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<Abstract>

Linear preservers of extremes of maximal

column rank inequalities over semirings

During the past century a lot of literature has been devoted to the
problems of determining the linear operators on the ,,;x, matrix algebra

M, (F) over a field g that leave certain matrix subsets invariant. In 1987,
Kantor and Frobenius proved that if a linear operator 7 on M, (R
preserves the determinant of matrices then 7 has the form 7 x)=(xV or
TX)=UX'V- Since these papers was published, many researchers have
investigated to characterize the linear operators that preserve certain subsets

of p (F) - We call these researches as "Linear Preserver Problems”, which
mn

1S an major topic on linear algebra and matrix theory.

In this thesis, we study the inequalities of maximal column rank for the
sum and product of two matrices over semirings. There was some papers on
the researches of both maximal column rank of one matrix and extremes of
factor rank over semirings. We used those papers in order to research the
linear operators that preserve the sets of matrix pairs which satisfy the
extremes of maximal column rank inequalities. We constitute the sets of
matrix pairs which are the extremes of maximal column rank inequalities. We
characterize the linear operators that preserve the 7 extreme sets of maximal

column rank inequalities. That is, we prove that those linear operators are

(P, Q B —operator Such that M{X)=P(X-B)Q o MX)=RX-B) Q-



FEZE>

Pl A ik 51 B AER BES Riehs
SHEET

A 1009 FeF oY FRRAEL e, (15D ATy, (H T
=R = FErat BES = IREE T g thsle] A3l
g}, 18979 HE=S} WY ATF 175008 kS RESHE M

&
Jm
ox,
o

%

\

o

HI7F i) =uxv %< ) =ux'v FH=Z dAds ENd A
AlFro g, AdgArdate] e Mt 79 [WiE fites e &
< ATASY e EEZE Hol Stk o] Ae K, K, PR, F
T T U xSl PR T [T 2 ol 2
B e S AA ] sty Hol Aol gt

= W BEAANA F AEY @3 vl did Mk 4 R A~
FAE d7eith o] d7el A ERE =EscMe & FEY S
A Aol st dvrd BF A, o FEY Fq3 gl hE o R
FEA e tate] ATFEHIE QI B AT E
2Esto], = P I wel dig 5o A AF F5AE obeta, o
FeAEo] 7t HA sh= FH oA Jd=s s 19
Aol FHEY EMRER ol Foxl T A ES BEse AY
AMAE st EAE Mikstdth =2, o] SAARES BIdhe A
HAMAE  pX)=PX-BQ %E TX)=RAX-B'Q JHZA
(P. Q, B —operator= 3318 & st

F‘\
2
rlr

=
Do

o
=
Z ]

ﬂ\«
ST
2

0.



R

%

9]

ol g #el afirel wEEVIZMA W WHI Bhe Ber WA, Al A
of oA Wi w3k i &k Sl Frast Kol syt

259 o] Kol AVIZHA AT A wSEd W MO fHER olF
of FAIAL, Byrshs HHE TIEAFA REGUE e/ EIRE Saet 22
el TEe EYT 29l KEs ACA BUI ZRHREET okl
B2 pRe mEe FA BERY BE BgE e 42 s =HYTh

B2 Fol A ket M= #iEhstr KXY kifd S ®gikd sl
ke vhes Ak el & sEEo] $std WAsyd "l wd
ettt d4s] shebal EEEA A MEEEERY Be AAEAE E#H
Fa EHYY 259 AV VA Ewes A BEE EEs
5 Mt @ =R ok sted 1A e HEAHA A9y

QEG7HA fEBiet AT KSR HAY FAL, & &fste ToFE bt
A= ofrdy FAZAREY vles XA dl=dve S0l Jhs
Boka, mscetAl dWihels AbREY BEEdAE R EH Yo

A Eo 2 fHE FollM BRE Fi A AmE AEE o (C%E
Ao ke Sl mE% I8 Lkhete 24T ofs HEolg o 7Es
AL AsUth 44 Aol HAAR o] dS W & WA Ha HE

obM A gl o] Gwie U

[o
o,
a
o
U 1=K

20064 12J]



1 Introduction

During the past century a lot of literature has been devoted to the problems
of determining the linear operators on the m x n matrix algebra M,,,(F") (if
m = n, we use the notation M, (F")) over a field F' that leave certain matrix
subsets invariant, see [10]. For a survey of these type of problems, see [10]. These
problems have been extended to the m X n matrices over various semirings, see
1, 2].

Marsaglia and Styan studied on the inequalities for the rank of matrices, see
[8]. Beasley and Guterman investigated the rank inequalities of matrices over
semirings, see [1]. And they characterized the equality cases for some inequalities
in [2]. This characterization problems are open even over fields as well as over
semirings, see [9]. The structure of matrix varieties which arise as extremal cases
in the inequalities is far from being understood over fields, as well as semirings.
For the investigation of linear preserver problems of extreme cases of the rank
inequalities of matrices over fields was obtained in [4]. A usual way to generate
elements of such a variety is to find a matrix pairs which belongs to it and to
act on this set by various linear operators that preserve this variety. Beasley
and Guterman characterized the linear operators that preserve extremal cases
of rank inequalities over semiring, see [2]. Song and his colleagues characterized
the linear operators that preserve maximal column rank in [7, 11].

In this thesis, I characterize linear operators that preserve the sets of matrix
pairs which satisfy equality cases for the maximal column rank inequalities over

semirings.



2 Definitions and Preliminaries

Definition 2.1. A semiring S consists of a set and two binary operations, ad-

dition and multiplication, such that:
e S is an Abelian monoid under addition (identity denoted by 0);
e S is a semigroup under multiplication (identity, if any, denoted by 1);
e multiplication is distributive over addition on both sides;

e s0=0s=0 for all s €S.

In this paper we will always assume that there is a multiplicative identity 1
in S which is different from 0.
In particular, a semiring S is called antinegative if the zero element is the

only element with an additive inverse.

Throughout this paper, we will assume that all semirings are antinegative

and have no zero divisors.

Definition 2.2. The Boolean semiring consists of the set B = {0, 1} equipped
with two binary operations, addition and multiplication. The operations are

defined as usual except that 1 +1 = 1.

Let M, ,,(S) denote the set of m x n matrices with entries from the semiring
S. If m = n, we use the notation M, (S) instead of M, ,(S). The matrix I, is the
n x n identity matrix, J,, , is the m x n matrix of all ones, O,, 5, is the m x n zero
matrix. We omit the subscripts when the order is obvious from the context and

b row is

we write I, J, and O, respectively. Let R; denote the matrix whose 4"
all ones and all other rows are zero, and C; denote the matrix whose j* column
is all ones and all other columns are zero. Let U, denote the k x k matrix of all
ones above and on the main diagonal, L; denote k£ X k strictly lower triangular

matrix of ones.



The matrix E; ;, called a cell, denotes the matrix with 1 in (7, j) position and
zero elsewhere. A weighted cell is any nonzero scalar multiple of a cell, that is,
akl; ; is a weighted cell for any 0 # o € S.

A line of a matrix A is a row or a column of A. We let Z(S) = {x € S|xy =

yx,Yy € S} denote the center of the semiring S, and |A| denote the number

of nonzero entries in the matrix A, and Aliy, ..., ix|j1, ..., ji] denote the k x [-
submatrix of A which lies in the intersection of the iy,..., 7, rows and j1,..., 7
columns.

Let Ay ={(i,7)]i=1,...,m;5=1,...,n}. If m = n, we use the notation
A, instead of A, ,,.

We say that the matrix A dominates the matrix B if and only if b;; # 0
implies that a;; # 0, and we write A > B or B < A in this case. If A and B
are matrices and A > B we let A\ B denote the matrix C' where

0 by =1
AV a; ; otherwise

sJ

Definition 2.3. An element in M, ;(S) is called a vector over S.

A set of vectors with entries from a semiring is called linearly independent
if there is no vector in this set that can be expressed as a nontrivial linear
combination of the others.

The matrix A € M, ,,(S) is said to be of mazimal column rank k (mc(A) = k)
if k is the maximal number of the columns of A which are linearly independent.

The matrix A € M, ,(S) is said to be of mazimal row rank k (mr(A) = k)
if k£ is the maximal number of the rows of A which are linearly independent.

The matrix A € M,,,(S) is said to be of factor rank k (rank(A) = k) if
there exist matrices B € M, (S) and C' € M, (S) such that A = BC and k is

the smallest positive integer for which such factorization exists.



Remark 2.4. It follows that

1 <rank(A) <mec(A) <n (1.1)

for all nonzero matrix A € M,,, ,,(S).

If S is a subsemiring of a real field then there is a real rank function p(A) for
any matrix A € M, ,(S), which is considered as a matrix over real field. Easy
examples show that over semirings these functions are not equal in general.

However, the inequality mc(A) > p(A) always hold.

Theorem 2.5. [1] Let S be an antinegative semiring without zero divisors. If

A,BeM,,,(S) with A# O,B # O. Then

1. 1 <mc(A+ B);
2. me(A+ B) <n.

If Ae M, ,(S), B €M, i(S) with A# O,B # O. Then

3. if mc(A) +mr(B) > n then mc(AB) > 1;
4. mc(AB) < me(B).

If S is a subsemiring of RT, the nonnegative reals. Then
5. me(A + B) > |p(4) — p(B)|.
For A e M,,,,(S), B € M,,x(S) one has that

6. if p(A) + p(B) < n then mc(AB) > 0;
7. if p(A) 4+ p(B) > n then mc(AB) > p(A) + p(B) — n.



Proof. 1. This inequality follow directly from the definition of maximal column
rank and the condition that A, B # 0. For the exactness one can take A = B =
Ei1. Let B be a Boolean semiring. For each pair (r,s), 0 < r,s < m we

consider the matrices A, = J\ (D] Ei;), Bs = J\ (3. Eii11) if s < m and
i=1 1=1

s—1

Bs = J\ (2 E’i,i+1 + Es,l) if s =m. Then
i=1
mc(A,) =r,me(Bs) = s

by definition and A, + B, = J has maximal column rank equal to 1. Thus, this
bound is the best possible over Boolean semiring.

3. For an arbitrary antinegative semiring, if mc(A) =i and mr(B) = j then
A has at least ¢ nonzero columns while B has at least j nonzero rows. Thus,
if i+3j > n, AB # O and hence this bound is established. For the proof of
exactness let us take A = B = Ey ;.

Let B be a Boolean semiring. In the case m = n = k for each pair (r,s), 1 <
r,s < n let us consider the matrices A, = i e i B oD o
Then - g

Ei.i+> Ei,.
=1

- =1

M el (B,) # 4

by definition and A,Bs; = J. Thus me(A,Bs) = 1. It is routine to generalize
this example to the case m # n # k.
4. For the proof that this bound is exact and the best possible, consider

Ir Or,nfr _ [s Os,nfs
Ar N Onfr,r Onfr,nfr :| and BS N |: Onfs,s Onfs,nfs

for each pair r,s, 1 <r,s < n in the case m = n. It is routine to generalize this
example to the case m # n.

5. This inequality follow directly from the fact that p(X) < me(X) for
all X € M, ,(R"), and corresponding inequalities for matrices with coefficients

from the field RT. For the proof of exactness consider matrices A = Ey; +...+



En 1n-1, B=J\ A. In order to show that this bound is the best possible one
can take the family of matrices A,., By,

7. This inequality follows directly from the fact that p(X) < me(X) for
all X € M,,, ,(R"), and corresponding inequalities for matrices with coefficients
from the field R. For the exactness one can take A = B = [. In order to show

that this bound is the best possible one can take the family of matrices A,, By,

[r Or,nfr e
Ar N Onfr,r Onfr,nfr :| ang Bs B |:

Onfsmfs Onfs,s
Os,nfs [s

The following examples shows that mc(A+B) £ me(A)+me(B), mc(AB) £
min{mc(A), me(B)} which is different from the rank inequality of the matrices

over real field.

1gmsl &
Example 2.6. Let A = eM3(ZT), B=| 0 0 0 | € M3(Z"),
0 00

R
O = =
O = =

where Z7 is the semiring of nonnegative integers. Then mc(A) =1, me(B) =1,

and mc(A + B) = 3 over Z™.

1 11
Example 2.7. Let A=[3 7 7] eM3(Z"),B= |0 1 1| e€M;(Z"),
001

where Z* is the semiring of nonnegative integers. Then mc(A) = 2, me(B) = 3,

and mc(AB) =mc([ 3 10 17 |) =3 over Z*.

Definition 2.8. For matrices X = [z;,] and Y = [y; ;] in M, ,(S), the matrix
X oY denotes the Hadamard or Schur product, i.e., the (i, j) entry of X oY is

LijYi,j5-



Definition 2.9. Let S be a semiring, not necessary commutative. An operator
T : My, n(S) = M, ,(S) is called linear if T(aX) = oT'(X), T(XB) = T(X)p,
and T( X +Y)=T(X)+T(Y) for all X,Y € M,,.(S), a, 3 € S.

We say that an operator T preserves a set P if X € P implies that T'(X) € P,
or, if P is a set of ordered pairs, that (X,Y’) € P implies (T'(X),T(Y)) € P .

An operator T" on M, ,,(S) is called a (P, Q, B)-operator if there exist per-
mutation matrices P € M, (S) and @ € M,,(S), and a matrix B € M,, ,(S) with
B > J such that

T(X)=P(XoB)Q (2.1)

for all X € M, ,.(S) or, m = n and
T(X)=P(X oB)'Q (2.2)

for all X € ML, (S), where X" denotes the transpose of X. Operators of the form
(2.1) are called non-transposing (P, Q, B)-operators; operators of the form (2.2)
are transposing (P, Q), B)-operators.

An operator T is called a (U, V)-operator if there exist invertible matrices

U e M, (S) and V € M,,(S) such that

=T (2.3)
for all X € M, ,,(S) or, m = n and

T(X)=UX'V (2.4)

for all X € M,(S). Operators of the form (2.3) are called non-transposing
(U, V')-operators; operators of the form (2.4) are transposing (U, V')-operators.

Lemma 2.10. Let T be a (P,Q, B)-operator on M, ,(S), where mc¢(B) = 1
and all entries of B are units in Z(S). If S is commutative, then T is a (U,V)-

operator.



Proof.  Since T is a (P,Q, B)-operator, so there exist permutation matrices
P € M,,(S) and @ € M,(S) such that T(X) = P(X o B)Q, or m = n and
T(X) = P(X o B)'Q for all X € M, ,(S). Since me(B) = 1, so it follows from
(1.1) that rank(B) = 1, equivalently, there exist vectors d = (dy,...,d,,) € S™
and e = (ey,...,e,) € S" such that B = d’e. Since b;; are units, d; and e; are
invertible elements in S for all (i, ) € A,,pn. Let D = diag(dy, ..., dy) € M, (S)
and E = diag(ey, ..., e,) € M,(S) be diagonal matrices. Since S is commutative,
it is straightforward to check that X o B = DXE for all X € M,, ,(S). For the
case of T(X) = P(XoB)Q,if welet U = PD and V = EQ, then T(X) = UXV
for all X € M,,,,(S). If T is of the form T(X) = P(X o B)'Q, then U = PE
and V = DQ shows that T(X) = UX'V for all X € M, ,,(S). Thus the Lemma

follows. u

Theorem 2.11. [2, Theorem 2.14] Let S be an antinegative semiring without
zero dwisors and T : My, n(S) — M, (S) be a linear operator. Then the follow-

ing are equivalent:
(1) T is bijective.
(2) T is surjective.

(3) There exists a permutation o on A,,, and units b;; € Z(S) such that
T(Eimj) - bi,jEcr(i,j) fO?” all (%]) € Am,n'

Proof. That 1) implies 2) and 3) implies 1) is straight forward. The fact that
the entries b, ; € Z(S) follows immediately from the linearity of 7. We now
show that 2) implies 3).

We assume that 7" is surjective. Then, for any pair (i, j), there exists some X
such that T'(X) = E; ;. Clearly X # O by the linearity of 7. Thus there is a pair
of indices (r, s) such that X =z, F, s + X' where (r,s) entry of X’ is zero and
the following two conditions are satisfied: x, s # 0 and T'(E, s) # O. Indeed, if
in the contrary for all pairs (r, s) either x, s =0 or T'(E, ) = O then T(X) =0



which contradicts with the assumption 7'(X) = E;;. Since S is antinegative

without zero divisors it follows that
T('IT,SET,S) < T(xr,sEr,s) + T(X \ (xr,sEr,s)) = T(X) = Ei,j

Hence, z,T(E,;) = T(x,sE,s) < E;; and T(E, ;) # O by the above. There-
fore, T(E,s) < E; ;.

Let P; ={E.s | T(E,s) < E;;}. By the above P, ; # ® for all (¢, j). By its
definition P;; N P,, = ® whenever (i,5) # (u,v). That is {P; ;} is a set of mn
nonempty sets which partition the set of cells. By the pigeonhole principle, we
must have that | P ; |= 1 for all (¢, j). Necessarily, for each pair (r, s) there is a
unique pair (7, j) such that T'(E, ) = b, sE; ;. That is there is some permutation
oon {(¢j) |i=1,2---,m;j=1,2--- n} such that for some scalars b; ;,
T(E;;) = b;jEs ). We now only need to show that the b; ; are all units. Since
T is surjective and T(E,;) £ Eyy; for (r,s) # (i,7), there is some a such
that T(aE;;) = E,¢j). But then, since T is linear, T'(aF; ;) = oT(E;;) =

Oébz"jEU(iJ') = Ea(i,j)- That iS, O[bi’j = 1, or bi,j 1S a unit. |

Lemma 2.12. [2, Lemma 2.16] Let S be an antinegative semiring without zero
diwvisors, T : My, n(S) — M, (S) be an operator which maps lines to lines
and is defined by T(F;;) = b;jEsi ), where o is a permutation on Ay, ,, and

bi; € Z(S) are nonzero elements. Then T is a (P, Q, B)-operator.

Proof.  Since no combination of a rows and b columns can dominate J where
a+b=munless b =0 (or if m = n, if a = 0) we have that either the image
of each row is a row and the image of each column is a column, or m = n
and the image of each row is a column and the image of each column is a row.
Thus, there are permutation matrices P and @ such that T'(R;) < PR;Q and
T(C;) < PC;Q or, if m = n, T(R;) < P(R;)'Q and T(C;) < P(C;)'Q. Since
each cell lies in the intersection of a row and a column and 7" maps nonzero cells

to nonzero (weighted) cells, it follows that T'(E; ;) = Pb; ;E; ;Q = P(E; jo B)Q,



or, if m = n, T(E; ;) = Pb; jE;,Q = P(E;; o B)'Q where B = (b; ;) is defined
by the action of T" on the cells. [ |

Remark 2.13. One can easily check that if m =1 or n = 1 then all operators
under consideration are (P, (Q, B)-operators, if m = n = 1 then all operators

under consideration are (P, P*, B)-operators.
Henceforth we will always assume that m,n > 2.

Lemma 2.14. Let B be a matriz in M, ,,(S) with mc(B) = 1. If all entries of B
are units in Z(S), then me(X) = me(P(X o B)Q) for all permutation matrices
P e M,,(S) and Q € M,(S).

Proof. Let X be any matrix in M, ,,(S). Obviously, mc(X) = me(X Q) for all
permutation matrix @ € M,,(S). Let P be any permutation matrix in M,(S).
Then me(X) = mce((P)'PXQ) < mc(PXQ) < me(XQ) = me(X), and
hence me(X) = me(PXQ) for all for all permutation matrices P € M,,(S) and
Q € M, (S). Thus, we suffice to claim that mc(X) = me(X o B).

Since mc(B) = 1, so there exist the £ column by of B = [by,ba, ..., by]

such that B = by[ay,...,ak-1,1,ax41,...,a,] where o, are units. Thus, for
any matrix X = [X1, X2,..., Xn| € Minn(S), we have X o B = [x1 o bxay, Xg0
byag, ..., Xpobka,] = [brayoxy, brayoxa, ..., bray,0Xy] = [ (x10by), az(xz0

by), ..., an(xyoby)l].

Thus the Lemma follows. [

Let X = [ 3 } be a matrix in My ;(Z"). Then we have that me(X) = 1, but
me(X') = 2. Thus, in general, it is not true that for a matrix X € M,,,(S),

mec(X) =1 if and only if me(X") = 1. But the following is obvious.

Lemma 2.15. Let B be a matriz in M, ,(S), whose all entries are units in

Z(S). Then mce(B) =1 if and only if me(BY) = 1.

10



Remark 2.16. Let

Q:

[N

_ o O
O = O =
OO ==

0

(2.5)

be a matrix in M (S). Then we can easily show that the first three rows (re-

spectively, four columns) are linearly independent. Thus we have mc(Q)) = 4

and mc(Q') = 3.

Now we consider the following sets of matrices that arise as extremal cases

in the inequalities listed in Theorem 2.5.

Ai(S) = {(X,Y) € Mpn(S)? | me(X +Y) =

As(S) = {(X,Y) € My n(S)? | me(X +Y) = 1};

Ag(S) = {(X,Y) € Mn(S)? | me(X +Y) = [o(X) = p(¥)I}:

My(S) = {(X,Y) € My(S)? | me(XY) = me(Y)}:

Ma(S) = {(X,Y) € M,(S)? | me(XY) = 0}

M;(S) = {(X,Y) € Mu(S)? | me(X) +mr(Y) > n and me(XY) = 1}
My(S) = {(X,Y) € M, (S)? | me(XY) = p(X) + p(Y) — n}.

In the following sections, we characterize the linear operators that preserve

the sets ./41, ./42, ./43, Ml, Mg, ./\/lg and ./\/l4.

11



3 Extreme preservers of maximal column rank inequali-
ties of matrix sums

3.1 Linear operators that preserve extreme set A;(S)

In this section, we investigate the linear operators that preserve the set A;(S).

Definition 3.1. We say that M, ,,(S) is fully mazimalif for each &k < min{m, n},

M, —k.n—x(S) contains a matrix of maximal column rank n — k.

If m > n, then we can easily show that M,, ,(S) is fully maximal. But, for
m < n, M, ,(S) may be or not fully maximal according to a given semiring S.

For example, M 3(Z") is fully maximal, while My 3(B) is not.
Recall that
AL(S) = {(X,Y) € My a(S)? | me(X +7) =},

Lemma 3.2. Let M, ,,(S) be fully mazimal, o be a permutation of A, ., and
T be defined by T(E; ;) = b; jEo ) for all (i,7) € Ay, where all b;; are units

in Z(S). If T preserves Ay, then T preserves lines.

Proof. Suppose that T~! does not map lines to lines. Then, there are two non
collinear cells which are mapped to a line. There are two cases, they are mapped
to two weighted cells in a column or two weighted cells in a row.

If two non collinear cells are mapped to two weighted cells in a column, we
may assume without loss of generality that T(Ey 1 + Ea2) = bi1E11 + baoEa ;.

If n < m it suffices to consider A = Ey 1+ Ey2+...+ E,,,. In this case, T'(A)
has maximal column rank at most n — 1, that is, (O, A) € Ay, (O,T(A)) ¢ Ay,
a contradiction.

Let us consider the case m < n. Since M, ,,(S) is fully maximal there exists
a matrix A’ € M,,_2 ,—2(S) such that mc(A’) = n—2. Let us choose A" with the
minimal number of non-zero entries. Let A = Os® A" € M, ,(S). Thus mc(A) =

mc(A") =n — 2. Hence (Ey; + Es2, A) € A;. Since T preserves A;, it follows
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that (by1E11 +beoEo1, T(A)) € Ay, that is, me(by1E1q +beoEoy +T(A)) =n.

Therefore me(T(A)[L,...,m;3,...,n]) > n — 2. Since the column rank of any
matrix cannot exceed the number of columns, me(T(A)[1,...,m;3,...,n]) =
n— 2.

Further, |[T'(A)[1,...,m;3,...,n]| < |A| = |A’| since T transforms cells to
weighted cells and at least one cell has to be mapped into the second column.
Thus we can have an (m — 2) x (n — 2) submatrix of T(A)[1,...,m;3,...,n]
whose column rank is n — 2 and the number of whose nonzero entries are less
than that of A’. This contradicts the choice of A’.

If two non-collinear cells are mapped to two cells in a row, we may assume
without loss of generality that T'(E 1 + Eaa) = b11E11 + baoFE1 5. In this case,
by considering the matrices bﬁELl + bi %Em and A chosen above, the result

follows. Thus, T preserves lines. [ ]

Theorem 3.3. Let T' be a surjective linear operator on M, ,,(S), where m #n
orm=mn>4. If M, ,(S) is fully mazimal, then T preserves Ay if and only if
T is a non-transposing (P, Q, B)-operator, where mec(B) = 1 and all entries of

B are units in Z(S).

Proof. By Lemma 2.14, we have that all non-transposing (P, (), B)-operators
with me(B) = 1 preserves A;.

Suppose that T" preserves A;. By Lemma 3.2 we have that T" preserves lines
and by applying Theorem 2.11 to Lemma 2.12, we have that T"is a (P, Q, B)-
operator.

Suppose that me(B) > 2. Without loss of generality we may assume that the
first two rows and columns of B are linearly independent. Since M, ,,(S) is fully
maximal, there exists a matrix Y’ € M,,_2,-2(S) such that mc(Y') = n — 2.
Consider matrices X = Z( i1 Biitbi,Ei) and Y = O2@Y’ in My, 5 (S). Then
all columns of X +Y are hnearly independent and hence (X,Y) € A;. But the

13



first two columns of T'(X)+T(Y) are equal and hence me(T(X), T(Y)) <n—1,
a contradiction. Thus me(B) = 1.

Since all non-transposing (P, @), B)-operators with mc(B) = 1 preserves Aj,
it only remains to show that if m = n then the transposition does not preserve
Aj. Let A = g [nO4 } Then, by Remark 2.16, we have that mc(A) = n
and mc(A") = n — 1, so that (A,0) € A, while (A*,0) ¢ A;. Thus T is a

non-transposing (P, @, B)-operators with mc(B) = 1. [

Corollary 3.4. Let T be a surjective linear operator on M, ,(S), where m # n
orm =mn >4, and M, ,(S) is fully maximal. If S is commutative, then T

preserves Ay (if and) only if T is a non-transposing (U, V')-operator.

Proof.  Suppose T preserves A;. By Theorem 3.2, T' is a non-transposing
(P, @, B)-operator on M, ,,(S), where mc(B) = 1 and all entries of B are units
in Z(S). Since S is commutative, it follows from Lemma 2.10 that 7" is a non-

transposing (U, V')-operator. [
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3.2 Linear operators that preserve extreme set Ay(S)

Recall that
A(S) ={(X,Y) € I\\/JI,,W(S)2 | me(X +Y) =1}.

Theorem 3.5. If T' is a surjective linear operator on M, ,(S) that preserves
As, then T is a (P,Q, B)-operator, where mc(B) = 1 and all entries of B are

units in Z(S). In particular, if S is commutative, then T is a (U, V')-operator.

Proof. Suppose that T does not preserve lines. Then, without loss of generality,
we may assume that either T(Ey 1+ Ey2) = b1 1By 1+bioFsp or T(E1 1+ Eaq) =
bi1E11 + b1 Eso. In either cases, let Y = O and X be either Ey; + Ej o or
Ei11+ Es1, so that (X,Y) € Ay while (T(X),T(Y)) ¢ Ay, a contradiction.
Thus T preserves lines.

By applying Theorem 2.11 to Lemma 2.12 we have that 7" is a (P, Q, B)-
operator.

Suppose that me(B) > 2, T preserves A,. Since me(T(J)) = me(B), we
have (J,0) € A, while (T'(J),T(0)) ¢ Aj, a contradiction.

By Lemma 2.10, Since S is commutative, T is a (U, V')-operator. [

In general, the converse of Theorem 3.5 may be true or not according to
a given semiring S. Obviously, by Lemma 2.14, all non-transposing (P, @, B)-
operators with mc(B) = 1 (all entries of B are units in Z(S)) preserve Ay. But
the following Examples show that transposing (P, Q, B)-operators may or not

preserve Ay according to given semirings S.

Example 3.6. Consider the semiring Z* of all nonnegative integers. Let

20

X:[?) 0

} ® On_s € M, (Z).

Then we can easily show that (X, 0) € Ay, while (X*, O") ¢ Aj. So, the converse

of Theorem 3.5 is not true in this case.
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Example 3.7. Consider the Boolean semiring B = {0,1}. Then it is straight-
forward that for a matrix A € M, (B), mc(A) = 1 if and only if all non-zero
columns of A are the same. Thus all non-zero rows of A are the same and
mc(A') = 1. That is, for any permutation matrices P,Q € M, (B), we have
that mc(A) = 1 if and only if me(PA'Q) = 1 . This shows that the converse of

Theorem 3.5 is true in this case.
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3.3 Linear operators that preserve extreme set A3(S)

Recall that for S C R*
A3(S) = {(X,Y) € My u(S)? | me(X +Y) = [p(X) — p(Y)|}.

Lemma 3.8. Let S be any subsemiring of RT, o be a permutation of A, ., and
T be defined by T(E; ;) = b; jEqgijy for all (i,j) € Ampn, where all b; ; are units

and min{m,n} > 3. If T preserves As, then T preserves lines.

Proof. 'The sum of three distinct weighted cells has maximal column rank at
most 3. Thus T'(E; 1 + Ey 2+ Es 1) is either a sum of 3 collinear cells, and hence
has real rank 1, or is contained in two lines, and hence has real rank 2, or is sum
of three cells of maximal column rank 3, and hence has real rank 3.

Now, for X = Ey; + E12+ Eyq and Y = Es 5, we have that (X,Y) € As,
and the image of Y is a single weighted cell, and hence p(T(Y)) = 1. Now, if
p(T(X)) = 3, then T(X +Y) must have maximal column rank 3 or 4, and hence
(T(X), T(Y)) ¢ As, a contradiction. If p(7'(X)) = 1, then (T(X),T(Y)) ¢ As
since T(X +Y) # O. Thus p(T(X)) =2, and me(T(X +Y)) = 1.

However it is straightforward to see that the sum of four weighted cells has
the maximal column rank 1 if and only if they lie either in a line or in the
intersection of two rows and two columns. The matrix 7'(X + Y) is the sum of
four weighted cells. These cells do not lie in a line since p(T'(X)) = 2. Thus
T(X +Y) must be the sum of four weighted cells which lie in the intersection
of two rows and two columns.

Similarly, for any ¢,7,k,1, T(E;; + E;; + Ei; + Ej;) in the intersection of
two rows and two columns. It follows that any two rows must be mapped into
two lines. By the bijectivity of T, if some pair of two rows is mapped into
two rows(respectively, columns), then any pair of two rows is mapped into two

rows(respectively, columns). Similarly, if some pair of two columns is mapped
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into two rows(respectively, columns), then any pair of two columns is mapped
into two rows(respectively, columns).

Now, the image of three rows is contained in three lines, two of which are the
image of two rows, thus, every row is mapped into a line. Similarly for columns.

Thus T preserves lines. |

Theorem 3.9. Let S be any subsemiring of RT, m #n orm=n >4, and T
be a surjective linear operator on M,, ,(S). Then T preserves As if and only if

T is a non-transposing (P, Q, B)-operator.

Proof. By Lemma 2.14, we have that all non-transposing (P, (), B)-operators
with me(B) = 1 preserves Aj.

By applying Lemma 3.7 and Theorem 2.11 to Lemma 2.12, we have that if
T preserves As, then T is a (P, @, B)-operator.

Suppose that mc(B) > 2, S € R" and T preserves As. Without loss of

generality assume that n < m. Consider

X= ( Z Ei,j) @Omfn,na Y = < Z Ei,j) @Omfn,n-

1<j<i<n 1<i<j<n
Then p(X) = n = p(T(X)), p(Y) =n—1= p(T(Y)), and me(X +Y) =
1=p(X)—pY). That is, (X,Y) € A3. But me(T(X) +T(Y)) = me(T(J)) =
me(B) >2>1=p(T(X)) — p(T(Y)), a contradiction. Thus mec(B) = 1.
Since all non-transposing (P, ), B)-operators with mc(B) = 1 preserves Aj it
remains to show that in the case m = n the operator X — X' does not preserve

Asz. Let X =Q®O0,,_4 and Y = O,,. Then (X,Y) € Az while (X", Y?) ¢ A3;. =
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4 Extreme preservers of maximal column rank inequali-
ties of matrix products

4.1 Linear operators that preserve extreme set M;(S)

In this section, we investigate the linear operators that preserve the set M;(S).

Recall that
M(S) = {(X,Y) € M,(S)? | me(XY) = me(Y)}.

Lemma 4.1. Let T be a surjective linear operator on M, (S) that preserves M.

Then T preserves lines.

Proof. Suppose that T~! does not map columns to lines, without loss of gener-
ality, that Tfl(Eu + Es1) > Ey1 + Ey5. Then T'(I) has nonzero entries in at
most n — 1 columns. Suppose T'(I) has all zero entries in column j. Then for
X =TandY =T '(E;;), we have XY =Y however, T(X)T(Y) = O. This
contradicts the fact that T" preserves M.

Suppose that 7! does not map rows to lines, without loss of generality, that
T Y E11+Ei2) > Ei11+ Esy. That is T(Ey 1+ Eas) = b11F1 1+ bagEr 2. Then
for X = by 1 Fy 1 4b35F0 54 [02® 1,_5], T(X) has maximal column rank at most
n — 1 since either the first two columns of T'(X) are linearly dependent or at
least one of the columns from the 3¢ through the n'* is zero.

Let Y = T~1(I), then we have that (X,Y") € M since mc¢(X Z) = mc(Z) for
any Z, while me(T(X)T(Y)) = me(T(X)) <n—1<n=mec(l) =mc(T(Y))
so that (T'(X),T(Y)) ¢ M., a contradiction.

Thus 7! and hence T map lines to lines. |

Theorem 4.2. Let T be a surjective linear operator on M., (S) that preserves
M. Then T is a non-transposing (P, P*, B)-operator, where me(B) = 1 and all

entries of B are units in Z(S).

19



Proof. By applying Lemma 4.1 and Theorem 2.11 to Lemma 2.12, we have that
if T preserves My, then T is a (P, Q, B)-operator.

Suppose that mc(B) > 2, without loss of generality mc(B][1,2|1,2]) = 2,
and E;1QQP = E;, for all <. Consider the pair X = E;;, Y = C; + C5. Then
XY = E1+E2and me(XY) =1 =mce(Y). Thus (X,Y) € M. However, the
maximal column rank of (X o B)QP(Y o B) = by b, 1F1 1+ b1,b.2F1 5 is 1 since
b1,br1 = by1b; 3 (b1 +by2) by assumption on b; ; (b;; are units in Z(S)), that is, the
columns of (X o B)QP(Y o B) are linearly dependent. Thus me(T(X)T(Y)) =
me((X o B)QP(Y o B)) = 1, me(T(Y)) = me(Y o B) = me(B) > 2. Hence
(T(X),T(Y)) ¢ My, a contradiction. Thus me(B) = 1.

To see that the operator T(X) = P(XoB)'Q does not preserve My, it suffices
to consider To(X) = X'D, where D = QP, since a similarity and a Hadamard
product with a matrix of maximal column rank 1 and invertible entries preserve

Ml. Let

X = (DY) S Ly | andy = & Iy

SO = =
OO = =
O = OO
== O,
— =0 O
— & '@ —
OO OO
O O OO

Then (X,Y) € M; while (X'D,Y'D) ¢ Mj.

It remains to prove that Q = P! Assume that QP # I, and that X —
(QP)X transforms the r*" row into the t"* row for some r # ¢t. We consider the
matrix X = > FE;;, Y = E,,. Then (X,Y) € M, while for certain invertible
clements b, ; Z? Z(S) we have that T(X)T(Y) = P(X o B)QP(Y o B)Q) =
P> bi:E;)(brrEry)Q = O. Thus (T(X), T(Y)) ¢ M, a contradiction.

Z?Itence Q=P n
Corollary 4.3. Let T be a surjective linear operator on M, (S) with n > 4. If S
is commutative and 14+ 1 # 1, then T preserves My (if and) only if there exist

an invertible matriz U and an invertible element o such that T(X) = aUXU™!

for all X € M, (S).
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Proof.  Suppose T preserves M;. By Theorem 4.2, T' is a non-transposing
(P, P*, B)-operator, where mc(B) = 1 and all entries of B are units in Z(S).
That is, T(X) = P(X o B)P" for all X € M, (S). In the proof of Lemma 2.10,
there exist invertible diagonal matrices D and E in M, (S) such that X o B =
DXFE and hence T(X) = PDXEP'. Let us show that ED is an invertible
scalar matrix.

Define L(X) = (EPYT(X)(EPY) ™! = EDX for all X € M, (S). Since T
preserves M, if and only if L does, it suffice to consider L(X) = EDX. Let
G = ED. Then G = diag(g1,- -+ ,gn) is an invertible diagonal matrix. Assume
that g, # ¢o. Consider matrices

0 411 11 o UKD
40 11 rIwP 4

A= 1101 and B = 00 1 1 (4.1)
a4 -0 s, g

Let X =A® 0, 4yand Y = G Y(B®O,,_4). Since all columns of A are linearly
independent, it follows that mc(A) = me(X) = me(L(X)) =4 and me(B) =
me(Y) = me(L(Y)) = 2. Furthermore,

492‘1 4951 g§1+g4’1 g§1+94‘1
4qg7 4g7 v 7 A i
XY — r 91 b, 491 . g3 _194 93 7194 © O, 4
911‘1‘921 911+921 941 941
W CO0 0w o 9o 93 93

has the maximal column rank at most 2. If mc(XY) = 1, then we can easily

show that ¢; = ¢, a contradiction. Thus mec(XY) = 2. That is (X,Y) € M;.

But
4 4 2 2
4 4 2 2
LIX)L(Y)=G 9 92 1 1 ® On—y
2 211
has the maximal column rank 1 and hence (L(X), L(Y')) ¢ M;. This contradic-
0111
. o . . o 1011
tion shows that g1 = go. Similarly, if we consider a matrix A’ = 1104/
1140
then the parallel argument shows that g3 = g¢4. Generally, if n > 5, then
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we can split zero block into two parts and take X' = O, @ A ® O,,_,_4 or
X =0,0 A ®0,_,_, for appropriate r. Therefore we have that G is an
invertible scalar matrix. That is, G = ED = «l for some invertible element
a, equivalently £ = aD™!. If we let U = PD, then T(X) = P(DXE)P! =
a(PD)X(PD)™ =aUXU™! for all X € M,(S). Thus the result follows. n
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4.2 Linear operators that preserve extreme set M,

Recall that
My(S) = {(X,Y) € M, (S)? | me(XY) = 0}.

Lemma 4.4. Let T be a surjective linear operator on M, (S). If T preserves

My, then T maps columns to columns and rows to rows.

Proof. Suppose that 7" does not map columns to columns. Say 7'(C;) is not
a column. Then T'(J\C;) has no zero column. Thus (J\Cj, E;;) € Ma, while
(T(J\C}), T(E;;)) ¢ Ma, a contradiction.

Suppose that T' does not preserve rows. Say T(R;) is not a row. Then
T(J\R;) has no zero row. Thus (E;;, J\R;) € My, while (T'(E;;),T(J\R;)) ¢
Mo, a contradiction.

Hence T" maps columns to columns and rows to rows. [ |

Theorem 4.5. Let T' be a surjective linear operator on M,,(S). Then T preserves
My if and only if T is a non-transposing (P, P', B)-operator, where all entries

of B are units in Z(S).

Proof. By applying Lemma 4.4 and Theorem 2.11 to Lemma 2.12, we have that
if T preserves My, then T is a (P, Q, B)-operator.

Since 7" maps columns to columns, 7" is clearly a non-transposing (P, @, B)-
operator. Since T is surjective, and hence bijective by Theorem 2.11 we have
that every entries in B are invertible.

We now only need show that @ = P'. If not, say QPE, s = E;, with t # r.
Then (Eiy, B, 5) € Msy. However,

T(Et,t)T(Er,s) = Pbt,tEt,tQpbr,sEr,sQ = bt,tbr,sP(Et,tEt,s)Q 7é O

so that (T'(E:,), T(E,s)) ¢ Ma, a contradiction. Thus @ = P".

The converse is easily established. ]
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4.3 Linear operators that preserve extreme set M;

Recall that
M;3(S) = {(X,Y) € M, (S)? | me(X) + me(Y) > n and me(XY) = 1}.

Lemma 4.6. Let T be a surjective linear operator on M, (S). If T preserves

Mg, then T preserves lines.

Proof. Recall that if (X,Y) € M3 then mc(X) + me(Y) > n. We assume that
there exists indices 4, j, k, 1,7 # k, j # [ such that nonzero entries of T'(E; ;) and
T(Ey,) lie in a line.

Let T(F; ;) = bi;jF,,. Then either T(Ey,;) = byiFsyp or T(Ey;) = by By .
In both cases mc(T(E;; + Ex;)) = 1. Let Y/ € M, (S) be a matrix such that
Y' + E;; + Ej,; is a permutation matrix. We consider X = E;; + Ey;, ¥ =
Y' 4+ Eg;. Then XY = Ejp for some I’ and (X,Y) € Mj. However, since
me(T (X)) = 1in either case, and me(T(Y)) < n—1, me(T(X))+me(T(Y)) < n.

Finally, we have that (T(X),T(Y)) ¢ Ms, a contradiction. ]

Theorem 4.7. Let n > 3 and T be a surjective linear operator on M, (S) that
preserves Ms. Then T is a non-transposing (P, P*, B)-operator, where mc(B) =

1 and all entries of B are units in Z(S).

Proof. By applying Lemma 4.6 and Theorem 2.11 to Lemma 2.12, we have that
if T' preserves Mg, then T is a (P, Q, B)-operator.

Suppose that mc(B) > 2, without loss of generality mc(B][1,2|1,2]) = 2,
and E;1QP = E;,, E;»QP = E;, for all i. Consider the pair X = C; + O,
Y = 1. Then (X,Y) € M3 while (T'(X),T(Y)) ¢ Ms, a contradiction. Thus
me(B) = 1.

To see that the operator T(X) = P(XoB)'Q does not preserve M3, it suffices
to consider Ty(X) = X'D, where D = QP, since a similarity and a Hadamard
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product with a matrix of maximal column rank 1 and invertible entries preserve
Ms.
Let

_ —1\t 012 o ]n—lO
X—(D){OO}andY—[O O}‘

Then (X,Y) € Ms while (X'D,Y'D) ¢ Msj. This proves that T is a non-
transposing (P, (), B)-operator.

Let us check that @ = P'. Assume that QP # I, and that X — (QP)X
transforms the p* row into the s* row and r** row into t!" row with r # s, t.
These exist since n > 3. We consider the matrix X = > E;;, Y = E,, + E.,.

iEr
Then (X,Y) € M3. And we have that mc(T(X)) +me(T(Y)) =n+1 > n and

T(X)T(Y) = P(X 0 B)QP(Y 0 B)Q = P() _ b;iE; ) (bppEsp + brr Err)Q.
i#r
Thus me((T(X)T(Y)) = 2, that is, (T(X),T(Y)) ¢ Ms, a contradiction.
Hence @Q = P. [

Corollary 4.8. Let S =B, Z* and T be a surjective linear operator on M, (S)

with n > 3. Then T preserves Mg if and only if there is a permutation matrix

P € M, (S) such that T(X) = PXP" for all X € M,,(S).

Proof. Suppose T preserves Mjs. By Theorem 4.7, T is a non-transposing
(P, P*, B)-operator, where all entries of B are invertible. Note that if S =B, Z™,
1 is the only invertible element in S, and hence B = J. Thus, there exists a
permutation matrix P € M,,(S) such that T(X) = PXP? for all X € M, (S).

The converse is easily established. [ |
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4.4 Linear operators that preserve extreme set M,

Recall that
My(S) = {(X,Y) € M,,(S)* | me(XY) = p(X) + p(Y) — n}.

Lemma 4.9. Let S be any subsemiring of R™, o be a permutation of A,, and
T be defined by T(E;;) = b; jEqqjy for all (i,7) € Ay, where all b; are units.

If T preserves My, then T preserves lines.

Proof. If T does not preserve lines, then there exist indices i, j, k,[,i # k,j # 1
such that nonzero entries of T'(E; ;) and T'(E}),;) lie in a line. Let X’ € M, (S)
be a matrix such that X’ 4+ E; ; + Ej; is a permutation matrix.

We consider X = X'+FE; j4+Ey,;. Then (X, 0) € M,. However, mc(T(X)) <
n—1, p(T'(X)) < n — 1 since either T'(X) has a zero column or T'(X) has
two proportional columns since b, ; is invertible. Thus (7(X),0) ¢ My, a

contradiction. n

Theorem 4.10. Let S be a subsemiring of RY, and T be a surjective linear
operator on M, (S). If T preserves My, then T is a non-transposing (P, P, B)-

operator, where mc(B) = 1 and all entries of B are units.

Proof. By applying Lemma 4.9 and Theorem 2.11 to Lemma 2.12, we have that
if T preserves My, then T is a (P, @, B)-operator.

Let us check that @ = P'. Assume that QP # I, and that X — (QP)X
transforms the r* row into the t"* row with r # ¢t. We consider the matrix
X =>FE,; Y =E., Then (X,Y) € M,, and for certain nonzero b;; € S,
TX)T(Y) = P(X 0 BIQP(Y 0 BYQ = P(XbiiBur)(ber Eer)Q # O, that is
(T(X),T(Y)) ¢ My, a contradiction. Thus grz Pt

Suppose that me(B) > 2, without loss of generality mc(B([1,2|1,2]) = 2. Let

[ b bis
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Then me(X) = me(X?) = n. Note that from the invertibility of b; ; it follows
that p(X) = n. Indeed, if b;] = Abj; (i = 1,2), for some A € RT, then A =
b;1bi2 € S which contradicts me(B[1,2[1,2]) = 2. Thus me(X?) = 2p(X) —n
or (X,X) e My. But me(X o B) = me((X o B)?) = p(X oB) =n—1, and
hence mc((X o B)?) > 2p(X o B) —n, so that (T'(X),0) ¢ My, a contradiction.
Hence me(B) = 1.

Let

X:(D—l)t([g H@Jn_g)and Y = H g]@fn_Q,

where D = QP. Then (X,Y) € M, while (X'D,Y'D) ¢ M,. This proves that
T is a non-transposing (P, (), B)-operator.

Therefore T is a non-transposing (P, P!, B)-operator, where me¢(B) =1. =

Corollary 4.11. Let S be a subsemiring of RY, and T be a surjective linear
operator on M,,(S), where n > 4. Then T preserves My if and only if there is
an invertible matriz U and an invertible elements o such that T(X) = aUXU™?

for all X € M,(S).

Proof. Suppose T preserves My. By Theorem 4.10, T is a non-transposing
(P, P*, B)-operator, where mc(B) = 1 and all entries of B are units; T(X) =
P(XoB)P! for all X € M,(S). In the proof of Lemma 2.10, there exist invertible
diagonal matrices D and E in M, (S) such that X o B = DXF and hence
that T(X) = PDXEP"'. Let us show that ED is an invertible scalar matrix.
Similar to the proof of Corollary 4.3, we suffice to consider L(X) = EDX for
all X € M,(S). Let G = ED. Then G = diag(g1,--- ,9,) is an invertible
diagonal matrix. Suppose G is not a scalar matrix. As in Corollary 4.3, we lose

no generality in assuming that g; # ¢go. Let A and B matrices in (4.1). Let

X=A®I, 4, Y=B&I, .
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Then

4 4 2 2
4 4 2 2

XY = 9 9 1 1 S A
2 211

so that p(X) =n—1= p(L(X)), p(Y) =n—2 = p(L(Y)), and me(XY) = n—3.
Thus (X,Y) € M,. But

4go 4go0 g3+ 94 g3+ 94

4g1 491 g3+ 91 g3+ G
LIX)L(Y)=d S
(X)LY) g1t+g2 g1+92 g4 g4 4
g1t+g92 g1+92 g3 gs

so that mc(L(X)L(Y)) = n — 2 because ¢g; # go. Thus (L(X), L(Y)) ¢ My, a
contradiction. Hence G = ED = al for some invertible element o. If U = PD,
then T(X) = aUXU .

The converse is immediate. n
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