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Building a Feature Map and Uncertainty Evaluation of a Feature
Position for Mobile Robot Navigation
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ABSTRACT

Abstract A new feature-based map building model that uses only the footprints of sparse sonar data has
been developed and implemented. An arc feature association model was developed, which associates two
sonar footprints into an arc feature. The association model provides information on the regions of canter
points of the arc feature. The information makes it possible to decide weather the two sonar footprints are
associated with a line, point or arc. Lines, points, or arc features are extracted from more than two
independent sonar footprints using the arc feature association model. We also propose a method that
estimates the position uncertainties of the extracted features by considering both the pose uncertainty of the
robot and the measurement uncertainty of the sonar sensor. This pose uncertainty is also used in the arc
feature association process of the sonar footprints. The proposed method has been tested in a real home

environment with a mobile robot.

Key words : Feature-based map building, sonar sensors, arc feature association, position

uncertainty.

localization and path planning because it can
|. INTRODUCTION provide the information on the location of objects.
Building a sonar map from sonar range readings is

The vital functions for mobile robot navigation the most common approach for the representation

are Trepresentation of a robot's environment, of the environment.

localization, and path planning. In most cases. A sonar sensor can give direct depth information

representation of environment can be a basis of on the location of an object, but it suffers from a

multipath phenomenon due to the effect of a

« AT ) - AR - A AR A dRA specular reflection of a sonar beam[l]. This

Faculty of Mechanical, Energy & System Eng.. Cheju Nat'l Univ., phenomenon together with a wide beam aperture
Res. Inst. of Adv. Tech.

66



OlSRE HE HAXT 2 § Hao| x84y Yot

makes it difficult to decide the location of objects
from a single sonar measurement.

There are two different approaches to build a
sonar map. The first one is the grid based sonar
map in which the environment is sub-divided into
several 2-D or 3-D cells. Each cell is represented
by the probability of being occupied by an object
[2]. A Bayesian updating modell3] and orientation
updating model(45] are the typical ones for grid
map building methods. The grid map is very
efficient to represent the location of objects easily,
but it needs a large amount of memories to build
and maintain a map of wide space.

The other one is the feature-based map building
method in which the environment is modeled by a
set of geometric primitives such as lines, points
and arcs. Crowley developed one of the earliest
feature-based approaches to sonar, introducing the
concept of the composite local model [6]. The
composite local model is built by extraction
straight-line segments from sonar data, and is
matched to a previously stored global line segment
map to provide localization. Christensen et al
developed TBF (Triangulation-based fusion) of
sonar data [7]. This algorithm delivers stable
natural point landmarks. Choset et al. developed
ATM (Arc Transversal Median) and arc carving
algorithm [8]. ATM and arc carving fuse multiple
sonar readings to improve azimuth resolution.

A rotating sonar scanner has been used by
Leonard and Durrant-Whyte to obtain densely
scanned sonar data[9]. A simple threshold
technique was presented to extract RCDs (Regions
of Constant Depth) that were used to make the
features such as lines and points.

In this paper, a feature-based map building
model that uses only the footprints of sparse sonar
data is presented. An arc feature association model
is developed, which associates two sonar footprints

into an arc feature. The association model provides

information on the regions of canter points of the
arc feature. This information makes it possible to
decide weather the two sonar footprints are
associated with a line, point or arc.

The position uncertainty of the feature is then
estimated by considering pose uncertainty of the
robot together with the measurement uncertainty
of the sonar sensor. This pose uncertainty 1s also
used in the arc feature association model.

Il. DATA ASSOCIATION MODEL

2.1 Arc feature Association
(Footprint-to—-Footprint Association)

Sonar range readings generally have large
amount of angular uncertainty because of the wide
effective beam width. In addition, a sonar sensor
can open gives a false reading due to the specular
reflection. Association of more than two sonar
readings is, therefore, very important in order to
reduce the uncertainties of sonar data. A typical
sonar footprint is illustrated in Fig. L 8, and 9,
represent the minimum and maximum angles, 7 is
the range, and 3 the effective beam width of the

sondar sensor.

sensor

Fig. 1 Sonar footprint.
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Fig. 2 shows sonar footprints corresponding to
Sonar which
correspond to a plane or cylinder should be all
tangent

footprints that correspond to a comer or edge

each type of target footprints

to the plane or the cylinder. Sonar
should all intersect in a point at the cormer or
edge. These are the data association constraints
for each type of a feature. For the point or arc
feature visible angles are defined as shown in the
Fig. 2
defined.

Fig. 3 shows how to associate two different

and for line feature visible direction is

sonar readings into an arc feature. 2; and 2, are
the range values of the two sonar footprints. 4 is
the separation between the two sensor locations.
According to the data association constraints
shown in Fig. 2 there should be at least one
circumcircle of two sonar footprints if the two
footprints correspond to a certain type of feature.
Without loss of generation, we can assume the
feature is an arc because a line or point can also
be considered as a circle. If the feature is a line or
a point, there is only one circumncircle, otherwise
there are infinite number of circumgcircles. In Fig. 3
the dashed line represents the trace of center
points of circumcircles that satisfies the angle
constraints of the two footprints.

The radius B of circumcircle is calculated using

the law of cosines as follows,

_z —z;-2dcos(g)z, +d’
2(dcos(@)+z2,—z,)

)

where ¢, is the bearing from the origin to the
hypothesized center of the circumcircle. We can
now set up an arc feature association rules. If
R, is very large or infinite, the two footprints
On the other

hand, if Ry is very small or zero, the footprints

are clustered into a line feature.
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are clustered into a point. Otherwise, thev are

clustered into an arc feature.

corner

(a)

1
\ 1
Y. .

Fig. 2 Sonar footprints corresponding to (a) a
plane, (b) a comer, and (c) a cylinder.

trace of center points .
a .

Fig. 3 The arc feature association model

2.2 Footprint-to-Feature Association

Using the arc feature association model stated
above, all sonar readings that correspond to the
same feature are clustered together. Clusters are
promoted to a tentative or confirmed feature

according to the number of sonar data that support
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the same feature. A promoted cluster whether it is
tentative or confirmed one no longer need the
footprint-to~footprint association, instead it need a
footprint-to-feature association.
Footprint-to~feature association is to test whe-
ther the footprint is possible or not when it is
assumed to be originated from the given feature[9).
This is, if the footprint satisfies the angle and
range constrains below, then the footprint-to-

feature association is successful.
|R—I‘€[S5R and 6 <6<86, (2

In the above eguation, R and 6 are predicted
range and bearing, 1ie, predicted footprint,
respectively. 0 and 20“ are the parameters to be
designed considering the sensor resolution.

Fig. 4 shows R and o for each type of a
feature. The predicted footprint for line feature is

computed as,
R=P.(P,—x,cos(P,)— y,sin(P,)) @)
6= ) 4

where Py is the visible direction, Pr is the
normal distance from the origin to the line, Z, and
y, are the location of sensor, and Py is the angle

of the plane. For a point feature.

R=\J(P.~x ) +(P,-y,) )
tan(f)= 22" p #x, ,
P —x, (6)

where P, and P, are the position of a point

feature.
The predicted footprint for an arc feature is

given by,

R=J(P,-x ) +(P, -y =P (3

P -
- -, P #x, ]
P -x (8)

§

tan(é) =

where P is the radius of arc feature.
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Fig. 4 The predicted footprint corresponding to
(a) a plane, (b) a comer, and (¢) a cylinder.

Il. UNCERTAINTY EVALUATION OF
A FEATURE

3.1. Position Uncertainty of a Robot

The position of a robot is represented by
(z, ¥.0) on a 2 dimensional work space where T
and y are the coordinates of robot and @ is the
heading of the robot as shown in Fig. 5 In the

figure d(n) is the distance increment and #(n)

A9
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is the rotation angle of the robot at 2+ 1 step.
The position of the robot can be estimated as
follows[10],

X(n+1) =f(,\'(n).u(n))+a)(n)y w(n) ~ N(0,Q(n))

9
where @ () is a zero mean Gaussian noise with
covariance @(n), u(n) is the control input, and
f(X(n), u(n)) has of the form:

')
n step
Fig. 5 Position uncertainty of a Robot.
x(n)+d(n)cos&(n)
F(X(m)u(n)=| v(n)+d(n)sinf(n)
B(n)+ AlB(n) (10

The uncertainty associated with this estimation
can be represented as the covariance of X(n+1)

such that,
P(n+1)=JP(n)J" +Q(n) (1)
where | is the Jacobian of Eq. (10)
3.2. Position Uncertainty of a Feature

The position uncertainty of a feature depends on
both the measurement uncertainties of the sensor

and robot’s pose uncertainty as shown in Fig. 6.

Measurement uncertainties of the sonar sensing
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come from the range and angular error. We
assume that the range and angular error of
sensors are un-correlated each other and zero
mean Gaussian noise. We also assume the robot's
pose uncertainty and the measurement uncert-
ainties are un-correlated.
The position ot a feature shown in Fig. 6 can
be written as,
x, +rcos(6 +6.)
X, =Flx,y.6)=|y +rsin(@ +06,)
6 +8, (12)

(7. 4, 6,)
Y :

(£, 9.6,)

» X

Fig. 6 Position uncertainty of a Feature.

where &;, ¥y, and 8, are the position and the

direction of the feature., r is the sonar range, and

8, is the relative angle of the sensor to the

bearing of the robot. The position of feature can
be estimated as,

X, -+ rcos(é, + éj)
F(%.3,,6)=| 3. +Fsin(d. +6.)

6 +8, 1 (13)

where hat represent  the estimated values.
Linearization of Eq. (13) using Tavlor Serles

vields,

X, = F(%.5,.6,)~ JAX, (14)
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where J is the Jacobian of the Eq. (12) given by,

10 —rsin(f, +6,) cos(8, +8.) - rsiun(#. +48,) 0

J=1 01 rcos(8 +0,) sin(f +6,) rcos(f +6¢) 0

00 1 0 0 1
=(H| K}

(15)
If we let X ¢ be the position error of the feature,
we can get the covarance matrix, C,, associated

with the estimation as follows.

C, = E|[X, X7 )= vE[ax AXT )T = HOHT + KCET (1)
where C, is the covariance related to the robot’s
position uncertainty, ie.,

C, = HP(mH" +(n) an

C, is the covariance of the measurement

uncertainty of the sensor given by,

S,
~ b
=

(18

Q

[
oo
SN
oo o

where 0, is the standard deviation of range error,
and Oy, is the standard deviation for angular error
of the measurement. gy can be replaced by 04,

ie, the robot's bearing uncertainty, because
angular uncertainty of the measurement consi-
dering many range data depends only on the
robot’s bearing uncertainty.

V. EXPERIMENTAL RESULTS

The map building and uncertainty evaluation
methods developed have been implemented and
tested in a real home environment with real robot.
The robot is Pioneer 3-DX that has a ning of 16

Polaroid ultrasonic sensors. Fig. 7 shows the
experimental enviromment that is composed sofas,
tables, chairs, clothes chest, bookshelf, ashtray, and
fire extinguisher. The widths of the table legs and
the chair legs are about 6 cm and 3 c¢m
respectively. The robot was run following the
dashed line in Fig. 7 using remote controller, and
no localization was performed.

Fire Extinguasher
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Fig. 7 Configuration of the experimental
environment

Fig. 8 shows the results of mapping after the
robot made a complete turn in the environment. In
the figure, the ellipses represent the position
uncertainties of the extracted features. One can see
the ashtray is estimated as an arc feature, but the
radius error is comparatively large. This s
because there were not enough data to estimate
the arc feature completely.

There are some unexpected line features in the
resulting map. These false line features can be
appear when the distance between any two point
features is verv small. In our experiment, small
legs of the table and chair in the middle of the
environment were estimated as false line features.
Considering the uncertainties of sonar sensors and
sparse sonar data, it can be said that the quality
of the resulting map is comparatively good for the
navigation of the mobile robot.
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Fig. 8 Results of map building and position uncertainties. (thin lines : true map boundaries, thick lines : line

features, points : point features, arcs :

V. CONCLUSION

A new feature map building method with only
sparse sonar data has been developed and
implemented. The method is based on an arc
feature association model that associates two
different sonar footprints together. Using the model
some geometric primitives such as line, point, and
arc features can be estimated. We also developed
the method that estimates the position uncertainty
of the extracted feature by combining the pose
uncertainty of the robot and the measurement
uncertainty of the sensor.

The developed methods were implemented and
tested in a real home environment with a real
robot. The results have shown that the quality of
the resulting map is comparatively good for the
navigation of the mobile robot. Consequently, the
proposed methods of feature map building and
evaluation of position uncertainty can be applied

arc features, ellipse : position uncertainty)

for Simultaneous Localization And Mapping(SLAM)
of a mobile robot.
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