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<Abstract>

L inear preservers of extremes of maximal 

column rank inequalities over semirings

  During the past century a lot of literature has been devoted to the 

problems of determining the linear operators on the m×n  matrix algebra 

Mm,n(F)  over a field F that leave certain matrix subsets invariant. In 1987, 

Kantor and Frobenius proved that if a linear operator T on Mm,n(R)  

preserves the determinant of matrices then T has the form T(X)=UXV  or 

T(X)=UXtV . Since these papers was published, many researchers have 

investigated to characterize the linear operators that preserve certain subsets 

of Mm,n(F) . We call these researches as "Linear Preserver Problems", which 

is an major topic on linear algebra and matrix theory.  

  In this thesis, we study the inequalities of maximal column rank for the 

sum and product of two matrices over semirings. There was some papers on 

the researches of both maximal column rank of one matrix and extremes of 

factor rank over semirings. We used those papers in order to research the 

linear operators that preserve the sets of matrix pairs which satisfy the 

extremes of maximal column rank inequalities. We constitute the sets of 

matrix pairs which are the extremes of maximal column rank inequalities. We 

characterize the linear operators that preserve the 7 extreme sets of maximal 

column rank inequalities. That is, we prove that those linear operators are 

(P,Q,B)-operator  such that T(X)=P(X∘B)Q  or T(X)=P(X∘B) tQ .



<국문초록>

半環상에서 極大 列 階數 不等式의 極値를 保存하는 

線形演算子

  지난 100년 동안 여러 수학자들은 m×n  行列들의 집합 Mm,n(F)의 부

분집합들의 特性과 그 특성을 보존하는 線形演算子 問題에 대하여 연구해 

왔다. 1897년 칸토르와 프로베니우스가 行列式의 값을 보존하는 線形演

算子가 T(X)=UXV  또는 T(X)=UX tV  형태로 정해짐을 證明한 것을 

시작으로, 선형연산자의 형태 糾明과 그의 同値 條件들을 찾는 문제는 많

은 연구자들의 硏究主題가 되어 왔다. 이 연구는 体, 環, 半環, 부울 대수 

등의 다양한 代數的 구조 위에서 “線形保存子 問題”라는 이름으로 線型

代數學의 중심과제의 하나가 되어 연구되어 왔다.

  본 硏究에서는 半環상에서 두 행렬의 합과 곱에 대한 極大 列 階數 不

等式을 연구하였다. 이 연구에 앞서 발표된 논문들에서는 한 행렬의 극대 

열 계수에 대하여 연구된 바 있고, 두 행렬의 합과 곱에 대한 分解 階數 

부등식에 대하여 연구되기도 하였다. 본 연구에서는 이러한 선행연구들을 

參考하여, 두 행렬의 합과 곱에 대한 극대 열 계수 부등식을 分析하고, 이 

부등식들이 極値가 되게 하는 행렬의 순서쌍 집합들을 구성하였다. 그리

고 이 행렬의 순서쌍들로 이루어진 7가지의 極値集合들을 보존하는 선형

연산자를 규명하는 문제를 解決하였다. 곧, 이 극치집합들을 보존하는 선

형연산자는 T(X)=P(X∘B)Q  또는 T(X)=P(X∘B) tQ  형태로서 

(P, Q,B)-operator로 정하여짐을 證明하였다.
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1 Introduction

During the past century a lot of literature has been devoted to the problems

of determining the linear operators on the m × n matrix algebra Mm×n(F ) (if

m = n, we use the notation Mn(F )) over a field F that leave certain matrix

subsets invariant, see [10]. For a survey of these type of problems, see [10]. These

problems have been extended to the m× n matrices over various semirings, see

[1, 2].

Marsaglia and Styan studied on the inequalities for the rank of matrices, see

[8]. Beasley and Guterman investigated the rank inequalities of matrices over

semirings, see [1]. And they characterized the equality cases for some inequalities

in [2]. This characterization problems are open even over fields as well as over

semirings, see [9]. The structure of matrix varieties which arise as extremal cases

in the inequalities is far from being understood over fields, as well as semirings.

For the investigation of linear preserver problems of extreme cases of the rank

inequalities of matrices over fields was obtained in [4]. A usual way to generate

elements of such a variety is to find a matrix pairs which belongs to it and to

act on this set by various linear operators that preserve this variety. Beasley

and Guterman characterized the linear operators that preserve extremal cases

of rank inequalities over semiring, see [2]. Song and his colleagues characterized

the linear operators that preserve maximal column rank in [7, 11].

In this thesis, I characterize linear operators that preserve the sets of matrix

pairs which satisfy equality cases for the maximal column rank inequalities over

semirings.
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2 Definitions and Preliminaries

Definition 2.1. A semiring S consists of a set and two binary operations, ad-

dition and multiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

In this paper we will always assume that there is a multiplicative identity 1

in S which is different from 0.

In particular, a semiring S is called antinegative if the zero element is the

only element with an additive inverse.

Throughout this paper, we will assume that all semirings are antinegative

and have no zero divisors.

Definition 2.2. The Boolean semiring consists of the set B = {0, 1} equipped

with two binary operations, addition and multiplication. The operations are

defined as usual except that 1 + 1 = 1.

Let Mm,n(S) denote the set of m×n matrices with entries from the semiring

S. If m = n, we use the notation Mn(S) instead of Mn,n(S). The matrix In is the

n×n identity matrix, Jm,n is the m×n matrix of all ones, Om,n is the m×n zero

matrix. We omit the subscripts when the order is obvious from the context and

we write I, J , and O, respectively. Let Ri denote the matrix whose ith row is

all ones and all other rows are zero, and Cj denote the matrix whose jth column

is all ones and all other columns are zero. Let Uk denote the k× k matrix of all

ones above and on the main diagonal, Lk denote k × k strictly lower triangular

matrix of ones.
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The matrix Ei,j, called a cell, denotes the matrix with 1 in (i, j) position and

zero elsewhere. A weighted cell is any nonzero scalar multiple of a cell, that is,

αEi,j is a weighted cell for any 0 6= α ∈ S.

A line of a matrix A is a row or a column of A. We let Z(S) = {x ∈ S|xy =

yx,∀y ∈ S} denote the center of the semiring S, and |A| denote the number

of nonzero entries in the matrix A, and A[i1, . . . , ik|j1, . . . , jl] denote the k × l-

submatrix of A which lies in the intersection of the i1, . . . , ik rows and j1, . . . , jl

columns.

Let ∆m,n = {(i, j)|i = 1, . . . ,m; j = 1, . . . , n}. If m = n, we use the notation

∆n instead of ∆n,n.

We say that the matrix A dominates the matrix B if and only if bi,j 6= 0

implies that ai,j 6= 0, and we write A ≥ B or B ≤ A in this case. If A and B

are matrices and A ≥ B we let A \B denote the matrix C where

ci,j =

{
0 if bi,j = 1

ai,j otherwise
.

Definition 2.3. An element in Mn,1(S) is called a vector over S.

A set of vectors with entries from a semiring is called linearly independent

if there is no vector in this set that can be expressed as a nontrivial linear

combination of the others.

The matrix A ∈ Mm,n(S) is said to be of maximal column rank k (mc(A) = k)

if k is the maximal number of the columns of A which are linearly independent.

The matrix A ∈ Mm,n(S) is said to be of maximal row rank k (mr(A) = k)

if k is the maximal number of the rows of A which are linearly independent.

The matrix A ∈ Mm,n(S) is said to be of factor rank k (rank(A) = k) if

there exist matrices B ∈ Mm,k(S) and C ∈ Mk,n(S) such that A = BC and k is

the smallest positive integer for which such factorization exists.
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Remark 2.4. It follows that

1 ≤ rank(A) ≤ mc(A) ≤ n (1.1)

for all nonzero matrix A ∈ Mm,n(S).

If S is a subsemiring of a real field then there is a real rank function ρ(A) for

any matrix A ∈ Mm,n(S), which is considered as a matrix over real field. Easy

examples show that over semirings these functions are not equal in general.

However, the inequality mc(A) ≥ ρ(A) always hold.

Theorem 2.5. [1] Let S be an antinegative semiring without zero divisors. If

A, B ∈ Mm,n(S) with A 6= O,B 6= O. Then

1. 1 ≤ mc(A + B);

2. mc(A + B) ≤ n.

If A ∈ Mm,n(S), B ∈ Mn,k(S) with A 6= O,B 6= O. Then

3. if mc(A) + mr(B) > n then mc(AB) ≥ 1;

4. mc(AB) ≤ mc(B).

If S is a subsemiring of R+, the nonnegative reals. Then

5. mc(A + B) ≥ |ρ(A)− ρ(B)|.

For A ∈ Mm,n(S), B ∈ Mn,k(S) one has that

6. if ρ(A) + ρ(B) ≤ n then mc(AB) ≥ 0;

7. if ρ(A) + ρ(B) > n then mc(AB) ≥ ρ(A) + ρ(B)− n.
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Proof. 1. This inequality follow directly from the definition of maximal column

rank and the condition that A, B 6= 0. For the exactness one can take A = B =

E1,1. Let B be a Boolean semiring. For each pair (r, s), 0 ≤ r, s ≤ m we

consider the matrices Ar = J \ (
r∑

i=1

Ei,i), Bs = J \ (
s∑

i=1

Ei,i+1) if s < m and

Bs = J \ (
s−1∑
i=1

Ei,i+1 + Es,1) if s = m. Then

mc(Ar) = r, mc(Bs) = s

by definition and Ar + Bs = J has maximal column rank equal to 1. Thus, this

bound is the best possible over Boolean semiring.

3. For an arbitrary antinegative semiring, if mc(A) = i and mr(B) = j then

A has at least i nonzero columns while B has at least j nonzero rows. Thus,

if i + j > n, AB 6= O and hence this bound is established. For the proof of

exactness let us take A = B = E1,1.

Let B be a Boolean semiring. In the case m = n = k for each pair (r, s), 1 ≤

r, s ≤ n let us consider the matrices Ar =
r∑

i=1

Ei,i+
m∑

i=1

Ei,1, Bs =
s∑

i=1

Ei,i+
n∑

i=1

E1,i.

Then

mc(Ar) = r, mc(Bs) = s

by definition and ArBs = J . Thus mc(ArBs) = 1. It is routine to generalize

this example to the case m 6= n 6= k.

4. For the proof that this bound is exact and the best possible, consider

Ar =

[
Ir Or,n−r

On−r,r On−r,n−r

]
and Bs =

[
Is Os,n−s

On−s,s On−s,n−s

]
for each pair r, s, 1 ≤ r, s ≤ n in the case m = n. It is routine to generalize this

example to the case m 6= n.

5. This inequality follow directly from the fact that ρ(X) ≤ mc(X) for

all X ∈ Mm,n(R+), and corresponding inequalities for matrices with coefficients

from the field R+. For the proof of exactness consider matrices A = E1,1 + . . .+

5



En−1,n−1, B = J \ A. In order to show that this bound is the best possible one

can take the family of matrices Ar, Bs,

Ar =

[
Lr+1 Or+1,n−r−1

Om−r−1,r+1 Om−r−1,n−r−1

]
and Bs =

[
Us Os,n−s

Om−s,s Om−s,n−s

]
.

7. This inequality follows directly from the fact that ρ(X) ≤ mc(X) for

all X ∈ Mm,n(R+), and corresponding inequalities for matrices with coefficients

from the field R. For the exactness one can take A = B = I. In order to show

that this bound is the best possible one can take the family of matrices Ar, Bs,

Ar =

[
Ir Or,n−r

On−r,r On−r,n−r

]
and Bs =

[
On−s,n−s On−s,s

Os,n−s Is

]
.

The following examples shows that mc(A+B) � mc(A)+mc(B), mc(AB) �

min{mc(A), mc(B)} which is different from the rank inequality of the matrices

over real field.

Example 2.6. Let A =

 1 1 1
1 1 1
0 0 0

 ∈ M3(Z+), B =

 1 2 4
0 0 0
0 0 0

 ∈ M3(Z+),

where Z+ is the semiring of nonnegative integers. Then mc(A) = 1, mc(B) = 1,

and mc(A + B) = 3 over Z+.

Example 2.7. Let A =
[

3 7 7
]
∈ M1,3(Z+), B =

 1 1 1
0 1 1
0 0 1

 ∈ M3(Z+),

where Z+ is the semiring of nonnegative integers. Then mc(A) = 2, mc(B) = 3,

and mc(AB) = mc(
[

3 10 17
]
) = 3 over Z+.

Definition 2.8. For matrices X = [xi,j] and Y = [yi,j] in Mm,n(S), the matrix

X ◦Y denotes the Hadamard or Schur product, i.e., the (i, j)th entry of X ◦Y is

xi,jyi,j.
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Definition 2.9. Let S be a semiring, not necessary commutative. An operator

T : Mm,n(S) → Mm,n(S) is called linear if T (αX) = αT (X), T (Xβ) = T (X)β,

and T (X + Y ) = T (X) + T (Y ) for all X, Y ∈ Mm,n(S), α, β ∈ S.

We say that an operator T preserves a set P if X ∈ P implies that T (X) ∈ P ,

or, if P is a set of ordered pairs, that (X, Y ) ∈ P implies (T (X), T (Y )) ∈ P .

An operator T on Mm,n(S) is called a (P, Q, B)-operator if there exist per-

mutation matrices P ∈ Mm(S) and Q ∈ Mn(S), and a matrix B ∈ Mm,n(S) with

B ≥ J such that

T (X) = P (X ◦B)Q (2.1)

for all X ∈ Mm,n(S) or, m = n and

T (X) = P (X ◦B)tQ (2.2)

for all X ∈ Mn(S), where X t denotes the transpose of X. Operators of the form

(2.1) are called non-transposing (P, Q,B)-operators; operators of the form (2.2)

are transposing (P, Q,B)-operators.

An operator T is called a (U, V )-operator if there exist invertible matrices

U ∈ Mm(S) and V ∈ Mn(S) such that

T (X) = UXV (2.3)

for all X ∈ Mm,n(S) or, m = n and

T (X) = UX tV (2.4)

for all X ∈ Mn(S). Operators of the form (2.3) are called non-transposing

(U, V )-operators; operators of the form (2.4) are transposing (U, V )-operators.

Lemma 2.10. Let T be a (P, Q,B)-operator on Mm,n(S), where mc(B) = 1

and all entries of B are units in Z(S). If S is commutative, then T is a (U, V )-

operator.
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Proof. Since T is a (P, Q, B)-operator, so there exist permutation matrices

P ∈ Mm(S) and Q ∈ Mn(S) such that T (X) = P (X ◦ B)Q, or m = n and

T (X) = P (X ◦ B)tQ for all X ∈ Mm,n(S). Since mc(B) = 1, so it follows from

(1.1) that rank(B) = 1, equivalently, there exist vectors d = (d1, . . . , dm) ∈ Sm

and e = (e1, . . . , en) ∈ Sn such that B = dte. Since bi,j are units, di and ej are

invertible elements in S for all (i, j) ∈ ∆m,n. Let D = diag(d1, . . . , dm) ∈ Mm(S)

and E = diag(e1, . . . , en) ∈ Mn(S) be diagonal matrices. Since S is commutative,

it is straightforward to check that X ◦B = DXE for all X ∈ Mm,n(S). For the

case of T (X) = P (X ◦B)Q, if we let U = PD and V = EQ, then T (X) = UXV

for all X ∈ Mm,n(S). If T is of the form T (X) = P (X ◦ B)tQ, then U = PE

and V = DQ shows that T (X) = UX tV for all X ∈ Mm,n(S). Thus the Lemma

follows.

Theorem 2.11. [2, Theorem 2.14] Let S be an antinegative semiring without

zero divisors and T : Mm,n(S) → Mm,n(S) be a linear operator. Then the follow-

ing are equivalent :

(1) T is bijective.

(2) T is surjective.

(3) There exists a permutation σ on ∆m,n and units bi,j ∈ Z(S) such that

T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆m,n.

Proof. That 1) implies 2) and 3) implies 1) is straight forward. The fact that

the entries bi,j ∈ Z(S) follows immediately from the linearity of T . We now

show that 2) implies 3).

We assume that T is surjective. Then, for any pair (i, j), there exists some X

such that T (X) = Ei,j. Clearly X 6= O by the linearity of T . Thus there is a pair

of indices (r, s) such that X = xr,sEr,s + X ′ where (r, s) entry of X ′ is zero and

the following two conditions are satisfied: xr,s 6= 0 and T (Er,s) 6= O. Indeed, if

in the contrary for all pairs (r, s) either xr,s = 0 or T (Er,s) = O then T (X) = 0

8



which contradicts with the assumption T (X) = Ei,j. Since S is antinegative

without zero divisors it follows that

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j

Hence, xr,sT (Er,s) = T (xr,sEr,s) ≤ Ei,j and T (Er,s) 6= O by the above. There-

fore, T (Er,s) ≤ Ei,j.

Let Pi,j = {Er,s | T (Er,s) ≤ Ei,j}. By the above Pi,j 6= Φ for all (i, j). By its

definition Pi,j ∩ Pu,v = Φ whenever (i, j) 6= (u, v). That is {Pi,j} is a set of mn

nonempty sets which partition the set of cells. By the pigeonhole principle, we

must have that | Pi,j |= 1 for all (i, j). Necessarily, for each pair (r, s) there is a

unique pair (i, j) such that T (Er,s) = br,sEi,j. That is there is some permutation

σ on {(i, j) | i = 1, 2, · · · , m; j = 1, 2, · · · , n} such that for some scalars bi,j,

T (Ei,j) = bi,jEσ(i,j). We now only need to show that the bi,j are all units. Since

T is surjective and T (Er,s) 6≤ Eσ(i,j) for (r, s) 6= (i, j), there is some α such

that T (αEi,j) = Eσ(i,j). But then, since T is linear, T (αEi,j) = αT (Ei,j) =

αbi,jEσ(i,j) = Eσ(i,j). That is, αbi,j = 1, or bi,j is a unit.

Lemma 2.12. [2, Lemma 2.16] Let S be an antinegative semiring without zero

divisors, T : Mm,n(S) → Mm,n(S) be an operator which maps lines to lines

and is defined by T (Ei,j) = bi,jEσ(i,j), where σ is a permutation on ∆m,n, and

bi,j ∈ Z(S) are nonzero elements. Then T is a (P, Q,B)-operator.

Proof. Since no combination of a rows and b columns can dominate J where

a + b = m unless b = 0 (or if m = n, if a = 0) we have that either the image

of each row is a row and the image of each column is a column, or m = n

and the image of each row is a column and the image of each column is a row.

Thus, there are permutation matrices P and Q such that T (Ri) ≤ PRiQ and

T (Cj) ≤ PCjQ or, if m = n, T (Ri) ≤ P (Ri)
tQ and T (Cj) ≤ P (Cj)

tQ. Since

each cell lies in the intersection of a row and a column and T maps nonzero cells

to nonzero (weighted) cells, it follows that T (Ei,j) = Pbi,jEi,jQ = P (Ei,j ◦B)Q,
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or, if m = n, T (Ei,j) = Pbi,jEj,iQ = P (Ei,j ◦ B)tQ where B = (bi,j) is defined

by the action of T on the cells.

Remark 2.13. One can easily check that if m = 1 or n = 1 then all operators

under consideration are (P, Q,B)-operators, if m = n = 1 then all operators

under consideration are (P, P t, B)-operators.

Henceforth we will always assume that m, n ≥ 2.

Lemma 2.14. Let B be a matrix in Mm,n(S) with mc(B) = 1. If all entries of B

are units in Z(S), then mc(X) = mc(P (X ◦ B)Q) for all permutation matrices

P ∈ Mm(S) and Q ∈ Mn(S).

Proof. Let X be any matrix in Mm,n(S). Obviously, mc(X) = mc(XQ) for all

permutation matrix Q ∈ Mn(S). Let P be any permutation matrix in Mn(S).

Then mc(X) = mc((P )tPXQ) ≤ mc(PXQ) ≤ mc(XQ) = mc(X), and

hence mc(X) = mc(PXQ) for all for all permutation matrices P ∈ Mm(S) and

Q ∈ Mn(S). Thus, we suffice to claim that mc(X) = mc(X ◦B).

Since mc(B) = 1, so there exist the kth column bk of B = [b1,b2, . . . ,bn]

such that B = bk[α1, . . . , αk−1, 1, αk+1, . . . , αn] where αi are units. Thus, for

any matrix X = [x1, x2, . . . , xn] ∈ Mm,n(S), we have X ◦B = [x1 ◦bkα1, x2 ◦

bkα2, . . . ,xn◦bkαn] = [bkα1◦x1,bkα2◦x2, . . . ,bkαn◦xn] = [α1(x1◦bk), α2(x2◦

bk), . . . , αn(xn ◦ bk)].

Thus the Lemma follows.

Let X =

[
2
3

]
be a matrix in M2,1(Z+). Then we have that mc(X) = 1, but

mc(X t) = 2. Thus, in general, it is not true that for a matrix X ∈ Mm,n(S),

mc(X) = 1 if and only if mc(X t) = 1. But the following is obvious.

Lemma 2.15. Let B be a matrix in Mm,n(S), whose all entries are units in

Z(S). Then mc(B) = 1 if and only if mc(Bt) = 1.
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Remark 2.16. Let

Ω =


0 0 1 1
1 0 0 1
0 1 1 0
0 0 0 0

 (2.5)

be a matrix in M4(S). Then we can easily show that the first three rows (re-

spectively, four columns) are linearly independent. Thus we have mc(Ω) = 4

and mc(Ωt) = 3.

Now we consider the following sets of matrices that arise as extremal cases

in the inequalities listed in Theorem 2.5.

A1(S) = {(X, Y ) ∈ Mm,n(S)2 | mc(X + Y ) = n};

A2(S) = {(X, Y ) ∈ Mm,n(S)2 | mc(X + Y ) = 1};

A3(S) = {(X, Y ) ∈ Mm,n(S)2 | mc(X + Y ) = |ρ(X)− ρ(Y )|};

M1(S) = {(X, Y ) ∈ Mn(S)2 | mc(XY ) = mc(Y )};

M2(S) = {(X, Y ) ∈ Mn(S)2 | mc(XY ) = 0};

M3(S) = {(X, Y ) ∈ Mn(S)2 | mc(X) + mr(Y ) > n and mc(XY ) = 1};

M4(S) = {(X, Y ) ∈ Mn(S)2 | mc(XY ) = ρ(X) + ρ(Y )− n}.

In the following sections, we characterize the linear operators that preserve

the sets A1, A2, A3, M1, M2, M3 and M4.
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3 Extreme preservers of maximal column rank inequali-
ties of matrix sums

3.1 Linear operators that preserve extreme set A1(S)

In this section, we investigate the linear operators that preserve the set A1(S).

Definition 3.1. We say that Mm,n(S) is fully maximal if for each k ≤ min{m, n},

Mm−k,n−k(S) contains a matrix of maximal column rank n− k.

If m ≥ n, then we can easily show that Mm,n(S) is fully maximal. But, for

m < n, Mm,n(S) may be or not fully maximal according to a given semiring S.

For example, M2,3(Z+) is fully maximal, while M2,3(B) is not.

Recall that

A1(S) = {(X, Y ) ∈ Mm,n(S)2 | mc(X + Y ) = n}.

Lemma 3.2. Let Mm,n(S) be fully maximal, σ be a permutation of ∆m,n, and

T be defined by T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆m,n, where all bi,j are units

in Z(S). If T preserves A1, then T preserves lines.

Proof. Suppose that T−1 does not map lines to lines. Then, there are two non

collinear cells which are mapped to a line. There are two cases, they are mapped

to two weighted cells in a column or two weighted cells in a row.

If two non collinear cells are mapped to two weighted cells in a column, we

may assume without loss of generality that T (E1,1 + E2,2) = b1,1E1,1 + b2,2E2,1.

If n ≤ m it suffices to consider A = E1,1 +E2,2 + . . .+En,n. In this case, T (A)

has maximal column rank at most n− 1, that is, (O, A) ∈ A1, (O, T (A)) /∈ A1,

a contradiction.

Let us consider the case m ≤ n. Since Mm,n(S) is fully maximal there exists

a matrix A′ ∈ Mm−2,n−2(S) such that mc(A′) = n−2. Let us choose A′ with the

minimal number of non-zero entries. Let A = O2⊕A′ ∈ Mm,n(S). Thus mc(A) =

mc(A′) = n − 2. Hence (E1,1 + E2,2, A) ∈ A1. Since T preserves A1, it follows
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that (b1,1E1,1 + b2,2E2,1, T (A)) ∈ A1, that is, mc(b1,1E1,1 + b2,2E2,1 + T (A)) = n.

Therefore mc(T (A)[1, . . . ,m; 3, . . . , n]) ≥ n − 2. Since the column rank of any

matrix cannot exceed the number of columns, mc(T (A)[1, . . . ,m; 3, . . . , n]) =

n− 2.

Further, |T (A)[1, . . . ,m; 3, . . . , n]| < |A| = |A′| since T transforms cells to

weighted cells and at least one cell has to be mapped into the second column.

Thus we can have an (m − 2) × (n − 2) submatrix of T (A)[1, . . . ,m; 3, . . . , n]

whose column rank is n − 2 and the number of whose nonzero entries are less

than that of A′. This contradicts the choice of A′.

If two non-collinear cells are mapped to two cells in a row, we may assume

without loss of generality that T (E1,1 + E2,2) = b1,1E1,1 + b2,2E1,2. In this case,

by considering the matrices b−1
1,1E1,1 + b−1

2,2E2,2 and A chosen above, the result

follows. Thus, T preserves lines.

Theorem 3.3. Let T be a surjective linear operator on Mm,n(S), where m 6= n

or m = n ≥ 4. If Mm,n(S) is fully maximal, then T preserves A1 if and only if

T is a non-transposing (P, Q,B)-operator, where mc(B) = 1 and all entries of

B are units in Z(S).

Proof. By Lemma 2.14, we have that all non-transposing (P, Q,B)-operators

with mc(B) = 1 preserves A1.

Suppose that T preserves A1. By Lemma 3.2 we have that T preserves lines

and by applying Theorem 2.11 to Lemma 2.12, we have that T is a (P, Q, B)-

operator.

Suppose that mc(B) ≥ 2. Without loss of generality we may assume that the

first two rows and columns of B are linearly independent. Since Mm,n(S) is fully

maximal, there exists a matrix Y ′ ∈ Mm−2,n−2(S) such that mc(Y ′) = n − 2.

Consider matrices X =
m∑

i=1

(b−1
i,1 Ei,1+b−1

i,2 Ei,2) and Y = O2⊕Y ′ in Mm,n(S). Then

all columns of X + Y are linearly independent and hence (X, Y ) ∈ A1. But the
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first two columns of T (X)+T (Y ) are equal and hence mc(T (X), T (Y )) ≤ n−1,

a contradiction. Thus mc(B) = 1.

Since all non-transposing (P, Q,B)-operators with mc(B) = 1 preserves A1,

it only remains to show that if m = n then the transposition does not preserve

A1. Let A =

[
Ω O
O In−4

]
. Then, by Remark 2.16, we have that mc(A) = n

and mc(At) = n − 1, so that (A, O) ∈ A1 while (At, O) /∈ A1. Thus T is a

non-transposing (P, Q,B)-operators with mc(B) = 1.

Corollary 3.4. Let T be a surjective linear operator on Mm,n(S), where m 6= n

or m = n ≥ 4, and Mm,n(S) is fully maximal. If S is commutative, then T

preserves A1 (if and) only if T is a non-transposing (U, V )-operator.

Proof. Suppose T preserves A1. By Theorem 3.2, T is a non-transposing

(P, Q,B)-operator on Mm,n(S), where mc(B) = 1 and all entries of B are units

in Z(S). Since S is commutative, it follows from Lemma 2.10 that T is a non-

transposing (U, V )-operator.
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3.2 Linear operators that preserve extreme set A2(S)

Recall that

A2(S) = {(X, Y ) ∈ Mm,n(S)2 | mc(X + Y ) = 1}.

Theorem 3.5. If T is a surjective linear operator on Mm,n(S) that preserves

A2, then T is a (P, Q,B)-operator, where mc(B) = 1 and all entries of B are

units in Z(S). In particular, if S is commutative, then T is a (U, V )-operator.

Proof. Suppose that T does not preserve lines. Then, without loss of generality,

we may assume that either T (E1,1 +E1,2) = b1,1E1,1 +b1,2E2,2 or T (E1,1 +E2,1) =

b1,1E1,1 + b2,1E2,2. In either cases, let Y = O and X be either E1,1 + E1,2 or

E1,1 + E2,1, so that (X, Y ) ∈ A2 while (T (X), T (Y )) /∈ A2, a contradiction.

Thus T preserves lines.

By applying Theorem 2.11 to Lemma 2.12 we have that T is a (P, Q, B)-

operator.

Suppose that mc(B) ≥ 2, T preserves A2. Since mc(T (J)) = mc(B), we

have (J, O) ∈ A2 while (T (J), T (O)) /∈ A2, a contradiction.

By Lemma 2.10, Since S is commutative, T is a (U, V )-operator.

In general, the converse of Theorem 3.5 may be true or not according to

a given semiring S. Obviously, by Lemma 2.14, all non-transposing (P, Q, B)-

operators with mc(B) = 1 (all entries of B are units in Z(S)) preserve A2. But

the following Examples show that transposing (P, Q, B)-operators may or not

preserve A2 according to given semirings S.

Example 3.6. Consider the semiring Z+ of all nonnegative integers. Let

X =

[
2 0
3 0

]
⊕On−2 ∈ Mn(Z+).

Then we can easily show that (X, O) ∈ A2, while (X t, Ot) /∈ A2. So, the converse

of Theorem 3.5 is not true in this case.
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Example 3.7. Consider the Boolean semiring B = {0, 1}. Then it is straight-

forward that for a matrix A ∈ Mn(B), mc(A) = 1 if and only if all non-zero

columns of A are the same. Thus all non-zero rows of A are the same and

mc(At) = 1. That is, for any permutation matrices P, Q ∈ Mn(B), we have

that mc(A) = 1 if and only if mc(PAtQ) = 1 . This shows that the converse of

Theorem 3.5 is true in this case.
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3.3 Linear operators that preserve extreme set A3(S)

Recall that for S ⊆ R+

A3(S) = {(X, Y ) ∈ Mm,n(S)2 | mc(X + Y ) = |ρ(X)− ρ(Y )|}.

Lemma 3.8. Let S be any subsemiring of R+, σ be a permutation of ∆m,n, and

T be defined by T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆m,n, where all bi,j are units

and min{m,n} ≥ 3. If T preserves A3, then T preserves lines.

Proof. The sum of three distinct weighted cells has maximal column rank at

most 3. Thus T (E1,1 +E1,2 +E2,1) is either a sum of 3 collinear cells, and hence

has real rank 1, or is contained in two lines, and hence has real rank 2, or is sum

of three cells of maximal column rank 3, and hence has real rank 3.

Now, for X = E1,1 + E1,2 + E2,1 and Y = E2,2, we have that (X, Y ) ∈ A3,

and the image of Y is a single weighted cell, and hence ρ(T (Y )) = 1. Now, if

ρ(T (X)) = 3, then T (X +Y ) must have maximal column rank 3 or 4, and hence

(T (X), T (Y )) /∈ A3, a contradiction. If ρ(T (X)) = 1, then (T (X), T (Y )) /∈ A3

since T (X + Y ) 6= O. Thus ρ(T (X)) = 2, and mc(T (X + Y )) = 1.

However it is straightforward to see that the sum of four weighted cells has

the maximal column rank 1 if and only if they lie either in a line or in the

intersection of two rows and two columns. The matrix T (X + Y ) is the sum of

four weighted cells. These cells do not lie in a line since ρ(T (X)) = 2. Thus

T (X + Y ) must be the sum of four weighted cells which lie in the intersection

of two rows and two columns.

Similarly, for any i, j, k, l, T (Ei,j + Ei,l + Ek,j + Ek,l) in the intersection of

two rows and two columns. It follows that any two rows must be mapped into

two lines. By the bijectivity of T , if some pair of two rows is mapped into

two rows(respectively, columns), then any pair of two rows is mapped into two

rows(respectively, columns). Similarly, if some pair of two columns is mapped
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into two rows(respectively, columns), then any pair of two columns is mapped

into two rows(respectively, columns).

Now, the image of three rows is contained in three lines, two of which are the

image of two rows, thus, every row is mapped into a line. Similarly for columns.

Thus T preserves lines.

Theorem 3.9. Let S be any subsemiring of R+, m 6= n or m = n ≥ 4, and T

be a surjective linear operator on Mm,n(S). Then T preserves A3 if and only if

T is a non-transposing (P, Q,B)-operator.

Proof. By Lemma 2.14, we have that all non-transposing (P, Q,B)-operators

with mc(B) = 1 preserves A3.

By applying Lemma 3.7 and Theorem 2.11 to Lemma 2.12, we have that if

T preserves A3, then T is a (P, Q, B)-operator.

Suppose that mc(B) ≥ 2, S ⊆ R+ and T preserves A3. Without loss of

generality assume that n ≤ m. Consider

X =

( ∑
1≤j≤i≤n

Ei,j

)
⊕Om−n,n, Y =

( ∑
1≤i<j≤n

Ei,j

)
⊕Om−n,n.

Then ρ(X) = n = ρ(T (X)), ρ(Y ) = n − 1 = ρ(T (Y )), and mc(X + Y ) =

1 = ρ(X)− ρ(Y ). That is, (X,Y ) ∈ A3. But mc(T (X) + T (Y )) = mc(T (J)) =

mc(B) ≥ 2 > 1 = ρ(T (X))− ρ(T (Y )), a contradiction. Thus mc(B) = 1.

Since all non-transposing (P, Q,B)-operators with mc(B) = 1 preserves A3 it

remains to show that in the case m = n the operator X → X t does not preserve

A3. Let X = Ω⊕On−4 and Y = On. Then (X, Y ) ∈ A3 while (X t, Y t) /∈ A3.
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4 Extreme preservers of maximal column rank inequali-
ties of matrix products

4.1 Linear operators that preserve extreme set M1(S)

In this section, we investigate the linear operators that preserve the set M1(S).

Recall that

M1(S) = {(X, Y ) ∈ Mn(S)2 | mc(XY ) = mc(Y )}.

Lemma 4.1. Let T be a surjective linear operator on Mn(S) that preserves M1.

Then T preserves lines.

Proof. Suppose that T−1 does not map columns to lines, without loss of gener-

ality, that T−1(E1,1 + E2,1) ≥ E1,1 + E2,2. Then T (I) has nonzero entries in at

most n − 1 columns. Suppose T (I) has all zero entries in column j. Then for

X = I and Y = T−1(Ej,1), we have XY = Y however, T (X)T (Y ) = O. This

contradicts the fact that T preserves M1.

Suppose that T−1 does not map rows to lines, without loss of generality, that

T−1(E1,1 +E1,2) ≥ E1,1 +E2,2. That is T (E1,1 +E2,2) = b1,1E1,1 + b2,2E1,2. Then

for X = b−1
1,1E1,1 +b−1

2,2E2,2 +[O2⊕In−2], T (X) has maximal column rank at most

n − 1 since either the first two columns of T (X) are linearly dependent or at

least one of the columns from the 3rd through the nth is zero.

Let Y = T−1(I), then we have that (X, Y ) ∈M1 since mc(XZ) = mc(Z) for

any Z, while mc(T (X)T (Y )) = mc(T (X)) ≤ n − 1 < n = mc(I) = mc(T (Y ))

so that (T (X), T (Y )) /∈M1, a contradiction.

Thus T−1 and hence T map lines to lines.

Theorem 4.2. Let T be a surjective linear operator on Mn(S) that preserves

M1. Then T is a non-transposing (P, P t, B)-operator, where mc(B) = 1 and all

entries of B are units in Z(S).
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Proof. By applying Lemma 4.1 and Theorem 2.11 to Lemma 2.12, we have that

if T preserves M1, then T is a (P, Q,B)-operator.

Suppose that mc(B) ≥ 2, without loss of generality mc(B[1, 2|1, 2]) = 2,

and Ei,1QP = Ei,r for all i. Consider the pair X = E1,1, Y = C1 + C2. Then

XY = E1,1+E1,2 and mc(XY ) = 1 = mc(Y ). Thus (X, Y ) ∈M1. However, the

maximal column rank of (X ◦B)QP (Y ◦B) = b1,rbr,1E1,1 + b1,rbr,2E1,2 is 1 since

b1,rbr,1 = br,1b
−1
r,2(b1,rbr,2) by assumption on bi,j (bi,j are units in Z(S)), that is, the

columns of (X ◦B)QP (Y ◦B) are linearly dependent. Thus mc(T (X)T (Y )) =

mc((X ◦ B)QP (Y ◦ B)) = 1, mc(T (Y )) = mc(Y ◦ B) = mc(B) ≥ 2. Hence

(T (X), T (Y )) /∈M1, a contradiction. Thus mc(B) = 1.

To see that the operator T (X) = P (X◦B)tQ does not preserveM1, it suffices

to consider T0(X) = X tD, where D = QP , since a similarity and a Hadamard

product with a matrix of maximal column rank 1 and invertible entries preserve

M1. Let

X = (D−1)t




1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

⊕ In−4

 and Y =


0 1 0 0
0 0 0 0
1 0 0 0
1 1 0 0

⊕ In−4.

Then (X, Y ) ∈M1 while (X tD, Y tD) /∈M1.

It remains to prove that Q = P t. Assume that QP 6= I, and that X →

(QP )X transforms the rth row into the tth row for some r 6= t. We consider the

matrix X =
∑
i6=t

Ei,i, Y = Er,r. Then (X, Y ) ∈ M1, while for certain invertible

elements bi,i ∈ Z(S) we have that T (X)T (Y ) = P (X ◦ B)QP (Y ◦ B)Q =

P (
∑
i6=t

bi,iEi,i)(br,rEt,t)Q = O. Thus (T (X), T (Y )) /∈M1, a contradiction.

Hence Q = P t.

Corollary 4.3. Let T be a surjective linear operator on Mn(S) with n ≥ 4. If S

is commutative and 1 + 1 6= 1, then T preserves M1 (if and) only if there exist

an invertible matrix U and an invertible element α such that T (X) = αUXU−1

for all X ∈ Mn(S).

20



Proof. Suppose T preserves M1. By Theorem 4.2, T is a non-transposing

(P, P t, B)-operator, where mc(B) = 1 and all entries of B are units in Z(S).

That is, T (X) = P (X ◦ B)P t for all X ∈ Mn(S). In the proof of Lemma 2.10,

there exist invertible diagonal matrices D and E in Mn(S) such that X ◦ B =

DXE and hence T (X) = PDXEP t. Let us show that ED is an invertible

scalar matrix.

Define L(X) = (EP t)T (X)(EP t)−1 = EDX for all X ∈ Mn(S). Since T

preserves M1 if and only if L does, it suffice to consider L(X) = EDX. Let

G = ED. Then G = diag(g1, · · · , gn) is an invertible diagonal matrix. Assume

that g1 6= g2. Consider matrices

A =


0 4 1 1
4 0 1 1
1 1 0 1
1 1 1 0

 and B =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 . (4.1)

Let X = A⊕On−4 and Y = G−1(B⊕On−4). Since all columns of A are linearly

independent, it follows that mc(A) = mc(X) = mc(L(X)) = 4 and mc(B) =

mc(Y ) = mc(L(Y )) = 2. Furthermore,

XY =


4g−1

2 4g−1
2 g−1

3 + g−1
4 g−1

3 + g−1
4

4g−1
1 4g−1

1 g−1
3 + g−1

4 g−1
3 + g−1

4

g−1
1 + g−1

2 g−1
1 + g−1

2 g−1
4 g−1

4

g−1
1 + g−1

2 g−1
1 + g−1

2 g−1
3 g−1

3

⊕On−4

has the maximal column rank at most 2. If mc(XY ) = 1, then we can easily

show that g1 = g2, a contradiction. Thus mc(XY ) = 2. That is (X, Y ) ∈ M1.

But

L(X)L(Y ) = G




4 4 2 2
4 4 2 2
2 2 1 1
2 2 1 1

⊕On−4


has the maximal column rank 1 and hence (L(X), L(Y )) 6∈ M1. This contradic-

tion shows that g1 = g2. Similarly, if we consider a matrix A′ =


0 1 1 1
1 0 1 1
1 1 0 4
1 1 4 0

,

then the parallel argument shows that g3 = g4. Generally, if n ≥ 5, then
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we can split zero block into two parts and take X ′ = Or ⊕ A ⊕ On−r−4 or

X ′ = Or ⊕ A′ ⊕ On−r−4 for appropriate r. Therefore we have that G is an

invertible scalar matrix. That is, G = ED = αI for some invertible element

α, equivalently E = αD−1. If we let U = PD, then T (X) = P (DXE)P t =

α(PD)X(PD)−1 = αUXU−1 for all X ∈ Mn(S). Thus the result follows.
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4.2 Linear operators that preserve extreme set M2

Recall that

M2(S) = {(X, Y ) ∈ Mn(S)2 | mc(XY ) = 0}.

Lemma 4.4. Let T be a surjective linear operator on Mn(S). If T preserves

M2, then T maps columns to columns and rows to rows.

Proof. Suppose that T does not map columns to columns. Say T (Cj) is not

a column. Then T (J\Cj) has no zero column. Thus (J\Cj, Ej,j) ∈ M2, while

(T (J\Cj), T (Ej,j)) /∈M2, a contradiction.

Suppose that T does not preserve rows. Say T (Ri) is not a row. Then

T (J\Ri) has no zero row. Thus (Ei,i, J\Ri) ∈ M2, while (T (Ei,i), T (J\Ri)) /∈

M2, a contradiction.

Hence T maps columns to columns and rows to rows.

Theorem 4.5. Let T be a surjective linear operator on Mn(S). Then T preserves

M2 if and only if T is a non-transposing (P, P t, B)-operator, where all entries

of B are units in Z(S).

Proof. By applying Lemma 4.4 and Theorem 2.11 to Lemma 2.12, we have that

if T preserves M2, then T is a (P, Q,B)-operator.

Since T maps columns to columns, T is clearly a non-transposing (P, Q,B)-

operator. Since T is surjective, and hence bijective by Theorem 2.11 we have

that every entries in B are invertible.

We now only need show that Q = P t. If not, say QPEr,s = Et,s with t 6= r.

Then (Et,t, Er,s) ∈M2. However,

T (Et,t)T (Er,s) = Pbt,tEt,tQPbr,sEr,sQ = bt,tbr,sP (Et,tEt,s)Q 6= O

so that (T (Et,t), T (Er,s)) /∈M2, a contradiction. Thus Q = P t.

The converse is easily established.
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4.3 Linear operators that preserve extreme set M3

Recall that

M3(S) = {(X, Y ) ∈ Mn(S)2 | mc(X) + mc(Y ) > n and mc(XY ) = 1}.

Lemma 4.6. Let T be a surjective linear operator on Mn(S). If T preserves

M3, then T preserves lines.

Proof. Recall that if (X, Y ) ∈M3 then mc(X) + mc(Y ) > n. We assume that

there exists indices i, j, k, l, i 6= k, j 6= l such that nonzero entries of T (Ei,j) and

T (Ek,l) lie in a line.

Let T (Ei,j) = bi,jEs,t. Then either T (Ek,l) = bk,lEs,t′ or T (Ek,l) = bk,lEs′,t.

In both cases mc(T (Ei,j + Ek,l)) = 1. Let Y ′ ∈ Mn(S) be a matrix such that

Y ′ + Ei,j + Ek,l is a permutation matrix. We consider X = Ei,j + Ek,l, Y =

Y ′ + Ek,l. Then XY = Ek,l′ for some l′ and (X, Y ) ∈ M3. However, since

mc(T (X)) = 1 in either case, and mc(T (Y )) ≤ n−1, mc(T (X))+mc(T (Y )) ≤ n.

Finally, we have that (T (X), T (Y )) /∈M3, a contradiction.

Theorem 4.7. Let n ≥ 3 and T be a surjective linear operator on Mn(S) that

preserves M3. Then T is a non-transposing (P, P t, B)-operator, where mc(B) =

1 and all entries of B are units in Z(S).

Proof. By applying Lemma 4.6 and Theorem 2.11 to Lemma 2.12, we have that

if T preserves M3, then T is a (P, Q,B)-operator.

Suppose that mc(B) ≥ 2, without loss of generality mc(B[1, 2|1, 2]) = 2,

and Ei,1QP = Ei,r, Ei,2QP = Ei,s for all i. Consider the pair X = C1 + C2,

Y = I. Then (X, Y ) ∈ M3 while (T (X), T (Y )) /∈ M3, a contradiction. Thus

mc(B) = 1.

To see that the operator T (X) = P (X◦B)tQ does not preserveM3, it suffices

to consider T0(X) = X tD, where D = QP , since a similarity and a Hadamard
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product with a matrix of maximal column rank 1 and invertible entries preserve

M3.

Let

X = (D−1)t

[
O I2

O O

]
and Y =

[
In−1 O
O O

]
.

Then (X, Y ) ∈ M3 while (X tD, Y tD) /∈ M3. This proves that T is a non-

transposing (P, Q,B)-operator.

Let us check that Q = P t. Assume that QP 6= I, and that X → (QP )X

transforms the pth row into the sth row and rth row into tth row with r 6= s, t.

These exist since n ≥ 3. We consider the matrix X =
∑
i6=r

Ei,i, Y = Ep,p + Er,r.

Then (X,Y ) ∈M3. And we have that mc(T (X)) + mc(T (Y )) = n + 1 > n and

T (X)T (Y ) = P (X ◦B)QP (Y ◦B)Q = P (
∑
i6=r

bi,iEi,i)(bp,pEs,p + br,rEt,r)Q.

Thus mc((T (X)T (Y )) = 2, that is, (T (X), T (Y )) /∈M3, a contradiction.

Hence Q = P t.

Corollary 4.8. Let S = B, Z+ and T be a surjective linear operator on Mn(S)

with n ≥ 3. Then T preserves M3 if and only if there is a permutation matrix

P ∈ Mn(S) such that T (X) = PXP t for all X ∈ Mn(S).

Proof. Suppose T preserves M3. By Theorem 4.7, T is a non-transposing

(P, P t, B)-operator, where all entries of B are invertible. Note that if S = B, Z+,

1 is the only invertible element in S, and hence B = J . Thus, there exists a

permutation matrix P ∈ Mn(S) such that T (X) = PXP t for all X ∈ Mn(S).

The converse is easily established.
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4.4 Linear operators that preserve extreme set M4

Recall that

M4(S) = {(X, Y ) ∈ Mn(S)2 | mc(XY ) = ρ(X) + ρ(Y )− n}.

Lemma 4.9. Let S be any subsemiring of R+, σ be a permutation of ∆n, and

T be defined by T (Ei,j) = bi,jEσ(i,j) for all (i, j) ∈ ∆n, where all bi,j are units.

If T preserves M4, then T preserves lines.

Proof. If T does not preserve lines, then there exist indices i, j, k, l, i 6= k, j 6= l

such that nonzero entries of T (Ei,j) and T (Ek,l) lie in a line. Let X ′ ∈ Mn(S)

be a matrix such that X ′ + Ei,j + Ek,l is a permutation matrix.

We consider X = X ′+Ei,j+Ek,l. Then (X, O) ∈M4. However, mc(T (X)) ≤

n − 1, ρ(T (X)) ≤ n − 1 since either T (X) has a zero column or T (X) has

two proportional columns since bi,j is invertible. Thus (T (X), O) /∈ M4, a

contradiction.

Theorem 4.10. Let S be a subsemiring of R+, and T be a surjective linear

operator on Mn(S). If T preserves M4, then T is a non-transposing (P, P t, B)-

operator, where mc(B) = 1 and all entries of B are units.

Proof. By applying Lemma 4.9 and Theorem 2.11 to Lemma 2.12, we have that

if T preserves M4, then T is a (P, Q,B)-operator.

Let us check that Q = P t. Assume that QP 6= I, and that X → (QP )X

transforms the rth row into the tth row with r 6= t. We consider the matrix

X =
∑
i6=r

Ei,i, Y = Er,r. Then (X, Y ) ∈ M4, and for certain nonzero bi,i ∈ S,

T (X)T (Y ) = P (X ◦ B)QP (Y ◦ B)Q = P (
∑
i6=r

bi,iEi,i)(br,rEt,r)Q 6= O, that is,

(T (X), T (Y )) /∈M4, a contradiction. Thus Q = P t.

Suppose that mc(B) ≥ 2, without loss of generality mc(B[1, 2|1, 2]) = 2. Let

X =

[
b−1
1,1 b−1

1,2

b−1
2,1 b−1

2,2

]
⊕ In−2.
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Then mc(X) = mc(X2) = n. Note that from the invertibility of bi,j it follows

that ρ(X) = n. Indeed, if b−1
i,1 = λb−1

i,2 (i = 1, 2), for some λ ∈ R+, then λ =

b−1
i,1 bi,2 ∈ S which contradicts mc(B[1, 2|1, 2]) = 2. Thus mc(X2) = 2ρ(X) − n

or (X, X) ∈ M4. But mc(X ◦ B) = mc((X ◦ B)2) = ρ(X ◦ B) = n − 1, and

hence mc((X ◦B)2) > 2ρ(X ◦B)−n, so that (T (X), O) /∈M4, a contradiction.

Hence mc(B) = 1.

Let

X = (D−1)t

([
0 1
0 0

]
⊕ In−2

)
and Y =

[
1 0
0 0

]
⊕ In−2,

where D = QP . Then (X, Y ) ∈M4 while (X tD, Y tD) /∈M4. This proves that

T is a non-transposing (P, Q,B)-operator.

Therefore T is a non-transposing (P, P t, B)-operator, where mc(B) = 1.

Corollary 4.11. Let S be a subsemiring of R+, and T be a surjective linear

operator on Mn(S), where n ≥ 4. Then T preserves M4 if and only if there is

an invertible matrix U and an invertible elements α such that T (X) = αUXU−1

for all X ∈ Mn(S).

Proof. Suppose T preserves M4. By Theorem 4.10, T is a non-transposing

(P, P t, B)-operator, where mc(B) = 1 and all entries of B are units; T (X) =

P (X◦B)P t for all X ∈ Mn(S). In the proof of Lemma 2.10, there exist invertible

diagonal matrices D and E in Mn(S) such that X ◦ B = DXE and hence

that T (X) = PDXEP t. Let us show that ED is an invertible scalar matrix.

Similar to the proof of Corollary 4.3, we suffice to consider L(X) = EDX for

all X ∈ Mn(S). Let G = ED. Then G = diag(g1, · · · , gn) is an invertible

diagonal matrix. Suppose G is not a scalar matrix. As in Corollary 4.3, we lose

no generality in assuming that g1 6= g2. Let A and B matrices in (4.1). Let

X = A⊕ In−4, Y = B ⊕ In−4.
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Then

XY =


4 4 2 2
4 4 2 2
2 2 1 1
2 2 1 1

⊕ In−4

so that ρ(X) = n−1 = ρ(L(X)), ρ(Y ) = n−2 = ρ(L(Y )), and mc(XY ) = n−3.

Thus (X, Y ) ∈M4. But

L(X)L(Y ) = G




4g2 4g2 g3 + g4 g3 + g4

4g1 4g1 g3 + g4 g3 + g4

g1 + g2 g1 + g2 g4 g4

g1 + g2 g1 + g2 g3 g3

⊕ In−4


so that mc(L(X)L(Y )) = n − 2 because g1 6= g2. Thus (L(X), L(Y )) /∈ M4, a

contradiction. Hence G = ED = αI for some invertible element α. If U = PD,

then T (X) = αUXU−1.

The converse is immediate.
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