81.

[8] Ibrahim HR, Thomas U, Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 2001;276:43767-74.

[9] Zhang X, Wu FX, Sun M, Sang QY, Wang YJ, Wang XK. Study on antimicrobial and antiviral activities of lysozyme from marine strain S-12-86 in vitro. Agric Sci China 2008;7:112-6.

[10] Hultmark D. Insect lysozymes. In: Jollès P, editor. Lysozymes: model enzymes in biochemistry and biology. Basel: Birkhäuser Verlag; 1996. p. 87–102.

[11] Prager EM, Jollès P. Animal lysozymes c and g: an overview. In: Jollès P, editor. Lysozymes: model enzymes in biochemistry and biology. Basel: Birkhäuser Verlag; 1996. p. 9-31.

[12] Jollès J, Jollès P. The lysozyme from *Asterias rubens*. Eur J Biochem 1975;54:19–23.

- 52 -

[13] Fastrez J. Phage lysozymes. In: Jollès P, editor. Lysozymes: model enzymes in biochemistry and biology. Basel: Birkhäuser Verlag; 1996. p. 35-64.

[14] Holtje JV. Bacterial lysozymes. In: Jollès P, editor. Lysozymes: model enzymes in biochemistry and biology. Basel: Birkhäuser Verlag; 1996. p. 65-74.

[15] Beintema JJ, Terwisscha van Scheltinga AC. Plant lysozymes. In: Jollès P, editor. Lysozymes: model enzymes in biochemistry and biology. Basel: Birkhäuser Verlag; 1996. p. 75–86.

[16] Canfield RE, McMurry S. Purification and characterization of a lysozyme from goose egg white. Biochem Biophys Res Commun 1967;26:38-42.

[17] Prager EM, Wilson AC, Arnheim N. Widespread distribution of lysozyme g in egg white of birds. J Biol Chem 1974;249:7295-7.

[18] Nakano T, Graf T. Goose-type lysozyme gene of the chicken: sequence, genomic organization and expression reveals major differences to chicken-type lysozyme gene. Biochim Biophys Acta 1991;1090:273–6.

[19] Irwin DM, Gong ZY. Molecular evolution of vertebrate goose-type lysozyme genes. J Mol Evol 2003;56:234-42.

[20] Hikima J, Minagawa S, Hirono I, Aoki T. Molecular cloning, expression and evolution of the Japanese flounder goose-type lysozyme gene, and the lytic activity of its recombinant protein. Biochim Biophys Acta 2001;30:35–44.

[21] Savan R, Aman A, Sakai M. Molecular cloning of G-type lysozyme cDNA in common carp (*Cyprinus carpio* L.). Fish Shellfish Immunol 2003;15:263-8.

[22] Yin ZX, He JG, Deng WX, Chan SM. Molecular cloning, expression of orange-spotted grouper goose-type lysozyme cDNA, and lytic activity of its recombinant protein. Dis Aquat Org 2003;55:117–23.

[23] Sun BJ, Wang GL, Xie HX, Gao Q, Nie P. Gene structure of goose-type lysozyme in the mandarin fish *Siniperca chuatsi* with analysis on the lytic activity of its recombinant in *Escherichia coli*. Aquaculture 2006;252:106–13.

[24] Zheng W, Tian C, Chen X. Molecular characterization of goose-type lysozyme homologue of large yellow croaker and its involvement in immune response induced by trivalent bacterial vaccine as an acute-phase protein. Immunol lett 2007;113:107–16.

[25] Kyomuhendo P, Myrnes B, Nilsen IW. A cold-active salmon goose-type lysozyme with high heat tolerance. Cell Mol Life Sci 2007;64:2841-7.

[26] Jiménez-Cantizano RM, Infante C, Martin-Antonio B, Ponce M, Hachero I, Navas JI, et al. Molecular characterization, phylogeny, and expression of c-type and g-type lysozymes in brill (*Scophthalmus rhombus*). Fish Shellfish Immunol 2008;25:57 -65.

[27] Larsen AN, Solstad T, Svineng G, Seppola M, Jørgensen TØ. Molecular characterization of a goose-type lysozyme gene in Atlantic cod (*Gadus morhua* L.). Fish Shellfish Immunol 2009;26:122–32.

[28] Ye X, Zhang L, Tian Y, Tan A, Bai J, Li S. Identification and expression analysis of the g-type and c-type lysozymes in grass carp Ctenopharyngodonidellus.DevCompImmunol2010;34:501-9.

[29] Mohanty BR, Sahoo PK. Immune responses and expression profiles of some immune-related genes in Indian major carp, *Labeo rohita* to *Edwardsiella tarda* infection. Fish Shellfish Immunol 2010;28:613–21.

[30] Zhao JM, Song LS, Li CH, Zou HB, Ni DJ, Wang W, et al. Molecular cloning of an invertebrate goose-type lysozyme gene from *Chlamys farreri*, and lytic activity of the recombinant protein. Mol Immunol 2007;44:1198–208.

[31] Park SL. Disease control in Korean aquaculture. Fish Pathol 2009;44:19-23.

[32] Droege M, Hill B. The genome sequencer FLXTM system-longer reads, more applications, straight forward bioinformatics and more complete datasets. J Biotechnol 2008;136:3–10.

[33] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWiliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8.

[34] Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 1998;95:5857–5864.

[35] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596–99.

[36] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 2001;25:402-8.

[37] Minagawa S, Hikima J, Hirono I, Aoki T, Mori H. Expression of Japanese flounder c-type lysozyme cDNA in insect cells. Dev. Comp. Immunol 2001;25:439–45.

[38] Kawamura S, Ohkuma M, Chijiiwa Y, Kohno K, Nakagawa H, Hirakawa H, et al. Role of disulfide bonds in goose-type lysozyme. FEBS J 2008;275:2818–30.

[39] Kawamura S, Ohno, K, Ohkuma M, Chijiiwa Y, Torikata T. Experimental verification of the crucial roles of Glu^{73} in the catalytic activity and structural stability of goose type lysozyme. J Biochem 2006;140:75–85.

[40] Helland R, Larsen RL, Finstad S, Kyomuhendo P, Larsen AN. Crystal structures of g-type lysozyme from Atlantic cod shed new light on substrate binding and the catalytic mechanism. Cell Mol Life Sci 2009;66:2585–98.

[41] Engel H, Kazemier B, Keck W. Murein-metabolizing enzymes from *Escherichia coli*: sequence analysis and overexpression of the slt gene, which encodes the soluble lytic transglycosylase. J Bacteriol 1991;173:6773-82.

[42] Thunnissen AWH, Isaacs NW, Dijkstra BW. The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozyme. Protein Struct Funct Genet 1995;22:245-58.

[43] Nile CJ, Townes CL, Michailidis G, Hirst BH, Hall J. Identification of chicken lysozyme g2 and its expression in the intestine. Cell Molo Life Sci 2004;61:2760-6.

[44] Trent MS, Stead CM, Tran AX, Hankins JV. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 2006;12:2005–23.

[45] Zeng W, Liu G, Ao J, Chen X. Expression analysis of immune-relevant genes in the spleen of large yellow croaker (*Pseudosciaena crocea*) stimulated with polyI:C. Fish Shellfish Immunol 2006;21:414-430.

[46] Saurabh A, Sahoo PK. Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 2008;39:223-39.

PART 2

Characterization and expression analysis of the myeloid differentiation factor 88 (MyD88) in rock bream *Oplegnathus fasciatus*

2.1 ABSTRACT

Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein able to activate nuclear factor-kappa B (NF-kB) through interactions with interleukin-1 receptor (IL-1R) and the Toll-like receptors (TLRs), with the exception of TLR3. Here, we describe the identification of MyD88 from the rock bream fish Oplegnathus fasciatus and its characterization based on GS-FLXTM sequencing. The cDNA of rock bream MyD88 was found to be composed of 1626 bp, with an 867 bp open reading frame that encodes 288 amino acids. The deduced amino acid sequence of MyD88 possessed both a conserved death domain at the amino terminus and a typical Toll-IL-1 receptor (TIR) domain at the carboxyl terminus, similar to that found in other fishes, amphibians, avians, mammals and invertebrates. The mRNA expression pattern of MyD88 in healthy and bacterially-challenged rock bream were examined using quantitative real-time polymerase chain reaction (qRT-PCR). MyD88 transcripts were found to be strongly expressed in blood, gill, liver, spleen, head kidney and kidney, moderately expressed in skin, brain and intestine, and weakly expressed in muscle. Expression levels of MyD88 in blood, spleen and head kidney were dramatically up-regulated upon exposure to LPS and the Gram-negative bacteria Edwardsiella tarda, suggesting that MyD88 plays an important role in rock bream defenses against bacterial infection.

Keywords: Oplegnathus fasciatus; MyD88; innate immunity; LPS; Edwardsiella tarda gene expression

2.2 LIST OF TABLES

Table	2.1	Primers used for qRT-PCR expression study	Page 67
Table	2.2	ClustalW2 analysis and comparisons of the deduced amino acid	
		sequence of rock bream O. fasciatus MyD88 (GenBank accession	
		number HM035064) with MyD88 from other known species	71

2.3 LIST OF FIGURES

		Page		
Figure 2.1	The cDNA and deduced amino acid sequences of rock bream			
	MyD88 (GenBank accession number HM035064)	72		
Figure 2.2	The architecture of rock bream MyD88 (288 amino acids)	74		
Figure 2.3	2.3 Phylogenetic analysis of rock bream MyD88 with MyD88 from 16			
	other species, including large yellow croaker P. crocea, pufferfish			
	T. rubripes, flounder P. olivaceus, tongue sole C. semilaevis,			
sweetfish P. altivelis altivelis, rainbow trout O. mykiss, zebrafish D.				
	rerio, channel catfish I. punctatus, frog X. laevis, chicken G.			
$\overline{\nabla}$	gallus, mouse M. musculus, cattle B. Taurus, human H. sapiens,			
	chimpanzee P. paniscus, scallop C. farreri, and fruitfly D.			
_	melanogaster	75		
Figure 2.4	Relative mRNA expression of rock bream MyD88 in different	_		
	tissues including blood, gill, liver, spleen, head kidney (H. kidney),			
-	kidney, skin, muscle, brain, and intestine	76		
Figure 2.5	Relative rock bream MyD88 mRNA expression in response to	2		
-	challenge with LPS (a) and E. tarda (b) at 3, 6, 12, 24 and 48 h			
	post-injection	77		
	-6/			

2.4 INTRODUCTION

The fish immune system consists of innate and adaptive immune functions, which act to protect against invading pathogens. As in other vertebrates, the innate immune response of fish not only provides a general defense mechanism against the early pathogenic event but also instructs the subsequent specialized adaptive immune response [1-3]. The innate immune system relies on the pattern recognition receptors (PRRs) to recognize 'non-self' molecular patterns expressed on the surface of pathogens [4-6]. Among the particularly well-characterized PRRs are the Toll-like receptor (TLR) family members. As single membrane-spanning non-catalytic receptors, the TLRs recognize highly structurally conserved pathogen-associated molecular patterns (PAMPs) [7]. TLRs together with the interleukin-1 receptors (IL-1R) form a receptor superfamily, known as TLR/IL-1R, all members of which harbor the so-called TIR (Toll-IL-1 receptor) protein domain [7].

To date, a total of 13 different mammalian TLRs have been identified [7]. The various TLRs have been shown to recognize different kinds of PAMPs, including unmethylated bacterial CpG DNA [8], double- [9] or single-stranded viral RNA [10-12], lipopolysaccharide (LPS) [13], peptidoglycan (PGN) [14], other bacterial lipoproteins [15,16] and bacterial flagellin [17]. Importantly, most of the PAMPs recognized by the TLRs play essential roles in the microbes' or viruses' structural integrity, physiologic function or replication ability; thus, the infectious agent is unable to readily mutate the targeted PAMP as a means of escaping detection by host immune surveillance. For example, the major ligand of TLR4 is lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria. LPS expression has been shown to be critical for function and ultimate survival of Gram-negative bacteria as mutations that ablate the enzymes required for LPS synthesis are often lethal to the bacteria [13]. Similarly, double-stranded RNA, the ligand for TLR3, is a key replication intermediate for all

RNA viruses, so that evasion of TLR3 recognition is not easily achieved by these viruses [9].

The signaling pathways activated by these TLRs are broadly classified as either dependent on the adaptor molecule myeloid differentiation factor 88 (MyD88) or MyD88-independent. The former uses MyD88 to initiate early activation of transcription factor NF- κ B and production of tumor necrosis factor (TNF) and other inflammatory cytokines [18,19]. The latter propagates its signals through a mechanism involving the TIR domain-containing adaptor-inducing interferon (IFN) to instigate IFN- β production [20].

MyD88 was originally isolated as a myeloid differentiation primary response gene in mice that was induced during terminal differentiation of M1D⁺ myeloid precursor cells in response to IL-6 treatment [21]. MyD88 has a bi-partite structure composed of an amino terminal death domain and carboxyl terminal TIR domain. The carboxyl terminal TIR domain interacts with its cognate domains located in the cytoplasmic tails of activated TLRs or IL-1R. The amino terminal death domain mediates the interaction with the corresponding domain in IL-1R-associated kinase (IRAK) in order to recruit further downstream immune molecules [22]. Interestingly, MyD88 knock-out in mice completely abolished all TLR-mediated cytokine production [22]. Collectively, these properties of MyD88 indicate that it is a pivotal component of the innate immune system and plays a critical role in initiating and activating the immune response, especially in the MyD88-dependent TLR/IL-1R signaling pathway [18,22].

MyD88 has been extensively studied in many species, including human [23], mouse [24], frog [25], chicken [26], zebrafish [27], scallop [28] and fruitfly [29]. In fishes, MyD88 has been identified in zebrafish *Danio rerio* [27,30], Japanese flounder *Paralichthys olivaceus* [31], large yellow croaker *Pseudosciaena crocea* [32] and rainbow trout *Oncorhynchus mykiss* [33].

The rock bream is a tropical fish which resides mainly in the coastal areas of the Pacific and Indian Ocean. Rock bream represents an economically important marine species of South Korea, accounting for the largest yield of a single species in the

- 61 -

Collection @ jeju

national net-cage farming sector. In recent years, the rapid development of the rock bream culture industry has been accompanied by a concomitant increase in the prevalence and virulence of infectious diseases afflicting this species, resulting in significant economic losses [34,35]. Unfortunately, little is known about the genetic and immunological mechanisms of the rock bream fish. This lack of knowledge has proven a major obstacle to the establishment of effective measures towards disease control and development of a more genetically robust population of rock breams.

Here, we describe our investigations that led to the discovery and characterization of a MyD88 cDNA from rock bream *O. fasciatus*. To further our understanding of the defense mechanisms in this species, we studied the temporal expression patterns of rock bream MyD88 in response to exposure to LPS and the Gram-negative bacteria *Edwardsiella tarda*.

1 IL

2.5 MATERIALS AND METHODS

2.5.1 Identification of rock bream MyD88

We have established a rock bream cDNA sequence database by using the Roche 454 Genome Sequencer FLX System (GS-FLXTM), a next-generation DNA sequencing (NGS) technology [36]. Briefly, total RNA was isolated from pooled tissues (pituitary gland, brain, gill, blood, liver, spleen, head kidney and kidney) of three healthy rock bream fishes using the Tri ReagentTM (Sigma, USA), according to the manufacturer's instructions. Then, the polyadenylated messenger RNA was purified by means of an mRNA isolation kit (FastTrack 2.0; Invitrogen, USA). First strand cDNA synthesis and normalization were carried out with the CreatorTM SMARTTM cDNA library construction kit (Clontech, USA) and Trimmer cDNA normalization kit (Evrogen, Russia), respectively. Thereafter, the sequencing of rock bream cDNA was performed on a GS-FLX Titanium instrument (DNA Link, Inc.). By applying the Basic Local (BLAST) algorithm (http://www.ncbi.nlm.nih.gov/BLAST), we Alignment Tool identified a MyD88 gene in the rock bream cDNA sequence database.

2.5.2 Sequence alignments and phylogenetic analysis of MyD88

The open reading frame and amino acid sequence of rock bream MyD88 were obtained using DNAssist 2.2 (Version 3.0). The sequences of MyD88 from different species were compared by the BLAST search program. Pairwise sequence alignment (http://www.ebi.ac.uk/Tools/emboss/align) and multiple sequence alignment (http://www.ebi.ac.uk/Tools/clustalw2) were performed using the ClustalW2 program. The phylogenetic relationship of MyD88 was determined using the Neighbor-Joining

method and Molecular Evolutionary Genetics Analysis (MEGA) software version 4 [37]. Prediction of protein domains was carried out by the MotifScan scanning algorithm (http://myhits.isb-sub.ch/cgi-bin/motif_scan).

2.5.3 Experimental fish and tissue collection

Rock breams with an average body weight of 30 g were obtained from the Jeju Special Self-Governing Province Ocean and Fisheries Research Institute (Jeju, Republic of Korea). The fish were maintained in a controlled environment at 22-24°C. All individuals were allowed to acclimate for one week prior to experimentation. Whole blood (1 mL per fish) was collected from the caudal fin using a sterilized syringe, and the sample was immediately centrifuged at $3000 \times g$ for 10 min at 4°C to separate the blood cells from the plasma. The collected cells were stored in liquid nitrogen until use. Meanwhile, the fish was sacrificed and the gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine were excised and immediately snap-frozen in liquid nitrogen and stored at -80°C until total RNA isolation was performed.

2.5.4 Immune challenge

E. tarda was obtained from the Department of Aqualife Medicine, Chonnam National University, Korea. The bacteria were incubated at 25°C for 12 h using a brain heart infusion (BHI; Eiken Chemical Co., Japan) broth supplemented with 1% sodium chloride. The cultures were briefly spun down and resuspended in sterile phosphate buffered saline (PBS), and diluted to a desired cell number.

For the mitogen stimulation experiment, each rock bream was administered a single intraperitoneal (ip) injection of 100 µL purified LPS in PBS suspension (1.25

 $\mu g/\mu L$, *E. coli* 0127:B8; Sigma). For the live bacterial-challenge experiment, each rock bream was infected with a single ip injection of 100 μL *E. tarda* suspended in PBS (5× 10³ CFU/ μ L). A negative control group was established as non-injected, while a positive control group was injected with an equal volume (100 μ L) of PBS. Blood, spleen and head kidney were collected at 3, 6, 12, 24 and 48 h post-injection from LPS- and *E. tarda*-injected rock breams. PBS control samples were isolated at 3 h and 48 h post-injection. All samples were obtained and analyzed from three replicates.

2.5.5 Total RNA extraction and cDNA synthesis

Total RNA was extracted by Tri ReagentTM (Sigma) from rock bream blood, gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine. RNA concentration was determined at 260 nm in a UV-spectrometer (Bio-Rad, USA) and diluted to 1 µg/µL. Two and one-half µg RNA from selected tissues was used to synthesize cDNA with the SuperScriptTM III First-Strand cDNA Synthesis kit (Invitrogen). Briefly, RNA was incubated with 1 µL of 50 µM oligo(dT)₂₀ and 1 µL of 10 mM dNTPs for 5 min at 65°C. After incubation, 2 µL of 10× cDNA synthesis buffer, 4 µL of 25 mM MgCl₂, 2 µL of 0.1M dithiothreitol (DTT), 1 µL of RNaseOUTTM (40U/µL) and 1 µL of SuperScript III reverse transcriptase (200 U/µL) were added and the mixture was incubated for 50 min at 50°C. The reaction was terminated by adjusting the temperature to 85°C for 5 min. Then, 1 µL of RNase H was added to each cDNA reaction and incubated for 20 min at 37°C. Finally, the newly synthesized cDNA was diluted 40-fold (total 800 µL) before storage at -20°C until needed for further analysis.

2.5.6 MyD88 mRNA expression analysis by quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was used to detect the expression levels of MyD88 in blood, gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine tissues, and the temporal expression of MyD88 in the blood, spleen and head kidney. Total RNA was extracted at different time points following immune stimulation, and the first-strand cDNA synthesis was carried out as described in section 2.4. gRT-PCR was carried out using a Thermal Cycler Dice[™] (Real Time System TP800; TaKaRa, Japan) in a 20 µL reaction volume containing 4 µL of diluted cDNA (3.125 ng/µL) from each tissue, 10 μ L of 2× TaKaRa Ex TaqTM SYBR premix, 0.5 μ L of each primer (10 pmol/ μ L; Table 2.1) and 5 μ L dH₂O. The qRT-PCR cycle profile included one cycle of 95°C for 10 s, followed by 35 cycles of 95°C for 5 s, 58°C for 10 s and 72°C for 20 s, and a final single cycle of 95°C for 15 s, 60°C for 30 s and 95°C for 15 s. The baseline was set automatically by the Thermal Cycler DiceTM Real-Time System Software (version 2.00). MyD88 expression was determined by the Livak $(2^{-\Delta})$ ΔCT) method [38]. The same qRT-PCR cycle profile was used for the internal control gene, rock bream β-actin (GenBank accession number FJ975146). All data are presented as relative mRNA expressed as means ± standard deviation (S.D.). To determine statistical significance (P<0.05), the data were subjected to one-way analysis of variance (ANOVA) followed by Duncan's Multiple Range test, using the SPSS 11.5 program (USA).

Gene	Orientation	Primer sequences (5'-3')
MyD88	Forward	AATCCTGACGCAGGTGGAGAGAAA
MyD88	Reverse	AGCTGTCAACCTCTGGAACCTGAA
β-actin	Forward	TCATCACCATCGGCAATGAGAGGT
β-actin	Reverse	TGATGCTGTTGTAGGTGGTCTCGT

Table 2.1 Primers used for qRT-PCR expression study

2.6 RESULTS

2.6.1 Molecular characterization and phylogeny of rock bream MyD88

The nucleotide and deduced amino acid sequences of MyD88 from rock bream are shown in Figure 2.1. MyD88 nucleotide sequence was deposited in GenBank under accession number HM035064.

The MyD88 cDNA was composed of 1626 bp which contains an 867 bp open reading frame encoding a putative protein of 288 amino acid residues. The calculated molecular mass was 33 kDa with a theoretical isoelectric point of 4.9. The start (ATG) and stop (TAA) codons were found at nucleotide positions 123-125 and 987-989 from the 5' end of cDNA, respectively. Sequence analysis revealed the presence of a 122 bp 5' untranslated region (5' UTR) and a 637 bp 3' UTR containing four RNA instability motifs (¹¹⁰²ATTTA^{1106, 1277}ATTTA^{1281, 1313}ATTTA^{1317, and 1564}ATTTA¹⁵⁶⁸) with a putative polyadenylation consensus signal (¹⁶⁰⁸AATAAA¹⁶¹³).

Motif scan analysis indicated a death domain was located at positions 24-103 of the amino terminus. The TIR domain, which is important for TLR signaling events, was identified at positions 151-288 of the carboxyl terminus. Amino acid sequence alignment of MyD88 showed the presence of three highly conserved regions (Box 1, Box 2 and Box 3) within the TIR domain that corresponded to those in other teleost fishes (Fig. 2.2).

The percentages of amino acid identity in MyD88 were calculated using the NCBI BLAST search tool and pairwise ClustalW2 program. The deduced amino acid sequence of rock bream MyD88 shared significant homology (more than 58%) with those from other vertebrates, and had the greatest degree of identity (86.2%) with the

Collection @ jeju
MyD88 of large yellow croaker *P. crocea* (Table 2.2). However, the rock bream MyD88 amino acid sequence had less than 30% identity to MyD88 from invertebrates; there was only 14.4% identity to fruitfly MyD88 and 27.2% identity to that of scallop (Table 2).

Phylogenetic analysis was carried out using the Neighbor-Joining method on a multiple sequence alignment of rock bream MyD88 with a range of vertebrate and invertebrate MyD88 (Fig. 2.3). As expected, rock bream MyD88 grouped in the same clade as other piscine MyD88, with high bootstrap values. The deduced amino acid sequences from amphibians, avians and mammals clustered to a corresponding clade, indicating that rock bream MyD88 arose from a common ancestor of vertebrates.

2.6.2 Expression of rock bream MyD88 in untreated individuals

The mRNA transcripts from rock bream MyD88 were detected by qRT-PCR in blood, gill, liver, spleen, head kidney, kidney, skin, muscle, brain and intestine of healthy individuals. Rock bream MyD88 mRNA was found to be constitutively expressed in all the tissues examined, although its level of expression was variable. The mRNA expression levels detected in liver, blood, kidney and spleen were higher than in the muscle by 260.8-fold, 179.0-fold, 110.2-fold and 104.4-fold, respectively. A moderately high mRNA level was also detected in gill and head kidney (93.5-fold and 73.1-fold higher than in muscle, respectively). Lower expression levels (<50-fold of that in muscle) were found in other tissues (Fig. 2.4).

2.6.3 Expression of rock bream MyD88 in individuals infected with Gram-negative bacteria

The transcriptional response of MyD88 in the blood, spleen and head kidney was analyzed after rock breams were exposed to LPS or *E. tarda* at 3, 6, 12, 24 and 48 h post-infection. The relative transcriptional level of MyD88 was calculated using rock bream β -actin as the internal control gene. Little change in PBS-injected controls was observed in comparison to non-injected controls (1.1-fold increase in blood and spleen, and 1.2-fold increase in head kidney), and no significant difference was detected among PBS-injected controls at 3 and 48 h post-injection. Therefore, samples from non-injected rock breams were used in subsequent comparisons to determine the fold-change of transcriptional up-regulation.

The temporal expression of MyD88 in the blood, spleen and head kidney of rock bream after LPS stimulation is shown in Figure 2.5a. The expression levels of MyD88 differed in these three tissues. The strongest up-regulation in MyD88 mRNA levels (4.3-fold increase) was detected in the blood. The mRNA level peaked in spleen and head kidney at 3 h post-injection, which was 2.0-fold and 2.1-fold higher, respectively, than that in the non-injected control group, and decreased after 3 h post-injection. The peak of the mRNA level in blood persisted up till 12 h post-injection, which was later than that observed in other tissues.

An obvious increase in the MyD88 mRNA levels was also found in the *E. tarda*-challenged tissues, including the blood, spleen and head kidney of rock bream (Fig. 2.5b). The highest induced level (4.2-fold increase) of MyD88 was observed in spleen at 6 h post-injection. In blood and head kidney, the induction of mRNA occurred at 6 h after *E. tarda* injection and reached maximum expression levels (3.4-fold increase and 2.8-fold increase, respectively) within 24 h post-injection.

Table 2.2 ClustalW2 analysis and comparisons of the deduced amino acid sequence of rock bream <i>O</i> . <i>j</i>	<i>fasciatus</i> MyD88 (GenBank
accession number HM035064) with MyD88 from other known species	

Species	Accession number	Amino acids	Identity %		
Pseudosciaena crocea	ACL14361	287	86.2		
Takifugu rubripes	NP_001106666	288	78.1		
Plecoglossus altivelis altivelis	BAI68385	287	77.9		
Paralichthys olivaceus	BAE75959	285	77.1		
Oncorhynchus mykiss	NP_001117893	282	76.5		
Cynoglossus semilaevis	ACU31062	285	76.0		
Ictalurus punctatus	ACD81929	279	71.4		
Danio rerio	AAZ1 <mark>64</mark> 94	284	70.2		
Mus musculus	AAH <mark>5</mark> 8787	296	61.3		
Pan paniscus	BAG55249	296	60.6		
Gallus gallus	ABQ17966	299	60.5		
Xenopus laevis	NP_0 <mark>01</mark> 081001	283	59.8		
Homo sapiens	AAB49967	296	59.6		
Bos taurus	NP_001014404	296	58.9		
Chlamys farreri	ABB76627	367	27.2		
Drosophila melanogaster	NP_610479	537	14.4		

TCGTGTCAGGTAACCTGTGGACGCCTGAAGCGACTCGCTACTCCAAATCACG	53
CGTCTGTAGTTACAATGTTTCCCGTCTGGTGATTCAACTAACGCGGTGGTCTCCCGGAAAACTTTCGAAC ATGGCGTGTTCCGATCCAGAGGTGGACTTGGACACGATCCCCCTCATTGCACTGAATATGAGCGTGAGG	122 191
MACSDPEVDLDTIPLIALNMSVR	23
AAAAAGTTGGGACTGTATCTGAACCCCAGGAACCCAGTGGCCTCGGACTGGATGGCGGTTGCAGAGGAA	260
KKLGLYLNPRNPVASDWMAVAEE	46
ATGGGCTTCACTTACCTGGAGATACAGAACTATGAAGCGTCCAGGAGCCCCACCAAAGCGGTTCTGGAG	329
MGFTYLEIQNYEASRSPTKAVLE	69
GGCTGGCAGGCGCGGTCCACGGACGCGACGGTGGGGAAGCTGTTGTCAATCCTGACGCAGGTGGAGAGA	398
GWQARSTDATVGKLLSILTQVER	92
AAAGACATCGTGGAGGATCTCCGTCCTTTGATAGATGAGGATGTCAGGAAGTACTGTGAGAATCAGAAG	467
KDIVEDLRPLI-DEDVRKYCENQK	115
AAGAAGGCTGAGCCCCCGGTTCAGGTTCCAGAGGTTGACAGCTGTGTCCCTCGCACCCCAGAGAGGTTT	536
KKAEPVQVPEVDSCVPRTPERF	138
GGTATCACCCTGGAGGATGACCCTGAAGGTGCTCCCGAGCTGTTCGATGCCTTCATCTGCTACTGCCAG	605
GITLEDDPEGAPELFDAFICYCQ	161
AGCGACTTCGAGTTTGTCCATGAGATGATCCGTGAGCTGGAACAGACGGAGTACAAGCTGAAGCTGTGT	674
SDFEFVHEMIRELEQTEYKLKLC	184
GTGTTCGACAGAGATGTCCTCCCGGGCTCCTGTGTGTGGACCATCACTAGTGAGCTCATTGAGAAGAGG	743
VF-DR-DVLPGSC VWTITSELIEKR	207
TGTAAGAGGATGGTGGTGGTGATTTCTGATGAATACCTTGACAGCGATGCCTGTGACTTTCAGACAAAG	812
CKRMVVVISDEYLDSDACDFQTK	230
TTTGCTCTCAGCCCCTGTCCCGGAGCTCGAAATAAACGGCTCATTCCAGTGGTGTACAAGTCGATGACA	881
FALSPCPGARNKRLIPVVYKSMT	253
AAGCCGTTCCCCAGCATCCTACGCTTCCTCACCATATGTGACTACACCCGGCCTTGCACACAGGCCTGG	950
KPFPSILRFLTICDYTRPCTQAW	276
TTCTGGGTGCGGCTGGCCAAAGCTCTCTCACTGCCAFAAFCAACCAGGCAGTTACTGTAAAGGGGGATAT	1019
FWVRLAKALSLP*	288
TGGACAATGGCCAAACAGTACAGGTTCAAGTGTGTGTGCTATTGCTTGC	1088
GAACCCACTTGCCATTTACTGTGTATATACGGTATATATTATAATGCTACTGTTTGTGTTTCCTATGAA	1157
GACCACAGAGTGATTTCTGAATATTTTTATTATGAACCTCAAGTTGCACAAGTTCTCACTGCACGCAGC	1226
CATTATGTAAAATTTCAATAATAACATAGATTGTACCTGCCACTATTTGGATTTA	1295
GAGGAGGGTGTGTTTGT <u>ATTTA</u> GGCAGCATGTACTAAATACTCTGTAAAAGCAGTTTTTTGCACTGG CCACTTCCTCTTATGAGTCAACTTCTAGATGAGATTGAAGCTTAAGAGGAAGAGATATTGTGATACTTC	1364 1433
CGCATGTTCAGTTTTACAGACTGCTGACAGCTGCCTTTCTCTCTC	1433
GTCTGACATTTGATTTTGTACTTTTTGATATGATCTTTTTTGGAACAGTTTCTTGCAAAGTGAATTTAFTC	1571
TACCTTGAATAAGTGGTCTGAATATAATTTCCTCAA <mark>AATAAA</mark> TTTGACACATTTT	1626

Figure 2.1 The cDNA and deduced amino acid sequences of rock bream MyD88

(GenBank accession number HM035064). The nucleotides and amino acids are numbered along the right margin. The boxed letters indicate the start codon (ATG), the stop codon (TAA) and the instability motif (ATTTA). The boxed bold letters indicate a putative polyadenylation signal (AATAAA). The death domain regions extend from position 24-103 (dark gray underlay), and the TIR domain extends from position 151-288 (light gray underlay), in which conserved sequences are denoted by bold italicized letters.

I

77

Figure 2.3 Phylogenetic analysis of rock bream MyD88 with MyD88 from 16 other species, including large yellow croaker *P. crocea*, pufferfish *T. rubripes*, flounder *P. olivaceus*, tongue sole *C. semilaevis*, sweetfish *P. altivelis altivelis*, rainbow trout *O. mykiss*, zebrafish *D. rerio*, channel catfish *I. punctatus*, frog *X. laevis*, chicken *G. gallus*, mouse *M. musculus*, cattle *B. Taurus*, human *H. sapiens*, chimpanzee *P. paniscus*, scallop *C. farreri*, and fruitfly *D. melanogaster*. The tree is based on an alignment corresponding to full-length amino acid sequences, generated by ClustalW and *MEGA* version 4. The numbers at each of the nodes represent the bootstrap percentages of 1000 replicates. The scale bar corresponds to 0.1.

Figure 2.4 Relative mRNA expression of rock bream MyD88 in different tissues including blood, gill, liver, spleen, head kidney (H. kidney), kidney, skin, muscle, brain, and intestine.. Expression values are normalized to those of rock bream β -actin (internal control). The bars indicate the mean fold change (mean \pm S.D., n = 3) from the calibrator group (muscle). Means with different letters are significantly different (*P*<0.05).

Figure 2.5 Relative rock bream MyD88 mRNA expression in response to challenge with LPS (a) and *E. tarda* (b) at 3, 6, 12, 24 and 48 h post-injection. Expression values are normalized to those of rock bream β -actin. The bars indicate the mean fold change (mean \pm S.D., n = 3) from non-injected controls. Means with different letters are significantly different (*P*<0.05).

2.7 DISCUSSION

Toll-like receptors play an essential role in the detection of invading pathogens within the body and the initiation of the subsequent innate immune response. TLRs are a type of pattern recognition receptor and recognize structurally conserved pathogen-associated molecular patterns that are broadly expressed by pathogens, but are distinguishable from host 'self' molecules [7]. When activated by PAMPs, almost all TLRs (except TLR3) recruit the adaptor protein MyD88 in order to propagate their signal. This adaptor molecule activates certain protein kinases, such as IRAKs, that then act to amplify the signal and ultimately lead to the induction or suppression of downstream genes that orchestrate the immuno-inflammatory response [7].

In this study, we have identified and characterized the TLR/IL-1R adaptor protein MyD88 from rock bream *O. fasciatus*. The MyD88 cDNA was 1626 bp in length and included an open reading frame of 867 bp encoding a putative protein of 288 amino acids, which was consistent with the sequence analysis of the MyD88 from pufferfish *T. rubripes* (GenBank accession number NP_001106666). In its 3' UTR, the rock bream MyD88 cDNA contained four mRNA instability motifs (ATTTA), which are believed to be responsible for destabilizing mRNA by regulating degradation and suppressing translation mechanisms [39,40]. This instability motif has not only been found in *P. crocea* MyD88 [32] but also in a number of inflammatory mediators in fish, including various cytokines [41,42].

Based on its predicted structural features, the amino acid sequence of the rock bream MyD88 protein was remarkably conserved. First, the death domain was found to be located at positions 24-103 of the amino terminus. To date, more than 300

Collection @ jeju

death domain-containing proteins have been reported [43,44] and, in most of them, the death domains are typically located at the extreme carboxyl terminal. The death domain originally was characterized for its involvement in signaling processes that ultimately led to apoptosis [45]. However, the death domain within the TLR pathway component MyD88 was located at the amino terminus and appears to be used for mediating downstream interactions with the IRAK family [18]. Therefore, the conserved sequences and location of the death domain in rock bream MyD88 suggest that it should have a typical function in TLR signaling transduction. Second, the TIR domain, with three conserved boxes (Box 1, Box 2 and Box 3), was found to comprise the carboxyl terminal half of the protein (amino acid positions 151-288) and exhibited significantly more sequence conservation than did the death domain (data not shown). Box 1, which has been proposed as essential for the interaction of MyD88 with TLRs and IL-1R [46], was found to be highly conserved in rock bream MyD88. This result suggested that MyD88 in rock bream played a similar role to the conserved MyD88 from other species. Third, a 47 amino acid long interdomain was found in MyD88 at positions 104-150. Interestingly, functional relevance of an interdomain was proven after the discovery of a mouse MyD88 splice variant lacking the interdomain. This truncated form of MyD88 (called MyD88_s) has been shown to be stimulated by LPS and can inhibit LPS-induced NF-kB activation through inhibition of IRAK activity [47,48]. Thus, MyD88s may negatively regulate the inflammatory responses triggered by LPS. However, the function of this interdomain in fish species remains to be elucidated.

The mRNA expression of the MyD88 in healthy rock bream was found to be ubiquitous, but at various levels of robustness in different tissues. High expression was observed in immune-relevant tissues, including the liver, blood, kidney, spleen, gill and head kidney. This is similar to the observed expression of MyD88 in other

- 79 -

species, including mammalian [23,24], amphibian [25], avian [26], fishes [27], and invertebrates [28,29], indicating a role of MyD88 in innate immune defense.

The temporal expression patterns of MyD88 mRNA have been previously investigated in response to LPS, the peptidoglycan (PGN) component of Gram-positive bacteria, polyinosinic-polycytidylic acid (poly I:C) and whole cell bacterial stimulation [31,32]. In the study presented herein, an immediate increase in the expression of rock bream MyD88 was observed in blood, spleen and head kidney after LPS stimulation (Fig. 5a). The observed pattern in this study generally agreed with published data on MyD88 response after LPS treatment of peripheral blood leukocytes (PBLs) from P. olivaceus [31]. Takano et al. [31] suggested that the prompt increase in MyD88 expression indicated that the MyD88-dependent signaling pathway of TLR4 may have been activated. Mammalian TLR4 is known to be involved in the response to LPS from Gram-negative bacteria, and MyD88 has been demonstrated to act as an adaptor molecule in the related signaling pathway [7]. However, the TLR4 gene has only been found in the teleost species zebrafish (Cypriniformes) [30,49]. Sepulcre et al. [50] reported that the mechanism of LPS recognition in fish may be distinct from that of mammals; it was suggested that LPS may trigger a TLR4- and MyD88-independent signaling pathway in fish. These authors also showed that the zebrafish TLR4 was able to negatively regulate the MyD88-dependent signaling pathway. On the other hand, Roach and colleagues [51] suggested that Fugu TLR23 may participate in LPS recognition. Likewise, Iliev et al. [52] speculated that alternative signaling receptors (not TLR4), such as Beta-2 integrins, may play a primary role in the activation of piscine leukocytes by LPS. These reports raise the possibility that different receptors might be involved in the activation of signaling pathway by LPS in fish.

In our study, we observed that infected rock bream were able to mount a

significant response to *E. tarda*, and presented an increased expression of MyD88 in blood, spleen and head kidney (Fig. 5b). Interestingly, in contrast to the rapid response to LPS, in the early stages after live *E. tarda* infection, the expression of MyD88 decreased in the spleen and head kidney; a null induction was observed in blood which was followed by a gradual increase. This study represents the first *in vivo* investigation of MyD88 expression in rock bream exposed to live pathogenic bacteria; the immunologic response pattern observed basically agreed with previous data from fish exposed to formalin-inactivated Gram-negative bacteria *Vibrio parahaemolyticus* [32].

In conclusion, we identified the cDNA of MyD88 from rock bream *O. fasciatus,* and characterized its expression features in healthy and immune-challenged individuals. MyD88 was found to be highly expressed in immune-relevant tissues and significantly up-regulated by immune-challenge. These findings indicated that MyD88 of rock bream can act as a highly inducible molecule after bacterial challenge and might be involved in the first line of defense against bacterial pathogens.

Although further research is needed to understand the dynamic role of MyD88 with respect to other immunoproteins (signaling receptor or costimulatory proteins) in the rock bream innate immune system, we believe that investigations similar to those presented in this paper will provide the critical information necessary to solve the problems caused by diseases currently affecting the culture of this important fish species.

2.8 REFERENCES

[1] Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol 2006;20:137-51.

[2] Fearon DT. Seeking wisdom in innate immunity. Nature 1977;388:323-4.

[3] Medzhitov R, Janeway Jr CA. Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298-300.

[4] Armant MA, Fenton MJ. Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 2002;3:3011.1-6.

[5] Beutler B. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 2005;57:385-92.

[6] Bilak H, Tauszig-Delamasure S, Imler JL. Toll and Toll-like receptors in Drosophila.BiochemSocTrans2003;31:648-51.

[7] Krishnan J, Selvarajoo K, Tsuchiya M, Lee G, Choi S. Toll-like receptor signal transduction. Exp Mol Med 2007;39:421-38.

[8] Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740-5.

[9] Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732-8.

[10] Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, et al. Recognition of single stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 2004;101:5598-603.

[11] Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529-31.

[12] Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 2004;303:1526-9.

[13] Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al.

Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999;11:443-51.

[14] Takada H, Uehara A. Enhancement of TLR-mediated innate immune responses by peptidoglycans through NOD signaling. Curr Pharm Des 2006;12(32):4163-72.

[15] Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, et al. Cutting edge: preferentially the R-stereoisomer of the myoplasma lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 2000;164:554-7.

[16] Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000;97:13766-71.

[17] Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC Goodlett DR, Eng JK, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099-103.

[18] Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh C, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998;2:253-8.

[19] Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216.

[20] Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlaradt PF, Sato S, et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001;167:5887-94.

[21] Lord KA, Hoffman-Liebermann B, Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 1990;5 (7): 1095–7.

[22] Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 1997; 7: 837-47.

[23] Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE. The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett 1997;402: 81-4.

[24] Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS,

et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 2002;99:16899-903.

[25] Prothmann C, Armstrong NJ, Rupp RA. The Toll/IL-1 receptor binding protein MyD88 is required for Xenopusaxisformation.Mech Dev 2000;97: 85-92.

[26] Wheaton S, Lambourne MD, Sarson AJ, Brisbin JT, Mayameei A, Sharif S. Molecular cloning and expression analysis of chicken MyD88 and TRIF genes. DNA Seq 2007;18: 480-6.

[27] van der Sar AM, Stockhammer OW, Van der Laan C, Spaink HP, Bitter W, Meijer AH. MyD88 innate immune function in a zebrafish embryo infection model. Infect Immun 2006;74: 2436-41.

[28] Qiu L, Song L, Yu Y, Su W, Ni D, Zhang Q. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop Chlamysfarreri.Fish Shellfish Immunol 2007;23:614-23.

[29] Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL. DrosophilaMyD88isrequiredfortheresponsetofungalandGram-positivebacterialinfection.Nat Immunol 2001;3: 91-7.

[30] Meijer AH, Krens SFG, Rodriguez IAM, He S, Bitter W, Snaar-Jagalska BE, et al. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 2004;40: 773-83.

[31] Takano T, Kondo H, Hirono I, Saito-Taki T, Endo M, Aoki T. Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA and gene in Japanese flounder Paralichthysolivaceus.Develop Comp Immunol 2006;30: 807-16.

[32] Yao CL, Kong P, Wang ZY, Ji PF, Liu XD, Cai MY, et al. Molecular cloning and expression of MyD88 in large croaker Pseudosciaenacrocea.Fish Shellfish Immunol 2009;26:249-55.

[33] Rebl A, Goldammer T, Fischer U, Köllner B, Seyfert HM. Characterization of two key molecules of teleost innate immunity from rainbow trout (Oncorhynchusmykiss):MyD88andSAA.Vet Immunol Immunopathol 2009;131:122-6.

[34] Zenke K, Kim KH. Functional characterization of the RNase III gene of rock bream iridovirus. Arch Virol 2008;153:1651-56.

[35] Park SL. Disease control in Korean aquaculture. Fish Pathol 2009;44:19-23.

[36] Droege M, Hill B. The genome sequencer FLXTM system-longer reads, more

applications, straight forward bioinformatics and more complete datasets. J Biotechnol 2008;136:3-10.

[37] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007;24:1596-99.

[38] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 2001;25:402-8.

[39] Shaw G, Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986;46:659-67.

[40] Han J, Brown T, Beutler B. Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med 1990;171:465-75.

[41] Lee EY, Park HH, Kim YT, Choi TJ. Cloning and sequence analysis of the interleukin-8 gene from flounder (*Paralichthys olivaceus*). Gene 2001;274:237-43.

[42] Laing KJ, Zou JJ, Wang T, Bols N, Hirono I, Aoki T, et al. Identification and analysis of an interleukin 8-like molecule in rainbow trout *Oncorhynchus mykiss*. Dev Comp Immunol 2002;26:433-44.

[43] Weber CH, Vincenz C. The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 2001;26:475-81.

[44] Hofmann K, Tschopp J. The death domain motif found in FAS (APO-1) and TNF receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett 1995;371:321-3.

[45] Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 1993;268:10932-7.

[46] Xu Y, Tao X, Shen B, Horn T, Medzhitov R, Manley JL, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 2000;408:111-5.

[47] Janssens S, Burns K, Tschopp J, Beyaert R. Regulation of interleukin-1 and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr. Biol 2002;12:467-71.

[48] Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med

2003;197:263-8.

[49] Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in *Danio rerio*. Mol Immunol 2004;40:759-71.

[50] Sepulcre MP, Alcaraz-Pérez F, López Muñoz A, Roca FJ, Meseguer J, Cayuela ML, et al. Evolution of lipopolysaccaride (LPS) recognition and signaling: Fish TLR4 does not recognize LPS and negatively regulates NF-kB activation. J Immunol 2009;15:1836-45.

[51] Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD et al. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 2005;102:9577-82.

[52] Iliev DB, Roach JC, Mackenzie S, Planas JV, Goeta FW. Endotoxin recognition: In fish or not in fish? FEBS Lett 2005;579:6519-28.

PART 3

Molecular analysis and transcriptional responses of interferon (IFN) regulatory factor-1 and IFN gamma inducible lysosomal thiole reductase (GILT) from rock bream (Oplegnathus fasciatus)

3.1 ABSTRACT

Activation of the interferon (IFN) system and its down-stream IFN-stimulated genes (ISGs) play important roles in innate and adaptive immune responses to pathogens. In this study, we describe the identification and characterization of IFN regulatory transcription factor 1 (IRF-1) and IFN- γ inducible lysosomal thiole reducatase (GILT) cDNA sequences from rock bream *Oplegnathus fasciatus*. These two cDNA sequences, named as RbIRF-1 and RbGILT, were discovered by signature pyrosequencing (GS-FLX 454) of a multi-tissue cDNA library of rock bream. RbIRF-1 showed significant evolutionary conservation of its N-terminal 113 amino acids, which encompassed a DNA binding domain (DBD) containing five conserved tryptophan repeats. Meanwhile, the RbGILT cDNA had the characteristic GILT signature sequence composed of a functional domain (⁹⁷CQHGEQECLGNMIETC¹¹²), active site ⁷⁴C-XX-C⁷⁷ motif and seven putative disulfide bonds. Therefore, the newly identified rock bream IRF-1 and GILT proteins are similar to those in other fish and mammals as revealed by molecular characterization and phylogenetic analysis.

Real-time RT-PCR analysis revealed that expression of RbIRF-1 and RbGILT transcripts was constitutive in eleven tissues selected from un-challenged rock bream, with the highest levels observed blood and gills. Immune challenge with synthetic polyinosinic:polycytidylic acid (polyI:C) up-regulated the RbIRF-1 and RbGILT mRNA in blood, gills, spleen and head kidney; however, the magnitude of RbGILT up-regulation was lower than that of RbIRF-1. Only a moderate up-regulation (compared to poly I:C) of RbIRF-1 and RbGILT mRNA was observed in gills and head kidney at the early stage of rock bream iridovirus (RbIV) challenge. In blood, both transcripts were found to be continuously up-regulated throughout the 48 h

observation. The transcriptional up-regulation in response to poly I:C and RbIV, strongly suggest that RbIRF-1 and RbGILT are related to IFN signaling and may indicate essential roles in subsequent adaptive immunity in rock bream.

Keywords: Rock bream; Oplegnathus fasciatus; IRF-1; GILT; poly I:C; RbIV

3.2 LIST OF TABLES

3.3 LIST OF FIGURES

		Page
Figure 3.1	The nucleotide and deduced amino acid sequences of RbIRF-1	1 4.50
	cDNA. The start (ATG) and stop (TAA) codons are underlined	103
Figure 3.2	The nucleotide and deduced amino acid sequences of RbGILT	
	cDNA. The start (ATG) and stop (TGA) codons are underlined	104
Figure 3.3	Multiple sequence alignment of RbIRF-1. Analysis was performed	
	by ClustalW using amino acid sequences of known IRF-1s from	
	different phyla, including S. chuatsi (AAV650412), E. coioides	
	(ACF95885), X. tropicalis (NM_001006694), G. gallus (L339766),	
$\overline{\nabla}$	R. norvegicus (M34253) and H. sapiens (L05072). The DNA	
	binding domain is marked by a dotted line above the aligned	
_	sequences with bold type (RbIRF-1)	105
Figure 3.4	Multiple sequence alignment of RbGILT	107
Figure 3.5	Phylogenetic analysis of RbIRF-1 with other IRF family members	108
Figure 3.6	Phylogenetic analysis of RbGILT with known GILT family proteins	109
Figure 3.7	Tissue distribution of RbIRF-1 and RbGILT	114
Figure 3.8	Transcriptional regulation of RbIRF-1 and RbGILT in blood, gills,	
	spleen and head kidney following poly I:C challenge	115
Figure 3.9	Transcriptional regulation of RbIRF-1 and RbGILT in blood, gills,	
	spleen and head kidney following RBIV challenge	116

3.4 INTRODUCTION

Proper activation of the innate immune system is essential for regulating subsequent host responses associated with adaptive immunity against pathogens [1]. The interferons (IFNs) represent the major group of cytokines involved in cellular antiviral defense, as well as having various other pleiotropic functions, thereby supporting host resistant phenotypes against particular pathogenic agents [2]. In mammals, expression of IFN and certain IFN-stimulated genes (ISGs) is mediated by a family of transcription factors known as the IFN regulatory factors (IRFs) [3]. To date, ten IRF proteins (IRF1-IRF10) have been identified in higher vertebrates, although IRF10 appears to be absent from the genomes of human and mice [4]. New IRF family member, IRF-11 was identified from certain fish species such as Danio rerio and Fugu rubripes [5]. The unique characteristic feature of these IRFs is that they possess DNA binding domain (DBD) with tryptophan amino acids cluster [5,6]. IRF-1 was originally identified as a transcriptional activator of the human IFNβ gene. Futhermore the DNA binding domain (DBD) of IRF-1 was shown to specifically bind to cis-acting IRF elements present in the promoter sequence of IFN- β [6-7]. Dynamic roles have since been defined for IRF-1 in IFN signaling, as well as in T cell mediated immune response [8], antiviral activity [9], inflammatory response [10], regulation of cell proliferation and differentiation [11], tumor suppression [12] and apoptosis [13]. Also, upon stimulation of IRF-1 by certain viruses, the protein functions as a transcriptional activator of various ISGs which are involved in diverse immune reactions, such as macrophage activation, antigen presentation [14].

Several IFNs and ISGs have been characterized in teleosts, but relatively few IRF-1 genes have been cloned from the species examined to date, including Salmon salar [4], Paralichthys olivaceus [15], Fugu rubripes [16], Oncorhynchus mykiss [17], Scophthalmus maximus, Sparus aurata [18], Siniperca chuatsi [19], Channa

argus [20], *Epinephelus coioides* [21] and *Carassius auratus* [22]. A recombinant plasmid expressing *Paralichthys olivaceus* IRF-1 was able to induce the anti-viral Mx gene transcription upon vaccination [23]. More recently, three IFN-inducible Mx isoforms [24] and the double stranded RNA-dependent protein kinase (PKR) [25] were cloned from rock bream. The study presented herein represents the first successful attempt to identify IRF-1 in rock bream.

The IFN- inducible lysosomal thiol reducatase (GILT) protein is known to play a central role in MHC class II antigen processing and presentation pathways by acting as a reducer of disulfide bonds in exogenous antigens, a process considered as essential for immune responses [26]. It has been demonstrated that GILT also mediates the neutralization of extracellular pathogens and clearance of cell debris resulting from infection [27]. Mammalian GILT is mainly controlled by IFN-y via the JAK-STAT signaling pathway [28]. Only a few numbers of GILT genes have been cloned from fish, including Danio rerio [29], Pseudosciaena crocea [30], Epinephelus coioides [31], catfish (DQ353791) and pufferfish (CR697192). The immune response properties of GILT in fish have been investigated by comparative transcriptional analysis of healthy and immune-challenged individuals, in particular examining the effects of bacteria [30] and LPS [31] exposure. Results of these studies have suggested that induction of GILT could be a result of increased IFN- y produced by stimulated lymphocytes and macrophages. Among the three main classes of IFNs type I (α/β), II (y) and III (λ)), type II is represented by a single member, IFN- χ , while the other two types are multigene families [32]. Interestingly, the C. argus IRF-1 promoter contains an IFN-y activation site (GAS sequence [21], indicating the potential for interrelated transcriptional regulation. Since IRF-1 is an activator of different sets of genes related to the IFN system, it would be valuable to elucidate the immune related function(s) associated with both IRF-1 and GILT.

Insights into the regulation of IRF-1 and its transcriptional activation of downstream target genes will undoubtedly contribute to our overall understanding of the IFN regulatory mechanisms in fish. To date, however, very little know is known

Collection @ jeju

about such IFN-related molecules in the rock bream, a commercially important marine fish which is frequently infected by rock bream iridovirus (RbIV) [33]. In order to begin tackling the economically devastating effects of RbIV, characterization of IRF-1 and GILT molecules will help to uncover the complexities of the innate and adaptive immune responses in rock bream.

To this end, we sought to identify and molecularly characterize IRF-1 and GILT cDNA sequences from rock bream. We found that the transcriptional regulation of rock bream IRF-1 and GILT are associated with immune responses to poly I:C and RbIV.

3.5 MATERIALS AND METHODS

3.5.1 Fish and tissue isolation

Healthy rock bream *Oplegnathus fasciatus* fish (mean weight of 30 g) were obtained from the Ocean and Fisheries Research Institute (Jeju Special Self-Governing Province, Republic of Korea). Fish were maintained in a seawater tank (400 L) tank with a salinity level of 34 ‰ at 24 ± 1 °C. Fish were acclimatized for one week prior to experimentation and maintained on a commercial pellet diet. For tissue sampling, fish were sacrificed and the gills, spleen, heart, head kidney, kidney, liver, intestine, muscle, skin and brain were excised from three healthy (un-challenged) fish. Blood samples (approximately 1 mL/fish) were taken from the caudal vein by using a syringe fitted with a 22 gauge needle containing 100 µL heparin to prevent coagulation. Blood samples were centrifuged 3000 x g at 4 °C for 10 min to separate the blood cells from the plasma and serum. All tissues and blood cells were snap-frozen in liquid nitrogen immediately after dissection and stored at -80 °C until needed for analysis.

3.5.2 Construction of normalized cDNA library

Collection @ jeju

Approximately 150 mg (50 mg \times 3) of pooled tissue sample was obtained from each of three animals. Total RNA was isolated from tissues using the TRI ReagentTM (Sigma, USA) according to the manufacturer's protocol. To construct the multi-tissue normalized cDNA library for 454 pyrosequencing, poly(A) mRNA transcripts were isolated by means of the FastTrack® 2.0 kit (Invitrogen, USA), following the

1952

manufacturer's instructions. RNA concentration and purity was determined by measuring the absorbance at 260 and 280 nm in a UV-spectrophotometer (Bio-Rad, USA). Full-length, enriched first strand cDNA was generated from 1.5 mg of poly(A+) RNA using a CreatorTM SMARTTM cDNA library construction kit (Clontech, USA) and following the manufacturer's instructions. Then, cDNA amplification was carried out with the 50× Advantage 2 polymerase mix (Clontech, USA) at 95°C for 7 sec, 66°C for 30 min and 72°C for 6 min. In order to reduce over-representation of the most commonly expressed transcripts, the resulting double stranded cDNA was normalized using the Trimmer-Direct cDNA normalization kit (Evrogen, Russia).

3.5.3 GS-FLX 454 sequencing and identification of RbIRF-1 and RbGILT

To sequence the rock bream whole transcriptome, we employed the Roche 454 pyrosequencing platform to analyze our normalized multi-tissue cDNA library constructed above. Pyrosequencing was carried out using the next-generation GS-FLX Titanium and related reagents (DNA Link, Republic of Korea). A single full plate run was performed using normalized cDNA and the reads obtained were processed and assembled through the ARACHNE assembly program (www.broadinstitute.org). Two unique cDNAs which showed homology to known IRF-1 and GILT were identified from homology searches using the Basic Local Alignment Tool (BLAST) algorithm [33].

3.5.4 Molecular characterization of RbIRF-1 and RbGILT

Nucleotide and predicted peptide sequences of RbIRF-1 and RbGILT were

analyzed using DNAsisst and BLAST programs. Characteristic domains or motifs were identified using the PROSITE profile database [34]. Signal sequence and putative cleavage sites of RbIRF-1 and RbGILT were identified using the SignalP 3.0 server. Identity, similarity and gap percentages were calculated using the FASTA program [35]. Pair-wise and multiple sequence alignment were analyzed using the ClustalW program, version 1.8 [36]. Disulfide bond was predicted with DiANNA 1.1 web server (http://clavius.bc.edu/~clotelab/DiANNA). A phylogenetic tree was constructed using the Neighbor-Joining method and plotted with the MEGA version 3.1 program [37].

3.5.5 Immune challenge of rock bream

To study the transcriptional regulation of RbIRF-1 and RbGILT, we performed two immune challenge experiments using poly I:C and RbIV. Three groups of 20 fish each were challenged with: i) poly I:C; ii) RbIV; or, iii) phosphate buffered saline (PBS) as control. The first group was intraperitoneally (i.p.) injected with 150 µg/fish of poly I:C (Sigma) in phosphate buffered saline (PBS). The second group was injected with 100 mL of RbIV containing supernatant isolated from iridovirus infected rock bream kidney provided by Dr. Sung-Ju Jung from the Department of Aquatic Life Medicine, Chonnam National University, Republic of Korea. The control group was injected with the same volume (as used in experiments) of PBS alone. Rock bream blood, gill, spleen and head kidney tissues were removed at 3, 6, 12, 24, and 48 h post-challenge. Respective control samples were isolated from PBS injected fish.

3.5.6 cDNA synthesis for transcriptional analysis of RbIRF-1 and RbGILT

An equal amount (50 mg) of tissue was mixed from three fish to make a pooled sample for RNA isolation. Total RNA was extracted using TRI reagent according to the manufacture's protocol. Sample of 2.5 mg RNA was used to synthesize cDNA from each tissue using a Superscript III first strand synthesis system for RT-PCR kit (Invitrogen). Briefly, RNA was incubated with 1 mL of 50 mM oligo(dT)₂₀ and 1 mL of 10 mM dNTPs for 5 min at 65°C. Afterwards, 2 mL of 10× cDNA synthesis buffer, 4 mL of 25 mM MgCl₂, 2 mL of dithiothreitol (DTT; 0.1 M), 1 mL of RNaseOUTTM (40 U/mL) and 1 mL of SuperScript III reverse transcriptase (200 U/mL) were added and the mixture was allowed to incubate for 1 h at 50°C. The reaction was terminated by adjusting the temperature to 85°C for 5 min. Then, 1 mL of RNase H was added to each cDNA reaction and incubated at 37°C for an additional 20 min. Finally, synthesized cDNA was diluted 40-fold (total 800 mL volume) before storing at -20°C.

3.5.7 Transcriptional analysis of RbIRF-1 and RbGILT by quantitative real-time RT-PCR (qPCR)

The RbIRF-1 and RbGILT expression in various rock bream tissues and after immune challenge was analyzed by qPCR. Gene-specific primers for RbIRF-1 (Forward primer: 5'-CCAACTTCCGCTGTGCAATGAACT-3' and Reverse primer: 5'-TTCCTCCGTCTTGACCATTGTGCT-3') and **RbGITL** 5' (Forward primer: -TGAGTTGAGCTGGGACAGTGTCAT-3' 5' and Reverse primer: -ACATGCTGCAGACCAGAGTGAAGA-3') were designed to amplify a specific region of each gene. The rock bream beta actin (Accession No. FJ975145) was selected for

- 98 -

Collection @ jeju

use as a reference gene, and it was amplified using Forward primer: 5' -TCATCACCATCGGCAATGAGAGGT-3' 5' and Reverse primer: -TGATGCTGTTGTAGGTGGTCTCGT-3' gene-specific primers). Tissue-specific mRNA expression was analyzed in rock bream blood, gills, spleen, heart, head kidney, kidney, liver, intestine, muscle, skin and brain. The RbIRF-1 and RbGILT transcriptional regulation changes in response to poly I:C and RbIV challenge were analyzed in blood, gills, spleen and head kidney. qPCR was carried out in a 20 mL reaction volume containing 4 mL of 1:40 diluted original cDNA, 10 mL of 2× SYBR Green Master Mix, 1.0 mL of each primer (10 pmol/mL), and 4.0 mL of PCR grade water using the Thermal Cycler DiceTM Real Time System (TaKaRa, Japan). The qPCR cycling protocol was as follows: one cycle of 95°C for 3 min, amplification for 35 cycles of 95°C for 20 sec, 58°C for 20 sec, 72°C for 30 sec. The baseline was set automatically by the Thermal Cycler DiceTM Real Time System software (version 2.00). The relative expression of each gene was determined by the Livak $(2^{-\Delta\Delta CT})$ method [38], considering rock bream beta actin as the reference gene. The calculated relative expression level of each gene was compared to respective expression levels of blood to determine the tissue-specific expression level. For analysis of the fold-change in expression after immune challenge, relative expression at each time point was compared to respective PBS-injected controls.

3.6 RESULTS

3.6.1 Analysis of pyrosequencing and identification of RbIRF-1 and RbGILT cDNA sequences

To attain deep sequencing of the rock bream whole transcriptome, we used the high-throughput next generation GS-FLX 454 sequencing platform. A normalized multi-tissue cDNA library was constructed using RNA isolated from various rock bream organs to obtain a large amount of tissue-specific transcripts in hopes of increasing the overall rock bream transcriptome coverage. Nearly 672,000 reads were generated with an average sequence length of 400 bases. After assembly, we identified ~36,000 contigs and 89,000 singletons. Based on the sequence similarity with known proteins and conserved domains, assembled contig sequences were annotated with gene names representative of the rock bream origin, such as IRF-1 (RbIRF-1) and GILT (RbGILT) cDNAs.

3.6.2 Sequence characterization of RbIRF-1

The RbIRF-1 cDNA sequence (GenBank accession no. GQ903769) was 1755 bp in length and composed of a 942 bp single open reading frame (ORF) corresponding to 314 amino acid (aa) residues (Fig. 3.1). The estimated molecular mass and the isoelectic point were 36 kDa and 4.8, respectively. A DBD was identified in the N-terminal region (1-113 aa) which exhibited significant match to the consensus and had an e-value $8.32e^{-53}$. Additionally, a signature of the IRF family, the tryptophan pentad repeat, was found to be present in the 26-59 aa range. A bipartite nuclear localization signal (NLS) profile was predicted (120-134 aa) and had a $2.1e^{+04}$

e-value by motif scan analysis. RbIRF-1 had a 139 bp 5' untranslated region (UTR) and a 674 bp 3' UTR with a canonical polyadenylation signal sequence, located at ¹⁵⁹⁷AATAAA1⁶⁰² with respect to ATG start codon. To find the closest species IRF-1 to RbIRF-1, we performed pair-wise sequence analysis using the ClustalW program. RbIRF-1 exhibited the highest amino acid identity (84%) to IRF-1 of Siniperca chuatsi, but showed only 39% identity to human IRF-1. Furthermore, RbIRF-1 identity to various fish, amphibian, birds and mammalian IRF-1s ranged from 37-84%, while it showed a lower range to all other IRFs family members (IRF2-IRF9) (data not shown). ClustalW multiple alignment analysis revealed that the N-terminal DBD and the five tryptophan residues of RbIRF-1 were highly conserved among selected sequences (Fig. 3.3). It was further revealed that RbIRF-1 has higher amino acid conservation in the N-terminal region than in the C-terminal: a phenomenon generally considered as a characteristic feature of IRF-1 members [22]. RbIRF-1 was found to contain a basic K and R rich sequence (¹¹⁶KSRDKRSKAKETKPRKK¹³²) located in a similar region in C. auratus IRF-1 and the NLS of mammalian IRF-1 proteins [22].

3.6.3 Sequence characterization of RbGILT

We identified 1045 bp long cDNA of RbGILT (GenBank accession no.GQ903766) that was composed of a 765 bp ORF containing a 255 amino acids peptide (Fig 3.2). Signal peptide analysis predicted the first 21 aa residues correspond to a signal peptide expected to result in a mature protein (234 aa) with an estimated molecular mass of 26 kDa and an isoelectric point of 5.2. As expected, the characteristic GILT signature sequence (64-169 aa range with $68e^{-25}$ e-value) comprised of a functional domain (⁹⁷CQHGEQECLGNMIETC¹¹²) and active site ⁷⁴C-XX-C⁷⁷ motif were also

found in RbGILT. Furthermore, the cDNA sequence included a 104 bp 5' UTR and a 106 bp 3' UTR. The RbGILT mature peptide contained a high number of cysteine residues (n=15) representing 5% of the entire sequence. Disulfide bond prediction results showed that there were seven putative disulfide bonds in different cysteine positions at ${}^{5}C-C^{56}$, ${}^{13}C-C^{22}$, ${}^{53}C-C^{104}$, ${}^{97}C-C^{112}$, ${}^{126}C-C^{220}$, ${}^{140}C-C^{156}$ and ${}^{209}C-C^{231}$. Therefore, we concluded that RbGILT cDNA encodes a complete coding sequence with all the principal characteristic features of a GILT protein family member.

Pair-wise alignment results showed that RbGILT has the highest amino acid identity (85%) to A. fimbria GILT. Furthermore, it had 77% and 39% amino acid identity to *E. coioides* and human GILT sequences, respectively. Multiple alignment analysis of RbGILT was carried out against known GILT family proteins from several phyla of vertebrates. The conserved amino acids in the N-terminal region were relatively low in comparison to those in the middle and C-terminal regions of RbGILT (Fig. 3.4). However, characteristic CXXC motif elements (CPGC) of RbGILT were found to be completely conserved with all aligned GILT sequences, except that of mouse GILT which contains a CGAC at the same position. Moreover, the GILT signature sequence elements showed higher conservation among aligned sequences.

3.6.4 Phylogenetic analysis of RbIRF-1 and RbGILT

A total of 54 full-length cDNAs encoding different IRFs (IRF-1 to IRf-9) from fish, amphibians, avians and mammals were selected from the NCBI database to analyze the phylogenetic relationship of RbIRF-1. A phylogenetic tree was constructed by Neighbor-Joining method (Fig. 3.5). This analysis clearly indicated the existence of nine well-defined clusters or sub-groups of IRFs, as had been described in mammals [10]. Rock bream IRF-1 exhibited the closest evolutional relationship

-139 ACCC ACTTCAGATCGAGAC AGGTCTCCAAGTGGA TAAAACAAAGACGAG GAGAAGCTTCTCTGG -76 ATCAAACTTAAACCA ATCGGACTATTCTTG TGCATTTTCCTCTCA CGGATCATACAACAA GCAAAGCCTGAAATC -1 75 ATGCCCGTGTCAAGG ATGAGGATGAGGCCA TGGCTGGAGCAGCAG ATCGAGTCGAACTCG ATCTCTGGTCTGCAT 25 M P V S R M R M R P W L E Q Q IESNS ISGLH TGGGTGGACAAGGAT AAGACGATGTTCTCA ATTCCCTGGAAGCAT GCCGCTCGACACGGC TGGGAGCTGGACAAA 150 50 WVDKD KTMFS I PWKH AARHG WELDK GACGCATGTCTGTTC AAACAATGGGCCATC CACACAGGGAAATAC GTGGAAGGTCAAGCC TGTGACCCAAAGACG 225 ACLF KQWAI HTGKY VEGQA CDPK 75 D т TGGAAAGCCAACTTC CGCTGTGCAATGAAC TCACTGCCTGACATC GAGGAGGTGAAAGAC AAGAGCGTCAACAAA 300 WKANF RCAMN SLPDI EEVKD KSVNK 100 375 GHQAM RVFRM LPS LP KSRDK RSKAK 125 450 GAAACAAAGCCAAGG AAGAAGAGCACAATG GTCAAGACGGAGGAA GACATGGACTACAGT GATACCCAGTCTCCC ETKPR K K S T M V K T E E D M D Y S DTOSP 150 ATGGATGACTCAATG CCGGAAGACACTTTG TCCACTCAGGAGAAC ACAGTCGACAGCACA GTGCACACAGAGTCA 525 M D D S M P E D T L S T Q E N T V D S T VHTES 175 CAAGATTTCCCATTT GTGGCTCCATCTGAC GTTCCCGACTGGTCT TCGTCAGTTGAGATC GAGAGCTTTCAAAGC 600 ODFPF VAPSD VPDWS SSVEIES FQS 200 AACTTCCACCACAGA TTTGAAGTTTCACCT GAACGCAGCTCCGAT TACGACTACACCGAC GATATTATCCAGATT 675 NFHHR FEVSPERSSD YDYTD DIIQI 225 TGCCAAGAACTGGAG AAAGAATCACACTGG ATGACAAGCAGTTTA GACGGCAATGGGTTC CTGAGCAATGAAGCA 750 CQELE KESHW MTSSL DGNGFLSNEA 250 TGCACCAGTCCAGGG AGCGCGTGGAGTGAA TCTTCCTCAGATGAA CTAGAGGACATGCCG CAGTACACAACTTTG 825 CTS PG SAWSE SSSDE LEDMP QY т TL 275 GGCTCAGACCTCACA AATCCCACAGACGAT CTCTGGAACAGCTTT TGTCAACAGATCCCC CCATGCTCTGAGAGC 900 GSDLT NPTDD LWNSF CQQIP PCSES 300 TCCAGGACAGGAAAG GACAGTTCTTTGACA CTTTGGACTTTTTAA GAACTTCCTTCCCAC CACCCTCCCCATCTG 975 S RTGK DSSLT LWTF AGCCCTCTCCTCAGT TGAATCATCCATCAT CATCCTGCCAGTCCG TGATGGGTGGTGTCC ACACTTTAAGCTAAA 1050 ACACCACTTACACCA CCCCCCGTGCCGTGT GTTTGACGCTCGGTA GCAGTCCGGGAGAGCT TTCCTCATCACCCTC 1125 AACCTTTTTGTGAAG TTATGAAGAGAGATT AAGAAATGCACTGCT GTATTCGAGGAACTC AAGTGCTATTCAGTT 1200 TCTGTGTTTTTGGCT GGTTCAAGGCATTTT GGTGCTCAGTTTCTC TGTGACATTGAGCTG TAATAGCACAGACAT 1275 CTGCAGGGCATGTAC AGGATCATACTCAGC CACGAATACATACGA GGTAGCCAATATTTG CCTCAAAATACAAAT 1350 AGGATCGTATTCATT GTGCTCAGCATTTTA CAGGTAGTTAATGTA TAGTGTCAAATAATT ATCACACAAAATCTA 1425 TTTTTCCGTTATGTG CAAAAGTGAATTTTA GTTTAAGGGATAAGA ATACATTTTAACAAA CCTGTCAACTTCCGG 1500 TGAAAGCTCTTCTTC AAAATCTTACGTTTT GTTTGCTTATAGCAA TTGTAAATGATATAT GTATATAGTTGTTTT 1575 1616

Figure 3.1 The nucleotide and deduced amino acid sequences of RbIRF-1 cDNA. The start (ATG) and stop (TAA) codons are underlined. The IFN regulatory factor motif is underlined with bold face type. The predicted polyadenylation sequence is shaded bold type.

														-10	4 GC	GCCGTATTTAAAGT					TCGACGGGGGACAGCT				
GTT	TGT	AGG	TCA	GTG	TTG	TGI	CGC	TGT	TAG	CTI	TGT	CACACTAACCCCCCT					GTGCTGCACCTGAAG				(
ATG	AAG	GCC	CCT	CTG	CTG	CTG	ATT	TTG	ACT	GTG	TGO	CTA	AAC	AGT	CAG	TAC	GGC	GGA	TGC	GCT	TTC	TCC	TCT	TCA	75
м	ĸ	A	Р	L	L	L	I	L	Т	v	W	L	Ν	S	Q	Y	G	G	С	Α	F	S	S	S	2
TGCTCCTATCCTCCG TCTCAGTGGTGCTCA							TCI	TCTCTGGACTCGGCC					ATCCAGTGCGGGGTT					TTGAAGCAGTGCCTT							
C	S	Y	P	P	S	Q	W	C	S	S	L	D	S	A	I	Q	C	G	V	L	K	Q	C	L	5
GAG	TCT	AAC	TTC	ACC	AGG	TCC	CGT	CAG	ACA	GCAGATCCAGTCGAG					GTGGGGGCTTTACTAT					GAG	AGT	CTG	TGT	CCC	22
E	S	N	F	т	R	S	R	Q	т	A	D	P	v	E	v	G	L	Y	Y	E	S	L	С	P	7
GGC	TGC	AGA	GGG	TTT	CTC	ACT	GAG	ATG	CTC	TTC	ccc	CACA	TGG	CTA	ATG	CTT	GAC	ATC	ATG	TCT	GTT	ACT	CTG	GTG	30
G	С	R	G	F	L	т	E	M	L	F	P	т	W	L	М	L	D	I	М	S	v	т	L	v	10
ccc	TAC	GGC	AAT	GCA	CAG	GAG	AAA	CCT	GAT	GGA	CAG	AAA	TAT	ACT	TAT	GAG	TGC	CAG	CAT	GGG	GAA	CAG	GAA	TGT	37
P	Y	G	N	A	0	E	K	P	D	G	0	K	Y	т	Y	E	C	0	H	G	Е	0	E	C	12
CTG	GGC	AAC	ATG	ATT	GAG	ACT	TGT	GTA	CTG	AAC	ATO	ACC	AAA	ATG	GCT	TTC	ccg	ATC	ATC	TTC	TGT	ATG	GAG	TCC	45
L	G	N	М	I	E	Т	С	V	L	N	М	т	K	М	A	F	P	I	I	F	С	М	E	S	15
TCC	GCT	GAT	GTC	ATC	AAG	ACA	GCC	CAG	AGT	TGO	GTO	GAA	ATC	TAC	AGC	CCT	GAG	TTG	AGC	TGG	GAC	AGT	GTC	ATG	52
S	A	D	V	I	K	т	A	0	S	С	v	Е	I	Y	s	Р	Е	L	S	W	D	S	v	М	17
AAC	TGT	GTG	AAA	GGG	GAC	CTG	GGA	AAC	CAG	CTC	ATO	CAT	CAG	AAT	GCC	TTG	AAG	ACC	TCA	GCC	CTG	AAA	CCT	CCA	60
N	C	v	K	G	D	L	G	N	0	L	м	н	0	N	A	L	ĸ	т	S	A	L	K	P	P	20
CAC	CAA	TAT	GTG	CCC	TGG	GTO	ACC	ATT	TAA	GGG	GAG	CAC	ACA	GAA	GAC	TTA	CAG	GAC	AAG	GCC	ATG	TCT	TCT	CTC	67
н	0	Y	v	P	W	v	T	т	N	G	F	н	T	F	D	T.	0	D	K	A	м	S	S	T.	22
TTC	ACT	CTG	GTC	TGC	AGO	ATC	TAC	AAG	GGC	ccc	AAG	CCT	GAG	GCC	TGT	GGA	GGG	GGC	AAG	AGA	CAC	TAC	AGA	AGC	75
F	T	T	v	С	S	м	Y	к	G	p	к	P	E	A	C	G	G	G	к	R	н	Y	R	S	25
TAT	TGC	CAC	TAA	GAG	TGA	AGG	AGC	AGC	ACT	GCA	CAC	TCC	CTC	CTC	CTC	TTG	CTC	TGT	TCC	AGG	TGT	GGC	CAC	AAT	82
Y	C	Н	N																100			000			
-	-			GAG	GAT	TGT	CAT	CAA	ATTA	TTTT	որդու	דאמי	CTA	TGA	արար	TAC	тат	GTT	TCT	ACA	AAG	GGA	AAA	GGC	90
				TTC						AAT		1.0			***				101			0.01			94
010		- 11		110	11011						LOF														- 1

Figure 3.2 The nucleotide and deduced amino acid sequences of RbGILT cDNA. The start (ATG) and stop (TGA) codons are underlined. The predicted signal peptide is in bold type and underlined. The predicted C-XX-C motif is shaded bold type. The GILT signature sequence is denoted by a shaded box.

1952

4 IL

1 2
<pre>Contacts1 RR-1 MFVSHMMARPLEQUIESNISGLTVDKOKTMFSIPKHAARGEBLEDDACLFFEQIAL 60 S. chuats1 RR-1 MFVSHMMARPLEQUIESNISGLTVDKOKTMFSIPKHAARGELEDDACLFFEQIAL 60 S. chuats1 RR-1 MFVSHMMARPLEQUIESNISGLTVDKOKTMFSIPKHAARGELEDDACLFFEQIAL 60 G. galus IRF-1 MFVSHMMARPLEQUISNISGLTVDKEKTMFEIPKHAARGEDINKOACLFRSIAV 60 G. galus IRF-1 MFVTEMMARPLEQUISNIGS1 INKEEMIFEIPKHAARGEDINKOACLFRSIAV 60 G. galus IRF-1 MFTTEMMARPLEQUISNIGGLS INKEEMIFEIPKHAARGEDINKOACLFRSIAV 60 G. sapiens IRF-1 MFITEMMARPLEMQINNOIFGLS INKEEMIFEIPKHAARGEDINKOACLFRSIAV 60 S. taurus IRF-1 MFITEMMARPLEMQINNOIFGLS INKEEMIFEIPKHAARGEDINKOACLFRSIA 60 R. norvegicus IRF-1 MFITEMMARPLEMQINNOIFGLS INKEEMIFEIPKHAARGEDINKOACLFRSIA 60 S. taurus IRF-1 MFITEMMARPLEMQINNOIFGLS INKEEMIFEIPKHAARGEDINKOACLFRSIA 6 S. taurus IRF-1 HTCKVZG-QCOPKTWKANFCAMISLPDIEEVKOKSVNKGUAWKYFEMIPATLKSRD 119 E. chuats1 IRF-1 HTCKVZG-QCOPKTWKANFCAMISLPDIEEVKOKSVNKGUAWKYFEMIPATLKSRD 119 E. chuats1 IRF-1 HTCKVZG-QCOPKTWKANFCAMISLPDIEEVKOKSVNKGUAWKYFEMIPATLKSRD 119 E. chuats1 IRF-1 HTCKVZG-QCOPKTWKANFCAMISLPDIEEVKOKSVNKGUAWKYFEMIPATLKSRD 119 E. taurus IRF-1 HTCKVZG-QCOPKTWKANFCAMISLPDIEEVKOKSVNKGUAWKYFEMIPATLKSRD 120 G. sapiens IRF-1 HTCKVZG-QCOPKTWKANFCAMISLPDIEEVKOKSVNKGUAWKYFEMIPATLKSRD 120 G. taurus IRF-1 HTCKVZGSCVKG-QCAMISTPOLEXVOKSINGUAWYFEMIPATLKSRD 120 G. taurus IRF-1 HTCKVZGKKEPPKTWKANFCAMISLPDIEEVKOKSINGUAWYFEMIPATLKSRD 120 H. sapiens IRF-1 KKSKAUTEKKKSSMIVKEDAPCSEQSPHDESVFE-EDIISTQENTVOST 170 C. chuats1 IRF-1 KKSKAUTKFKKKSSMIVKEDAPCSEQSPHDESVFE-EDIISTQENTVOST 170 C. chuats1 IRF-1 KKSKAUTKFKKKSSMIVKEDAPCSEQSPHDESVFE-EDIISTQENTVOST 170 C. chuats1 IRF-1 KKSKAUTKFKKKSSMIVKEDAPCSEQSPHDESVFE-EDIISTQENTVOST 170 L. topicalis IRF-1 KKSKAUTKFKKKSSMIVKEDAPCSEQSPHDESSTLP-DONSYTTKOKYOG1120 T. topicalis IRF-1 KKSKAUTKFKKKSSMIVKEDAPCSEQSPHDESSTLP-DONSYTYGYOF0 173 R. norvegicus IRF-1 KKSKAUTKFKKKSSMIVKEDAPC</pre>		·	DND binding domain
<pre>S. chuatsi IRF-1 MFVSRMMARPLEQUIESNISGLTVDKDKTMFSIFFKHAARHGFLENKDALFKKAI 60 L. ctopicalis IRF-1 MFVSRMMARPLEQUIESNISGLTVDKEMTPSIFFKHAARHGFLENKDALFKKAI 60 S. taurus IRF-1 MFVSRMMARPLEQUISSNISGLTVDKEMTPSIFFKHAARHGFUKKDALFKSIA 60 G. gallus IRF-1 MFVRMARPLEMQINSNIFGLSTINKEKKIFQIPMHAARHGFUKKDALFKSIA 60 R. norvegicus IRF-1 MFITNMARPLEMQINSNOIFGLTINKEKKIFQIPMHAARHGFUKKDALFKSIA 60 R. norvegicus IRF-1 MFITNMARPLEMQINSNOIFGLTINKEKKIFQIPMHAARHGFUKKDALFKSIA 60 S. taurus IRF-1 MFITNMARPLEMQINSNOIFGLTINKEKKIFQIFFKHAARHGFUKKDALFKSIA 60 C. morvegicus IRF-1 HFGKYVGE-QACDPKTWKANFRCAMSLPDIEEVKOKSVKHGHQMKVFMLPSIEKSRD 119 S. chuatsi IRF-1 HFGKYVGE-QACDPKTWKANFRCAMSLPDIEEVKOKSVKHGHQMKVFMLPSIEKSRD 119 E. coloides IRF-1 HFGKYVGE-QACDPKTWKANFRCAMSLPDIEEVKOKSVKHGHQMKVFMLPSIEKSRD 119 E. coloides IRF-1 HFGKYGEFUCOPFTWAARFCAMSLPDIEEVKOKSVKHGHQMKVFMLPSIEKSRD 119 K. topicalis IRF-1 HFGKYGEFUCOPFTWAARFCAMSLPDIEEVKOKSVKHGHQMKVFMLPSIEKSRD 119 K. topicalis IRF-1 HFGKYGEFUCPFTWAAFFCAMSLPDIEEVKOKSNKHGHQMKVFMLPSIEKSRD 119 K. topicalis IRF-1 HFGKYGEFUCPFTWAAFFCAMSLPDIEEVKOSSNKHGANFVFMLPSIEKSR 120 h norvegicus IRF-1 HFGKYGEFUCPFTWAAFFCAMSLPDIEEVKOSSNKHGANFVFMLPPIKKSR 120 h norvegicus IRF-1 HFGKYGEFUCPFTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k aapiens IRF-1 HFGKYGEFUCPFTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k aapiens IRF-1 KKSKKKTKKEEDPFTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k aapiens IRF-1 KKSKKKTKKEEDPFTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k sapiens IRF-1 KKSKKKKTKKEEDPFTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k sapiens IRF-1 KKSKKKKTKKEEDPFTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k sapiens IRF-1 KKSKKKKTKKEEDPKTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k sapiens IRF-1 KKSKKKKTKKEEDPKTWAAFFCAMSLPDIEEVKOSSNKKGSNFVTMLPPIKKGR 120 k sapiens IRF-1 KKSKKKKKKKGSSNFVTVTFEDPOHSTVAAFFCAMSLPDIECKOSSNKVTNELPPIKKGR 120 k sapiens IRF-1 KKSKKKKKKKGSSNFVTVEFSFINALAFFCAMSLPDIEEXCOSSNKKGSNFVTMLPPIKKGR 120 k sapiens IRF-1 KKSKKKKKKKKKKSSMKYVEFSFINALAFFCAMSLPDIEEXENTEDEE 231 k sapiens IRF-1 KKKSKKKKKKKKSKKKSKKTEEDDTSDGLSSSTIE-DEBSST</pre>	0 facciatus		
<pre>E. coloides IRF-1 MFUSRMEMEPLEQUESKAVSGLMYDVEEKTMFSIEFKHAARHGFUEKDALFKGAI 60 X. tropicalis IRF-1 MFURRMERPLEEQINSNIFGLSINNEEMFFIEFKHAARGFUTKDALFKSIAV 60 G. gallus IRF-1 MFURRMERPLEEQINSNIFGLSINNEEMFFOIFKHAARGFUTKDALFKSIAI 60 B. taurus IRF-1 MFURRMERPLEMQINSNOFGLSINNEEMFFOIFKHAARGFUTKDALFKSIAI 60 R. sapiens IRF-1 HTGKYVGE-QACDPKTWKANFFCAMSLEDIEVKOKSVKKHOMMEVFMLPSLEKSRD 119 S. chuatsi IRF-1 HTGKYVGE-QACDPKTWKANFFCAMSLEDIEVKOKSVKKHOMAMVFFMLPSLEKSRD 119 L. coloides IRF-1 HTGKYVGE-QACDPKTWKANFFCAMSLEDIEVKOKSVKKHOMAMVFFMLPSLEKSRD 119 L. topicalis IRF-1 HTGKYGEGEDPKTWKANFFCAMSLEDIEVKOKSVKKHOMAVFFMLPSLEKSRD 119 L. topicalis IRF-1 HTGKYGEGEDPKTWKANFFCAMSLEDIEVKOKSVKKKKKANFFVMRLPSKKS 120 G. gallus IRF-1 HTGKYGEGEPPTKWANFFCAMSLEDIEVKOKSTKKGKSAKVVTMLPPIKKSR 120 R. norvegicus IRF-1 HTGKYGEGEPPTKWANFFCAMSLEDIEVKOSSIKKGKANFFVTMLPEIKKSR 120 H. sapiens IRF-1 HTGKYGEGEPPTKWANFFCAMSLEDIEVKOSSIKKGKANFFVTMLPEIKKSR 120 R. norvegicus IRF-1 KKSKAKKTPPKKKSMKVEEDMDY</pre>			
<pre>X. tropicalis IRF-1 MFURTURAMEPLEEQINSNICEGLAY INVEEMIFTIP KHAARGHO DIKUDALFES JAV 60 G. gallus IRF-1 MFURTWAREPLEMOINSNOIPGLIS INVEEMIFTIP KHAARGHO TUKUDALFES JAI 60 R. norvegicus IRF-1 MFURTWAREPLEMOINSNOIPGLS INVEEMIFTOIP KHAARGFO TUKUDALFES JAI 60 N. sapiens IRF-1 MFURTWAREPLEMOINSNOIPGLS INVEEMIFTOIP KHAARGFO TUKUDALFES JAI 60 Y. tropicalis IRF-1 MFURTWAREPLEMOINSNOIPGLS INVEEMIFTOIP KHAARGFO TUKUDALFES JAI 60 Y. tropicalis IRF-1 MFURTWAREPLEMOINSNOIPGLS INVEEMIFTOIP KHAARGFO TUKUDALFES JAI 60 Y. tropicalis IRF-1 MFGKYGE-QACOPKTWKANFGCAMSLEDIEEVKOKSVKKGHQAMKVFRULPAIKSRD 119 C. chuatsi IRF-1 HFGKYGEGCACOPKTWKANFGCAMSLEDIEEVKOKSVKKGHQAMKVFRULPAIKSRD 119 X. tropicalis IRF-1 HFGKYGEGCACOPKTWKANFGCAMSLEDIEEVKOKSVKKGHQAMKVFRULPAIKSRD 119 X. tropicalis IRF-1 HFGKYGEGEVEDPKTWKANFGCAMSLEDIEEVKOKSVKGHQAMKVFRULPAIKSRD 120 N. norvegicus IRF-1 HFGKYGEGEVEDPKTWKANFGCAMSLEDIEEVKOKSVKGHAPKVRULPSIKKSRD 120 N. norvegicus IRF-1 HFGKYGEGEVEDPKTWKANFGCAMSLEDIEEVKOKSNKGANFYRMLPEIKSRG 120 N. norvegicus IRF-1 HFGKYGEKEPOPKTWKANFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 H. sapiens IRF-1 KKSKKKEEDPKTWKANFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 H. sapiens IRF-1 KKSKKKKEEDPKTWKANFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 KKSKKKEENPKKKKKKESSMKKEEDPKTWKANFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 H. sapiens IRF-1 KKSKKKKEEDPKTWKANFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 H. sapiens IRF-1 KKSKKKKKEEDPKTWKANFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 H. sapiens IRF-1 KKSKKKKKEEDPKTWKANFFGCAMSLEDIEEVKOSSNKGSANFYTRULPIKKOR 120 G. dalis IRF-1 KKSKKKKKEEDPKTWANFFGCAMSLEDIEEVKOSSNKGSANFYTNELPIKKOR 120 G. dalis IRF-1 KKSKKKKKEEDPKTWANFFGCAMSLEDIEEVKOSSNKGSANFYTNELPIKKOR 120 G. dalis IRF-1 KKSKKKKKEEDPKTWANFFGCAMSLEDIEEXCOSSNKGSANFYTNELPIKKOR 120 G. GALISS IRF-1 VHIEDOOFTAP-SOVENSISVEI-SERGENSITIP-DOHSSYTVEGYKOKDUNGUE G. GALISS IRF-1 VHIEDOOFTAP-SOVENSISVEI-SERGENSITIP-DOHSSYTVAGYGEKKEED G. GALISS IRF-1 HIGKYGEKEKEENEMENE- SUUTHSEENEMIET -DISSTIPSTONICUNGE G. GALISS IRF-1 VHIEDOOFTAP-SOVENSISVEISEGESSTIPDISSTUPGYEESSTRUEDUE G. GALISS IRF-1 VHIEDOOFTAP-S</pre>			
G. galus IR-1 MPUERMERF LEGINSNIPGLY INKEKIFOLPSMAARGDUKKALFENALG B. taurus IR-1 MPITRMERF LEGINSNIPGLY INKEKIFOLPSMAARGDIKKALFRSALGO H. sapiens IR-1 MPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO H. sapiens IR-1 MPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO AMPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO MPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO AMPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO MPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO AMPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO AMPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO MPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO AMPITRMERF LEGINSNIPGLY INKEEMIFOLPSMAARGDIKKALFRSALGO AMPITRMERF LEGINSNIPGLY INKEEMIFOLSKINGGDARVFRMLPSLFSSD II9 S. chuati IR-1 HTGKYGGCACOPKTWKANFRCAMSLEDIEEVKOKSINKGGDARVFRMLPSLFSSD II9 X. tropicalis IR-1 HTGKYGGEKETDFKTKKANFRCAMSLEDIEEVKOKSINKGGDARVFRMLPSLFSSD II0 R. norvegicus IR-1 HTGKYGGEKETDFKTKKANFRCAMSLEDIEEVKOKSINKGGSAVRVYRMLPELTKOR I20 H. sapiens IR-1 HTGKYGGEKETDFKTKKANFRCAMSLEDIEEVKOSSINKGGSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKONSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKONSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFRCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFKTKKANFKCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFTKKANFRCAMSLEDIEEVKOSSNAKOSSAVRVYRMLPELTKOR I20 HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIESKOSSNAKSSAVRYRMLFELTKOR I20 HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIESKOSSNAKSSAVRYRMER HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIESKOSSNAKSSAVRYRMER HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIESKOSSNAKSSAVRYRMER HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIESKOSSNAKSSAVRYRMER HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIESKOSSNAKSSAVRYRMER HTGKYGGEKEPPFTKERPFYSENTERCAMSLEDIES			
<pre>B. taurus IRF-1 MPITRMRMRFLEMQINSNOIFGLTINKEEMIFOIFKAAAHGGDINKUACLERSIAI 60 R. norvegicus IRF-1 MPITRMRMRFLEMQINSNOIFGLTNINKEEMIFOIFKAAAHGGDINKUACLERSIAI 60 H. sapiens IRF-1 MPITRMRMRFLEMQINSNOIFGLTNINKEEMIFOIFKAAAHGGDINKUACLERSIAI 60 S. chausi IRF-1 HTGKYVEG-QACDPKTKKANFRCAMSLPDIEEVKOKSVNKGHQAMKYFMLPSIFKSBN 119 E. coinides IRF-1 HTGKYVEG-QACDPKTKKANFRCAMSLPDIEEVKOKSVNKGHQAMKYFMLPSIFKSBN 119 E. coinides IRF-1 HTGKYVEG-QACDPKTKKANFRCAMSLPDIEEVKOKSVNKGHQAMKYFMLPSIFKSBN 119 F. coinides IRF-1 HTGKYKSGEKETDPKTWKANFRCAMSLPDIEEVKOKSVNKGHQAMKYFMLPSIFKSBN 119 K. tropicalis IRF-1 HTGKYKSGEKETDPKTWKANFRCAMSLPDIEEVKOKSVNKGHQAMKYFMLPSIFKSBN 120 H. sapiens IRF-1 HTGKYKGEKEPDPKTKKANFRCAMSLPDIEEVKOKSVNKGSJAVKYYMLPPITKSR 120 H. sapiens IRF-1 HTGKYKGEKEPDPKTWKANFRCAMSLPDIEEVKOSSNKGSSJAVKYYMLPPITKSR 120 H. sapiens IRF-1 KRSKAKETKPRKSSMIKKEEDDYKTWKANFRCAMSLPDIEEVKOSSNKGSSJAVKYMLPPITKSR 120 H. sapiens IRF-1 KRSKAKETKPRKSSMIKKEEDDYKTWKANFRCAMSLPDIEEVKOSSNKGSSJAVKYMLPPITKSR 120 H. sapiens IRF-1 KRSKAKETKPRKSSMIKKEEDDACSDTOSPMDSMP-EDITSTOENTVDST 170 KRSKAKAKTKRSKSMIKKEEDDACSDTOSPMDSMP-EDITSTOENTVDST 170 KRSKAKAKTKRSKSMIKKEEDDACSDTOSPMDSMSP-EDITSTOENTVDST 170 KRSKAKAKKRKSSSRDIKSKIKKKEODSSDITSDGLSSSTILP-DDHSNTVRSYMG2D 173 R. norvegicus IRF-1 KRSKAKKRYEEDNSKSKKKKGESSPDITSDGLSSSTILP-DDHSNTVRSYMG2D 173 KRSKAKTKPKCSSMIKKKEGGSSPDITSDGLSSSTILP-DDHSNTVRSYMG2D 173 KRSKAKTKPKCSSMIKKKEGGSSPDITSDGLSSSTILP-DDHSSYTVPCVMCOF110 E TITILSFCVSFFF, STUNDSSULFFFFVSFFFSTERDEDE 231 L sapiens IRF-1 VHESODFFVSFFFSTERATDEDE 231 R norvegicus IRF-1 UNEDSTRUKTVSSILSKEKKGSSSFFDITSDGLSSSTILP-DDHSSYTVPCVFFC9 E Coinides IRF-1 UNEDSTFFSTERATDENSSILDGRGFISNAATSPSGSASS-SSSDELEDMPYT</pre>			
R. norvegicus IRF-1 MPITRMRMRFLEMQINSNOIPGLSINKEEMFOIPKHAALHGUNKACLFSSAI 60 H. sapiens IRF-1 MPITRMRMRFLEMQINSNOIPGLSINKEEMFOIPKHAALHGUNKACLFSSAI 60 ***:*********************************		F-1 MPTTRMRMR PWLFMOTNSNOTPGI	TNINKEEMIFOIPWKHAAKHGWDINKDACLERSWAI 60
H. sapiens IRF-1 MPITRMERE LEMOINSNOIPGLT INKEEM FOLFWIGHAAKHGDIKNACLERSELI 60 **: *:********************************			
<pre></pre>			
<pre>C</pre>	septime a		
<pre>0. fasciatus IRF-1 HTGKYVEG-QACDPKTWKANFRCAMNSLPDIEEVKOKSVNKGHQAMEVFMLPSIFKSRD 119 5. chuatsi IRF-1 HTGKYVEG-QACDPKTWKANFRCAMNSLPDIEEVKOKSVNKGHQAMEVFMLPSIFKSRD 119 X. tropicalis IRF-1 HTGKYVEG-QACDPKTWKANFRCAMNSLPDIEEVKOKSINKGHQAVKVFMLPSIFKSRD 119 X. tropicalis IRF-1 HTGKYVEG-QACDPKTWKANFRCAMSLPDIEEVKOKSINKGHQAVKVFMLPPITKSRR 120 G. gallus IRF-1 HTGKYKGEKEDPKTWKANFRCAMSLPDIEEVKOKSINKGSANVVYMLPPITKNQR 120 R. norvegicus IRF-1 HTGKYKGEKEDPKTWKANFRCAMSLPDIEEVKOSSNKGSSANVVYMLPPITKNQR 120 r**: * ********************************</pre>			
<pre>E. coioides IRF-1 HTGKYVEG-QACDEKTWKANFRCAMMSLPDIEVKDRSINKGHQAVRVFRMLPASPKSRD 119 X. tropicalis IRF-1 HTGKYGSEKETDEKTWKANFRCAMMSLPDIEVKVDKSINKGNNAFRYNMLPESTKAL 120 G. gallus IRF-1 HTGKYGSEKETDEKTWKANFRCAMMSLPDIEEVKDQSRNKGSSAVRVYRMLPELTKNQR 120 HTGRYKAGEKEPDEKTWKANFRCAMMSLPDIEVKDQSRNKGSSAVRVYRMLPELTKNQR 120 HTGRYKAGEKEPDEKTWKANFRCAMMSLPDIEVKDQSRNKGSSAVRVYRMLPELTKNQR 120 tmspiels IRF-1 HTGRYKAGEKEPDEKTWKANFRCAMMSLPDIEVKDQSRNKGSSAVRVYRMLPPLTKNQR 120 tmspiels IRF-1 KRSKAFKKEPDKTWKANFRCAMMSLPDIEVKDQSRNKGSSAVRVYRMLPPLTKNQR 120 tmspiels IRF-1 KRSKAFKKEPDKTWKANFRCAMMSLPDIEVKDQSRNKGSSAVRVYRMLPPLTKNQR 120 tmspiels IRF-1 KRSKAFKKEPDKTWKANFRCAMMSLPDIEVKDQSRNKGSSAVRVYRMLPPLTKNQR 120 tmspiels IRF-1 KRSKAFKAFKKSTMVKTEEDDDYSDTQSPMDDSMPEDTLSTQENTVDST 170 KRSKAFAAKTRKKSSMIKVEEDDACSEQSPMDESMPEDTLSTQENTVDST 170 KRSKAFAAKTRKKSSMIKVEEDDACSEQSPMDESMPEDTLSTQENTVDST 170 KRSKAFAAKTRKKSSMIKVEEDDACSEQSPMDESMPEDTLSTQENTVDST 170 KRSKAFAAKTRKKSSMIKVEEDDACSEQSPMDESMP-EDTLSTQENTVDST 170 KRSKAFAKAKTKKKSSMIKVEEDDACSEQSPMDESMP-EDTLSTQENTVDST 170 KRSKAFAKAKTKKKSSMIKVEEDDACSEQSPMDESMP-EDTLSTQENTVDST 170 KRSKAFAKKKSSMDKSKKKKEEDO</pre>	0. fasciatus		
<pre>X. tropicalis IRF-1 HTGRIKSGEKETDPKTWKANFRCAMNSLPDIEVKDKSIYKGSSAVRVYKMLPPQIKAEK 120 G. gallus IRF-1 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEVKDKSIKKGNJRRYYRMLPPLISSRPSK 120 H. sapiens IRF-1 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEVKDQSRNKGSSAVRVYRMLPPLIKNOR 120 ***: * *******************************</pre>	S. chuatsi II	RF-1 HTGKYVEG-QICDPKTWKANFRCA	MNSLPDIEEVKDKSVNKGHQAMRVFRMLPATLKSRD 119
G. gallus IRF-1 HICKYOSCVDKPDEKTWKANFRCAMNSLPDIEEVKOKSIKKONNAFRVYRMLPJELSERPSK 120 B. taurus IRF-1 HICKYOSCVDKPDEKTWKANFRCAMNSLPDIEEVKOOSRNKOSSAVRVYRMLPJELKSOR 120 H. sapiens IRF-1 HICKYAGEKEPDPKTWKANFRCAMNSLPDIEEVKOOSRNKOSSAVRVYRMLPPLIKSOR 120 H. sapiens IRF-1 HICKYAGEKEPDPKTWKANFRCAMNSLPDIEEVKOOSRNKOSSAVRVYRMLPPLIKSOR 120 ***: * * *****************************	E. coioides 1	IRF-1 HTGKYVEG-QACDPKTWKANFRCA	MNSLPDIEEVKDRSINKGHQAVRVFRMLPASPKSRD 119
 B. taurus IRF-1 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 R. norvegicus IRF-1 HTGRYKAGEKEPDPKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDPKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDFKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDFKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDFKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDFKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDFKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 HTGRYKAGEKEPDFKTWKANFRCAMSLPDIEEVKDOSRNKGSSAVFVYRMLPPLTKSOR 120 C. fasciatus IRF-1 KERKSKSKSKAKKKEVEEDADCSEAOSPHDESMPEDTFSTOENTVDST 170 KERKSKSSRDAKSKAKKEVGEYESFGINGLNDTSDYFLSSIRVEDTVNTVOGPH 130 KERKSKSSRDAKSKAKKEVGEYSFDTFSDGLSSSTLP-DDHSYTVRSYMGOD 173 R. norvegicus IRF-1 VHTESODFFFVAPSDVPDWSSVEI-ESFOSNFHHRFVSPERSSDYDYT 211 KERKSKSSRDAKSKAKKSGOSSFUED-DFFSDGLSSSTLP-DDHSSYTVGFM-0D 172 Colddes IRF-1 VHTESODFFFVAPSDVPDWSSVEIGESFINNCHRFEVSPERSSDYDYT 211 KERKSKSSRDAKSKAKKSGOSSSCOLOMPLDSTDLYP-FOVSPHSSSEEDEC 220 Gallus IRF-1 LDERTITPALSPCOVSSILSVEIGESFINNCHRFEVSPERSDFDYT 221 LOTGICIST IRF-1 LDERTITPALSPCOVSSILSVEIGESFINNCHRFEVSPERSDFDYT 221 Aaurus IRF-1 LDERTITPALSPCOVSSILSVEIGESFINKOLTP-LOISPVSSEAATDEDEE 231 R. norvegicus IRF-1 LDERTITPALSPCOVSSILSVEIGGFISNEACTSPGSWSEASSSVELDDUPHYTIG 276 Schuatsi IRF-1 LDERTITPALSPCOVSSILSVENGGFISNEACTSPGSWSEASSSVELDDUPHYTIG 276 Schuatsi IRF-1 DDIUCICOLEK-ETNMSSSLDGRGFISNEACTSPGSWSEASSSVELDDUPHYTIG 276 Schuatsi IRF-1 DDIVUCOLEK-ETNMMSSSLDGRGFISNEACTSPGSWSEASSSVELE	X. tropicalis	s IRF-1 HTGRIKSGEKETDPKTWKANFRCA	MNSLPDIKEVKDKSIYKGSSAVRVYKMLPPQIKAEK 120
R. norvegicus IRF-1 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSRNKGSSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGVYRMLPPLTKNOR 120 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDOSSAVGSAVRVYRMLPPLTKNOR 120 HTGRYKAGEKEPDFKTWKKSSMIKWEEDMDYSDOSSMDGSMPEDTLSTGENTVDST 170 KSKAKETKFRKKSSMIKWEEDMDYSDOSSMDGSMPEDTFSTGENSTUP-DD1STYTVDST 170 KSKAKEKSKSKDAKKKTEEDDDIFSDGLSSSTLP-DDHSYTAGEDD 173 H. sapiens IRF-1 KERKSKSSRDTKSKTKRKLCGDSSPDIFSDGLSSSTLP-DDHSYTAGEDD 173 H. sapiens IRF-1 VHTEGODFFVAPSDVPDWSSVEIESFOSNFHHFEVSPERSSDYDYT 219 S. chuatsi IRF-1 VHTEGODFFVAPSDVPDWSSVEI-ESFOSNFHHFEVSPERSSDYDYT 221 VHTEGODFFVAPSDVPDWSSVEI-ESFOSNFHHFEVSPERSPENDYT 221 KIEROSSECOVIANPDUCQVEVTESDE-OPLSMSQUP-LOISPVSSKSEEDEC 220 G. gallus IRF-1 LDIERTLFALSPCGVSSTLPWSIPVEI-VPDSTDLNP-F0VSPHSTSEAATDEDEE 231 H. sapiens IRF-1 LDIERTLFALSPCGVSSTLPWSIPVEI-VPDSTDLNP-F0VSPHSTSEAATDEDEE 231 H. sapiens IRF-1 LDIERTLFALSPCGVSSLDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPQYTLG 276 S. chuatsi IRF-1 DDIIQICQLEK-ESHWMSSLDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPQYTLG 276 G. gallus IRF-1 MTLEDFLKLLEPSTEWQTSDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPQYTLG 276 GKLIEDIMKLE-QSEWQFTNVDGNGYLLNEPGAQESTVYGEFSCKEEPEVDSPG 286 H. sapiens IRF-1 GKLIEDIMKLE-QSEWQFTNVDGNGYLLNEPGAQESTVNGFSCKEEPEVDSPG 286 H. sapiens IRF-1 GKLIEDIMKLE-QSEWQFTNVDGNGYLLNEPGAQESTVNG	G. gallus IR	F-1 HTGKYQSGVDKPDPKTWKANFRCA	MNSLPDIEEVKDKSIKKGNNAFRVYRMLPLSERPSK 120
<pre>H. sapiens IRF-1 HTGRYKAGEKEPDPKTWKANFRCAMNSLPDIEEVKDQSRNKGSSAVRVYRMLPPLTKNQR 120 **:: * *******************************</pre>	B. taurus IRM	F-1 HTGRYKAGEKEPDPKTWKANFRCA	MNSLPDIEEVKDQSRNKGSSAVRVYRMLPPLTKSQR 120
<pre>***: * *******************************</pre>			
<pre>0. fasciatus IRF-1 S. chuatsi IRF-1 KRSKAKETKPRKKSSMVKTEEDMDYSDTQSPMDDSMPEDTLSTQENTVDST 170 KRSKAKETKPRKKSSMIKVEEDMDYSDTQSPMDGSMPEDTLSTQENTVDST 170 KRSKAKETKPRKKSSMIKVEEDADCSDTQSPMDGSMPEDTLSTQENTVDST 170 KRSKAKETKPRKKSSMIKVEEDADCELSVKTSPLP-ADHS-TISNVTT-DQ 164 G gallus IRF-1 KERKSKSKAKKKTEEDEESVKTSPLP-ADHS-TISNVTT-DQ 164 KGKTKSEKDDKFKQIKQEPVESSFGINGLNDVTSDYFLSSSILP-DDHSNTVRSVMQDP1 173 R. norvegicus IRF-1 KERKSSSRDTKSKKKKKKECED</pre>	H. sapiens II		
<pre>S. chuatsi IRF-1 KRSKAKETKPRKKSSMIKMEEDMDYSDTOSPMDGSMPEDTLSTOENTVDST 170 K. tropicalis IRF-1 KRSKAKEAKTRKKSSMIKWEEDADCSEAQSMDESMPEDTFSTOENTVDST 170 KASKAKEAKTRKKSSMIKWEEDADCSEAQSMDESMPEDTFSTOENTVDST 170 KASKAKEAKTRKKSSMIKWEEDADCSEAQSMDESMPEDTFSTOENTVDST 170 KASKAKEAKTRKKSSMIKKKKKEDDSEAVGTSPLP-ADHS-YTSNVT-DQ 164 Gallus IRF-1 KERKSSSRDAKSKKKKKEGESSPDTLSDGLSSSTLP-DDHSNYTWSYMGOD 173 KARKSKSSRDAKSKKKRKGGDSSPDTLSDGLSSSTLP-DDHSNYTWGYMGOD 173 KARKSKSSRDAKSKKKRKGGDSSPDTLSDGLSSSTLP-DDHSNYTWGYMGOD 173 KARKSKSSRDAKSKKRKKGGDSSPDTLSDGLSSSTLP-DDHSNYTWGYMGOD 173 KARKSKSSRDAKSKKRKKGGDSSPDTLSDGLSSSTLP-DDHSNYTWGYMGOD 173 KARKSKSSRDAKSKKRKKGGDSSPDTLSDGLSSSTLP-DDHSNYTWGYMGOD 172 **::*::::::::::::::::::::::::::::::::</pre>		***: * . **********	******:***:* ** .*.**::*** :
<pre>E. coloides IRF-1 X. tropicalis IRF-1 KERSK-AKDSKSKAKKKTEEDSEAQSPMDESMP-EDTFSTQENTVDST 170 X. tropicalis IRF-1 G. gallus IRF-1 KERSK-AKDSKSKAKKKTEEDESEAQSPMDESMP-EDTFSTQENTVDST 170 KERSKSSRDARSKAKKKTEEDDTFSDGLSSSTLP-DDHSYTVRSYMQDD 173 R. norvegicus IRF-1 KERSKSSRDARSKAKKKTECDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLGDD 173 R. norvegicus IRF-1 KERKSSSRDAKSKAKKKCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLGDD 173 KERKSKSSRDAKSKAKKKCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSSRDAKSKAKKKCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 173 KERKSKSRDAKSKAKKKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVQGYLOD 172 C. coloides IRF-1 VHTEQDFFVAPSDVPDWSLSVEIGPESFPTNFCHREVSPERSPDFDYT 221 K. tropicalis IRF-1 LDERTLTPALSPCGVSSTLPMSIPVEI-VEDSTSDLYN-FQVSPMSTSEAATDDEE 231 K. aurus IRF-1 DDIVQCCQLEK-ESHWMSSLDGNGFLSNEACTSPGSWSE-SSS-DELEDMPQYTLG 276 S. chuatsi IRF-1 DDIVQCCQLEK-ESHWMSSLDGNGFLSNEACTSPGSWSE-SSSVELDDVPEYTLG 276 S. chuatsi IRF-1 DDIVQCCQLEK-ESHWMSSLDGNGFLSNEACTSPGSWSE-SSSVELDDVPEYTLG 276 K. tropicalis IRF-1 GKLPEDIMKLLE-QTGWQOTSVDGKGYLINEPGAQETSVGGDSSKEPEDISPGG 286 R. norvegicus IRF-1 GKLPEDIMKLLE-QTGWQOTSVDGKGYLINEPGAQETSVGDFSCKEEPEIDSPGG 286 K. sapiens IRF-1 GKLPEDIMKLLE-QSEWPTHVDGKGYLINEPGAQETSVGDFSCKEEPEIDSPGG 286 K. sapiens IRF-1 GKLPEDIMKLLE-QSEWPTHVDGKGYLINEPGAQETSVGDFSCKEEPEIDSPGG 286 K. sapiens IRF-1 GKLPEDIMKLE-QSEWPTHVDGKGYLINEPGAQETSVGDFSCKEEPEIDSPGG 286 K. sapiens IRF-1 GKLPEDIMKLE-QSEWPTHVDGKGYLINEPGAQETSVGDFSCKEEPEIDSPGG 286 K. sapiens IRF-1 GCHTPDIMNSFCQMPPDINDSCCMPMPL</pre>	0. fasciatus		
<pre>X. tropicalis IRF-1 KERRSK-AKDSKSKAKKKTEEDEESVKTSPLP-ADHS-YTSNVYT-DQ 164 KGKTKSEKDDKFKGIKQEPVESSFGINGLNDVTSDYFLSSIKHEVDSTVNIVVVQPH 180 KGKTKSEKDDKFKGIKQEPVESSFGINGLNDVTSDYFLSSIKHEVDSTVNIVVVQPH 180 KGKTKSEKDDKFKGIKQEPVESSFGINGLNDVTSDYFLSSIKHEVDSTVNIVVVQPH 180 KERKSSSRDAKSKAKKPYGEYSPDTFSDGLSSSTLP-DDHSSYTAGYGQD 173 KERKSKSSRDAKSKAKKRSGGSSPDTFSDGLSSSTLP-DDHSSYTVPGYM-QD 172 * :: : : : : : : : : : : : : : : : : :</pre>	S. chuatsi II		
<pre>G. gallus IRF-1 B. taurus IRF-1 KGKKTKSEKDDKFKCTKQEPVESSFGINGLNDVTSDYFLSSSIKNEVDSTVNIVVGOPH 180 KERKSSSRDARSKAKKRYGEVSPDTISDGLSSSTLP-DDHSNTVRSYMGOD 173 R. norvegicus IRF-1 H. sapiens IRF-1 KERKSKSSRDTKSKTKRKLCGDSSPDTISDGLSSSTLP-DDHSSYTVGYLOD 173 KERKSKSSRDTKSKTKRKLCGDSSPDTFSDGLSSSTLP-DDHSSYTVGYLOD 172 *::*:::::::::::::::::::::::::::::::::</pre>			
 B. taurus IRF-1 KERKSSSRDARSKARKKPYGEYSPDTFSDGLSSSTLP-DDHSNYTVRSYMGQD 173 R. norvegicus IRF-1 KERKSKSSRDKSKTKRKLCGDSSPDTLSDGLSSSTLP-DDHSSYTAQGYLGQD 173 KERKSKSSRDKSKTKRKLCGDSSPDTLSDGLSSSTLP-DDHSSYTAQGYLGQD 173 KERKSKSSRDARSKARKRSCGDSSPDTLSDGLSSSTLP-DDHSSYTAQGYLGQD 173 KERKSKSRDARSKARKSCGDSSPDTLSDGLSSSTLP-DDHSSTVESSTLP-DDHSSTDLSDLSSEAFDH Coloides IRF-1 LDERTLTPALSPCOVSSTLPMSIPVEI-SPGSSDSLYDY 221 LOTOCOLEK-DSHMMSSLDGRGFLSNEACTSPGSAWSE-SSS-DELEDMPQTTLG 276 Chasti IRF-1 DDIIQICQLEK-SIMMTSSLDGRGFLSNEACTSPGSAWSE-SSS-DELEDMPQTTLG 276 Coloides IRF-1 DDIVUCQUEK-SIMMSSLDGRGFLSNEACTSPGSAWSE-SSS-DELEDMPQTTLG 270 Coloides IRF-1 MITEDFLKLLE-OTGMQOTSVDGRGYLINEGAQLTSVYGDFSCKEEPEDDSPG6 266 Norvegicus IRF-1 GKLFEDIMKLE-QSEWQFTHVDGRSYLLNEPGAQLSTYGDFSCKEEPEDDSPG6 266 R. norvegicus IRF-1 GKLFEDIMKLE-QSEWQFTNVDGRSYLINEGAQLSTYGDFSCKEEPEDDSPG6 266 R. norvegicus IRF-1 Coloides IRF-1 Coloides IRF-1 Coloides IRF-1 COLORE			
<pre>R. norvegicus IRF-1 H. sapiens IRF-1 KERKSKSSRDTKSKTKRKLCGDSSPDTLSDGLSSSTLP-DDHSSYTAQGYLGQD 173 KERKSKSSRDAKSKKRKSCGDSSPDTFSDGLSSSTLP-DDHSSYTAQGYLGQD 173 * ::* : : : : : : : : : : : : : : : : :</pre>	-		
<pre>H. sapiens IRF-1 KERKSKSRDAKSKAKRKSCGDSSPDTFSDGLSSSTLP-DDHSSYTVPGYM-QD 172 * ::* : : : : : : : : : : : : : : : : :</pre>			
<pre> tit i: i:</pre>			
<pre>0. fasciatus IRF-1 VHTESODFFFVAPSDVPDWSSSVEIESFQSNFHHRFEVSPERSSDYDYT 219 S. chuatsi IRF-1 VHTEGODFFFVAPSDVPDWSLSVEIGAESLINNICHRFEVSPEHSPDHDYT 221 E. coioides IRF-1 VHTEQOFFTVAFSDVPDWSLSVEIGAESLINNICHRFEVSPEHSPDHDYT 221 X. tropicalis IRF-1 EDMDSVDAAVMSINESVSGNLDWDSDLQMPLPDSTNDLYP-FQVSPEHSPEDFDYT 221 B. taurus IRF-1 LDESSEEQVIVANPPDVCQVVEVTTESDE-QPLSMSQLYP-LQISFVSSYAESETT 234 B. taurus IRF-1 LDERTLTPALSPCGVSSTLPNWSIPVEI-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 231 R. norvegicus IRF-1 LDMDRDITPALSPCVVSSSLSEWHMQMDI-MPDSTDLYN-LQVSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 DDIIQICQELEK-ESHWMTSSLDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPQYTILG 276 S. chuatsi IRF-1 DDIIQICQELEK-ESHWMTSSLDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPQYTILG 276 S. chuatsi IRF-1 DDIVQICQUEK-ETNWMSSSLDGKGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTILG 279 E. coioides IRF-1 DDIVQICQUEK-ENHWMSSLDGKGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTILG 279 E. coioides IRF-1 DDIVQICQUEK-ETNWMSSLDGKGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTILG 279 E. coioides IRF-1 MILTEDFLKLLEPSTEWQQTSIDGKGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTILG 272 G. gallus IRF-1 MILTEDFLKLLEPSTEWQQTSIDGKGFLSNEACTSPGSQWSE-SSSVDELDDVPEYIILG 280 X. tropicalis IRF-1 GKLPEDIMKLE-QIGWQOTSVDGKGYLLNEPGAQLSTVYGDFSCKEEPEVDSPGG 286 R. norvegicus IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEVDSPGG 286 H. sapiens IRF-1 GKLPEDIMKLE-QSEWQPTHVDGKGYLLNE</pre>	H. sapiens II		
<pre>S. chuatsi IRF-1 VHTEHQDFPFVAPSDVPDWSLSVEIGAESLLNNICHRFEVSPEHSPDHDYT 221 E. coioides IRF-1 VHTEQQDFTCVSTSEVPDWSLSVEIGPESFPTNFCHRFEVSPEHSPDFDYT 221 X. tropicalis IRF-1 EDM5VDAAVMSINESVSGNLDWDSQLQMPLPDSTNDLYP-F0VSPLNSSSEEEDEC 220 G. gallus IRF-1 LDGSSEEQVIVANPPDVCQVVEVTESDE-QPLSMSQLYP-LQISFVSSYAESETDEC 221 B. taurus IRF-1 LDMDRDITPALSPCGVSSTLFNWSIFVEI-VPDSTSDLYN-F0VSPMPSTSEAATDEDEE 231 R. norvegicus IRF-1 LDMDRDITPALSPCGVSSTLFNWSIFVEI-VPDSTSDLYN-F0VSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 LDVDRDITPALSPCGVSSTLFDWHIPVEV-VPDSTSDLYN-F0VSPMPSTSEAATDEDEE 230 </pre>	0. 5		
E. coicides IRF-1 VHTEQODFTCVSTSEVPDWSLSVEIGPESFPTNFCHRFEVSPEHSPDFDYT 221 X. tropicalis IRF-1 EDMDSVDAAVMSINESVSGNLDWDSQLQMPLPDSTNDLYP-FQVSPLNSSEEEDEC 220 G. gallus IRF-1 LDGSSEEQVIVANPPDVCQVVEVTESDE-QPLSMSQLYP-LQISFVSSYAESETT 234 B. taurus IRF-1 LDIERTLTPALSPCGVSSTLPNWSIFVEI-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 LEVEQALTPALSPCAVSSTLPDWHIPVEV-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 230 			
<pre>X. tropicalis IRF-1 EDMDSVDAAVMSINESVSGNLDWDSQLQMPLPDSTNDLYP-FQVSPLNSSEEEDEC 220 G. gallus IRF-1 LDGSSEEQVIVANPPDVCQVVEVTESDE-QPLSMSQLYP-LQISPVSSYAESETT 234 B. taurus IRF-1 LDIERTLTPALSPCGVSSTLPNWSIPVEI-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 231 R. norvegicus IRF-1 LDMDRDITPALSPCVVSSSLSEWHMQMDI-MPDSTDLYN-LQVSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 LDMDRDITPALSPCVVSSSLSEWHMQMDI-MPDSTDLYN-LQVSPMPSTSEAATDEDEE 231 C</pre>			
<pre>G. gallus IRF-1 LDGSSEEQVIVANPPDVCQVVEVTTESDE-QPLSMSQLYP-LQISPVSSYAESETT 234 B. taurus IRF-1 LDIERTLTPALSPCGVSSTLPNWSIPVEI-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 231 R. norvegicus IRF-1 LDMDRDITPALSPCVVSSSLSEWHMOMDI-MPDSTTDLYN-LQVSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 LEVEQALTPALSPCAVSSTLPDWHIPVEV-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 230</pre>			
 B. taurus IRF-1 LDIERTLTPALSPCGVSSTLPNWSIPVEI-VPDSTSDLYN-FQVSPMPSTSEAATDEDEE 231 R. norvegicus IRF-1 LDMDRDITPALSPCVVSSSLSEWHMOMDI-MPDSTTDLYN-LQVSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 LEVEQALTPALSPCVSSSLSEWHMOMDI-MPDSTTDLYN-LQVSPMPSTSEAATDEDEE 230			
R. norvegicus IRF-1 LDMDRDITPALSPCVVSSSLSEWHMQMDI-MPDSTTDLYN-LQVSPMPSTSEAATDEDEE 231 H. sapiens IRF-1 LEVEQALTPALSPCAVSSTLPDWHIPVEV-VPDSTSDLYN-FOVSPMPSTSEAATDEDEE 230::::::::::::::::::::::::::::::::::			
 H. sapiens IRF-1 LEVEQALTPALSPCAVSSTLPDWHIPVEV-VPDSTSDLYN-FQVSPMPSTSEATTDEDEE 230 			
<pre>0. fasciatus IRF-1 S. chuatsi IRF-1 E. coioides IRF-1 DUIQICQLEK-ESHWMTSSLDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPOYTILG 276 DDIQICQQLEK-ESHWMTSSLDGNGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTILG 279 DDIVQICQQLEK-ETNWMSSSLDGKGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTILG 280 X. tropicalis IRF-1 MTLTEDFLKLLEPSTEWQQTSIDGKGFFTNESGLQ-TSCLTEISSAFDGTLSG 272 G. gallus IRF-1 B. taurus IRF-1 B. taurus IRF-1 GKLFEDIMKLLE-QTGWQQTSVDGKGYLLNEPGAQFTSVYGEFSCKEEPEVDSPGG 286 R. norvegicus IRF-1 GKLFEDIMKLE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 286 GKLFEDIMKLE-QSEWQPTNVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 285 : : : * : : * : : * : : * : : * : : : 0. fasciatus IRF-1 S. chuatsi IRF-1 C. coioides IRF-1 C. coio</pre>			-
<pre>0. fasciatus IRF-1 DDIIQICQELEK-ESHWMTSSLDGNGFLSNEACTSPGSAWSE-SSS-DELEDMPQYTTLG 276 5. chuatsi IRF-1 DDIIQICQLEK-ESHWMTSSLDGRGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTTLG 279 E. coioides IRF-1 DDIVQICQLEK-ETNWMSSSLDGRGFLSNEACTSPGSQWSE-SSSVDELDDVPEYITLG 280 X. tropicalis IRF-1 MTLTEDFLKLLEPSTEWQQTSIDGKGFFTNESGLQ-TSCLTEISSAFDGTLSG 272 G. gallus IRF-1 DSVPSDEENAEG-RLHWQKKNIEGKQYLSNLGMRNTSHMLPSMATFVANKPDLQVTIKEE 293 B. taurus IRF-1 GKLPEDIMKLE-QTGWQQTSVDGKGYLLNEPGAQPTSVYGEFSCKEEPEVDSPGG 286 R. norvegicus IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 286 H. sapiens IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 285 : : : * : : * : : * : : * : : * : : 0. fasciatus IRF-1 GKLPEDIMKLE-QSEWQPTNVDGKGYLLNE9GVQPTSVYGDFSCKEEPEIDSPGG 285 : : : * : : * : : * : : * : : * : : : :</pre>	bapreno 1		
<pre>S. chuatsi IRF-1 DDIIQICQQLEK-DSHWMSSSLDGRGFLSNEACTSPGSQWSE-SSSVDELDDLPHYTTLG 279 E. coioides IRF-1 DDIVQICQQLEK-ETNWMSSSLDGKGFLSNEACTSPGSQWSE-SSSVDELDDVPEYITLG 280 X. tropicalis IRF-1 MTLTEDFLKLLEPSTEWQQTSIDGKGFFTNESGLQ-TSCLTEISSAFDGTLSG 272 G. gallus IRF-1 DSVPSDEENAEG-RLHWQKKNIEGKQYLSNLGMRNTSHMLPSMATFVANKPDLQVTIKEE 293 B. taurus IRF-1 GKLPEDIMKLE-QTGWQQTSVDGKGYLLNEPGAQPTSVYGFFSCKEEPEVDSPGG 286 R. norvegicus IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGFFSCKEEPEIDSPGG 286 H. sapiens IRF-1 GKLPEDIMKLE-QSEWQPTNVDGKGYLLNEPGAQLSTVYGFFSCKEEPEIDSPGG 285</pre>	0. fasciatus		
<pre>X. tropicalis IRF-1 MTLTEDFLKLLEPSTEWQQTSIDGKGFFTNESGLQ-TSCLTEISSAFDGTLSG 272 G. gallus IRF-1 DSVPSDEENAEG-RLHWQKKNIEGKQYLSNLGMRNTSHMLPSMATFVANKPDLQVTIKEE 293 B. taurus IRF-1 GKLTEDIMKLLE-QTGWQQTSVDGKGYLLNEPGAQPTSVYGEFSCKEEPEVDSPGG 286 R. norvegicus IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 286 H. sapiens IRF-1 GKLPEDIMKLLE-QSEWQPTNVDGKGYLLNEPGVQPTSVYGDFSCKEEPEIDSPGG 285</pre>	S. chuatsi IH		
G. gallus IRF-1 B. taurus IRF-1 C. fasciatus IRF-1 C. fasciatu	E. coioides 1	IRF-1 DDIVQICQQLEK-ETNWMSSSLDG	KGFLSNEACTSPGSQWSESASSVEELDDVPEYITLG 280
 B. taurus IRF-1 GKLTEDIMKLLE-QTGWQQTSVDGKGYLLNEPGAQPTSVYGEFSCKEEPEVDSPGG 286 R. norvegicus IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 285 I. I. I	X. tropicalis	s IRF-1 MTLTEDFLKLLEPSTEWQQTSIDG	KGFFTNESGLQ-TSCLTEISSAFDGTLSG 272
R. norvegicus IRF-1 GKLPEDIMKLFE-QSEWQPTHVDGKGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 286 H. sapiens IRF-1 GKLPEDIMKLLE-QSEWQPTNVDGKGYLLNEPGVQPTSVYGDFSCKEEPEIDSPGG 285 : : : * . ::* :: * . : 5 0. fasciatus IRF-1	G. gallus IR	F-1 DSVPSDEENAEG-RLHWQKKNIEG	KQYLSNLGMRNTSHMLPSMATFVANKPDLQVTIKEE 293
H. sapiens IRF-1 GKLPEDIMKLLE-QSEWQPTNVDGKGYLLNEPGVQPTSVYGDFSCKEEPEIDSPGG 285 : : : * . ::*. :: * . : : : : : : : : :	B. taurus IRM	F-1 GKLTEDIMKLLE-QTGWQQTSVDG	KGYLLNEPGAQPTSVYGEFSCKEEPEVDSPGG 286
i.i.i.*.ii*.ii* iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	R. norvegicus	s IRF-1 GKLPEDIMKLFE-QSEWQPTHVDG	KGYLLNEPGAQLSTVYGDFSCKEEPEIDSPGG 286
0. fasciatus IRF-1	H. sapiens II		
S. chuatsi IRF-1 SDLTIPTDDLWNSFCQQMPPML301 E. coioides IRF-1 TGITNPTDDLWNSFCHQMPLL	August Salasana ana ana	* • • • • • • • • • • • • • • • • • • •	. :: * :
E. coioides IRF-1 TGITNPTDDLWNSFCHQMPLL 301 X. tropicalis IRF-1 EIQVRFSTDMINWPESSFSSRATGVAISTF 302 G. gallus IRF-1 SCPLPYNSSWPPFPDIPLPQVVSTASTSSSRPDRETRASVIKKTSDITQSRVKSC 348 B. taurus IRF-1 YIGLISSDMKNMDPS-WLDSLLT-PVRLPSIQAIPCAP 322 R. norvegicus IRF-1 DIEIGIQRVFTEMKNMDPVMWMDTLLGNSTRPPSIQAIPCAP 328			
X. tropicalis IRF-1 EIQVRFSTDMINWPESSFSSRATGVAISTF 302 G. gallus IRF-1 SCPLPYNSSWPPFPDIPLPQVVSTASTSSSRPDRETRASVIKKTSDITQSRVKSC 348 B. taurus IRF-1 YIGLISSDMKNMDPS-WLDSLLT-PVRLPSIQAIPCAP 322 R. norvegicus IRF-1 DIEIGIQRVFTEMKNMDPVMWMDTLLGNSTRPPSIQAIPCAP 328			
G. gallus IRF-1 SCPLPYNSSWPPFPDIPLPQVVSTASTSSSRPDRETRASVIKKTSDITQSRVKSC 348 B. taurus IRF-1 YIGLISSDMKNMDPS-WLDSLLT-PVRLPSIQAIPCAP 322 R. norvegicus IRF-1 DIEIGIQRVFTEMKNMDPVMWMDTLLGNSTRPPSIQAIPCAP 328			
B. taurus IRF-1 YIGLISSDMKNMDPS-WLDSLLT-PVRLPSIQAIPCAP 322 R. norvegicus IRF-1 DIEIGIQRVFTEMKNMDPVMWMDTLLGNSTRPPSIQAIPCAP 328			
R. norvegicus IRF-1 DIEIGIQRVFTEMKNMDPVMWMDTLLGNSTRPPSIQAIPCAP 328			
u. sahiens ivi-i – nigrorőkviinrvalment-mrnorri-takrkolőtikotk 252			
	n. saprens If		TRANSPORT - 14 CHEST WAITONS 323

Figure 3.3 Multiple sequence alignment of RbIRF-1. Analysis was performed by ClustalW using amino acid sequences of known IRF-1s from different phyla,

including *S. chuatsi* (AAV650412), *E. coioides* (ACF95885), *X. tropicalis* (NM_001006694), *G. gallus* (L339766), *R. norvegicus* (M34253) and *H. sapiens* (L05072). The DNA binding domain is marked by a dotted line above the aligned sequences with bold type (RbIRF-1). The predicted bipartite NLS is boxed. The conserved tryptophan (W) residues are shaded. Identical amino acids are indicated by asterisks (*). Conserved and partially conserved amino acids are indicated by double (:) and single dots (.), respectively.

¢۲		
0. fasciatus	MKAPLLLILTVWLNSQYGGCAFSSSCSYPPSQWCSSLDSAIQCGVLKQ 484	
A. fimbria	MKMKIPMLLLMAVWLNAQSGGCALSSSCPHPPSQWCSSLDSAIQCGVLKQ 50+	
O.S.grouper	MKALLLLVLTVGLNIQYGSSALLPPSSSSCSHRPSKWCSSLDSALQCGVLKQ 524	
X. tropicalis	MRCYLLLLCAVGAASQPVCNHPPSTWCSSWEIAKECQVEKQ 414	
B. taurus	MASSPLLFVLLLLLPLEVPAATRWSLLEALPEG-AAPCQVGEL 42+	
M. musculus	mswspilpflslllllfplevpRaataslsqasseg-tttckvhdv 454	
H. sapiens	MTLSPLLLFLPPLLLLLDVPTAAVQASPLQALDFFGNGPPVNYKTGNL 484	
	به*	
	CXXC-motif*	
0. fasciatus	CLESNFTRSRQTADPVEVGLYYESLCPGCRGFLTEMLFPTWLML-DIMSVTLVPYGNA 105+	
A. fimbria	CLESNVTRSRHTSDQVEVGLYYESLCPGCRMFLTEMLFPTWLMLNEIMSVTLVPYGNA 1084	
O.S.grouper	CLESNFTRSRHTGDQVEVGLYYESLCPGCRMFLTEMLFPTWVLLDEIMSVTLVPYGNA 110+	
X. tropicalis	CLEFYSNRDLKKSSEPAIQIDLFYESLCGGCRGFLVRQLFPSWLMLAEIINVTLVPYGNA 101+	
B. taurus	CLQASPQKPDVPLVNVSLYYEALCPGCREFLIRELFPTWLMVLEILNVTLVPYGNA 98+	
M. musculus	CLLGPRPLPPSPPVRVSLYYESLCGACRYFLVRDLFPTWLMVMEIMNITLVPYGNA 101+	
H. sapiens	YLRGPLKKSNAPLVNVTLYYEALCGGCRAFLIRELFPTWLLVMEILNVTLVPYGNA 1040	
	* :.: *:**:** .** ** . ***:*::: :*:.:********	
	GILT Signature	
0. fasciatus	QEKPDGQKYTYECQHGEQECLGNMIETCVLNMTKMAFPIIFCMESSADVIKTAQSCV 162+	
A. fimbria	QEKPDGQKYVFECQHGEPECLGNMIETCIMNMTDAAFPIIFCMESSADVLQSAKSCV 165+	
O.S.grouper	QEKPVGQKYTYECQHGPPECQGNMIETCLLNLTADAGVIIFCMESSIDVLGSAESCV 1674	
X. tropicalis	QETNITGKWVFDCQHGPEECLGNMMEACLIHILDDIYKYFPIIFCMESSNNVTKSLESCL 1614	
B. taurus	QERNVSGKWEFTCQHGERECLLNKVEACLLDQLEQKIA-FLTIVCLEEMDDMEQNLKPCL 157+	
M. musculus	QERNVSGTWEFTCQHGELECRLNMVEACLLDKLEKEAA-FLTIVCMEEMDDMEKKLGPCL 160+	
H. sapiens	QEQNVSGRWEFKCQHGEEECKFNKVEACVLDELDMELA-FLTIVCMEEFEDMERSLPLCL 163+	
	** ::**** ** * :*:*::. *.*:*. :: . *:+	
0. fasciatus	EIYSPELSWDSVMNCVKGDLGNQLMHQNALKTSALKPPHQYVPWVTINGEHTEDLQDKAM 222+	
A. fimbria	ELYSPKLSWDSVMSCVKGDLGNQLMHQNALQTSALTPPHQYVPWVTINGEHTEDLQDKAM 225*	
O.S.grouper	KSYSTDVTWGDVMSCVNGDLGNQLMHQNALKTEALKPPHEYVPWITINGEHTEELQDKAM 227+	
X. tropicalis	AVYAPELPLKTVLECVNGDLGNKLMHENAQKTKGLSPPHNYVPWIVIDGMHTDDLQAQAQ 221~	
B. taurus	QIYAPKVSADSIMECATGNRGMQLLHINAQLTDALRPPHKYVPWVVVNGEHMKDAEH 2144	
M. musculus	QVYAPEVSPESIMECATGKRGTQLMHENAQLTDALHPPHEYVPWVLVNEKPLKDPSE 217+	
H. sapiens	QLYAPGLSPDTIMECAMGDRGMQLMHANAQRTDALQPPHEYVPWVTVNGKPLEDQTQ 220+	
	:. <mark>:.</mark> ::.. *. * :*:* ** ** ***:***: :: .: .: .	
0. fasciatus	SSLFTLVCSMYKG-PKPEACGGGKRHYRSYCHNE 2554	
A. fimbria	NSLFTLVCSMYKG-PKIPACGEGKIHYRSYCHNE 2584	
O.S.grouper	NSLFTLVCNMYKG-PKPPACGEGQRYFRSYCHKD 260+	
X. tropicalis	SSLFNLVCDTYKG-PKPEPCLHSEITPLKRDVLCLN- 2560	
B. taurus	LLHLVCRLYQG-QKPDVCQLTAELSKEVHFK- 2444	
M. musculus	LLSIVCQLYQGTEKPDICSSIADSPRKVCYK- 248+	
H. sapiens	LLTLVCQLYQG-KKPDVCPSSTSSLRSVCFK- 250+	

Figure 3.4 Multiple sequence alignment of RbGILT. Analysis was performed by ClustalW using amino acid sequences of known GILTs from different phyla, including *A. fimbria* (ACQ58865), *E. coioides* (ABS19625), *X. tropicalis* (NM_001017196), *B. taurus* (NM_001094721), *M. musculus* (NP_075552) and *H. sapiens* (AAH31020). GILT signature sequence and the CXXC motif are indicated above the corresponding aligned sequences, and conserved residues are shaded. Identical amino acids are indicated by asterisks (*). Conserved and partially conserved amino acids are indicated by double (:) and single dots (.), respectively.

105

Figure 3.5 Phylogenetic analysis of RbIRF-1 with other IRF family members. The tree was constructed based on amino acid sequences. The number at each node indicates the percentage of bootstrapping after 1000 replications.

Figure 3.6 Phylogenetic analysis of RbGILT with known GILT family proteins. The tree was constructed based on amino acid sequences. The number at each node indicates the percentage of bootstrapping after 1000 replications. *Arabidopsis thaliana* GILT was selected as an out-group member.

I

91 2

to *Siniperca chuatsi* IRF-1, with 88 bootstrap values. Moreover, mammalian species, such as human and mouse, contain IRF1-9 sub family members, but in fish that diversification is limited to a few IRFs or IRF-1 and -2 in a particular species. For example, *Salmon salar* (IRF-1, -2, -3, -7 A and B) [4], *O. mykiss* (IRF-1 and -2) [17] and *C. argus* (IRF-1, -2 and -7) [20] have been identified, but not all other members. Furthermore, we noticed that all members of IRF-1 and IRF-2 grouped under one clade, while all other IRFs formed the second major clade showing the distinct sub-families under IRF 3-9. The newly identified RbIRF-1 from this study is the first type of IRF from rock bream; other IRF sub-families are expected to yield yet unrecognized forms whose identification and characterization will contribute to our understanding of the overall function of IRFs in this fish species.

Likewise, the evolutional relationship of RbGILT was explored by constructing a phylogenetic tree using representative amino acid sequences from invertebrates (mollusk) and vertebrates (fish, amphibians and mammals), and plant *A. thaliana* as an out-group. As shown in Figure 3.6, two distinct classes were observed as vertebrate and invertebrates GILT members. The main vertebrate GILT members were further sub-clustered among the fish, amphibian and mammalian GILTs, where RbGILT was shown to be more evolutionally related to *A. fimbria* GILT, with 95 bootstrap values. This finding suggests that RbGILT may have evolved through a common ancestral gene route.

3.6.5 Transcriptional analysis of RbIRF-1and RbGILT by real time RT-PCR

3.6.5.1 Tissue-specific expression

Real-time RT-PCR analysis indicated constitutive expression of RbIRF-1 and RbGILT transcripts occurred in all selected (eleven) tissues of un-challenged rock

- 110 -

bream (Fig. 3.7). Compared to the expression level seen in gill, the highest expression of RbIRF-1 was observed in blood (4.1-fold); RbGILT was highest in gills. The lowest expression level of either gene was observed in muscle. RbIRF-1 expression was higher than RbGILT in heart, liver, intestine, blood and skin. However, almost similar expression levels of RbIRF-1 and RbGILT were identified in spleen, head kidney, muscle, skin and brain.

3.6.5.2 Transcriptional regulation against poly I:C challenge

In order to investigate the rock bream antiviral immune responses through transcriptional regulation analysis of RbIRF-1 and RbGILT, we challenged fish with poly I:C, a synthetic double-stranded RNA which induces the IFN associated immune responses in host cells similar to many viruses [39]. Transcriptional levels of RbIRF-1 and RbGILT were analyzed in blood, gills, spleen and head kidney by real-time RT-PCR with actin as the internal housekeeping gene. As shown in Figure 8A, strong up-regulation of RbIRF-1 was detected in blood, specifically 6.3- and 6.5-fold higher levels were observed at 6 and 12 h post-poly I:C challenge. This induction gradually decreased, nearly to basal levels (1.6-fold) by 48 h post-challenge. In contrast, RbGILT up-regulation in blood was not strong as compared to RbIRF-1. RbGILT expression was up-regulated to its highest level (1.3-fold) at 6 h, and gradually decreased to the basal level by 48 h. In gills, RbIRF-1 and RbGILT transcripts reached their highest levels (2.1 and 1.6 fold, respectively) at an early stage (3 h post-poly I:C challenge (Fig. 3.8B). Both transcripts also showed a gradual decrease in expression and eventually presented expression even below the basal level. In poly I:C challenged fish spleen, RbIRF-1 was up-regulated early (3 h), similar to the gills which showed the highest level at 3.4-fold and then decreased to basal level by 48 h (Fig. 3.8C). However, RbGILT

- 111 -

expression was not increased significantly in spleen and was maintained near basal expression for all the time points examined, with the exception of 12 h. RbIRF-1 and RbGILT transcripts were induced in head kidney at 3 h post-challenge, with the highest peaks being reached at 3.6- and 1.2-fold, respectively (Fig. 3.8D). The induced level of RbIRF-1 was maintained until 12 h post-challenge, while the RbGILT level decreased at 6 h and continued decreasing thereafter. When the transcriptional responses of RbIRF-1 and RbGILT were compared among four rock bream tissue types, we identified RbIRF-1 as having greater expression levels in blood and spleen tissues, all higher than those of RbGILT at all time points. In contrast, a higher RbIRF-1 level was detected in the early stage of poly I:C challenge (>24 h), RbGILT expression in gills and head kidney decreased to levels even lower than the basal expression, despite the fact that it had been initially higher than RbIRF-1.

3.6.5.3 Transcriptional regulation against RbIV challenge

To verify whether the transcriptional level of RbIRF-1 and RbGILT was induced in rock bream after RbIV challenge, two groups of fish were i.p. injected with virus and PBS, respectively. Then, transcriptional responses of RbIRF-1 and RbGILT were determined in a manner similar to the polyI:C challenge described above. As shown in Figure 3.9A, both RbIRF-1 and RbGILT expression levels were up-regulated in blood; the highest levels were 1.8-fold (at 48 h) and 2.3-fold (12 h), respectively. We also clearly noticed greater expression (elevated) of RbGILT, as opposed to RbIRF-1, was induced by the RbIv challenge, except at the 24 h time point. This result was completely different from the expression profile of poly I:C-challenged blood, where higher elevated expression occurred with RbIRF-1 instead of RbGILT. In RbIV injected gills, both RbIRF-1 and RbGILT were up-regulated mainly at 3 and 6 h and then decreased thereafter to levels lower than the basal expression (Fig. 3.9B). Interestingly, there was no significant change in the transcriptional levels in spleen for both genes after RbIV challenge; generally, the expression level was maintained near to the basal expression level, at around 0.8- to 1.1-fold for RbIRF-1 and RbGILT, respectively (Fig. 3.9C). Head kidney displayed early activation (3 h) of RbIRF-1 (1.5-fold) and RbGILT (2.6-fold) transcription; however, the up-regulated status was not maintained beyond 6 h post-challenge (Fig. 3.9D). Both RbIRF-1 and RbGILT expression levels were lower than the PBS injected control at 12-48 h post-challenge of RbIV. The expression profile of RbIRF-1 in response to RbIV was quite different from that to poly I:C, since there was no strong up-regulation observed for the RbIV challenge in any of the four tissues examined. Moreover, differences in the fold change of expression for RbIRF-1 and RbGILT (at each time point) were lower in the RbIV challenge than in the poly I:C challenge.

\$1 3

E

Figure 3.7 Tissue distribution of RbIRF-1 and RbGILT. Analysis of mRNA was carried out by qPCR. The relative fold-change in expression was calculated by the 2^{-CT} method using beta actin as a reference gene. The relative fold-change in expression of each tissue was compared to the expression in blood in order to determine the levels of tissue-specific expression. Data are presented as the mean of the relative expression \pm SD calculated for three replicate real-time reactions using pooled tissues of three individual rock bream at each time point.

4 P

12

Figure 3.8 Transcriptional regulation of RbIRF-1 and RbGILT in blood, gills, spleen and head kidney following poly I:C challenge. Analysis of transcriptional level was carried out by qPCR. The expression fold was calculated by the 2^{-CT} method using rock bream beta actin as a reference gene. The relative level of expression at each time point was compared to that of the PBS-injected control (Cont). Data are presented as the mean relative expression \pm SD calculated for three replicate real-time reactions using pooled tissues of three individual rock bream at each time point. (A) blood, (B) gills, (C) spleen and (D) head kidney.

3.7 DISCUSSION

Next generation sequencing technologies, such as Roche 454 pyrosequencing, can be effectively used for gene discovery [40]. These methods have not yet been widely applied to marine fish, as compared to their use in mammalian genome studies. Here, we describe the application of whole transcriptome sequencing analysis to the rock bream by which we identified IRF-1 and GILT as two IFN regulatory molecules. Moreover, we were able to illustrate that immune response reactions of rock bream IRF-1 and GILT are likely associated with host defense mechanisms against virus infection. Ozato et al. [11] previously made structural and functional comparisons of IRF proteins and determined that IRF-1 is composed of 325 amino acids and harbors an N-terminal DBD. Mammalian IRFs share this characteristic homology feature with the N-terminal 115 amino acids (first) encompass a DBD [41]. The DBD itself contains five tryptophan (W) repeats, spaced by 10-18 as which are essential for the tertiary structure. The promoter regions of many ISGs contain a short DNA sequence motif, termed the interferon consensus sequence (ICS), which facilitates binding of regulatory proteins such as IRF-1 [42]. The newly identified RbIRF-1 contained 314 amino acids and had a highly conserved N-terminal DBD (113 aa) with five tryptophan residues. Moreover, RbIRF-1 was found to be most similar to Siniperca chuatsi IRF-1 (84% identity) and grouped within the fish IRF-1 clade in phylogenetic analysis. Very recently, Bergan et al. [4] (2010) described that Atlantic salmon IRF-1 has an amino acid identity range of 40-84% with other fish IRF-1s, while it showed a lower range with other IRF family members. Similarly, RbIRF-1 displayed over 50% amino acid identity to other fish IRF-1s and 30-39% to other vertebrate IRFs. Further, it has been reported that the C-terminal of IRF-1 has no significant similarity among fish, chicken or mammals [20]. Likewise, we identified few

- 117 -

conserved amino acid residues in the C- terminus of RbIRF-1 that corresponded to other fish, amphibian, avian or mammalian IRF-1 proteins. Also, members of the IRF family harbor a functional NLS which supports localization to the nucleus [9]. Shi *et al.* [23] identified two NLS signals in *C. auratus* IRF-1 (CaIRF-1), one of which has structural and functional similarity to that of mammalian IRF-1. The second NLS of CaIRF-1 contained basic amino acid sequence, including K_{75} , K_{78} , R_{82} , K_{95} , K_{97} and K_{101} . Similarly, we identified basic amino acids at K_{116} , R_{118} , K_{120} , R_{121} , K_{123} , K_{125} , K_{128} , R_{129} , K_{131} and K_{132} (amino acids 116-132) from RbIRF-1, which may be associated with the nuclear localization function. The main difference is that the second NLS of CaIRF-1 is positioned in the DBD, where as it is outside of the DBD in RbIRF-1. Therefore, all the sequence data summarized in the present study suggest that RbIRF-1 is a true member of the mammalian IRF-1s and is more similar to fish IRF-1.

In this study, we also described the molecular characterization of GILT cDNA sequence from rock bream, which is associated with IFN-x regulated immune response. RbGILT mature protein showed all characteristic motifs of the GILT family members, including a C-XX-C active site motif (74CPGC77) and GILT signature sequence (¹¹⁸CQHGEQECLGNMIETC¹²⁰); it also exhibited a relatively high percentage (15%) of cysteine residues (n=15). The RbGILT active site C-XX-C motif is highly conserved among fish, amphibian and mammalian GILT proteins, and it exactly matched in terms of amino acid composition (CPGC) with all aligned fish GILT sequences. The consensus GILT signature sequence CQHGX2ECX2NX4C was found to be ¹¹⁸CQHG(SE)EC(LG)N(IIAS)C¹²⁰ in RbGILT, with a high level of conserved amino acid residues to other known GILT proteins. RbGILT contains a putative ⁵³NFTR⁵⁶ site at thus, it N-linked glycosylation could be derived by mannose-6-phosphate (M6P), which is considered as an essential requirement for

- 118 -

transportation of GILT to the lysosomal system [26]. Collins et al. [43] proposed that disulfide reduction in lysosomes was largely catalyzed by a high concentration of cysteine, which is transported into the lumen by amino acid transporters. Therefore, we suggest that the high amounts of cysteine residues associated with the seven disulfide bonds in RbGILT may be related to the function of reducing disulfide bonds during antigen processing and presentation. In phylogenetic analysis, RbGILT was evolutionally connected with other members of fish GILT genes, indicating a ancestral origination evolution. Based on the common during molecular characterization of IRF-1 and GILT in rock bream, we suggest that ancient origin and persistence of these genes have occurred throughout evolution in order to maintain efficient immune defense functions in fish.

Analysis of the differential expression pattern of RbIRF-1 and RbGILT mRNA in various rock bream tissues revealed that the two genes were constitutively expressed in eleven organs but to different extents in each tissue. The RbIRF-1 mRNA expression observed in various rock bream tissues was generally in agreement with ubiquitously and constitutively expressed fish IRF-1 reported in *Salmon salar* [4], *P. olivaceus* [15], *F. rubripes* [16], *O. mykiss* [17], *S. maximus* and *S. aurat*a [18]. More similarly, *Salmon salar* IRF-1 was highly expressed in gills (compared to the expression level in brain) and to a much lower extent in muscle [4]. Rock bream IRF-1 also showed the highest expression in blood, followed by gills and having the lowest level in muscle. Since IRFs are known to be involved in cell growth and differentiation, ubiquitous expression of IRF-1 would be associated with alternative functions other than merely the maintenance of innate immunity. Blood circulation is important to maintain homeostasis between different organs and it flows through the gill filaments to facilitate collection of available oxygen from the passing water.

of readily available IRF-1 to circulate via blood for activation of different IFNs or their regulatory genes in other tissues. However, tissue distribution of IRF-1 has shown wide variation even among fish; constitutive expression patterns of IRF-1 differ in *P. olivaceus* [15], *F. rubripes* [16], *Oncorhynchus mykiss* [17], *S. maximus* and *S. aurata* [18]. This variation may be a result of the particular growth stage, physiological status and other culturing conditions of fish examined in each study.

On the other hand, constitutive expression of GILT has been detected in APCs, indicating its role in the MHC class II antigen processing pathway [44-45]. In fish, constitutive expression (basal level) of GILT has been identified in *P. crocea* liver, gills, brain and heart [30], and in *E. coioides* liver, gills, brain, heart, kidney, muscle and spleen [31], which are similar to the expression levels of RbGILT observed in this study. The outcome from tissue specific expression revealed that all these fish organs express IFN regulatory factor (RbIRF-1), as well as IFN inducible protein (RbGILT), indicating that the IFN system may function even without stimulation and act to maintain the first line of defense against pathogens.

It was reported that IRF-1 can be induced by IFN, polyI:C and viruses in the mammalian host defense response to regulate IFNs and interferon inducible genes [46]. Furthermore, IRF-1 has shown interactions with various immune response molecules such as TNF-a [47]. In fish, polyI:C treatment stimulated the IRF-1 expression in muscle, spleen and kidney of *S. maximus*, *S. aurata* [18], and in gill, head kidney, liver, spleen and gonad cells of *O. mykiss* [17]. In rock bream, IRF-1 mRNA expression was induced in blood, gills, spleen and head kidney by polyI:C treatment, and this result was expected as those organs are recognized as immune functional organs in fish [48]. In contrast to RbIRF-1, RbGILT up-regulation against polyI:C challenge was not strong in any of the analyzed tissues. This situation could be due to the inherent nature of polyI:C, since it is a stronger inducer of type I IFN

 $(\alpha\beta)$ than of type II IFN (γ) [49] and the transcription of GILT is mainly activated by IFN (γ) . In fact, from the present results we are unable to explain whether RbGILT induction occurs via direct transcriptional activation by polyI:C or indirectly through induced IRF-1 molecules. Also, it is important to note that polyI:C induced the early IRF-1 expression in rock bream tissues, suggesting that this activity could lead to activating IFN and/or IFN regulatory genes.

At present, iridovirus has become one of the major pathogens causing serious epizootics to cultured rock bream in Korea [32]. Kim et al. [50] produced polyclonal antibody against recombinant protein (ORF049L) of RbIV, but otherwise only few attempts have been made towards developing vaccines against RbIV infection. In the present study, RbIRF-1 expression was induced by RbIV challenge in blood, gills and head kidney, but not in spleen. In general, fish IRF-1 has shown up-regulation against several viruses, including the turbot kidney against VHSV [18] and in C. auratus blastulae embryonic cells against grass carp hemorrhagic virus [22]. In fact, certain virus-like VHSV was not able to induce IRF-1 in fish [34]. Jia et al. [21] characterized the C. argus IRF-1 (CgIRF-1) promoter which contains putative NF-kB, ISRE like and GAS sequences. The presence of GAS in IRF-1 indicates that it has regulatory role with IFN (χ) and downstream genes like GITL. Caipang et al. [23] have shown that transfected Japanese flounder IRF-1 (JFIRF-1) is able to induce the antiviral state against hirame rhabdovirus and VHSV and suggested that JFIRF-1 may regulate the production of type II IFN (y). The present study also may support this idea since RbIv challenge induced the expression of both RbIRF-1 and RbGILT in blood, gills and head kidney. Also, greater transcriptional activation of RbIRF-1 and RbGILT occurred at the early stage of RbIV challenge and then declined; a similar situation has been observed in Atlantic salmon IRF-1 in response to infectious salmon anemia virus (ISAV). Such an early action of IRF-1 in the IFN system was

- 121 -

suggested by Tanaka et al. [6], which suggests that it is essential and critical to activate ISGs in a timely manner to result in efficient host resistance against pathogens.

In conclusion, we have found that rock bream IFN regulator transcription factor (RbIRF-1) and downstream target gene of IFN- (RbGILT) are constitutively expressed in all tissues examined. In addition, poly I:C treatment was able to up-regulate rock bream IRF-1 and GILT transcripts in blood, gills, spleen and head kidney, mainly at the early stages. RbIv challenge induced the RbIRF-1 and RbGILT to a lesser extent (in blood, gills and head kidney) than did the poly I:C. On the basis of the observed ubiquitous and constitutive expression, as well as the transcriptional up-regulation against poly:IC and RbIv suggest that RbIRF-1 and RbGILT are related to (innate) immune responses against viral infection, and that this activation may be essential for subsequent adaptive immunity in rock bream. IFN- γ has not been identified from rock bream until now, and the findings from the current study will help to advance our understanding of the roles and molecular mechanisms of IRF-1 and IFN- γ in regulation of GILT gene transcription.

¥ 7

F IL

3.8 REFERENCES

[1] Koyama S, Ishii KJ, Coban C, Akira S. Innate immune response to viral infection. Cytokine 2008;43:336-41.

[2] Takaoka A, Yanai H. Interferon signalling network in innate defense. Cell Microbiol 2006;8:907-22.

[3] Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998;67:227-64.

[4] Bergan V, Kileng O, Sun B, Robertsen B. Regulation and function of interferon regulatory factors of Atlantic salmon. Mol Immunol 2010;47:2005-14.

[5] Huang B, Qi ZT, Xu Z, Nie P. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution. BMC Immunol 2010;11-22.

[6] Escalante CR, Yie J, Thanos D, Aggarwal AK. Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 1998;391:103-6.

[7] Fujita T, Sakakibara J, Sudo Y, Miyamota M, Kimura Y, Taniguchi T. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J 1988;7:3397-405.

[8] Tanaka N, Ishihara M, Lamphier MS, Nozawa H, Matsuyma T, Mak TW, Aizawa S, Tokino T, Oren M, Taniguchi T. Cooperation of the tumor suppressor IRF-1 and p53 in response to DNA damage. Nature 1996;382:816-8.

[9] Kim EJ, Park CH, Park JS, Um SJ. Functional dissection of the transactivation domain of interferon regulatory factor-1. BioChem BioPhys Res Commun 2003;304:253-9.

[10] Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 1997;8:293-312.

[11] Ozato K, Tailor P, Kubota T. The interferon regulatory factor family in host defense: Mechanism of action. J Biol Chem 2007;282:20065-9.

[12] Romeo G, Fiorucci G, Chiantore MV. Percario ZA, Vannucchi S, Affabris E. IRF-1 as a negative regulator of cell proliferation. J Interferon Cytokine Res 2002;22:39-47.

[13] Tanaka N, Ishihara M, Kitagawa M, Harada H, Kimura T, Matsuyama T, Lamphier MS, Aizawa S, Mak TW, Taniguchi T. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 1994;77:829-39.

[14] Kroger A, Koster M, Schroeder K, Hauser H, Mueller PP. Activities of IRF-1. J Interferon Cytokine Res 2002;22:5-14.

[15] Yabu T, Hirose H, Hirono I, Katagiri T, Aoki T, Yamamoto E. Molecular cloning of a novel interferon regulatory factor in Japanese flounder, *Paralichthys olivaceus*. Mol Mar Biol Biotechnol 1998.7:138-44.

[16] Richardson MP, Tay BH, Goh BY, Venkatesh B, Brenner S. Molecular cloning and genomic structure of a gene encoding interferon regulatory factor in the pufferfish (*Fugu rubripes*). Mar Biotechnol 2001;3:145-51.

[17] Collet B, Guido C, Hovens J, Mazzoni D, Hirono I, Aoki T, Secombes C. Cloning and expression analysis of rainbow trout *Oncorhynchus mykiss* interferon regulatory factor 1 and 2 (IRF-1 and IRF-2). Dev Comp Immunol 2003;27:111-26.

[18] Ordas MC, Abollo E, Costa MM, Figueras A, Novoa B. Molecular cloning and expression analysis of interferon regulatory factor-1 (IRF-1) of turbot and sea bream. 2006. Mol Immunol 2006;43:882-90.

[19] Sun BJ, Chang MX, Song Y, Yao WJ, Nie P. Gene structure and transcription of IRF-1 and IRF-7 in the mandarin fish *Siniperca chuatsi*. Vet Immunol Immunopathol 2007;116:26-36.

[20] Jia W, Guo Q. Gene structures and promoter characterization of interferon regulatory factor 1 (IRF-1), IRF-2 and IRF-7 from snakehead *Channa argus* Mol Immunol 2008;45:2419-28.

[21] Shi Y, Zhu XP, Yin JK, Zhang QY, Gui JF. Identification and characterization of interferon regulatory factor-1 from orange-spotted grouper (*Epinephelus coioides*). Mol Biol Rep 2010;37:1483-93.

[22] Shi Y, Zhang YB, Zhao Z, Jiang J, Zhang QY, Gui JF. Molecular characterization and subcellular localization of Carassius auratus interferon regulatory factor-1. Dev Comp Immunol 2008;32:134-46.

[23] Caipang CM, Hirono I, Aoki T. Induction of antiviral state in fish cells by Japanese flounder *Paralichthys olivaceus*, interferon regulatory factor-1. Fish Shellfish Immunol 2005;19:79-91.

[24] Zenke K, Kim KH. Molecular cloning and expression analysis of three Mx isoforms of rock bream *Oplegnathus fasciatus*. Fish Shellfish Immunol 2009;26:599-605.

[25] Zenke K, Nam YK, Kim KH. Molecular cloning and expression analysis of double strand RNA dependant protein kinase (PKR) of rock bream *Oplegnathus fasciatus*. Fish Shellfish Immunol 2010;133:290-5.

[26] Arunachalam B, Phan UT, Geuze HJ, Cresswell P. Enzymatic reduction of disulfide bonds in lysosomes: Characterization of interferon inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci USA 2000;97:745-50.

[27] Lackman RL, Cresswell P. Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-gamma-inducible lysosomal thiol reductase expression by inflammatory cytokines. J Immunol 2006;177:4833-40.

[28] O'Donnell PW, Haque A, Klemsz MJ, Kaplan MH, Blum JS. Cutting edge: Induction of the antigen-processing enzyme IFN-gamma inducible lysosomal thiol reductase in melanoma cells is STAT1-dependent but CIITA-independent. J Immunol 173,731-5.

[29] Phan UT, Maric M, Dick TP, Cresswell P. Multiple species express thiol oxidoreductase related to GILT. Immunogenetics 2001;53:342-56.

[30] Zheng W, Chen X. Cloning and expression analysis of interferon gamma-inducible lysosomal thiol reductase gene in large yellow croaker (Pseudosciaena crocer). Mol Immunol 2006;43:2135-41.

[31] Dan WB, Ren F, Zhang C, Zhang SQ. Molecular cloning and expression analysis interferon-gamma inducible lysosomal thiol reductase of gene in orange-spotted grouper, Epinephelus coioides. Fish Shell Immunol fish 2007;23:1315-23.

[32] Robertsen B. The interferon system of teleost fish. Fish Shellfish Immunol 2006;20:172-91.

[33] Jung SJ, Oh MJ. Iridovirus-like infection associated with high mortalities of striped beakperch, *Oplegnathus fasciatus* (Terminck et Schlegel), in southern coastal area of the Korean peninsula. J Fish Dis 2000;23:223-6.

[33] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic alignment search tool. J Mol Biol 1990;215:403-10.

[34] Bairoch A, Bucher P, Hofmann K. The PROSITE data base, its status in 1997. Nucleic Acids Res 1997;25:217-21.

[35] Pearson WR. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 1990;183:63-98.

[36] Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap Penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-80.

[37] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004;5:150-63.

[38] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. Methods 2001;25:402-8.

[39] Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732-8.

[40] Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD. Sequencing *Medicago truncatula* expressed sequenced tags using 454 Life Sciences Technology. BMC Genomics 2006;7:272.

[42] Weisz A, Marx P, Sharf R, Appekka E, Driggers PH, Ozato K, Levi BZ. Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon inducible genes. J Biol Chem 1992;35:25589-96.

[43] Collins DS, Unanue ER, Harding CV. Reduction of disulfide bonds within lysosome is a key step in antigen processing. J Immunol 1991;147:4054-9.

95

[44] Luster AD, Weinshank RL, Feinman R, Ravetch JV. Molecular and biochemical characterization of a novel gamma interferon inducible protein. J Biol Chem 1998;263:12036-43.

[46] Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001;19:23-55.

[47] Davidson GA, Lin SH, Secombes CJ, Ellis AE. Detection of specific and constitutive antibody secreting cells in the gills, head kidney, and peripheral blood leucocytes of dab (*Limanda limanda*). Vet Immunol Immunpathol 1997;58:363-74.

[49] Kim YI, Ha YM. Ahn SJ, Nam YK, Kim KH, Kim SK. Production and characterization of polyclonal antibody against recombinant ORF049L of rock bream (*Oplegnathus fasciatus*) iridovirus. Process Biochem 2007;42:134-40.

[50] Tanaka N, Kawakami T, Taniguchi T. Recognition DNA sequence of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol Cell Biol 1993;13:4531-8.

PART 4

Molecular characterization and expression analysis of Cathepsin B and L cysteine proteases from rock bream (Oplegnathus fasciatus)

4.1 ABSTRACT

Cathepsins are lysosomal cysteine proteases of the papain family that play an important role in intracellular protein degradation. The full-length sequences of cathepsin B (RbCathepsin B) and L (RbCathepsin L) were identified after transcriptome sequencing of rock bream *Oplegnathus fasciatus* mixed tissue cDNA. Cathepsin B was composed of 330 amino acid residues and having 36 kDa molecular mass. RbCathepsin L contained 336 amino acid residues encoding for a 38 kDa molecular mass protein. The sequencing analysis results showed that both cathepsin B and L contain the characteristic papain family cysteine protease signature and active sites for the eukaryotic thiol proteases cysteine, asparagine and histidine. In addition, RbCathepsin L contained EF hand Ca²⁺ binding and cathepsin propeptide inhibitor domains. The rock bream cathepsin B and L showed the highest amino acid identity of 90 and 95% to *Lutjanus argentimaculatus* cathepsin B and L *Lates calcarifer* cathepsin L, respectively. By phylogenetic analysis, cathepsin B and L exhibited a high degree of evolutionary relationship to respective cathepsin family members of the papain superfamily.

Quantitative real time RT-PCR analysis results confirmed that cathepsin B and L gene expression was constitutive in all examined tissues isolated from un-induced rock bream. Moreover, challenge with LPS and *Edwardsiella tarda* resulted in significant up-regulation of RbCathepsin B and L mRNA in liver and blood, indicating a role for cathepsin B and L in immune responses against bacteria in rock bream.

Keywords: Cathepsin; lysosomal cysteine proteases; papain superfamily; rock bream; Oplegnathus fasciatus

4.2 LIST OF TABLES

	Page
Table 4.1 Description of primers used in the study	140

4.3 LIST OF FIGURES

Figure 41	The nucleotide and deduced amino acid sequences of rock bream	Page
i iguie 1.1	cathepsin B (A) and L (B) cDNAs	145
E: 4.2		
C C	Multiple sequence alignment of the RbCathepsin B (A) and L (B).	147
Figure 4.3	Phylogenetic relationship of cathepsin family members was	
	constructed based on amino acid sequences	149
Figure 4.4	Tissue distribution of cathepsin B and cathepsin L of rock bream	150
Figure 4.5	Transcriptional regulation of cathepsin B and cathepsin L of rock	
	bream in liver (A) and blood (B) following LPS challenge	151
Figure 4.6	Transcriptional regulation of cathepsin B and cathepsin L of rock	
	bream in liver (A) and blood (B) following <i>E. tarda</i> challenge	152
_		
-		
L		7
-	JEJU	
	1952	
	- W-	

4.4 INTRODUCTION

The cathepsin protein family is composed of lysosomal proteolytic enzymes that play an important role in maintaining homeostasis in organisms. In particular, these proteases are involved in intracellular protein degradation/turn over [1], antigen processing [2], hormone maturation [3] and host immune responses [4]. The cathepsin cysteine proteases belong to the C1 family, which is also known as the papain family [5]. Different cathepsin isoforms have been identified and classified based on sequence homology, specific or conserved amino acid motifs (cysteine, serine, aspartate), and specific tissue distribution pattern. Two major cathepsins groups have been classified according to their tissue distribution. The first group is composed of ubiquitously expressed members, including cathepsin B, C, F, H, L, O and Z, while the second group consists of cathepsin J, K, S and W which have restricted expression in certain tissues [6]. Moreover, the cathepsins can be divided into three major sub-groups based on their sequence homology and specific amino acid motifs; these include the cathepsin B-like, cathepsin L-like and cathepsin F-like genes [7].

Cathepsin B has been characterized for its function to degrade proteins in the lysosomal system that entered from outside the cell. In addition, cathepsin B function has also been implicated in many pathological and physiological processes, including inflammation, infection clearance, apoptosis and cancer [8,9]. On the other hand, several studies have demonstrated the ability of human cathepsin L to cleave the various substrates of extracellular, serum, cytoplasmic and nuclear proteins. For example, cathepsin L can act on fibronectin, collagen, and elastin to modulate the extracellular matrices [10,11]. Tryselius et al. [12] described the expression of cathepsin L-like cysteine protease 1 in *Drosophila melanogaster* hemocyte cell line (mbn-2), which supposed to be involved in phagocytosis reaction. Another recent

study revealed that mouse cathepsin L can be suppressed the TH1 immune response which drastically increases susceptibility to bacterial infections [4]. Therefore, cathepsin exhibits a multifunctional role in various organisms. However, cathepsins B cloned only from few fish species such as and L were Danio rerio (XM692675/BC066490), *Cyprinus* carpio (AB215097/AB128161), Paralichthys olivaceus (AY686604), Fundulus heterolitus (AY217741/AY212286) and Oncorhynchus mykiss (AF358667/AF358668). Therefore, further studies are required to elucidate the specific immune responses and other associated functions of cathepisn B and L in low-order vertebrates such as fish. To date, no cathepsin isoform has been cloned or identified from the rock bream.

Immune responses in fish can be experimentally stimulated by either injection of bacterial LPS or bacteria [13]. It was reported that low concentration of LPS could be beneficial to fish for enhancing non-specific immune responses such as phagocytic activity and proliferation of B and T lymphocytes [14]. Rock bream is a commercially important fish in marine aquaculture. Edwardsiellosis is one of the most problematic bacterial diseases of rock bream as well as in many other fresh and marine fish caused by gram negative bacteria *Edwardsiella tarda* [15]. *E. tarda* infection has been shown to induce several immune reactions in fish [16-18]. Therefore, fish challenge with LPS or *E. tarda* has great potential to understand immune regulatory effects or responses of cathepsins as well as host pathogen interactions. Additionally, results of LPS challenge could be used to compare the effect of *E. tarda* on cathepsin responses in rock bream.

In the present study, we have identified and characterized the cathepsin B and L cDNAs from rock bream using GS-FLX-based transcriptome sequencing technique. Transcriptional analysis was investigated to test immune responses of cathepsin B and L after experimentally challenge of rock bream using LPS and *E. tarda*.

- 133 -

4.5 MATERIALS AND METHODS

4.5.1 Animal rearing and RNA isolation

Healthy rock bream Oplegnathus fasciatus fish (mean weight 30g) were obtained from the Ocean and Fisheries Research Institute (Jeju Special Self-Governing Province, Republic of Korea). Fish were acclimatized for one week in a 400 L stock tank at 22-24°C in our laboratory. For RNA isolation, rock bream brain, gills, liver, kidney, head kidney, spleen, skin, intestine and muscle were dissected from three un-challenged fish. Blood samples (approximately 1-2 mL/fish) were taken from the caudal fin using a 22 G syringe; samples were immediately centrifuged 3000 x g at 4°C for 10 min to separate blood cells. All tissues and blood cells were directly frozen in liquid nitrogen before storage at -80°C. Total RNA was isolated from all selected tissue samples separately using the TRI ReagentTM (Sigma, USA) according to the manufacturer's protocol. Poly(A) mRNA was then isolated using FastTrack[®] 2.0 kit according to the manufacturer's instructions (Invitrogen, USA). The RNA concentration and purity was determined by measuring the absorbance at 260 and 280 nm in a UV-spectrophotometer (BioRad, USA).

4.5.2 Multi-tissue cDNA synthesis and normalization

Purified mRNA from various tissues was diluted up to 1 mg/uL and pooled equally before synthesis of multi-tissue cDNA. Full-length, enriched first strand cDNA was generated from 1.5 mg of poly(A+) RNA using a CreatorTM SMARTTM cDNAlibrary construction kit (Clontech, USA) following the manufacturer's instructions. Then, cDNA amplification was carried out with the 50× Advantage 2 polymerase mix (Clontech, USA) for 95°C for 7 sec, 66°C for 30 min and 72°C for 6 min. In order to reduce over-representation of the most commonly expressed

transcripts, the resulting double stranded cDNA was normalized using the TRIMMER-DIRECT cDNA normalization kit (Evrogen, Russia).

4.5.3 Pyrosequencing, sequence processing, assembly and identification of RbCathepsin B and L

The rock bream multi-tissue normalized cDNA was used for parallel pyrosequencing in an automated sequencing platform using GS-FLX titanium system (454, Roche, USA). The creation of rock bream multi-tissue cDNA GS-FLX shotgun library and GS-FLX pyrosequencing (using the GS-FLX Titanium reagents) were carried out using a next-generation sequencing platform (DNA Link, Republic of Korea). A single full plate run was performed using normalized cDNA and the reads obtained were processed and assembled through the assembly program (ARACHNE). Two unique cDNAs which showed homology to known cathepsin B and L were identified from homology searches using the Basic Local Alignment Tool (BLAST) algorithm [19].

4.5.4 Molecular characterization of RbCathepsin B and L

Nucleotide and predicted peptide sequences of RbCathepsin B and Lwere analyzed using DNAsisst and BLAST programs. Characteristic domains or motifs were identified using the PROSITE profile database [20]. Signal sequence and putative cleavage site of RbCathepsin B and L were identified using the SignalP 3.0 server. Prediction of the pro-region cleavage sites and active sites were based on the alignment of cathepsin sequences with the vertebrate orthologues. Identity, similarity and gap percentages were calculated using the FASTA program [21]. Pair-wise and multiple sequence alignment were analyzed using the ClustalW program, version 1.8 [22]. The phylogenetic tree was constructed using the Neighbor-Joining method and plotted with MEGA version 3.1 program [23].

- 135 -

4.5.5 LPS and bacterial challenge

To study the immune response of RbCathepsin B and L, we performed two immune challenge experiments using bacteria *E.tarda* and purified LPS. The *E. tarda* strain was kindly provided by Dr. Sung-Ju Jung from the Department of Aquatic Life Medicine, Chonnam National University, Republic of Korea. *E. tarda* was cultured in BHIS broth at 30°C for 16 h. Then, the bacterial culture was centrifuged at 7000 x g at 4°C for 5 min. The supernatant fluid was discarded and the bacteria lpellets were resuspended in 1x phosphate-buffered saline (PBS). Fish were intraperitonealy (i.p.) injected with 100 mL of *E. tarda* (5 x 10⁶CFU/ml). In the LPS challenge experiment, fish were injected with 125 mg (50 g fish) of LPS purified from *E.coli* 055:B5 (Sigma). The control group was injected with the same volume (as used in experiments) of PBS. Rock bream liver and blood were removed at 3, 6, 12, 24, and 48 h post-challenge. Respective samples were isolated from PBS injected fish. The tissue samples were immediately snap-frozen in liquid nitrogen and stored at -80°C until use for RNA isolation.

4.5.6 cDNA synthesis

IFIO

An equal amount (50 mg) of tissue was mixed from three fish to make a pooled sample for RNA isolation. The total RNA was extracted from the pooled tissue (150 mg) and blood using TRI Reagent according to the manufacturer's protocol. The total RNA was stored at -80°C until further use. The RNA concentration and purity was 260 determined by measuring the absorbance at and 280 nm in а UV-spectrophotometer (BioRad). Purified RNA was diluted upto 1mg/uL concentration before synthesis of cDNA. A sample of 2.5 mg RNA was used to synthesize cDNA from each tissue using a Superscript III first-strand synthesis system for RT-PCR kit (Invitrogen). Briefly, RNA was incubated with 1 mL of 50 mM oligo(dT)₂₀ and 1 mL of 10 mM dNTPs for 5 min at 65°C. After incubation, 2 mL of 10x cDNA

synthesis buffer, 2 mL of 25 mM MgCl₂, 2 mL of dithiothreitol (DTT, 0.1 M), 1 mL of RNaseOUTTM(40U/mL) and 1 mL of SuperScript III reverse transcriptase (200 U/mL) were added and incubated for 1 h at 50°C. The reaction was terminated by adjusting the temperature to 85°C for 5 min. Then, 1 mL of RNase H was added to each cDNA reaction and incubated at 37°C for an additional 20 min. Finally, synthesized cDNA was diluted 10-fold (total 200 mL) before storing at -20°C.

4.5.7 Expression analysis of RbCathepsin B and L by quantitative real-time RT-PCR

The RbCathepsin B and L expression in various tissues in un-challenged and challenged fish were analyzed by quantitative real-time RT-PCR. immune Gene-specific primers were designed to amplify corresponding regions of RbCathepsin B, L and beta actin (Table 1). The rock bream beta actin (Accession No. FJ975145) was selected as a house keeping gene in this study. Tissue-specific mRNA expression was analyzed in blood cells, gills, liver, spleen, head kidney, kidney, muscle and intestine. The RbCathepsin B and L mRNA response was determined in liver and blood cells after LPS and *E. tarda* challenge. The quantitative real-time RT-PCR was carried out in a 20 mL reaction volume containing 4 mL of 1:10 diluted original cDNA, 10 mL of 2× SYBR Green Master Mix, 1.0 mL of each primer (10 pmol/mL), and 4.0 mL of PCR grade water using Thermal Cycler DiceTM Real Time System (TaKaRa, Japan). The quantitative real-time RT-PCR cycling protocol was as follows: one cycle of 95°C for 3 min, amplification for 35 cycles of 95°C for 20 sec, 58°C for 20 sec, 72°C for 30 sec. The baseline was set automatically by the Thermal Cycler DiceTM Real Time System software (version 2.00). The relative expression of each gene was determined by the Livak $(2^{-\Delta\Delta CT})$ method [24], considering the rock bream beta actin as a reference gene. The calculated relative expression level of each gene was compared with respective expression levels of blood cells for the tissue-specific expression. For analysis of the fold-change after LPS and E. tarda injection, relative expression at each time point of challenged fish

was compared to respective PBS-injected and un-injured controls, respectively.

RbCathepsin B-FReal time PCR amplificationGTTATTGGCTGCCAGCTTGTCGTTRbCathepsin B-RReal time PCR amplificationAAGTTGTGACCAGCCTTCCAGGTARbCathepsin L-FReal time PCR amplificationTGGTGTGGGAGAAGAACCTGAAGARbCathepsin L-RReal time PCR amplificationCGATTTGCGCTTGTAGCCGTTCATRbbeta actin-FReference gene Real time PCRTCATCACCATCGGCAATGAGAGGTRbbeta actin-RReference gene Real time PCRTGATGCTGTTGTAGGTGGTCTCGTRb rock bream; F, forward; R, reverseFerence gene Real time PCRTGATGCTGTTGTAGGTGGTCTCGT	Name	Target	Primer sequence (5'- 3')
RbCathepsin L-FReal time PCR amplificationTGGTGTGGGAGAAGAACCTGAAGARbCathepsin L-RReal time PCR amplificationCGATTTGCGCTTGTAGCCGTTCATRbbeta actin-FReference gene Real time PCRTCATCACCATCGGCAATGAGAGGTRbbeta actin-RReference gene Real time PCRTGATGCTGTTGTAGGTGGTCTCGT	RbCathepsin B-F	Real time PCR amplification	GTTATTGGCTGCCAGCTTGTCGTT
RbCathepsin L-RReal time PCR amplificationCGATTTGCGCTTGTAGCCGTTCATRbbeta actin-FReference gene Real time PCRTCATCACCATCGGCAATGAGAGGTRbbeta actin-RReference gene Real time PCRTGATGCTGTTGTAGGTGGTCTCGT	RbCathepsin B-R	Real time PCR amplification	AAGTTGTGACCAGCCTTCCAGGTA
Rbbeta actin-FReference gene Real time PCRTCATCACCATCGGCAATGAGAGGTRbbeta actin-RReference gene Real time PCRTGATGCTGTTGTAGGTGGTCTCGT	RbCathepsin L-F	Real time PCR amplification	TGGTGTGGGAGAAGAACCTGAAGA
Rbbeta actin-R Reference gene Real time PCR TGATGCTGTTGTAGGTGGTCTCGT	RbCathepsin L-R	Real time PCR amplification	CGATTTGCGCTTGTAGCCGTTCAT
	Rbbeta actin-F	Reference gene Real time PCR	TCATCACCATCGGCAATGAGAGGT
Rb rock bream; F, forward; R, reverse	Rbbeta actin-R	Reference gene Real time PCR	TGATGCTGTTGTAGGTGGTCTCGT
		4	JEJU
		-6//	
-61		4 4	CH QX Y

Table 4.1 Description of primers used in the study

- 140 -

4.6 RESULTS

4.6.1 Identification and characterization of RbCathepsin B and L cDNA sequences

The pyrosequencing of rock bream normalized cDNA library using Roche GS-FLX technology generated a total of 915,242 reads of raw nucleotide sequences. BLAST analysis of our rock bream transcriptome data led to identify two cathepsin sequences, namely rock bream cathepsin B (RbCathepsin B) and cathepsin L (RbCathepsin L). We then cloned the complete coding sequence of RbCathepsin B and L to confirm the identified sequence using two sets of gene specific primers and cDNA generated from liver tissue. The sequence results showed that there was no difference between respective pyrosequencing sequence and amplified coding sequence. Hence, RbCathepsin B and L were deposited in NCBI under accession numbers of GQ903767 and HM060314, respectively.

The cDNA of RbCathepsin B contained 1753 bp full-length and a 990 bp ORF that translated into a putative peptide of 330 amino acid residues (Fig. 4.1a). It was consisted of 96 bp length 5' untranslated region (UTR) and 667 bp 3' UTR, that harbored three RNA instability motifs (ATTTA). The RbCathepsin B polypeptide had a putative molecular mass of 36 kDa with a 5.3 isoelectric point (*pI*). SignalP prediction results revealed that there was a putative signal peptide in the N-terminal of RbCathepsin B. Several characteristic signature domains or active sites, such as the papain family cysteine protease (79-328 aa), propeptide C1 peptidase family (25-65 aa), and eukaryotic thiole proteases cysteine (101-112 aa), asparagine (292-311 aa) and histidine (275-285 aa), were identified within the amino acid sequence of RbCathepsin B. Moreover, a single ASN-glycosylation site (37-40 aa) and 16 cysteine residues were identified in the mature cathepsin B peptide.

The full-length (1450 bp) of RbCathepsin L encompassed a 1008 bp ORF that encodes a 336 amino acid putative protein (Fig. 1b). Predicted molecular mass and

p*I* of RbCathepsin L was 38 kDa and 5.5, respectively. It had 57 bp and 385 bp lengths for the 5' UTR and 3' UTR, respectively. Amino acid sequence analysis revealed that RbCathepsin L contained several characteristic features of the cathepsin family, including peptidase C1 papain family cysteine protease signature (115-335 aa), EF hand Ca²⁺ binding domain (80-97 aa) and cathepsin propeptide inhibitor domain (28-97), thiol protease active sites of cysteine (133-144), histidine (227-287) and asparagin (398-317). Moreover, RbCathepsin L had a predicted signal peptide that showed the cleavage site located between the 16-17 amino acid position.

To distinguish the RbCathepsin B and L from other cathepsin family members, we analyzed the pair-wise identity using ClustalW program. Results revealed that RbCathepsin B was 90, 70 and 54% identical to fish Lutianus argentimaculatus, human and Brancheostoma belcheri (invertebrate) cathepsin B amino acid sequences, respectively. On the other hand, it was shown that RbCathepsin L has 95, 75, 60% identities to Asian seabass (Lates calcarifer), human and Artemia franciscana (invertebrate) cathepsin L sequences, respectively. To compare with known cathepsins B and L, we aligned complete amino acid sequences of RbCathepisn B and L using ClustalW multiple analysis. It was shown that all selected cathepsin B and L from fish, amphibian, birds and mammalian species contain an N-terminal signal peptide. Also, we identified that previously reported mature light chain, heavy chain of cathepsin B sequences were aligned with RbCathepsin B showing higher amino acid matching (Fig. 4.2A). Multiple alignment of RbCathepsin L with six cathepsin L sequences from other organisms demonstrated that the ERF/WNIN-like motif was present in the pro region of the rock bream cathepsin L, which was more or less identical to the respective motif of other species.

We were interested in determining the phylogenetic relationship of RbCathepsin B and L by the Neighbor-Joining method using human cathepsin A as an out-group (Fig. 4.3). Phylogenetic tree construction was accomplished using 39 different cathepsin sequences (cathepsin A, C, D, H, L, S, W, V and Z) selected from fish, amphibian, avian and mammalian species. We were able to distinguish that

RbCathepsin B and L positions in two separate clades. RbCathepsin B was closely related to *Lutajanus argentimaculatus* cathepsin B, while RbCathepsin L was more related to cathepsin L of *Hippoglossus hippoglossus*. Fish and mammalian cathepsin sub-clusters were identified in both cathepsin B and L clades. Selected cathepsin sequences of other organisms, such as cathepsin A, C, D, H, S, W, V and Z, were grouped in relevant positions with other family members of their respective group.

4.6.2 Tissue expression profiles of RbCathepsin B and L

To determine the tissue-specific mRNA expression profiles of RbCathepsin B and L, quantitative real-time RT-PCR was carried out using various tissues of un-challenged rock bream. The expression level of selected tissues was normalized to that of beta actin as a house keeping gene. Relative expression fold was calculated based on the expression in blood cells to determine the tissue expression profile (Fig. 4.4). Expression results revealed that both RbCathepsin B and L transcripts were ubiquitously expressed in all analyzed tissues, namely blood, gill, liver, spleen, head kidney, kidney, muscle and intestine.

4.6.3 Expression analysis of RbCathepsin B and L after LPS and E. tarda challenge

1952

To examine the in vivo transcriptional responses of RbCathepsin B and L, fish were challenged with LPS and bacteria (*E. tarda*) separately. Expression profiles were determined in liver and blood using qPCR. Rock bream Cathepsin B and L mRNA expression analysis after LPS challenge is shown in Figure 4.5. Following the LPS challenge in liver, RbCathepsin B mRNA level was decreased up to the 24 h time point and then increased by the 48 h time point (Fig. 4.5A). In contrast, RbCathepsin L was increased at 3 h and then decreased during the following 3-48 h post-LPS challenge, as compared to the control. Present results showed that RbCathepsin B and L expression profiles were different in liver tissue after LPS

challenge. Additionally, we analyzed Cathepsin B and L transcriptional activation in rock bream blood cells. Expression profiles of Cathepsin B and L in blood cells is shown in Figure 5B. Both Cathepsin B and L transcription was activated at 3 h post-challenge with LPS. However, they were decreased at 6 and 12 h and then increased to the highest induced states of 6.2-fold (cathepsin B) and 38.1-fold (cathepsin L) at 24 h post-LPS challenge. Notably, both cathepsin B and L expression in blood cells was reduced at 48 h (compared to levels at 24 h) but was higher than the respective control. Both RbCathepsin B and L induction was higher in blood cells than liver against LPS challenge.

To examine the expression of RbCathepsin B and L during bacterial infection, we analyzed mRNA expression after challenge with *E. tarda*. In liver, RbCathepsin B expression remained un-changed at 3 and 6 h, compared to control (Fig. 4.6A). Then, the level decreased below the control level during the 12-48 h post- *E. tarda* challenge. However, induced RbCathepsin L was noticed only at 6 and 24 h in liver after *E. tarda* challenge. Interestingly, transcriptional up-regulation of RbCathepsin B was gradually increased in blood up to 48 h after *E. tarda* challenge (Fig. 4.6B). Meanwhile, RbCathepsin L level was gradually up-regulated up to the 24 h and then decreased at 48 h in blood cells but remained higher than the respective level in the control sample. The highest expression level of RbCathepsin B (3.7-fold) and L (2.0-fold) was detected at 48 h and 24 h, respectively after *E. tarda* challenge. Transcriptional activation of RbCathepsin B and L by LPS and *E. tarda* challenge.

																		AC	ACTT	AT	CCA	CTG	GAG	ACGG	
AC	AGT	AAG	AGA	CAGG	GA	ACC	TGG	AGC	TGAA	GA	TTC	AGA	CAA	GTTA	AC	AAC	AGC	TGA	CAGA	CG	AAC	TAC	AGT	CAAA	-7
AT	GTG	GCG	TGC	AGCC	TT	CCT	GTT	ATT	GGCT	GC	CAG	CTT	GTC	GTTG	AG	CCT	GGC	CAG	ACCC	CG	CCT	CCA	ACC	ACTG	7
М	W	R	A	A	F	' L	L	L	A	A	. S	L	S	L	S	L	A	F	P	R	L	, c	2 P	L	2
TC	CAG	rga	GAT	GGTC	AA	CTA	CAT	CAA	TAAG	TT	CAA	CAC	TAC	CTGG	AA	GGC	TGG	TCA	CAAC	TT	CCA	TAA	TGT	CGAC	15
S	S	E	М	V	N	Y	I	N	K	F	N	т	Т	W	ĸ	A	G	H	N	F	H	N	v	D	5
TA	CAG	TTA	TAT	CCAG	AG	ACT	CTG	CGG	TACG	AT	GCT	GAA	GGG.	ACCT	AA	ACT	ACC	AGT	CATG	GT	TCA	GTA	TAC	TGGA	22
Y	s	Y	I	Q	R	L	C	G	т	М	L	K	G	P	K	L	P	v	м	V	Q	Y	т	G	7
GA	CCT	GAA	GCT	GCCT	GA	AGA	GTT	TGA	CGCC	AG	AGA	GCA	ATG	GCCT	AA	CTG	TCC	CAC	TCTG	AA	GGA	GAT	CAG	AGAC	30
D	L	K	L	Р	E	Е	F	D	A	R	E	Q	W	P	N	С	P	т	L	ĸ	E	I	R	D	10
CA	GGG	CTC	CTG	TGGT	TC	CTG	CTG	GGC	GTTT	GG	CGC	TGC	AGA	GGCC	AT	CTC	CGA	CCG	TGTG	TG	TAT	CCA	CAG	CAAT	37
Q	G	S	C	G	S	C	W	A	F	G	A	A	E	A	I	s	D	R	v	C	I	н	S	N	12
GC	CAAC	GGT	CAG	CGTG	GA	GAT	CTC	CTC	AGAG	GA	TCT	GCT	GAC	CTGC	TG	CAT	GAG	CTG	TGGC	AT	GGG	ATG	TAA	TGGT	45
A	ĸ	v	S	v	E	I	s	s	E	D	L	L	т	С	С	м	S	С	G	м	G	С	N	G	15
GG	CTA	ccc	ATC	TGCT	GC	CTG	GGA	CTT	CTGG	AC	CAA	AGA	.GGG.	ACTG	GT	CTC	TGG	AGG	CCTT	TA	TGA	CTC	CCA	CATT	52
G	Y	P	s	A	A	W	D	F	W	т	ĸ	Е	G	L	v	s	G	G	L	Y	D	s	н	I	17
GG	ATG	rcg	ACC	CTAC	AC	CAT	CGC	ccc	CTGC	GA	ACA	CCA	TGT	GAAT	GG	CAG	CAG	ACC	CTCC	TG	CAC	TGG	GGA	GGGT	60
G	С	R	P	Y	т	I	A	Р	С	Е	н	н	v	N	G	s	R	P	s	С	т	G	Е	G	20
GG	AGA	CAC	ACC	CCAG	TG	CAT	CAC	CAA	GTGT	GA	AGC	TGG	ATA	TACA	CC	CAG	CTA	CAA	AGAG	GA	CAA	GCA	CTT	TGGT	67
G	D	т	P	Q	С	I	т	к	С	Е	A	G	Y	т	Р	S	Y	ĸ	E	D	к	н	F	G	22
AA	AAC	STC	TTA	CACC	GT	GCT	GTC	AGA	CGAG	GA	GCA	GAT	TCA	GTCT	GA	GAT	ATT	CAA	GAAC	GG	ccc	AGT	AGA	GGGA	75
ĸ	т	s	Y	т	v	L	S	D	E	E	Q	I	Q	S	E	I	F	ĸ	N	G	Р	v	Е	G	25
GC	CTT	CAT	TGT	CTAT	GA	AGA	CTT	TGT	GCTG	TA	CAA	GTC	TGG	TGTG	TA	TCA	GCA	TGT	GTCT	GG	GTC	TGC	TGT	GGGC	82
A	F	I	v	Y	E	D	F	v	L	Y	к	s	G	V	Y	Q	н	V	S	G	S	A	v	G	27
GG	CCAC	CGC	CAT	CAAG	AT	CCT	GGG	CTG	GGGG	GT	GTGGAGGATGGTGTT					CCCTACTGGCTCTGC					GCCAACTCCTGGAAT				
G	н	A	I	K	I	L	G	W	G	v	Е	D	G	v	Р	Y	W	L	С	A	N	S	W	N	30
AC	TGA	CTG	GGG	TGAC	AA	CGG.	ATT	CTT	TAAA	TT	CCT	GCG	TGG.	ATCG	GA	TCA	CTG	TGG	TATC	GA	GTC	TGA	GGT	TGTG	97
т	D	W	G	D	N	G	F	F	К	F	L	R	G	S	D	н	С	G	I	E	S	E	v	V	32
GC	rgge	GAT	TCC	CAAA	TA	AAA	TGT	AAG	GTTT	TG	AGC	TGC	AGT	GTCA	TT	ACA	TAA	TCA	CTAG	AG	GGC	GAC	ACA	CTCC	105
A	G	I	P	K																					
TC	TTG	CCT	CCT	CTGG	AT	CTC	TGA	CCA	CATT	TA	ACT	GCT	TTT.	AGTC	CT	TAT	AGT	TAA	AGTC	CA	CTG	ATC	ACC	TTGC	112

TAATCACCACTGTTG AATTTAAGGTGTTTT TTGTGAATGAGCGGC TGTGAGGTCTTCTTC CTTCACTTCTTAAAG 1275 AAGCAGACTGTCACT GTTGTAGTTTTGAAT TTGTGCCTCTGCTGT CACATGTTTTCTGCA CTGGTGGGAAGGTTG 1425 GGCCATCTTAGAGCA ATACAGCCCATGATG GAAAAAAATTACAAA ACTCTGCTTAATGCA GCGGAGGTCAGTTTA 1600 TTTGATTTTTAAAGA TGCTTTCATATTGAT ATTTTTATCCCCAACA TTGTTTCTCTGTGCC ACAAATGCCACTCCA 1675 TAATGTTAGGATGTA CTCAGTGTAATTGGT GCCTGTTAGTGTTTT AAAGTATCAGATGAG CAAATGAACTTTTTA 1750 AAAAAAA

5/1 3

1953

at IL

1757

(A)

						CAC	CTT	ATT	CTC	TCT	TTO	TTC	ccc	TCC	AAC	ACT	777	677	AAT	7.07	TAC	CAN	ccc	7.77	-75
ATC	CTO	COT	CTA	CCC	CTC										TCA										-/5
200000		P		A	V		33500	7.9		L	S				S	A	P	S	L		P	1000	- 2 -	100	25
0.00	L	- 73	200	CTG		100			C		- 71	A		L	GAG		775	0.72	1000	D	100	Q	L	D	150
-					1.1.1										-			-							
E	H	W	D	L	W	K	S	W	H	T	K	K	Y	H	E	K	E	E	G	W	R	R	M	V	50 225
W	E.	K	N	L	K	K	T	GAG	LIG	H	AAC N	L	GAG E	H	S	M	G	GAA E	H	ALL	Y	R	L	G	225
	_			GGA			1.0	_	GAG			-	-	ATC	ATG			-			AAA		-		300
M	N	H	F	GGA	D	M	T	H	E	E	F	R	O	T	M	N	G	Y	K	R	K	S	F	R	100
				-			-	-		_	-		-	1			-	-				-	-		375
K	1		G	STCC	L	F	1.1.2	E	CCC	12000					P				1		100			GGC	125
	F	K		GTT			M	_	P	N	F	L	1.00		GCC		S		D	W	R	-		G	450
			P		100	1.2.6	O	100	O			2.00	1.00			F			T		100	M			150
_	V	-	-			-	-	-	_		-	-		W	AAC	-	-	-	-	_		_	_		525
1.000				21.025			100		1000	1000		S	1.0.0		N			100		1.00					175
-	H	F	R			G		L	V		_	_	_	Q TAC	ATC	L	V	_	C	S	R	P	E	G	600
			C		G	1.0		M	D	CAG	1	F		Y	I	K		N	O		L		S	100	200
-	1000		51212	TAC			_		1.1.1.1.1.1	-				-	GAC		-		-	-	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1000	675
			P		L	G	T		D		P			Y	D	P			N		A	N	D	T	225
_	-	-	-		_		-	-	-		-	-	-		GCC	-				-		-	-		750
-			D				_		E	_						V			0.00		P		-	100	250
_			_	-		_						_	_		ATC								_	-	825
A		D		G	H	E	S	F	CAG O	F	Y	O	1.000	G	T	-	Y	E	K	E	C	S	S	E	275
-	-	-		GGC				-		-	-	-	-		GAA	-	-	-		AAG	~			-	900
E		D	H		V		V			0.17		F		G	E		V	D	G		K		W	T	300
-	-	-		-	-	-				-		-	-	-	TAC	-		-	-	-		1.1.1.1.1		TGT	975
	K		S		S	-	-	W	GGGA		K			I	Y		A		D	R	K		H		325
		-		GCA	-	_						-		-										_	1050
			T				Y			V	TAA	L'GI	116	CAL	GGC	ICC.	AUI	111	AGI	GII	111	AII	GUA	AIA	1050
200		_		1000		-	-			1.1		~~~	200		~~~	~ ~ ~	~ ~ ~	7 T T	ore	~~~	TOT		-	~ ~ ~	1105
1000				TGA			_	100					1.1		CTG										1125
																	1000								1275
												-												-	1350
1.00				DAD.	1000									ALLA	AAG	110	IGA	HAL	ACI	ААА	ннн	нна	ннн	ння	Contraction of the
AAA	AAA	HAAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA												1393

(B)

Figure 4.1 The nucleotide and deduced amino acid sequences of rock bream cathepsin B (A) and L (B) cDNAs. The start (ATG) and stop (TAA) codons are in bold and underlined. The predicted signal peptides are in boxes. The predicted papain family cysteine protease signatures are bold underlined. The propeptide C1 peptidase family motif domain is shaded and underlined.

F

		Pre region
		← (signal peptide) → i←
0.	fasciatus	MWR-AAFLLLAASLSLSLARPRLOPLSSEMVNYINKFNTTWKAGHNFHNVDYSYIORLCG 59
	olivaceus	MWR-AALLLLAAGVSLSLARPHLOPLSSEMVNYINKLNTTWKAGHNFHNVDYSYVRRLCG 59
s.	salar	MWC-ALFLVLGSGLSISWARPHLPPLSHEMVNFINKANTTWKAGHNFHNVDYSYVKRLCG 59
х.	laevis	MWHLVVALCFLASIASSRHLPYFAPLSHDMVNYINKVNTTWKAGHNFANADLHYVKRLCG 60
G.	gallus	MSWSR SILCLL GAFANARSIPYY PPLSSDLVNHINKLNTTGRAGHNFHNTDMS YVKKLCG 60
	taurus	MWRLLATLSCLLVLTSARSSLYFPPLSDELVNFVNKQNTTWKAGHNFYNVDLSYVKKLCG 60
	norvegicus	MWWSLIPLSCLLALTSAHDKPSFHPLSDDMINYINKQNTTWQAGRNFYNVDISYLKKLCG 60
Η.	sapiens	MWQLWASLCCLIVLANARSRPSFHPVSDELVNYVNKRNTTWQAGHNFYNVDMGYLKRLCG 60
		* * .:: *:*::** *** :**:** *.* *:::***
225	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pro region → i← mature form light chain
	fasciatus	TMLKG PKLPVMVQYTGDLKLPEE FDAREOWPNCPTLKEIRDQGSCGSCWAFGAAEAISDR 119
	olivaceus	TMLKGPKLPIMVQYAGGLKLPAEFDAREQWPECPTLKEIRDQGSCGSCWAFGAAEAISDR 119
	salar	TLLKG PKLSTMVQYTEDMELPKN FDPRLQWPNCPT LKEVRDQGSCGS CWAFGAAEAISDR 119
	laevis gallus	TLLKG POLOKR FGFADGLELPDS FDSRAAWPNCPT IREIRD QGSCGS CWAFGAVEAISDR 120 TFLGG PKAPERVDFAEDMDLPDT FDTRKOWPNCPT ISEIRD QGSCGS CWAFGAVEAISDR 120
	taurus	AILGG PKLPOR DAFAADVVLPES FDAREOWPNCPT IKEIRD OGSCGS CWAFGAVEAISDR 120
	norvegicus	TVLGG PKLPERVGFSED INLPES FDAREOWSNCPT IAOIRD OGSCGS CWAFGA VEAISDR 120
	sapiens	TFLGG PKPPORVMFTEDLKLPAS FDAREOWPOCPT IKEIRDOGSCGS CWAFGAVEAISDR 120
	Suprens	
	A. 7	\rightarrow i \leftarrow mature form heavy chain
0.	fasciatus	VCIHSNAKVSVEISSEDLLTCC-MSCGMGCNGGYPSAAWDFWTKEGLVSGGLYDSHIGCR 178
P.	olivaceus	VCIHSGGKISVEISSEDLLTCC-DSCGMGCNGGYPSSAWDFWTKEGLVSGGLYNSHIGCR 178
s.	salar	VCIHSNAKVSVEISSEDLLSCC-ESCGMGCNGGYPSAACDFWTKEGLVSGGLYDSHIGCR 178
х.	laevis	VCVHTNGKVNVEVSAEDLLSCCGDECGMGCNGGYPSGAWQFWTETGLVSGGLYDSHVGCR 180
	gallus	ICVHTNAKVSVEVSAEDLLSCCGFECGMGCNGGYPSGAWRYWTERGLVSGGLYDSHVGCR 180
_	taurus	ICIHSNGRVNVEVSAEDMLTCCGGECGDGCNGGFPSGAWNFWTKKGLVSGGLYNSHVGCR 180
	norvegicus	ICIHTNGRVNVEVSAEDLLTCCGIQCGDGCNGGYPSGAWNFWTRKGLVSGGVYNSHIGCL 180
н.	sapiens	ICIHTNAHVSVEVSAEDLLTCCGSMCGDGCNGGYPAEAWNFWTRKGLVSGGLYESHVGCR 180
	_	·*···· · · · · · · · · · · · · · · · ·
0	fasciatus	→ Occluding loop ← PYTIAPCEHHVNGSRPSCTGEGGDTPQCITKCEAGYTPSYKEDKHFGKTSYTVLSDEEQI 238
	olivaceus	PYTIS PCEHHVNGSRPPCTGEGGDTPECI SRCEAG YSPSYKODKHYGKSSYSVEGSVEQI 233
	salar	PYSIP PCEHHVNGTRPPCKGEEG DTPOCTNOCEPG YTPGYKODKHFGKRSYSVPSDEKEI 238
-	laevis	PYSIP PCEHHVNGSRPACKGEEGDTPKCVKQCEEGYSPAYGTDKHFGTTSYGVPTSEKEI 240
	gallus	AYTIP PCEHHVNGSRPPCTGEGGETPRCSRHCEPGYSPSYKEDKHYGITSYGVPRSEKEI 240
	taurus	PYSIP PCEHHVNGSRPPCTGEG-DTPKCSKTCEPGYSPSYKEDKHFGCSSYSVANNEKEI 239
R.	norvegicus	PYTIPPCEHHVNGSRPPCTGEG-DTPKCNKMCEAGYSTSYKEDKHYGYTSYSVSDSEKEI 239
H.	sapiens	PYSIPPCEHHVNGSRPPCTGEG-DTPKCSKICEPGYSPTYKQDKHYGYNSYSVSNSEKDI 239
		.*:*.********:**.*.** :**.* ** **:. * ***:* ** * . ::*
5.65	fasciatus	QSEIFKNGPVEGAFIVYEDFVLYKSGVYQHVSGSAVGGHAIKILGWGVEDGVPYWLCANS 298
	olivaceus	QAEISKNGPVEGAFTVYEDFVMYKSGVYQHVSGSVLGGHAIKVLGWGEEDGIPYWLCANS 298
	salar	MKELY KNGPVE GAFTVY EDFLLY KSGVYR HVSGSAVGGHAI KVLGWGEEGGI PYWLAAN S 298
	laevis	MAEIY KNGPVE GAFLVY ADFPLY KSGVYQHETGEE LGGHAI KILGWG VENGTP YWLCAN S 300
	gallus	MAEIY KNGPVE GAFIVY EDFIMY KSGVYQHVSGEQVGGHAIRILGWGVENGTP YWLAANS 300
	taurus	MAE I Y KNGPVE GAFSVY SDFLLY KSGVYQHVSGE I MGGHAI RILGWGVENGTP YWLVGNS 299
	norvegicus sapiens	MAEIYKNGPVE GAFTVFSDFLTYKSGVYKHEAGDVMGGHAIRILGWGIENGVPYWLVANS 299 MAEIYKNGPVE GAFSVYSDFLLYKSGVYQHVTGEMMGGHAIRILGWGVENGTPYWLVANS 299
n.	Sahrens	*: ****** *: ** ******* *: ** *********
0	fasciatus	WNTDWGDNGFFKFLRGSDHCGIESEVVAGIPK 330
	olivaceus	WNTDWGDNGFFKILRGSNHCGIESEIVAGIPK 330
	salar	WNTDWGENGFFKIVRGEDHCGIESEMVAGIPL 330
	laevis	WNTDWGDNGFFKILRGKDHCGIESEIVAGVPKN 333
	gallus	WNTDWGITGFFKILRGEDHCGIESEIVAGVPRMEQYWTRV 340
	taurus	WNTDWGDNGFFKILRGQDHCGIESEIVAGMPCTHQY 335
	norvegicus	WNVDWGDNGFFKILRGENHCGIESEIVAGIPRTQQYWGRF 339
H.	sapiens	WNTDWGDNGFFKILRGQDHCGIESEVVAGIPRTDQYWEKI 339
(Δ	`	**.*** .****:**.:********
- ι Δ	1	

(A)

		Pre region	Pro	region	
		\leftarrow Signal peptide \rightarrow		ERF/WNIN-like	
Ο.	fasciatus	MLPVAVLAVCLSAALSAPSLDPQI	dehwdlwkswhtkkyhek eeg i	WRRMVWEKNLKKI	58
P.	olivaceus	MTALYLAVLVLCVSAVCAAPRFDSQI	LEDHWHLWKNWHSKHYHES EEG I	WRRMVWEKNLKKI	60
s.	salar	MTALYLAVLVLCVSAVCAAPRFDSQI	EDHWHLWKNWHSKSYHES EEG	WRRMVWEKNLKKI	60
х.	laevis	-MALYLVAAALCLTTVFAAPTTDPAI	DDHWHLWKNWHKKSYLPK EEG	WRRVLWEKNLRTI	59
в.	taurus	-MNPSFFLTVLCLGVASAAPKLDPNI	DAHWHQWKATHRRLYGMN EEE I	WRRAVWEKNKKII	59
R.	norvegicus	-MTPLLLLAVLCLGTALATPKFDQTF	NAQWHQWKSTHRRLYGTN EEE I	WRRAVWEKNMRMI	59
H.	sapiens	-MN-ICILAAFCLGIASATLTFDHSI			58
				*** :**** : *	
	fasciatus	ELHNLEHSMGEHTYRLGMNHFGDMTH	~		
	olivaceus	EIHNLEHTMGKHSYRLGMNHFGDMTN	~ ~		
	salar	EMHNLEHTMGKHSYRLGMNHFGDMTN			
	laevis	EFHNLDHSLGKHSYRLGMNQFGDMTN			
	taurus	DLHNQEYSEGKHGFRMAMNAFGDMTN			
	norvegicus	QLHNGEYSNGKHGFTMEMNAFGDMTN			
H.	sapiens	ELHNQEYREGKHSFTMAMNAFGDMTS			116
	1.1.1	::** :: *:* : : ** *****		* * : *::	
1000	fasciatus	VDWRDNGYVTPVKDQGQCGSCWAFST			
	olivaceus	VDWREKGYVTPVKDQGSCGSCWAFST			
	salar	VDWREKGYVTPVKDQGSCGSCWAFST			
	laevis	VDWREKGYVTPVKDQGQCGSCWAFST			
	taurus	VDWTKKGYVTPVKNQGQCGSCWAFSA			
	norvegicus	VDWREKGCVTPVKNQGQCGSCWAFSA	~ ~ ~	~ ~	
н.	sapiens	VDWREKGYVTPVKNQGQCGSCWAFSA	~ ~ ~ ~		176
~	e				220
	fasciatus	CNGGLMDQAFQYIKDNQGLDSEDSYF	~		
	olivaceus salar	CNGGLMDQAFQYIQDNAGLDTEESYF			
	laevis	CNGGLMDQAFQYIQDNAGLDTEESYF CNGGLMDQAFQYVKDNGGIDSEDSYF			
	taurus	CNGGLMDQAFQYKDNGGIDSEDSIF	~		
	norvegicus	CNGGLMDNAFQIIRDNGGLDSEESIF			
	sapiens	CNGGLMDYAFQYVQDNGGLDSEESYF		~ ~	
11.	Sabrens	****** ********		**:*:*. *::	234
0	fasciatus	MKAVAAVGPVSVAIDAGHESFQFYQS			298
	olivaceus	MKAVAAVGPVSVAIDAGHESFQFYES			
	salar	MKAVAAVGPVS VAIDAGHESFQFYES			
2023	laevis	MKAVAS VGPVS VAVDAGHKSFOFYOS			
в.	taurus	MKAVATVGPISVAIDAGHTSFQFYKS			
	norvegicus	MKAVATVGPISVAMDASHPSLQFYSS			
	sapiens	MKAVATVGPISVAIDAGHESFLFYKE			
	I	*********			
ο.	fasciatus	WIVKNSWSEKWGDKGYIYMAKDRKNE			
P.	olivaceus	WIVKNSWSEKWGDKGYIYMAKDRKNE	ICGIATASSYPLV- 338		
s.	salar	WIVKNSWSEKWGDKGYIYMAKDRKNE	ICGIATASSYPLV- 338		
х.	laevis	WIVKNSWSEKWGNNGYIKIAKDRHNE	ICGIATAASYPLV- 335		
в.	taurus	WIVKN	301		
	norvegicus 👘	WLVKNSWGKEWGMDGYIKIAKDRNNE	ICGLATAASYPIVN 334		
н.	sapiens	WLVKNSWGEEWGMGGYVKMAKDRRNE	ICGIASAASYPTV- 332	1000	
		* * * * *			
		Y			
(B)					

Figure 4.2 Multiple sequence alignment of the RbCathepsin B (A) and L (B). Analysis was performed by ClustalW (1.81) using representatives of cathepsin B selected from different phyla. Identical amino acids are indicated by asterisks.

Figure 4.3 Phylogenetic relationship of cathepsin family members was constructed based on amino acid sequences. The number at each node indicates the percentage of bootstrapping after 1000 replications. The GenBank accession numbers of selected cathepsins are indicated within brackets. Human cathepsin A was selected as an out-group member.

Figure 4.4 Tissue distribution of cathepsin B and cathepsin L of rock bream. Analysis of mRNA was carried out by qPCR. The relative fold-change in expression was calculated by the 2^{-CT} method using beta actin as a reference gene. The relative fold-change in expression of each tissue was compared to the expression in blood for determining the levels of tissue-specific expression. Data are presented as the mean of the relative expression \pm SD for three replicate real-time reactions from pooled tissue of three individual rock bream at each time point. Differences were considered statistically significant at P<0.05.

Figure 4.5 Transcriptional regulation of cathepsin B and cathepsin L of rock bream in liver (A) and blood (B) following LPS challenge. Transcriptional analysis was carried out by quantitative real-time RT-PCR. The relative level of expression at each time point was compared to that of PBS-injected control (Cont).

Figure 4.6 Transcriptional regulation of cathepsin B and cathepsin L of rock bream in liver (A) and blood (B) following *E. tarda* challenge. Transcriptional analysis was carried out by quantitative real-time RT-PCR. The relative level of expression at each time point was compared to that of PBS-injected control (Cont).

4.7 DISCUSSION

In order to obtain the transcriptome sequences of rock bream, we constructed a multi-tissue normalized cDNA and employed the GS-FLX sequencing technology in this study. We identified two cDNAs of cathepsin isoforms and named as rock bream cathepsin B (RbCathepsinB) and cathepsin L (RbCathepsinL). Jaillon et al., [25] reported that the teleost fish underwent whole genome duplication about 350 million years ago. This event could explain the presence of multiple cathepsin isoforms, like cathepsin B and L, in rock bream. It was reported that cathepsin B, C, H, L and S could be diverged at an early stage in evolution, while some of other cathepsins, such as F, K, W and X, could be due to recent gene duplication events [26,27]. Therefore, present study would be a sound foundation to compare cathepsin sequences and their immune responses at molecular level. The rock bream cathepsin B and L genes were characterized as proteins which encodes 330, 336 amino acids, respectively. The amino acid length of cathepsin B/L was more similar to those from P. oliveceus (330/338 aa) and S. salar (330/338 aa). Lecaille et al., [7] reported that all papain-like cysteine proteases contain conserved active sites of cysteine, histidine and asparagine residues which play crucial roles in the formation and stabilization of the catalytic site of the activated enzyme. The identified RbCathepsin B and L genes encode structural features typical of the vertebrate cathepsin family, including papain family cysteine protease domain, and eukaryotic thiol proteases cysteine, asparagine, histidine active sites. Additionally, RbCathepsin L gene encodes for EF hand Ca^{2+} propeptide inhibitor domains and ERF/WNIN-like motif binding, cathepsin (E-X₃-R-X₃-F-X₂-N-X₃-I-X-N). It has been suggested that the ERF/WNIN-like motif is the principal characteristic feature of cathepsin L [28]. Likewise, the deduced RbCathepsin L presents the ERF/WNIN-like motif which could be used to identify it as a member of the cathepsin L family. Moreover, RbCathepsin B and L appear to show higher amino acid identity values and conserved amino acids with known

cathepsin B and L. Also, the phylogenetic analysis revealed that RbCathepsin B and L are positioned with other respective sequences of fish cathepsins. Based on the molecular characterization, pairwise-multiple alignment and phylogenetic results, we could confirm that the newly identified cathepsin B and L are members of the cathepsin family.

Expression of different cathepsin isoforms in fish tissues have been confirmed, but such information remains unknown in rock bream. Ubiquitously expressed cathepsin B was identified in 11 tissues of un-challenged *Paralichthys olivaceus* [29]. Similarly, we identified cathepsin B and L in all tested tissues of rock bream. Constitutive expression of RbCathepsin B and L suggested that both genes may be involved actively in protease function.

Cathepsin expression is known to be induced by several stimulators, such as LPS, virus, poly I:C [29], bacteria Vibrio harveyi [30], tumor promoters [31] and growth factors [32].As a part of the Gram-negative bacteria cell wall, the LPS endotoxin induced the expression of large number of genes related to inflammation, cytokine activity, antigen presentation and binding [33]. Nair et al. [34] reported the induction of cathepsin B and L expression level in sea urchin coelomocytes in response to LPS challenge. In Japanese flounder, cathepsin B has shown moderately up-regulated transcripts in flounder embryonic cells [29]. We observed higher induction of RbCathepsin L in blood than liver after LPS challenge; however, transcriptional induction has not occurred continuously throughout the 48 h post LPS-challenge. A similar situation was explained previously for Theromyzon tessulatum cathepsin L. It was suggested that the protease could be regulated at translational or post-translational stage and therefore was not detectable by northern-blot or RT-PCR experiments [35]. It was reported that oral immunization with E. trada ghost can be increased the serum and mucas antibody titers in olive flounder to support the immune activation [18]. The present study also showed the higher induction of RbCathepsin B and L in blood than liver against E. tarda challenge. Gradual induction of both RbCathepsin B and L was identified in blood

during first 24 h post challenge of E. tarda which could be due to increase cell density of *E. tarda* with the time. Up- and down-regulation of RbCathepsin B and L especially in liver might be due to varied pathogenicity levels during the infection. Darawiroj et al., [36] has described the possibility of transcriptional variation of immune and stress protein against same pathogen or LPS and ConA like lymphocytes mitogens in different fish or tissues. Therefore, transcriptional variation of RbCathepsin B and L in due to LPS and *E. tarda* could be further determined by conducting tissue specific and dose dependant immune challenge.

In conclusion, we identified cathepsin B and L cDNA sequences from rock bream for the first time by applying a pyrosequencing technique. Both cathepsins are constitutively expressed in various tissues, suggesting they may be involved in a multifunctional role in healthy fish. Moreover, cathepsin B and L genes were found to be potentially inducible when exposure to LPS and *E. tarda* occurred, indicating a potential role in the rock bream immune defense system. At present, we are developing a bacterial expression system using *E. coli* to overproduce recombinant RbCathepsin B and L that will facilitate further study of the functional role for each of these enzymes.

12

E

4.8 REFERENCES

[1] Bond JS, Buter PE. Intracellular proteases. Annu Rev Biochem 1987;56:333-64.

[2] Hsing LC, Rudensky AY. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 2005;207:229-41.

[3] Yasothornsrikul S, Greenbaum D, Medzihradszky, KF, Toneff T, Bundey R, Miller R, et al. Cathepsin L in secretory vesicles functions as а prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc Natl Acad Sci USA 2003;100:9590-5.

[4] Dixit AK, Dixi PJ, Sharma RL. Immunodiagnostic/protective role of Cathepsin L cysteine proteases secreted by *Fasciola species*. Vet Parasitol 2008;154:177-84.

[5] Chwieralski CE, Welte T, Buhling F. Cathepsin-regulated apoptosis. Apoptosis 2006;11:143-9.

[6] Rawlings ND, Barrett AJ. Families of serine peptidases. Methods Enzymol 1994;244:19-61.

[7] Lacaille F, Kaleta J, Bromme D. Human and parasite papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002;102:4459-88.

[8] Dong Z, Katar M, Linebaugh BE, Sloane BF, Berk RS. Expression of cathepsin B, D and L in mouse corneas infected with *Pseudomonas aeruginosa*. Eur J Biochem 2001;268:6408-16.

[9] Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenenesis. Genes Dev 2006;20:543-56.

[10] Gal S, Gottesman MM. The major excreted protein of transformed fibroblast is an activable acid protease. J Biol Chem 1986;262:1760-5.

[11] Mason RW, Johnson DA, Barrett AJ, Chapman HA. Elastinolytic activity of human cathepsin L. Biochem J 1986;233:925-7.

[12] Tryselius Y, Hultmark D, Cysteine protease 1 (CP1), a cathepsin L-like enzyme

- 156 -

expressed in the *Drosophila melanogaster* hemocytes cell line mbn-2. Insect Mol Biol 1997;6:173-81.

[13] Watzke J, Schirmer K, Scholz S. bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (*Daniorerio*). Fish Shellfish Immunol 2007;23:901-5.

[14]] Nya EJ, Austin B. Use of bacterial lipopolysaccharide (LPS) as an immunostimulant for the control of *Aeromonas hydrophila* infections in rainbow trout *Oncorhynchus mykiss* (Walbaum). J App Microbiol 2010;108:686-94.

[15] Park SI. Disease control in Korean Aquaculture. Fish Pathol 2009;44:19-23.

[16] Castro N, Toranzo AE, Nunez S, Magarinos B. Development of an effective *Edwardsiella tarda* vaccine for cultured turbot (*Scophthalmus maximus*). Fish Shellfish Immunol 2008;25:208-12.

[17] Kwon SR, Nam YK, Kim SK, Kim KH. Protection of tilapia (*Oreochromic mosambicus*) from edwardsiellosis by vaccination with *Edwardsiella tarda* ghosts. Fish Shellfish Immunol 2006;20:621-6.

[18] Kwon SR, Lee EH, Nam YK, Kim SK, Kim KH. Efficacy of oral immunization with *Edwardsiella tarda* ghosts against edwardsiellosis in olive flounder (*Paralichthys olivaceus*). Aquaculture 2007;269:84-8.

[19] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic alignment search tool. J Mol Biol 1990;215:403-10.

[20] Bairoch A, Bucher P, Hofmann K. The PROSITE data base, its status in 1997. Nucleic Acids Res 1997;25:217-21.

[21] Pearson WR. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 1990;183:63-98.

[22] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004;5:150-63.

[23] Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 1994;22:4673-80.

[24] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2^{CT} method. Methods 2001;25:402-8.

[25] Jaillon O. Aury JM, Brunet F, Petit JL et al., Genome duplication in the teleost fish. Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004;431:946-57.

[26] Berti PJ, Storer AC. Alignment/Phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 1995;246:273-83.

[27] Wex Th, Levy B, Wex H, Bromme D. Human cathepsins F and W: A new sub group of cathepsins. Biochem Biophys Res Commun 1999;259:401-07.

[28] Karrer KM, Peiffer SL, Ditomas ME. Two distinct gene subfamilies within the family of cystene protease genes. Proc Natl Acad USA 1993;90:3063-7.

[29] Zhang FT, Zhang YB, Chen YD, Zhu R, Dong CW, Li YY, Zhang QY, Gui JF. Expressional induction of Paralichthys olivaceus cathepsin B gene in response to virus, poly I:C and lipopolysaccharide. Fish Shellfish Immunol 2008;25:542-9.

[30] Jia A, Zhang XH. Molecular cloning, characterization and expression analysis of cathepsin D from turbot *Scophthalmus maximus*. Fish Shellfish Immunol 2009;26:606-13.

[31] Gottesman MM, Sobel ME. Tumor promoters and kirsten sarcoma virus increase synthesis of a secreted glycoprotein by regulating levels of translatabale mRNA. Cell 1980;19:449-55.

[32] Scher CD, Dick RL, Whipple AP, Locatell KL. Identification of a BALB/c-3T3 cell protein modulated by platelet-derived growth factor. Mol Cell Biol 1983;3:70-81.

[33] Trent MS, Stead CM, Tran AX, Hankins JV. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 2006;12:2005-23.

[34] Nair SV, Del Valle H, Gross PS, Terwilliger DP, Smith LC. Microarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate. Physiol Genomics 2005;22:33-47.

[35] Lefebvre C, Vandenbulcke F, Bocquet B, Tasiemski A, Desmons A, Verstraete M, Salzet M, Cocquerelle C. Cathepsin L and B gene expression discriminates

immune coelomic cells in the leach *Theromyzon tessulatum*. Dev Comp Immunol 2008;32:795-807.

[36] Darawiroj D, Kondo H, Hirono I, Aoki T. Immune-related gene expression profiling of yellowtail (*Seriola quinqueradiata*) kidney cells stimulated with ConA and LPS using microarray analysis. Fish Shellfish Immunol 2008;24:260-6.

초 록

면역체계는 외부감염으로부터 자신을 방어하는 것이다. 선천성 면역이란 어떤 특정한 병원체에 대항하는 것이 아니며, 일반적으로 재감염에 대한 방어능력이 없으며 비특이적으로 작용하는 1차 방어 작용이다. 반면 후천성 면역은 외부항원 에 대해 특이적으로 인식하고 그에 맞는 특이적인 항체를 다양하게 만들어내는 림프구에 의해 일어난다.

하등척추동물인 어류는 다른 고등척추동물보다 선천성 면역체계가 1차적으로 매우 중요한 면역체계이다. 비록 특이적인 병원체을 인식하는 능력이 부족하지만 병원체에 대항하는 능력은 아주 강하다. 이는 어류가 처해 있는 다양한 환경에서 특정병원체에 상관없이 면역인자들이 이미 생체 내에 존재하여 감염발생 시 언제든지 바로 작용할 준비가 되어 있음을 말한다. 또한 어류의 선천성 면역반응은 후천성 면역반응의 활성화를 위해서도 중요하다. 어류의 선천성과 후천성 면역반응의 상호 관계가 비록 포유동물보다는 잘 연구되지 않았지만, 어류의 선천성 면역인자(식세포 자극, 사이토카인과 케모카인의 생성, 보체시스템 활성 등)가 T세포와 B 세포, 그리고 항원제시 세포들을 활성화한다고 알려져 있다.

차세대 염기서열분석 기술은 전사체 분석을 수행함에 있어 동시에 방대한 양의 유전정보를 매우 효율적으로 분석할 수 있게 되었다. 돌돔은 한국의 양식산업에 있어서 경제적으로 중요한 가치를 갖는 해산어류지만, Vibriosis, Edwardsiellosis, Scuticociellosis 그리고 iridovirus 감염 등과 같은 질병으로 인한 피해가 빈번하다. 따라서 돌돔의 세균성/바이러스성 질병 원인체에 대한 면역학적/전사체학적 연구가 절실히 필요하다. 그러므로 돌돔의 광범위한 유전정보를 제공하기 위한 돌돔의 전사체학 분석이 선행되어야 한다.

- 160 -

건강한 돌돔의 다양한 조직으로부터 분리된 mRNA pool을 이용하여 cDNA를 합성하였고, 이를 Roche 454 pyrosequencing platform을 이용하여 대량 염기서열 분석을 수행하였다. 단일 GS-FLX sequencing 반응을 통하여 672,000 reads (평균적인 read의 길이는 400 bp) 를 분석하였고, 이를 통하여 약 36,000개의 contig를 얻을 수 있었다. Pyrosequencing 결과는 다양한 contig 길이 (95-6175 bp)를 나타내었고, contig의 평균 길이는 약 1.1 kb를 나타내었다.

현재 수행된 연구의 최종적인 목표는 숙주와 병원체간의 상호작용에 대한 더 나은 이해를 위하여, 돌돔에서 면역기능에 관여하는 유전자들의 전체 서열을 분석하는 것이다. 이러한 목표 하에서, 이 논문은 돌돔의 goose-type lysozume (g-type lysozyme), myeloid differentiation factor 88 (MyD88), interferon (IFN) regulatory factor-1 (IRF), IFN gamma inducible lysosomal thiol reductase (GILT), Cathepsin B와 L cysteine protease같은 면역 관련 유전자들의 분자적 특성, 전사체적, 기능적 특성을 분석하는데 중점을 두고 있다.

1) G-type lysozyme의 특성분석과 발현 그리고 재조합 단백질의 항균활성

Lysozyme (muramidase)은 어류 선천성 면역시스템의 중요한 방어 분자이다. 박테리아 살균능력이 있다고 알려진, lysozyme은 박테리아 세포벽의 peptidoglycan 층에 있는 N-acetyl glucosamine과 N-acetyl muramic acid 사이의 β-(1,4)-glycosidic 결합들의 가수분해를 촉진시킨다. 이 연구에서는 돌돔으로부터 전체 길이 669 bp중, 188개의 아미노산을 암호화 하는 567 bp의 open reading frame으로 이루어진 g-type lysozyme의 전체 coding 서열(RBgLyz)의 특성분석을 수행하였다. 단백질 motif 검색결과 RBgLyz는 세포벽의 균형적인 보존에 관여하는 soluble lytic transglycosylase domain을 포함하고 있었다. RBgLyz는 Chinese perch (*Siniperca chuatsi*)와 매우 높은 유사도(identity, 81.4%)를 나타내었다. 건강한

돌돔에서의 RBgLyz 전사 발현은 다양한 조직에서 일정하게 이뤄지고 있음을 quantitative real-time RT-PCR (qRT-PCR)분석을 통하여 확인할 수 있었다. LPS, poly I:C, Edwardsiella tarda, Streptococcus iniae, rock bream iridovirus (RBIV)등의 다양한 병원체를 이용한 면역 자극실험을 통하여 head kidney에서의 RBgLyz 발현을 분석하였다. LPS와 E. tarda를 주사한 실험구의 어류들은 면역자극을 주지 않은 대조구 어류와 비교했을 때, 면역자극물질에 반응하여 RBgLyz transcripts의 확연한 발현 증가가 관찰되었다. Poly I:C를 처리하였을 때도 S. iniae 보다는 변화의 폭이 작았지만 조금 증가하였다. 하지만, RBIV 을 감염시켰을 때 감염시간에 따른 RBgLyz mRNA의 변화는 관찰되지 않았다. 이러한 결과들을 종합해보면, 돌돔의 면역 자극 실험을 통한 유전자 발현 결과는 LPS, poly I:C, E. tarda, S. iniae에 대응하기 위한 선천면역 반응에서 g-type lysozyme의 역할을 보여주었다. 추가적으로, 대장균 발현 시스템을 이용하여 재조합 RBgLyz를 발현시키고, 발현된 RBgLyz재조합 단백질의 항균활성을 분석하였다. 그 결과 재조합 RBgLyz단백질은 그람-음성균인 Vibrio salmonicida와 그람-양성균인 Listeria monocytogenes, S. iniae, Micrococcus lysodeikticus에 대하여 lytic activity을 갖고 있음을 나타내었다. 또한 주사전자현미경에 의한 관찰을 통하여 재조합 RBgLyz단백질에 의한 M. lysodeikticus의 세포형태 변화를 확인할 수 있었다.

1952

2) MyD88의 특성과 발현 분석

Myeloid differentiation factor 88 (MyD88)은 Toll-like receptor3 (TLR3)를 제외한 Toll-like receptors (TLRs)들과 interleukin-1 receptor (IL-1R)의 상호작용을 통하여 nuclear factor-kappa B (NF-kB)를 활성화시키는 universal adaptor protein이다. 돌돔 MyD88 cDNA는 288개의 아미노산을 암호화하는 867 bp의 open reading frame을 포함하는 1626 bp의 염기서열로 구성되어 있었다. MyD88의 아미노산 서열은 다 른 어류, 양서류, 조류와 포유류 및 무척추 동물에 이르기까지 대부분의 생물들 과 유사한 아미노말단의 conserved death domain과 카르복실말단에 존재하는

typical Toll-II-1 receptor (TIR) domain을 모두 포함하고 있었다. 건강한 돌돔과 박 테리아 감염 돌돔에서의 MyD88의 mRNA 발현 양상을 qRT-PCR을 통하여 분석 하였다. Myd88 transcripts는 혈액과, 아가미, 간, 비장, 전췌장(head kidney) 그리고 췌장에서는 매우 강하게 발현되는 한편, 피부조직, 뇌, 내장에서는 중간정도의, 그리고 근육에서는 약하게 발현됨을 알 수 있었다. 혈액과, 비장, 그리고 전췌장 에서의 MyD88의 발현수준은 LPS와 *E. tarda*에 노출 되었을 때, 극적으로 증가하 였다. 이는 MyD88이 박테리아의 감염에 대응하기 위한 방어반응에 있어서 중요 한 역할을 한다는 것을 제시한다.

3) IRF-1과 GILT의 전사반응과 특성분석

인터페론(IFN) system과 그 하위 대사의 경로에 존재하는 IFN-stimulated genes (ISG)의 활성은 병원체에 대한 선천성면역과 후천성면역 반응에 중요한 역할을 수행한다. 돌돔 IRF-1 cDNA sequence (RbIRF-1)는 보존된 5개의 tryptophan 반복 부위를 포함하는 DNA binding domain (DBD)으로 이루어진 아미노말단의 113개 아미노산이 진화적으로 매우 잘 보존되어 있다. 한편, 돌돔 GILT cDNA (RbGILT cDNA) 서열은 functional domain (⁹⁷CQHGEQECLGNMIETC¹¹²), active site ⁷⁴C-XX-C⁷⁷motif와 7개의 disulfide 결합으로 구성된 GILT signature 서열을 갖고 있다. 이 연구에서, 분리된 돌돔 IRF-1과 GILT 단백질의 분자적 특성분석과 계통분류학적 분석의 결과를 통하여 다른 어류나 포유류의 IRF-1과 GILT 단백질들과 유사함을 확인할 수 있다. qRT-PCR 분석은 RbIRF-1과 RbGILT transcript의 발현은 건강한 돌돔의 실험 조직에서 지속적인 발현을 나타내었으며, 특히 혈액과 아가미에서 가장 높은 수준의 발현이 관찰되었다. Polv I:C를 처리한 돌돔의 혈액, 아가미, 비장, 그리고 전췌장에서의 RbIRF-1과 RbGILT mRNA의 수준이 증가하였다. 하지만, RbGILT mRNA 발현 수준의 증가 정도는 RbIRF-1에 비하여 낮은 결과를 보였다. RBIV를 처리한 돌돔 치어를 48시간 동안 관찰한 결과 혈액에서는 RbIRF-1과 RbGILT 모두의 transcripts가 지속적으로 증가함이

- 163 -

관찰되었지만, 아가미와 전췌장에서는 poly I:C를 처리한 돌돔에 비하여 RbIRF-1과 RbGILT mRNA 수준 증가의 폭이 작았다. Poly I:C와 RBIV에 대한 반응에 의한 전사량 증가는 RbIRF-1과 RbGILT가 IFN 신호전달과 연관되어 있으며, 연속적으로 후천성 면역을 활성화 하는 데에도 중요한 역할을 수행하고 있음을 제시하고 있다.

4) Cathepsin B와 L cysteine protease의 분자적 특성과 발현 분석

Cathepsin은 papain의 lysosomal cysteine protease로 세포 내 단백질 분해에 중요한 역할을 수행한다. 돌돔 cathepsin B (RbCahepsin B)는 330 개의 아미노산으로 이루어져있으며, 36 kDa의 분자량을 갖고 있다. 돌돔 cathepsin L (Rbcathepsin L)은 336 개의 아미노산으로 이루어져있으며, 38 kDa의 분자량을 갖고 있다. 서열분석결과는 cathepsin B와 L 모두 papain family cysteine protease signature와 eukaryotic thiol protease cysteine, asparagine, histidine의 active site를 포함하고 있다. RbCathepsin L은 EF hand Ca²⁺ binding과 cathepsin propeptide inhibitor domain을 포함하고 있다. 돌돔의 cathepsin B와 L은 Lutjanus argentimaculatus cathepsin B 와 Lates calcarifer cathepsin L과 각각 90%와 95%의 유사도(identity)를 나타내었다. 계통분류학적 분석에서 cathepsin B와 L은 각각의 family member들과의 높은 진화적 연관성을 나타내었다. cathepsin qRT-PCR분석을 통하여 자극을 주지 않은 돌돔에서의 cathepsin B와 L 유전자 발현이 모든 실험 조직에서 지속적인 발현을 나타냄을 확인하였다. LPS와 E. tarda을 처리한 돌돔의 간과 혈액에서의 RbCathepsin B와 L mRNA는 확연한 발현증가를 나타내었고, 이는 돌돔이 박테리아의 감염에 대한 면역반응에 cathepsin B와 L이 관여함을 암시한다.

