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1. Introduction

1.1 New trends of power transmission from the large wind farms

Wind turbine generators (WTG) convert wind energy into electrical energy. Now large
wind turbines of up to SMW size have been developed. A wind farm, also known as wind
power plant (WPP), is a collection of a few tens or a few hundreds of WTG installed in close
vicinity. They are connected to the collector bus by cables. The electric power aggregated at
the collector bus has to be fed into the power grid network for transmission and distribution
to the load centers and utilities located hundreds of km away.

A vast majority of generation, transmission, distribution and consumption of electric
power is in the form of AC. Hence, HVAC transmission is the obvious choice for the grid
connection of wind farm. Most of the operational wind farms are connected using HVAC
connection. The HVAC option is the most suitable and economic where the wind farm
capacity is less than 150 MW and is within 100-150 km from the main grid. Conventionally,
AC connection has been used that offers some advantages such as low cost, relatively simple
layout, the proven technology, etc. Yet for large wind farms with a long transmission
distance, there are some serious disadvantages with AC connection technology:

« Long AC cables produce large amounts of capacitive current, which can significantly
reduce the cable transmission capacity and require large reactive power compensation;

« AC connections result in synchronous operation between the wind farm and the grid;
therefore, faults occurring on the grid will directly affect the wind farm and vice versa.

Presently AC cables have a maximum cable rating of about 200MW per three phase cable,
on a voltage level of 150 - 170kV, compensation at both ends and maximum cable length of
around 200km. For a shorter distance of a 100km, voltage ratings may be raised to 245kV,

thereby increasing the power transfer capability to 350MW [1]. As shown in Fig. 1.1, HVAC



transmission is not feasible for large offshore power plants requiring cable transmission over

long distances.
1000
LCC HVDC
gm-- VSC-HVDC
or
£ LCC HVDC
5
i m
e
& VSCHVWDC
Fao-
HVAC 245KV or
VSC-HVDC
200
HVAC HVAC or HVAC 245V or
(up Yo 170kV) VSC-HVDC VSC-HVDC
: :
50 100 150 200 250 300
Distance (km)

Fig. 1.1 Choice of transmission technology for different wind farm capacities and
distances [1].

Unlike HVAC transmission systems, there is no reactive power generation or absorption
in HVDC transmission systems. Hence, HVDC transmission is very suitable for bulk power
transmission over long distances. This has been one of the driving factors for the
development of HVDC systems since the first commercial installation in Gotland in the year
1954. The main advantages of HVDC over AC transmission are [2]:

* Power flow is fully controlled.

« The offshore grid voltage and frequency are decoupled from the onshore network;
therefore, disturbances on one side of the HVDC system will not directly affect the other.

« Dc transmission is not affected by cable charging currents which reduce the active
power transmission capacity of an AC cable as the length increases.
Two alternative technologies for the HVDC converters are available, a voltage source

converter (VSC) using IGBTS, and a line-commutated converter (LCC) using thyristors.



A comparison of LCC-HVDC (referred as HVDC Classic) and VSC-based HVDC is

given in Table 1.1 [3].

Table 1.1 Comparison of LCC-based HVDC and VSC-based HVDC.

LCC-based BVDC VSC-based H\DC
1 Size range single coavertor 150 - 1500 MW 50~ 550 MW
2 Convertor/Semiconductor technology Line commutated, Thyristor Self comaustated, IGBT
3 Relative volume 4-6tmes 1
4 Type of cable M’”m"’“ XLPE
5 Control of active power Yes yes
6 Coatrol of reactive power No (cnly switched regulation) Yes, contmuous control
7 Voltage control Limited Extensive
] Fault ride-through No Yes
9 Black start capability No Yes
10 Mimmum short circuit capability in AC gnd >2.0x rated power No requirement
i1 Power reversal with-out mferruption No Yes
12 Generatoc needed on off-shore platform Yes No requirement
13 Mmimom DC power flow 5-10% of rated power No minimum DC power
14 Typical losses per convertor 0.8% 16%
15 Operating experience > 20 years 8 years
16 Operating experience off-shore No Yes

1.2 Aims and outline of the thesis

The control paradigms of the LCC HVDC connection for a DFIG driven wind farm have
been presented in previous publications [4]-[7). During fault on the main grid, the group of
solutions based on a fast reduction of the generated power in the wind park was displayed.
The most popular methods to achieve this behavior are grid frequency control [4],[6],[7] and
direct communication between STATCOM and generators [4]. In the first method shown in
[4], a communication delay of 30ms results in a maximum voltage on the STATCOM DC
side of 3 p.u. and temporary power absorption of 2.4 p.u. However, the communication delay
in the worst-case is practically much higher and is about 100ms as mentioned in [8]. The
method of frequency control is also shown in [4], and a lower STATCOM DC over-voltage

of 1.8 p.u. and power absorption of 2 p.u. are simulation results of onshore fault lasting only



100ms. In [6) the grid frequency control is used to regulate the HVDC rectified firing angle
and shows a good control performance under operational and fault condition. However, a
ride through paradigm of loss-of-supply faults (or main-grid voltage sags) with practical
fault detection algorithm in the DFIG controllers is not addressed. On the other hand, it
seems that local load is not properly considered in the studies. Especially if the local load has
synchronously rotating equipment that is sensitive to frequency deviations, the frequency can
be not changed freely. Moreover, another drawback of frequency control measure is a phase-
locked loop (PLL) circuit applied for measuring the frequency. A typical PLL has a first
order time response, causing an inherent delay aggravating the speed of response of the
frequency-dependent control loop. A typical time delay lies in the range 10-100ms. Making
the PLL faster is possible, but makes the system very sensitive to measurement noise, which
is the main reason that a slower PLL is preferred for practical applications.

Another method of the generated power reduction by lowering the wind park network
voltage has been almost not shown in any studies in terms of LCC-HVDC link connection.
This method has not received adequate attention perhaps because the commutation failure of
the HVDC is very sensitive to voltage magnitude at the HVDC rectifier. This thesis uses this
measure to achieve a fast power reduction, and the local load is always kept at a stable and
continuous state.

When LCC HVDC system is used in power transmission, the STATCOM will be usually
connected to provide the necessary commutation voltage to the HVDC. This is almost
compulsory in LCC HVDC. And this connection has also demonstrated its effectiveness and
necessity in power transmission [4] and [5]. In addition, another effective control method
without using STATCOM was also presented in [6]. However, besides the STATCOM, in
the FACTS concept, there are still other promising devices such as the SSC or DVR shown
in [9). This controller not only has function of controlling the voltage like STATCOM, but
also has the potential of power flow control and damping out the power fluctuation, so

recovery from the fault disturbance is very much faster. With prominent characteristics, a

4



LCC HVDC system combined with DVR will be presented in this thesis. And the proposed
system will be comprehensively analyzed during under normal and fault conditions.

The thesis describes a control strategy for dynamic voltage restorer (DVR) comprising a
static compensator (STATCOM) and a static series compensator (SSC) to regulate generated
power from a large wind farm into the LCC HVDC system with special consideration of
onshore grid fault. This is achieved through voltage modulation on the offshore network via
the DVR. The mathematical analysis and the control design are verified through PSCAD
simulation.

- Under normal operation conditions, the task of the STATCOM is to control the
offshore system as an infinite source. It maintains the AC voltage, frequency and phase
angle at constant values. The offshore AC voltage amplitude is regulated by output
voltage amplitude of the STATCOM.

- Under grid fault conditions, fast reduction control of power generated from the wind
farm must be activated. The STATCOM is used to lower the wind park network, so the
power reduction is automatically effected. Meanwhile, the DVR uses a series-
connected topology to generate a controllable voltage to against the short-term voltage
reduction caused by the STATCOM. Consequently, the voltage at the local AC bus is
always kept at a constant rated value and the commutation failure of the HVDC
rectifier is prevented from. Therefore, the local load will be still supplied the power and
LCC-HVDC system will transmit power to onshore grid.

This thesis contains five chapters. Chapter one briefly introduces new trends in power
transmission from the wind farms. New ideas of this thesis are also compared with these of
other studies in this chapter.

In chapter two, different topologies of shunt and series voltage compensators for

mitigating voltage dips are presented and analyzed.



Chapter three considers a control solution for integration of large offshore DFIG based
wind farms with a common collection bus, controlled by the DVR, into the main onshore
grid, using LCC HVDC connection.

In chapter four, the simulation results of the proposed system are presented and analyzed.

Finally, in chapter five the conclusions of the thesis are given and future work is

envisaged.



2. Voltage compensation in the wind farm

2.1 Shunt compensator for mitigating voltage dips

The grid is assumed stiff enough compared with the load. The grid and all transformers
above the bus to which the STATCOM is connected can be represented by an ideal voltage
source in series with equivalent impedance. Thus, the topology of the power system with
STATCOM can be simplified as the system scheme of STATCOM for voltage dip mitigation,

as presented in Fig. 2.1

Viced Rioad Lices
o7 4
Transformer =
Disturbance
Identification
Filter
4
Energy Controller and
Storage PWM

VvsC
Fig. 2.1 System scheme of STATCOM for voltage dip mitigation.

As displayed in Figure 2.1, the STATCOM is composed of

- Three-phase VSC.

VSC is the core component of the STATCOM. During voltage dips, VSC generates
proper voltages and introduces a voltage difference between the VSC and the point of
connection with the power system. This voltage difference results in proper current that is
injected into the power system. Active and reactive power can be injected independently in

the power system.



- Energy storage.

The purpose of energy storage is to maintain the DC side voltage of VSC. It can be
capacitor or DC source, e.g. battery. Traditional STATCOM only has DC capacitor.

Thus, only reactive power can be injected to the power system by STATCOM whereas
both active and reactive power can be injected to the power system by STATCOM if DC
source is used.

- Filter.

As the Pulse-Width Modulation (PWM) technique is used in VSC, the output voltage of
VSC has switching ripple, which bring harmonics into the current injected to the power
system. These harmonics will affect the voltage quality of the power system. Therefore, a
relatively small reactor is installed between VSC and the point of the system, with which the
STATCOM is connected, to filter those harmonics in the current. The filter can be small if
high switching frequency is used.

- Controller.

The controller executes the calculation of the correct output voltage of VSC, which leads
to proper shunt compensation current, and PWM modulation. VSC and controller will be

illustrated in detail in Chapter 3.

2.2 Series compensator for mitigating voltage dips

The dynamic voltage restorer is a series connected device, which by voltage injection can
control the load voltage. In the case of a voltage dip the DVR injects the missing voltage and
it avoids any tripping the load. Fig. 2.2 illustrates the operation principle of a DVR.

The DVR is still very rarely inserted in the grid and only relative few devices have been
inserted around the world. Most of the described projects include limited information about

potential problems and a detailed description of the design and control aspects.



voltage dip injected voltage  resiored voliage

Wl A~ WAL

Sensitive
Supply load
TRV
Energy §*1L DVR
slorage ~T | converter

Fig. 2.2 Operation principle of a DVR.

Even though the DVR is commercially available today, the DVR is not a matured
technology and several areas regarding the design and control of this type of device are at the
basic research level. The design of a DVR has been treated in [11] with focus on the sizing
of the voltage, power and current rating.

Additionally, the DVR is a series connected device and one of the drawbacks with series
connected devices is the difficulties to protect the device during short circuits and avoid

interference with the existing protection equipment.
2.2.1 Topologies to have active power access during voltage dips

During a voltage dip the DVR injects voltages and thereby restores the supply voltages.
In this phase the DVR exchanges active and reactive power with the surrounding system. If
active power is supplied to the load by the DVR, it needs a source for the energy. Two
concepts are here considered, one concept uses stored energy and the other concept uses no
significant energy storage. The stored energy can be delivered from different kinds of energy
storage systems such as batteries, double-layer-capacitors, super-capacitors, flywheel storage
or SMES. In the no-storage DVR concept, the DVR has practically no energy storage and the
energy is taken from the remaining sﬁpply voltage during the voltage dip. The four system
topologies, which are presented and compared are:

« Topologies with stored energy topologies

9



— Constant DC-link voltage.

— Variable DC-link voltage.

« Topologies with power from the supply

— Supply side connected passive shunt converter.

— Load side shunt connected passive shunt converter.

2.2.1.1 Topologies with stored energy

B Constant DC-link voltage

i:,:;., — tow ll‘:
Supply Load
+ Lo +
Usupply (—T\/\’ Uroad
Energy | | Energy | + 1 Series
storage converter | °C_TT~ | converter

Fig. 2.3 DVR topology with power from stored energy and operating with constant DC-

link voltage.
B Variable DC-link voltage
i i
Supp = =it Load
upply o
Usupply T Uioad

Series

e
Uoc T converter

Fig. 2.4 DVR topology with power from stored energy and operating with variable DC-

link voltage.
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In this case all the energy is stored before the voltage dip and a very small scale converter
is expected to be used to re-charge the energy storage. Two different control/hardware
methods have been considered, which are a DVR operating with a constant DC-link voltage

and a DVR operating with a variable DC-link voltage.

2.2.1.2 Topologies with power from the supply

Taking power from the remaining supply voltage has the disadvantage of an increase in
the supply current. The advantages are cost saving of the energy storage and the ability to
compensate long duration voltage dips.

B Supply side connected passive converter

'_"‘::y _Uow _':‘;
Sueply + Lod  + Load
Usuppty Uioad
ishunt l 4 —
Shunt =__ [l Series
converter | Y>¢_—T~ | converter

Fig. 2.5 DVR topology with energy from the grid and with a shunt converter at the supply

side of the series converter.

Isuppty

Supply

)

ET M

Usupply

__Uowr e

Ujoad

¥ i

Series
converter

ch+—|—

T

Shunt
converter

Load

Fig. 2.6 DVR topology with energy from the grid and with the DVR operating with a

shunt converter at the load side of the series converter.

11



Taking power from the grid can have a negative influence on the neighboring upstream
loads, because the DVR protects its downstream loads by taking more current from the
supply, which can lead to an even more severe voltage dip for upstream loads.

Topologies for DVR using power from the grid can generally be characterized with the
location of the shunt converter at the supply side of the series converter or at the load side of
the series converter. Both passive and active shunt converters can be used. Here, only
passive diode converters are considered in a six pulse coupling, which are rated for full
power transfer. This will give simple topologies, but passive solutions with diodes are less
controllable and absorb non-linear currents.

Considering stationary conditions and active power only, the supply currents increase at a

severe dip, because the active power to the load has to be supplied from the supply.

2.2.2 Comparison of the topologies for active power access

Spvr

el

~=— Load side

~a— Supply side
4} - Constant DC |
-o~ \ariable DC

3.3 04 O:S 0.6 0.7 0:8 0.9 1
Voltage dip
Fig. 2.7 Power rating of the converters used for the four topologies versus voltage dip

size in p.u.
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In this section a small comparison of the four DVR topologies has been performed. Fig.
2.7 illustrates how the rating of the converters varies with dip size for the four topologies.
The load side connected converter requires the highest rated DVR followed by the supply
side connected converter, constant DC and variable DC. To be able to compensate a load of
1 p.u. from a 0.5 p.u .voltage dip the four solutions require at least an installed rating of 0.5

p.u., 1 p.u, 1.5 p.u. or 2 p.u., respectively.

Wseriel: 18seriel: 1€DV R ILpy & [Qaericl: 1 acricl

$ . . ' s v . - y
gl O el
—— IS'..]

4 ot 'smt‘ 4

L]
(2%
v

[-2=]

.3 0.4 0.5 0.6 0.7 08 0.9 1 33 0.4 0.5 0.6 0.7 0.8 0.9 1
a) Voltage dip b) Voltage dip

Fig. 2.8 Comparison of DVR topologies with power from the supply. The current
requirements for the series converter (| iceries |) power requirements for the series converter
|(|§_ger,-es|)and the total DVR power requirements (Igpyk |) versus voltage dip size in p.u. a)

supply side shunt converter and b) load side shunt converter.

In Fig. 2.8a and Fig. 2.8b the two topologies with power from the supply are compared. It
includes the current rating of the series converter, power rating of the series converter and
the total DVR rating versus voltage dip size. A difference exists in the rating of the series
converter for the two concepts. For example, at 0.4 voltage dip the current through the series
converter is 2.5 p.u. for the load side converter and 1 p.u. for the supply side. The associated

power ratings for the series converter at this dip size are 0.6 and 1.5, respectively.
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Table 2.1 Comparison of the different DVR topologies with the gradings: very good(++),

good(+), poor(-) and very poor (- -).

Stored Energy No Stored Energy
Constant | Variable Supply Load
DC-link | DC-link side side
voltage voltage | connected | connected
converter | converter
Long voltage dip duration - -- ++ ++
Decp voltage dips ++ - -- +
Non-symmetrical voltage
dips ++ ++ - +
DC-link voltage control ++ - -- +
Size of energy storage ++ +
Grid effects + + -- -
Rating of charging/shunt
converter -- + -- -
Rating of the scrics
converter + + + --
System complexity - ++ + +
Cost Estimation -- - + +
Control complexity - - + + +
Sum (+) 10 8 8
Sum (-) 7 6 10 4
Sum (total) 3 2 -4 4

Table 2.1 illustrates the different topologies and a four level rating of each topology is
done. Although the best topology cannot be ultimately stated, some main differences can be
seen. In this comparison the system with a load side connected shunt converter is estimated
to have the highest total points with general high performance followed with low cost and
complexity. Still the negative grid effects and high rated series converter could disqualify the

solution for certain applications.
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3. Control design of the proposed system

3.1 System Configuration

The grid voltage control system configuration is shown in Fig. 3.1.

The task of the STATCOM is to control the offshore system as an infinite source. It
maintains the AC voltage, frequency and phase angle at constant values. The offshore AC
voltage amplitude is regulated by output voltage amplitude of the STATCOM.

collection bus

Bypass Onshore AC
bus HVDC HVDC
Lo Ro
———w—
0.6%33 K i\
kv ul1om3 kv T
: ?300 MVA . = =
Load 3 phase-
< 1 %;A ground
T fault

STATCOM SsC

Fig. 3.1 Power system to be studied.

In steady state operation, the total active power delivered by all DFIGs must balance the
power transferred to the HVDC link, consumed by local loads, and dissipated as losses. Any
imbalance will cause the STATCOM DC-link voltage to vary. Therefore, the STATCOM
capacitor voltage can be regarded as an immediate indicator of active power imbalance and
can be used for fast adjustment of HVDC DC-link current reference.

Under disturbance conditions such as a balanced onshore main fault, wind gust, or wind
speed over its rated limit of generator, surplus power on the offshore network rapidly builds
up as the wind farm is not aware of the condition and continues to generate power, which
absorbed by the STATCOM capacitor. To prevent the STATCOM DC voltage from going
out of control and the system from tripping, the wind farm power must be reduced as soon as

possible.
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To do this, a method is based on the idea that by lowering the wind park network voltage
at the collection bus via the STATCOM a power reduction is automatically effected. A
reduction of the wind park voltage amplitude must comply with the Grid Code shown in [10].
In accordance with the Grid Code, fault ride through (FRT) requirements are described based
on a time voltage diagram in Fig. 3.2 which does not contain characteristic voltage behavior
but border lines. Meanwhile, the DVR uses a series-connected topology to generate a
controllable voltage to against the short-term voltage reduction caused by the STATCOM,

this means that the voltage at the local AC bus always keep at a constant rated value.

0 150 700 1.500 Time nms 3.000

FRT: Fault Ride Through ~ ST1: Short Term Intermuption

Fig. 3.2 Definition of FRT requirements.

3. 2 System model for control design

The total system of multiple DFIGs, their converter controls, the STATCOM, local loads,
transformers, and HVDC rectifier-inverter system, is highly complex. To simplify the model
for control design, some assumptions are made.

- Multiple DFIGs can be aggregated into a single DFIG of appropriate rating.

- For the purpose of local AC grid (collector bus) and power tracking control, the

aggregated DFIG is considered as a controlled current source.
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- The AC harmonic filters are designed to suppress 11th, 13th, and higher harmonics,
and have natural frequencies above the designed control system bandwidths. For control
purposes, the filters are represented by their dominant low frequency capacitive properties.

- Power losses in the STATCOM and HVDC rectifier are ignored.

- The HVDC inverter is in the voltage-control mode, and under normal conditions has
little effect on the collector grid control regimes. It is replaced by an equivalent DC voltage

source.

) Bypass switch Recifier
= HVDC
IC" L R
I
WIND —>- i Voo o V,c W\_Mﬁ_
FARM Vo .S L R E T
Rstar Re ?
I I
s'"f s”? AOR (a)
Lstat Le
STATCOM 4‘< &q,_JI— Cs 4’< SSC
VSTAT s U“ssc ate

Fig. 3.3 Simplified diagram of the system studied.

Under these assumptions, the system is shown in Fig. 3.3. The DFIGs deliver current I
to the local AC bus, while the HVDC link absorbs current Ic; or Ic; in normal or fault
operation conditions respectively. Capacitor Cy; corresponds to the total capacitance of the
harmonic filters installed on the local bus. Passive RL elements represent the transformers
and cable parameters. Depending on operational demands, the STATCOM current Isz,r can
be injected to, or absorbed from, the local bus. The parameters Ry L, represent the HVDC
dc-link connection. The cable capacitance is neglected for control design. The dc voltage

source E, replaces the HVDC inverter under voltage control as assumed earlier.
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Fig. 3.4 Equivalent circuit of the proposed system for mathematical modeling under normal
operation condition.

The plant equations are derived from the equivalent circuit shown in Fig. 3. 4. Seen from
the collector grid, the HVDC rectifier is a current source dependent on the collector grid
voltage. Seen from the DC side, the rectifier can be considered as a voltage source with
magnitude ¥, = k. Vg, cos a where k, is a constant defined by rectifier scheme. The
STATCOM is a voltage source converter and is represented as a three-phase voltage source
Vsrar causing current g7,y flow to/from the local grid. The STATCOM DC-side has current-
source properties derived from the current I, transformed into the DC-current Iy. The
equivalent circuit in Fig. 3.4 assumes that all the system parameters are referred to the local
DC bus.

In Fig. 3.3, it can be seen the electro-mechanical bypass and the thyristor crow-bar,
responsible for conduction of the load currents in the absence of disturbances in the utility
grid voltage. The crow-bar thyristors also provide a fast bypass protection against short-
circuits at the load side. Therefore, under normal operation conditions, the DVR only uses

the STATCOM.

3. 2. 1 System model under normal operation condition

The equations derived from Fig. 3.3 and 3.4 can be conditionally partitioned into three
parts representing local ac bus, STATCOM DC link, and HVDC DC link. The local AC bus

equations are
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distar

Lsrar =3 = —Rsrarlstar + Vsrar — Va1 3
v

Cr1—gt = Istar + 1 — Icy > 3.1
di

Le— = —Reles + Vo1 — Ve )

Where Istar, I, Ici, and Vg, are three-phase current and voltage vectors (Isgar = [Istama
Tstams ISTATC]T, etc.). Equation (3.1) comprises nine equations: three equations for each phase a,
b, and c¢. The number of equations can be reduced by transformation of (3.1) into the

synchronously rotating reference dq frame to give

di \
Lsrar S;: T8 = —Rsrarlstara + Vstara — Ve1ra + Wlstarlsrarq
di
Lsrmr%‘1 = —Rsrarlstarq + Vstarq — Ve1q — @Lstaristara }
3.2)
av.
Cr1—2% = Istara + Iga — lc1a + 0Cp1Vo1q
av,
Cf1% = Istarq + lgq — Ic1q — @Cr1V614 J
Lcd%d = —Rclcia + Vg1a — Vea + @lcleaq
). > (33)
C
L¢ d:q = —Rclc1q + Ve1q — Veq — ®lclcaa

7

Where a is an electrical frequency of the rotating dq frame. Note that the number of
equations (six) corresponds to the number of mesh loops in the AC part of the circuit
depicted in Fig. 3.3.

The STATCOM’s dc-link equation can be derived from power balance condition:

3
Psrar = IsoEso =3 (Vsraralsrara + Vsrarqlsrarq) (3.9)
using Iso = Cg ggf-‘l, the following can be written:
deZ, 3

C—2=3 (Vsraralsrara + Vsrarqlstarq) (3.5)

Since there must be a balance of active power, the power to STATCOM can be expressed
in terms of power Pg generated by DFIGs and power P¢ converted to HVDC. Therefore, (3.5)

can be given:
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CSES- 2P ar = 2P; — 2P (3.6)
which confirms that the STATCOM capacitor voltage is an indicator of the power balance

between the wind farm and the HVDC link.

From Fig. 3.4, the HVDC rectifier dc current is given by

Lo22 = —Rolo+ Vo — Eo, Vo =k /ng + V2, cosa (3.7)

Where a is the firing angle of the rectifier bridge. For a 12-pulse rectifier used in typical
HVDC systems, k, = 6v2/m =~ 2.7. Using the rectifier active and reactive power linkage
Qc = Pc tan @, and balancing the active power, one can derive two equations linking

converter current components Ici4 and Igigq:

VCdICId + VCq’Clq k ’VCd + ch 10 cosa

(3.9)
2 )
Vealcrg — Veqlecra = §kr ‘V(.?d + Vi, lo sina
So that the rectifier currents drawn from the local collector bus are:
N
2 v 1%

leig = <k, I, | —2—=cosa — —=—=rsina
- ’vg,,wg,, ’vgdwgq

> 3.9)

2 Ve
Ierg = 5 ——__ cosa + —=—sina
’ VE + ch ’chd +Ve,
J

To complete the HVDC rectifier model, (3.9) should be accompanied by equations for

voltage at the converter terminals V¢

dr
Vea = Vora — Relea — Le 24 + wlcleq
(3.10)

dic,
Veq = Vo1q = Releq — Le— — wlclea

Substitution of (3.9) into (3.10), together with (3.7), results in a complex system of nonlinear
differential equations describing the interaction between the HVDC rectifier and the local

bus. In such a form, the set of equations cannot be useful for control design. However, if (3.8)
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and (3.9) are written in a synchronously rotating reference frame aligned on the rectifies ac-
terminal voltage (i.e., Vc=0), the relation between Ici4, lcig, and I, can be derived in a

straightforward manner

2
Ic1qa = gk,.locosa

(3.11)
Icryg = -z;krlosina
Substitution of (3.11) into (3.6), together with (3.7), results in
Cs %2 = 2P, = 2P; = Weraloa — 2krloVracosa (.12)
LoS2 = ~Roly + k;Vsa1ac0sa — Eo (3.13)

Summarizing, the entire plant described by mathematical model under normal operation
condition is given by equations (3.2), (3.12) and (3.13). Therefore, the final control system

structure is shown in Fig. 3.5 below.

We
V*a1 V.qu; l
B v
Va1 Vaidq STATa
Istat - Istateq | Vottage | V'staraq da V'sram To VSC
| Control N > PWM —»
LT losg abe| Vistate |
|C1 dq 'C1dq 3
E*so
e
Eso
—»

Firing | a (HVDC)
—»| angle ——»
Ve1d control

Fig. 3.5 STATCOM and HVDC control block diagram.

3. 2. 2 System model under fault condition

HVDC current is maintained at 0.25 p.u. level using switch S in Fig. 3.6. Following the

fault, the switch is changed to the F mode. When the fault is cleared, the control is switched

21



back to the normal operation.

collection bus Bypass
switch Local ac Rectifier

bus HVDC LO |° RO

B Eo
uL 10/33 kV ”; ‘ I’
?300 MVA a = Eso

= e I

I'o
STATCOM SSC m

Fig. 3.6 System model under fault conditions at onshore grid.

Under the disturbance conditions, wind farm network voltage at the collection bus is fast
lowered via the STATCOM control to regulate generated power for preventing from break-
down of whole power system. Therefore, voltage dips will appear at the local bus, and this
negatively impact on local power system as well as the supplying power to local load;
especially on commutation failure of the rectifier of the HVDC system.

To solve this problem, the DVR will use the SSC to generate a controllable voltage to

against the voltage dips, and so it will keep the local bus voltage at a rated constant value.

3.2.2.1 Proportional Controller for the SSC

A three-phase model of the LC-filter, derived from Fig. 3.8, is transformed into the dq-
coordinate system, where the d-axis is oriented with the grid flux vector.

The equations derived from Fig. 3.8.

. d' t
ugsc(t) = uc(t) + Rezissc(t) + Ly, ls:t-( )

du~(t (3.14)
issc(t) = i1 () + Cp, "udCT()

Where issc(t), ici(t), ussc(t), and uc(t) are three-phase current and voltage vectors (issc(t) =

[issca(t) isscu(t) issce(D)]", etc.).
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Fig. 3.7 Overview of the SSC.
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Fig. 3.8 Simplified scheme of the SSC used to derive controller.

Equation (3.14) comprises six equations: three equations for each phase a, b, and c. The

number of equations can be reduced by transformation of (3.14) into the synchronously

rotating reference d-q frame to give

. disscalt i
ussca(t) = uca(t) + Rpzissca(t) + Lyp, ——lsfftd ) wlsrisscq(t)
, digscq(t) , (3.15)
Usscq(t) = ucq(t) + Reaisscq(t) + Lyz ——L‘lsﬁ + wlsrissca(t)
) duca(t
issca(t) = ic1a(t) — wCpaucy(t) + Cpa— = qu( 2
3.16
duca(t) ( )

isscq(t) = ic19(t) + wCraucqa(t) + Gy

The vector current controller is implemented in the computer. Thus, the voltages and

currents are sampled with the constant sample time Ts. The equivalent inductance and the

resistance of the LC-filter are denoted as Ly, Co and Rg, which mean these are predicted

values.

These equations (3.15) and (3.16) is discretized using forward Euler method and is then
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integrated from kTs_to (k+1)Ts (one sample period).

k+1)Tg (k+1)Tg +

(k+1)T. .
krs  Usscd (Bdt = [ " “uca(t)dt + fk-]-s S Rpisscq(t)dt

+1Ts ,  dissca(t K+1)T ,
+-rk('lr(s ‘ *Ley lss:: Oar - KT S whpyisscq(t)dt

(k+1)Tg k+1)Tg k+1)Tg
I Usscq (t) dt = f Ucq (t) dt + f sz isscq (t)dt
kTsg kTg kTs

(k+1)T di (3] (k+1)T ,
+ Ikrs 1 sz $i+ dt + fkTs i a)sz lsscd (t) dt
/

(k+1)Tg (k+1)Tsg (k+1)Tg
f issca(t)dt = f icia(t)dt — f wCryucq(t)dt 1
kTg kTg kTg
(k+1)Ts ducqy(t)
+ fl(l's sz e | dt

(k+1)Tg (k+1)Tg (k+1)Tg
f isgcq(t)dt = J; iClq (t)dt + f wazqu(t)dt

kTg Ts kTs

(k+1)Ts du t
+ f c ca(t)

dt
2
KT 72 dt

J

(3.17)

(3.18)

Equation (3.17) and (3.18) are divided by Ty to obtain the average value for the sample

period k to k+1

uSSCd(k: k + 1) = qu(k,k Al 1) + RfZiSSCd(k' k+ 1)
L , | .
+.,.L: [disscq(k + 1) — disscq (k)] — @Lgaisscq (k. k + 1)

uSSCq(k:k + 1) = qu(k:k + 1) + RfZiSSCq(k'k + 1)

L
+_7-'f51 [disscq(k + 1) = disscq(K)] + wlpzisscalh k +1) )

issca(k,k +1) = icia(k, k + 1) — wCroucq(k, k + 1) \
C
+TL: [ucaCk + 1) — ucq (k)]

isscq(k k + 1) = ig1q(k, k + 1) + wCprucq(k, k + 1)

C
+'7£ [qu(k + 1) - qu (k)] J
S
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The following assumptions are made to derive the controller:

The grid current icig(t) is constant independently of variations in currents and
voltages of the LC-filter.

The capacitor voltage ucs(t) and the inductor current issce(t) change linearly during
one sample period.

The average values of the capacitor voltage uca(t) and the inductor current isscaq(t)
over the sample period kTs to (k+1)Ts are each equal to the half sum of the real
value and the reference value at sample k.

The average values of the voltages usscaq(t) and currents isscqq(t) during one period
are assumed to equal the reference voltages and currents respectively, which are

denoted as ugscqq (t) and isscqq(t).

Based on the above assumptions, the equations (3.19) and (3.20) of the proportional

controller are obtained as:
ussca(k) = uga(k) + Rezissca (k) — w’;ﬂ {i3scq (k) + isscq(K)} )
+kp{issca (k) — issca(k)}
Y62
. . ] wley ., ,
usscq (k) = ugq (k) + Rppisscq (k) + —Z—{lssai (k) + issca(K)}
+hp{isscq (k) — isscq(K)) J
i25ca(k) = icaall) = 222 {uzg () + uc (O} + Kulupa(h) - uca®)} |
wcfz > (3.22)
isscq(k) = iciq (k) + T{u?:a (k) + ucq ()} + Ku{u?:q (k) —ucq (k)}

where ugscg (k), Usscq (K, issca (k) and igscq (k) are the required reference currents and

voltages to track the reference voltage of the capacitor. The gains K, and K, are the dead-

beat gains calculated in terms of the filter parameters and the sampling time; K, = C;/Ts K,

= Lf/T s+Rf/2.
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3.2.2.2 Delayed Proportional Controller for the SSC

The reference voltage ugssc(k) of the controller is delayed one sample due to analog to

digital conversion and computer calculation time. Therefore, to prevent oscillations, a time

delay compensation term is introduced so that the proportional gain can be set to dead-beat.

The compensation term, denoted by A_t_tggc (k). deletes the error caused by the one-sample

delay of the VSC voltage references and is calculated as:

Al (k + 1) = —Dudd (k) + Ky{isee (k) — isd-(k)}

(3.23)

The voltage controller is thus the same as in case of proportional controller, given by

(3.22). The delayed proportional current controller is given by:

* P 4 L

+Kp{issca(k) — issca(k)} — Bugscq (k)

{i8scq () + isscq (O}

wl
Usscq(k + 1) = ugg(K) + Rpzisscq(k) + 1 {i5sca(k) +issca(k))

+Kp {i§SCq (k) - isscq (k)} = AuSSCq %)

) (3.24)

To conclude, the equations (3.21), (3.22), (3.23) and (3.24) will establish a control

method for the SSC shown in Fig. 3.9.

lfs le(k)
u'c(t) u*c(k) LIy u'c.,,,(k)>
uc(t) uc(k) _| abc/ [ucag(k)
’ ] ) : |V
issc(t) | S&H | issclk) isscaq(k), ciﬁ?;
0 i) [/ 99 fieragl)
var(t) -
——| Compensation u*e(t) o(k)+A8
V'c(t) Voltage — l
— »| Calculation U*ssca(k)
" dq | g K
To VSC —_— ssco(K) sscaq(K)
Usscelk) | ape

Fig. 3.9 SSC control block diagram.
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4. Simulation results

4.1 Simulation conditions

A model of the proposed LCC HVDC system was created within EMTDC/PSCAD. It
consists of a 500 MW wind farm using DFIG driven turbines which is connected to the main
grid via a 500 MW, 500 kV LCC HVDC connection. The sending end of the HVDC system
is modeled as 12-pulse rectifier (complete switching model) according to the CIGRE
benchmark model [12] while the receiving end is a DC source 490 kV representing the
HVDC inverter under voltage control. The DC-link connection is set at 80 km with
parameters of a total resistance of 5 Q and a total inductance of 1.836 H, but with the cable
capacitance neglected. Rated HVDC link current is 1 kA. The model includes the HVDC
step-up transformers and (300 MVA, 33/213 kV, 0.12 p.u. each), wind-farm step-up
transformer (600 MVA, 0.69/33 kV, 0.12 p.u.), and the AC filters.

The DFIG-based wind farm is considered like a current source I, delivering power to the
local collector bus. The offshore converter commutation voltage is supplied by a + 300 MVA,
six-pulse, VSC-based STATCOM with a DC capacitor of 40000 uF and a DC voltage of 30

kV. The converter switching frequency is 2500 Hz.

4.1.1 Normal operation

The control system should maintain collector grid voltage and frequency under
continuously changing wind farm power. Fig. 4.1(a) simulation results show the response to
a series of step changes in real power (1 pu. = 0.7 pu. — 04 pu. — 0.7 pu. — 1 p.u)
from the DFIG, which were implemented through steps in the currents Igq. Such step

changes represent a worst case transient.
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4.1.2 Fault condition

In each of the simulation results shown below, a three-phase-to-ground fault occurs on
the onshore grid at 1 s and lasts for 150 ms. During a fault on the onshore network, causing
the inverter terminal voltage to collapse, the inverter commutation will fail. This causes a
short circuit on the DC side and collapse of the DC link voltage and transmitted power. Such
a fault can be simulated in the model of Fig. 3.6 by setting Eo = 0 for 150 ms duration (9

cycles at 60 Hz).

4.2 Analysis of simulation results

4.2.1 Normal operation

As shown in Fig. 4.1, generated power drops from 1 p.u. to 0.7 p.u. at 1.5s results in an
increase of rectifier firing angle, the HVDC link delivering less active power and so the
STATCOM DC-link voltage is kept at a constant rated level of 30 kV.

Fig. 4.1 clearly shows excellent regulation of the AC collector grid’s voltage and

frequency, and power balance via control of the STATCOM DC-link voltage.

4.2.2 Fault condition

4.2.2.1 Control system performance without the SSC

This section investigates the STATCOM performance for the control system following a
short circuit fault in the onshore grid on the inverter side of the HVDC link.

As the fault occurs, the STATCOM starts to absorb the excess active power in the local
bus, and its DC voltage increases as shown in Fig. 4.2. During the fault, the HVDC dc-link
current is limited at 250% by hard limits on the demand. When the fault is cleared, the
HVDC DC-link voltage recovers, the power transmission resumes, and after some transient,
the STATCOM DC-link voltage returns to its rated value. The power coming from DFIGs is
transferred to the HVDC again. The maximum STATCOM DC link voltage of 2.17 p.u. is a

consequence of the constant DFIG output power.
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After fault detection in a real system, generated power will be immediately reduced and
DC-link voltage significantly reduced. Fig. 4.2 shows that system performance during a fault

is stable and quite satisfactory for such a severe condition.

4.2.2.2 Control system performance without local load

Further tests on operation and performance of the system during a solid three-phase to
ground fault on the grid side without local load at offshore grid were carried out. Before the
fault, the generated and transmitted active power was around 1 p.u. and the STATCOM dc-
link voltage was 30 kV (1 p.u.). As can be seen from Fig. 4.3 (a), the voltage at collection
bus is lowered to 0.18 p.u. during fault via the STATCOM, which results in a reduction of (1
p.u. - 0.18 p.u. = 0.82 p.u.) in generated power as shown in Figure 4.3(e), and consequently
the STATCOM DC-link voltage to just over 40 kV (1.35 p.u.) compared to its 2.17 p.u. in
the previous case as shown in Fig. 4.3(g) and 4.2(c). The power reduction of 0.82 p.u. is
chosen to simulate because it is easier to compare two cases of this section and next section
4.2.2.3 which a local load of 90 MW equal to generated power of 0.18 p.u. will be connected
at the local bus.

Meanwhile a controllable voltage is generated from the SSC to keep local load voltage at
a constant rated value as shown in Fig. 4.3(b, c), and consequently prevents from the
commutation failure of the HVDC rectifier. The HVDC current is maintained at 0.25 p.u.

level using switch S in Fig. 3.5 during the fault duration.

4.2.2.3 Control system performance with local load

This section presents the system model with a local load of 90 MW connected at the local

bus. As the fault occurs, the firing angle increases to approximately 90 degrees to regulate
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HVDC DC-link current to a setting value of 0.25 p.u. So power into the HVDC drops to
almost zero as shown in Fig. 4.4(¢).

Because local bus voltage always keep at a constant rated value via the SSC during the
fault, the load is uninterruptedly supplied with enough power if rate of voltage reduction at
collection bus is controlled so that generated power is equal to local load power and losses.

The reason for this is that as mentioned before, the total power delivered by all DFIGs
must balance the power transferred to the HVDC link, consumed by local load, and
dissipated as losses. Since the transmitted power to the HVDC is almost zero and the
generated power regulated by lowering the collection bus voltage is equal to the local load
power during the fault, the pink line presenting local load power shown in Fig. 4.4(¢) is
always constant during simulation period. On the other hand, because of the power balance,
the STATCOM DC-link voltage is almost constant during the fault time as shown in Fig.

4.4(g) compared to the same case shown in Fig. 4.3(g).
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Fig. 4.1 Control system performance under normal operation.

a) HVDC DC-link current (p.u.). b) Active power generated from the wind farm (p.u.).

c) Active power transferred through HVDC (p.u.). d) Rectifier firing angle (degree).
¢) STATCOM DC-link voltage (kV). f) Local bus voltage (p.u.).

g) STATCOM active and reactive power (p.u.).
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Fig. 4.2 Control system performance during a fault without the SSC.
a) HVDC DC-link current (p.u.). b) Rectifier firing angle (degree).
c) STATCOM DC-link voltage (kV). d) Local bus voltage (p.u.).

¢) STATCOM active and reactive power (p.u.).
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a) Collection bus voltage (kV). b) Local bus voltage (kV).
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5. Conclusions

The thesis considered the grid voltage control system for a large offshore wind farm with
a LCC HVDC connection to the main onshore network with special consideration of the
serious fault. The control system provides high performance control of the offshore AC grid,
and guarantees transfer of generated wind power into the main onshore grid. Especially, in
the worst case of a three-phase-to-ground fault on the onshore grid, the control system
proved its good performance and that it is an optimal solution. The controlled plant’s
detailed nonlinear mathematical model was derived and transformed into appropriate linear
form for convenient control design. The equations for controller design and the control block
diagram structure were derived. Simulations using PSCAD/EMTDC software illustrated
system performance under normal operation and fault conditions, and verified the control
design procedure. The thesis’s control system can be a satisfactory solution for integrating
large offshore DFIG-based wind farms into existing AC networks; especially when local
load is sensitive and always require a continuous power supply with high quality demand.

The method used in this thesis is based on the idea that by lowering the wind farm
network voltage a power reduction is automatically effected. Since the wind farm network
voltage is highly controllable, a reduction of the wind farm voltage amplitude is possible
within several milliseconds complying with the Grid Code. However, this method has also
several serious drawbacks.

Firstly, the voltage reduction method works best if the wind farm consists of wind turbine
generators that are variable speed machines employing a power electronic converter, such as
the DFIG or various designs with a full-converter interface. The converters in these
machines usually have current limits that are close to their rated current; they have hardly

any over-loading capability. The concept of this strategy is that at a low network voltage the
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converters of the wind turbine generators run into their current limit and the power output is
changed accordingly.

Secondly, the controller design of the wind turbines needs to be adapted such that no
additional voltage support is enabled, and no additional fault ride-through measures are
activated. This especially holds for DFIG turbines, where a steep voltage sag might trigger
the so called crow-bar protection that short-circuits the rotor windings in order to protect the
converter. When the crow-bar is activated high current peaks will occur, which works
adversely on the power reduction strategy.

Moreover, if the wind turbine generators are of a fixed-speed design based on directly
coupled induction machines, voltage reduction may have an adverse effect. If the blade pitch
controller is slow, or the machine is based on passive-stall control, it would accelerate during
the low-voltage period. A high slip would occur and would load to high reactive currents,
comparable to the currents that occur at starting of the machine and could be in the range of

several times the rated current.
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