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Numerical Approach of Equation of Motion
with Positional Constraints
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ABSTRACT

In 1992, Udwadia and Kalaba proposed an explicit equation of motion for constrained systems based on

Gausss principle and elementary linear algebra without any multipliers or complicated intermediate process.

However, numerical results to integrate the equation of motion gradually veer away the constraint equations

with time. Thus. an objective of this study is to provide a numerical integration scheme, which modifies the

generalized inverse method to reduce the errors. The modified equation of motion for constrained systems

includes the positional constraints of index 3 systems and their first time derivative besides their second time

derivative. Its effectiveness is established by means of numerical examples.

Key Words : Errors in the satisfaction of constraints, constraints, control, eigenvalue, generalized

inverse method

I'. INTRODUCTION

The motion of mechanical or structural systems
can be sometimes constrained by any given
trajectories or conditions. The constrained motion
requires the constaint force provided by Nature for
satisfying the constraints. Gauss's Principle defines
the constraint force as the minimum force of all
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forces to need for satisfying the constraints or
pulling the state variables into the given trajectories.
The constraint force must be explicitly calculated
and provided such that the state variables do not
violate the constraints. But most of methods to
describe the constrained motion depend on numerical
method
expressed by differential/algebraic system [3-6].

approaches like Lagrange multiplier
Mathematically, the equation of motion for
constrained systems using the Lagrange formulation

can be expressed by differential/algebraic systems

F(t,y,y)=0. v are n-dimensional vector. They
also involve the Lagrange multiplier functions. The
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formulations are basically based on an over-
determined system of equations including time
derivative of the constraints and stabilization with
respect to those differential constraints via additional
Lagrange multipliers. These methods have difficulties
in numerically determining the multipliers.

Gibbs-Appell[1.7] method requires a felicitous choice
of quasi-coordinates and is also difficult to use. when
dealing with systems having several tens of degrees of
freedom and several non-integrable constraints.
Kane(8] introduced an analytical method for
nonholonomic systems based upon the develop- ment
of Lagrange equations from D’Alembert’s Principle.
Though his method is usually less tedious than the
computation associated with Lagrange multiplier. it is
difficult to compute vector components of acceleration.
It also gets more complicated with increasing numbers
of degrees of freedom. Passerello and Huston[9]
introduced a computer-oriented method similar to the
method of the orthogonal component of the matrix
associated with the constraint equations. which
reduces the dimension of the dynamical equations by
elimination of constraint forces. In 1992, Udwadia and
Kalaba[10) proposed an explicit equation of motion
for constrained mechanical and structural systems.
The generalized inverse method by Udwadia and
Kalaba was the first work to present the explicit
equation of motion for constrained systems since
Lagrange. This method has advantages which do not
require any linearization process for the control of
nonlinear systems and can explicitly describe the
motion of holonomically and/or nonholonomically
constrained systems.

The constrained motion can be described by
numerically integrating the differential equation by
Udwadia and Kalaba, and must satisfy the
constraints during the integration time. However, the
numerical results gradually veer away the given
constraints with time. In a viewpoint of numerical

integration. it is necessary to devise numerical
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methods to pull the deviated state variables into the
given paths. Because the generalized inverse method
was based on the second time derivatives of
positional constraints, the errors in the satisfaction
of constraints are caused by the neglect of positional
constraints of index 3 systems as well as their first
time derivatives. The index, which is a mathematical
term, is the number of times one must differentiate
to get a system of ordinary differential equations.
Accordingly, an objective of this paper is to present
a numerical method which modifies the generalized
inverse method to reduce the errors in the
satisfaction of the constraints. The modified equation
of motion for constrained systems includes the
effects of positional constraints, their first and
second time derivatives in the differential equation.
Numerical examples illustrate the effectiveness of the
proposed numerical method.

It. EQUATION OF MOTION FOR
CONSTRAINED SYSTEMS

The matrix equation of motion of a system
modeled by an
mass-spring-dashpot system can be written as

n-degree-of-freedom  lumped

Mx(t) + C x(t) + Kx(t) = Ef(t), (D

where M, C, and K are, respectively, the =nxn
mass. damping, and stiffness matrices, x(t) is the
n-dimensional displacement vector, and f(t) is an
r-vector representing applied load or external
excitation. The #xr matrix E is location matrix
which defines locations of the excitation.

Assume that this n-degree-of-freedom system is

constrained by the m consistent constraints
¢i(x,t)=0. i=1,2,-,m, (2

of which m<n. The constrained motion requires
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the constraint force such that the state variables
satisfy the constraint sets. Therefore, the general
equation of motion at time ¢ of constrained system
can be expressed as

Mx=F(x,x,t)+ F “(x, x,t), (3)

where, F(x,x,t)=—Cx(t)—Kx(t)+Ef(t), and

F “(x, x,t) is the mdimensional constraint force
vector.

Assuming that the constraint equations are
sufficiently smooth. the proper differentiation of Eq.
(2) with respect to time ¢t leads to the linear set of
equations

A(x, x,t)x =b(x, x,t). (4

where A is an mxn matrix. and b is an vector.
Using Gauss's Principle and elementary linear
algebra. and combining Eqs. (1) and (4), the
generalized inverse method gives a constrained
equation of motion written by

+

3 _1 4
x=a+M % (AM ?) (b—Aa). (5)

where a= M "'F(x,x,t). This is the first work
to present an explicit equation of motion for
constrained systems and has advantages which do
not require any linearization process for the control
of nonlinear systems and can explicitly describe the
motion of holonomically and/or nonholonomically
constrained systems.

However, the numerical results to integrate the
differntial equation (5) by any numerical integration
schemes veer away the constraints. The integration
of constrained equation of motion based on the
second time derivatives of positional constraints leads
to the errors in the satisfaction of the constraints
caused by the neglect of the positional constraints
and their first time derivatives. Thus, starting from
the generalized inverse method, this study presents a

modified equation of motion for constrained systems
to include all three constraint sets.

. ERRORS IN THE SATISFACTION OF
CONSTRAINTS

To investigate the errors developed during
numerical integration of the differential equation.
consider a three-DOF system subjected to a
constraint. As shown by Fig. 1. the state variable
vector. which describes configuration space of the
system, is denoted by q= { q, @, q3]". The
unconstrained equation of motion for this system is

given by a constraint

Mq+Cq+Kag=P(t). (6)

ql Q2
b ™ w ™

m1 m2

cl 2
NN N W W W W U G N G N NN

Fig. 1. A Three-DOF system.

Assuming that this system is constrained by a

constraint
$1=a,— 30,=0. (M

and differentiating Eq. (7) twice and expressing
Ax=b of Eq. (4). we can write it as

:¢1=(-11_3(~12=0- (8)

The physical values for numerical application were
selected by

m ;= my=J3units, m ;= lunit,
k = 300units, k ,= 200units 9
kgz 100units.
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The damping coefficients were selected by the
values which the damping ratio of each mode is 0.02
and the external excitation vector was assumed as

P = [ 300sin6¢ 500cos3¢ 0] *. For numerical
integration of the equation ofelected motion for this
system, the local tolerance for the Runge-Kutta
scheme was set to 10, When the differential
equation is integrated by any numerical integration
scheme, the state variables must satisfy the
constraint equation (7) at all times. To investigate
the errors in the satisfaction of constraints, which
are the positional constraint and its first time

derivative, we defined the errors as

Errorl= q;— 3q:
and Eror2= q;— 34q; (10)

DOoD®IM

i
. s 10 [0 20 25 30

TIME(SEC.)

Fig. 2. Errors in the satisfaction of the constraints.

Fig. 2 shows the errors given by Eq. (10). It is
observed that the numerical solutions are found to
gradually veer away the constraints and the errors
increase with time. Recognizing that the genealized
inverse method is based on the second time
derivatives of positional constraints. it can be
interpreted that the errors are due to the neglect of
positional constraints and their first time derivatives.
The errors can be reduced by the action of
additional force which needs to pull the deviated
state variables into the positional constraints and
their first time derivatives. Thus, the modified
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equation of motion includes the effects of the
positional constraints and their first time derivatives.

V. NUMERICAL INTEGRATION SCHEME

Assuming that the constraint equations are
sufficiently smooth and taking the total derivatives
of the set (2). and using the chain rule. we obtain
these equations

L& ., 08
¢i_)= an xi+ 3(

i=1,2,,m. (1)

=0,

These equations are differentiated, provided the

functions -g—qs—' and
X

—Qa% are sufficiently smooth,

to yield the set of equations
- _ Idi - d_(9&i\. -
$1= 2 ax; X"+§‘1§13x,(8x,)xkx"

. 2
PBg o B (e )RR
=0
i=12,-,m (12)

Eq. (12) can be cast into Ax=b. To determine
the constraint force on the basis of all constraint
equation sets, all three constraint equations are
combined as

dit a; i+ B 6,=0.1=12,--,m, (13)
or H+RH-+SH=0, (14)

where the a; sand 8 ;s are positive values,

H= [ ¢, ¢ éml .

a, 0 - 0
R=| 9 7%

6 6 ".' (;m



Numerical Approach of Equation of Motion with Positional Constraints

B 0 0
and s=| 0 B0 0 (15)
0 0 = Ba

Also., Ax=b is rewritten as

Ax=b-RH-SH (16)
where
34, 9. _ 34,
dx, dx, dx,
3¢, id, = ¢,
A= axl 3x2 ax,, (17)
3bn O0bm  ¢m
8x2 8x2 aXn
b=[b; b,]"
b, = 2;13xk( )xkx,
+i‘16t(8 )
( é, ) 3t ¢,
axk at at?
3¢ )
b= 2\2:13 k( )"k"i (18)
g{ 0\ -
t at(ax,)"f

The original equation of motion (5) for constrained
systems is modified as

+

4 _4
x=a+M ? (AM %) (b—RH-SH-Aa) (19)

We can alternssatively think of Eq. (13) as the
equations of motion of m second-order dynamic
systems. The a;'s and B,'s are damping coefficient
and stiffness of the i-th oscillator, respectively. Let
us call Eq. (13) the i-th dynamical error equation.
The terms a; é,+ B; #; in Ea. (13) play the
role for reducing the errors in the satisfaction of the
constraints. The coefficients @; and £, need to be
selected in such a way that the errors in the

satisfaction of the constraints ¢; and &, are

damped out rapidly.
Baumgarte (1972) discussed the proper choice of
the values of the coefficients @; and B; in Ea.

(13} for reducing numerical errors and suggested
positive values for the parameters a; and §8;
corresponding to the ith oscillator. This method
considered the dynamical error equations as
decoupled equations that the unknown coefficients
involved in each of the m dynamical error equations
are independently selected.

Each of the m dynamical error equations can be
looked upon as an oscillator and shows three types
of motion depending on the values of the coefficients

a; and §8;

damped motion, and overdamped motion. These

. critically damped motion. under-

three types of motion depend on the quantity of
a ?—4 8, corresponding to the i-th oscillator. If

a?—48,<0. this is called an underdamped
system. If @ 2—4 8,=0. this is called a critically
damped system. And if @ 2—4 8,>0. this is called
an overdamped system. Baumgarte normally selected
the values of the unknowns corresponding to the
critically damped motion with values of a;<20.

In order to investigate the variations of the errors
according to the selection of a; and B8; on the
above system, let us define the magnitude of the
errors in the satisfaction of constraints caused by
numerical procedure as

T
El=—%—f\/f0 q1-3a;) %t (20)

and

Te K K
-—Tl—,\/fo ((a,-3a,)%dt. (21

where 7, is 30 seconds.
Figs. 3 and 4 show the variations of E1 and E2
according to the coefficients « and B, where the
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values of a range from 0 to 20 in increments of 2
and the wvalues of A corresponds to the
underdamped. critically damped. and overdamped
system. The minimum value of El occurs at a=20
and A=200, while the minimum value of E2 occurs
at @=18.0 and B=16.2. The parameter values a
and A to minimize E1 and E2 correspond to an
underdamped and an overdamped system, respectively.

bets
ke

Fig. 3. Variation of the magnitude of error 1.

Fig. 4. Variation of the magnitude of error 2.

Fig. 5 compares the error El to be taken by the
values of a=8=0 and @=20, =200 and E2
at the values of a= g=0and =180, A=16.2

To take ==0 becomes the original equation of
motion for constrained systems and the minimum
values of El and E2 do not take the same
coefficient values. From this plot. it is observed that
the action of the additional force by consideration of
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the positional constraints and their first time
derivatives leads to the reduction of the errors. Also.
it is exhibited that the error is not totally damped
out and the reduction of the errors largely depends
on the selection of the parameter values.

Emn

TIME(SEC )

(a)

Error?

e N*ff‘

TIME(SEC )

(b)

Fig. 5. Comparison of the errors according to the
selected parameter values: {(a) Error 1,
(b) Error 2.

With the object of reducing the errors in the
satisfaction of multiple constraints. assume that the
above system is constrained by another additional

constraint
$.=q+ a;+ q;3=0. (22)

Properly differentiating two constraints (7) and
(22) with respect to time t. these constraint equations
in the form (14) can be expressed as
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1l
b—RH-SH=
[ _al(d1_3d2)

{7

\ ] ) _31(01—3(12) (23)
—az(a1+ dst+ as) — B2 a1+ az+ qy)

where the parameters a«,, @;, #,, and B, are

positive values.
Fig. 6 shows the magnitude of the errors defined
by Egs. (20) and (21), and

] T,
E3= T,\/fg (a1t az+ q3)’dt (24)

and

(c)

As shown by Fig. 6. the minimum values of both
El and E2 occurred at the same values of =20 and
A=200. while the minimum values of E3 and Ed
occurs at a=20, §=180 and e¢=18, 8=145.8,
respectively. The difference of Figs. 3 and 6(a), or
Figs. 4 and 6(b) is due to the coupling of dynamical
error equations by the parameters. The errors in the
satisfaction of the i-th constraint are not
independently affected by the parameter values «,

and A, but correlatively. This means that the

error in the satisfaction of each constraint is a

function of all the parameters present. Generalizing
this scheme. the matrices R and S in Eq. (14) are
replaced by

(d)

Fig. 6. Comparison of the magnitude of errors: (a) El, (b) E2, (¢) E3. (d) E4.
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a; ap ' Qm
R=| %2 2=z @ om
am) a2 @ mm

and

Bu B v Bim
s=| Ba Bz v Bl (26)

Bui Buz ~ Bom

respectively.

The dynamical error equations are coupled by the
coefficient matrices, and the matrices are selected
such that the errors are rapidly damped out.

Substituting H= e®U into the dynamical error
equation (14). we obtain

(A*4+R+S)Ue™*=0, 20

where A are eigenvalues. Because U=+0. the
eigenvalues, A, satisfying A°’I+AR+S=0 must be
negative real part so that H—0 with t—oo. It is
convinced that the errors in the satisfaction of
multiple constraints can be reduced by inserting the
positional constraints and their first time derivatives
into the original equation of motion and selecting
the proper coefficient matrices with the eigenvalues
of negative real part.

V. CONCLUSIONS

Most of methods to describe the constrained
motion depend on numerical approaches like
Lagrange multiplier method expressed by differential/
algebraic system. The equation of motion for
constrained systems proposed by Udwadia and
Kalaba has a great advantage to explicitly describe
the constrained motion. However. the numerical
results to integrate the differential equation
gradually veer away the given constraints with time
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as a result that the generalized inverse method was
based on the second time derivatives of positional
constraints. The errors in the satisfaction of
constraints are due to the neglect of the positional
constraints and their first time derivatives. Thus,
starting from the generalized inverse method, this
study presented a numerical method to reduce the
errors by inserting the effects of the positional
constraints and their first time derivatives into the
original constrained equation of motion. The
modified equation of motion for constrained systems
could more precisely describe the constrained motion
by reducing the errors in the satisfaction of
constraints.
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