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And Control of Lagrange Dynamics
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ABSTRACT

In this paper, the Lagrange dvnamics is studied. A state space representation of Lagrange dynamics and
control algorithm based on the state feedback pole placement are presented. The state space model
presented is descriptor type linear parameter dependeni system. It is shown that the control algorithms
based on the linear system theory can be applicable to the state space representation of Lagrange
dynamics. To show that the linear system theory can be applicable to the state space representation of
Lagrange dvnamics, the LMI based regional pole-placement design algorithm is developed and presented by

two examples.
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I. INTRODUCTION

Most of the mechanical systemns and physical
apparatus are modeled by the Lagrange dynamics.
In the robotics literatures, most of researchers on
the control of constrained mechanical systems have
been focused on the systems in which the cons-
trained motion is modeled holonomic constraints.

Since 1980s, the analvsis and control of nonnolo-
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Descriptor System, LPD System, Lagrange dynamics. LMI Region, Pole-

nomic systems have been studied(1].

The Lagrange dynamics are based on the deri-
vatives of energy with respect to time and coor-
dinates. It is known that, for complex systems. the
Lagrange dynamics is easier than the Newton
dynamics[2]. There are various physical systems
which are subject to some constraints and these
constraints should be satisfied during the motion
[3]. And for complex systems, which can be mo-
deled easily by Lagrange dynamics, the model
equation includes highly coupled nonlinear terms.
Because of these reasons, the analysis and control

of Lagrange dynamics svstems is very complex
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and the results of works related to the analysis
and control of Lagrange dynamics systems are
conservative,

In this paper, the Lagrange dynamics is studied.
A state space representation of Lagrange dynamics
and control algorithmbased on the state feedback
pole placement are presented. The state space
model presented is descriptor type linear parameter
dependent svstem. It is shown that the control
algorithms based on the linear system theorv can
be applicable to the state space representation of
Lagrange dynamics. To show that the linear sys-
tem theory can be applicable to the state space
LMI
based regional pole-placement design algorithm is

representation of lLagrange dyvnamics, the

developed andtwo examples are presented.

I1. DESCRIPTER LPD SYSTEM AND
LAGRANGE DYNAMICS

This section summarizes some definitions of
previous works about descriptor svstem and LPD
system. And the Lagrange dynamics are intro-
duced.

2.1. Descriptor LPD System

Before introducing the LPD svstem, we need to
define the set of all admissible parameter trajec-
tories.

Pe R,

the parameter set Fp denote the set of all piece-

Definition 1[4]. Given a compact set

into P
with finite number of discontinuities in any inter-
val.

By the definition 1, the parameter value p,€ Fp

wise continuous functions mapping R

are differentiable with respect to time. It is as-
sumed in this paper that the parameter value is

152

4
bounded, ie.,
lo;|<8 M
The state-space representation of descriptor sys-
tem is
E(p()x(t)= A(o($)x(£) + Blp( 1) ull) o
2)
W)= Clo())x(t)
where, FEeR"”" AeR""  BeR"'" and

CeR%”. And u is p dimensional inputs, y is ¢
dimensional outputs. In this paper, the matnx E is

assumed to be non-singular for all possible

parameter value p;€Fp For DLPD system, the

quadratic is  defined by following

definition.

stability

Corollary 1: The system matrices £ and A are
constant matrices. The system described by equa-
tion (1) 1s quadratically stable if there exist a
positive definite matrix £ and € such that the
following equation is hold.

(AT+ EDYPE+ETR(A+ E)<Q 3)

where, the matrix E is non-singular.

Proof) The proof of this corollary is very simple.
Let 2(H = E(p)x(#, then the system is
28 =(E+ EAE '2()+ EBu(t) (4)

The stability of
holds. And the stability of x(#) ¢ is guaranteed by

the stahility of z(t) (QED).
The controllability and controllability are sum-

is guaranteed by equations (3)

manized by following corollaries.
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Corollary 1. The descriptor system described by
the eguation (1) is controllable if the matrix

E(p)eR™" is nonsingular for all possible o and

rank{ A(p), B(p)] 5)

Corollary 2. The descriptor system described by
the equation (1) is observable if the matrix

E(p)e R™" is nonsingular for all possible p and

rank A(p), B(p)] (6)

These corollaries are important in this paper
because the controller presented in this paper is
based on the state feedback and the system des-
cribed by the equation (2) is assumed to be cont-

rollable and observable.

2.3. Lagrange Dynamics

The Lagrange dynamics are based on the deri-
vatives of energy with respect to time and coor-
dinates. It is known that, for complex systems, the
Lagrange dynamics is easier than the Newton
dynamics. The Lagrange dynamics are derived by
following steps.

Let the kinetic energy of the system be K and
potential energy be P then, the Lagrange matrix is
defined by

K=K-P "N

The Lagrange dynamics are obtained by follow-

ing equations
=2 (8L \_ oL

Fi= a:( 2 q) 7 ®)
=9 (0L oL

Ti=51(354) 36 ©

where, ¢; is a generalized coordinates related to
directional movement and @; is of generalized
coordinates related to revolute movement, And F;
1s sum of all forces related to the directional
movementand 77 is sum of all forces related to

the revolute movement. Now, define the axis of
the generalized coordinate v as

v=[q6]1" (10)

then, equation (8) and (9) are expressed by the
following matrix form

M@)o+ Oy, ) o= B, (v, D —AT()A an

In the equation (11), the matrix M(») is inertia
matrix, O(v, v} is coriolis and centrifugal forces,
Bi{(v,r) is input matrix and A(v) is nxm
Jacobian matrix. The variable A is Lagrange
multiplier the physical meaning of which is
constrained force. Thus, the equation (11) is the
model of physical system with m order constrained
forces.

If. MODELLING AND CONTROL OF
LAGRANGE DYNAMICS

3.1. Constraint Equations on the Lagrange
Dynamics

There are various physical systems which are
subject to some constraints and these constraints
should be satisfied during the motion. The Lag-
range dynamics described by the equation (11)
have m -order force constraints. These constraints
can be represented in matrix form as.
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Ao=0 (12)
And A(v) is made up of the vector functions
a;(v) as follows
A(v)=[a;(v), ax(v), -, ()] (13)
It is clear that A(v), has a full rank for all v,
m then the m constraints are independent. Other-
wise, by proper row-operations of A(v), a new
set of constraints can be found. It is assumed in
this paper that A(w») is a full row-rank, ie, the
systemn has m independent constraints. Then we
can found a set of n-m smooth and linearly inde-
pendent vector fields in the null space of A(w),
dencted by MA). Let S(v) be the full rank
matrix made up of these vectors,
SCo) =[5,(0), 55 (), .5 - ml2)] (14)
Because the matrix S(¢) is made up of vector
fields in the null space of A(w), the following
relation must be hold for all v.
ST(AT(1)=0 (15)
By pre-multiplication of the matrix S7(#) to the

equation (11), we can obtain

SUHIM) o+ SU v, )v=ST(v)B, (v, 1) (16

In order to obtain the state space representation
of the equation (16). let us define the state vari-

ables as
#(f=u(d an
x'_)( t) = U( t)

and parameters as

15

o1(=ut)
oD =0(1)

(18)

The state space representation of the equation
(16) 1s

E(p() x(8) = A(p(D)x(H + Blo( D)) u(H
W= Clp(D)x(1)

(19

where

E@);:[é S(p)gll(p)]’ A(p):{é ”S(B)C(p)]

2 p):[ S( p)%L(p)]

If we select the outputs as velocities o(f) then
the output eguation is
WH=Clpx(H=10 Ilx(#H (20)

The equation (19) and (20) is the DLPD system
for Lagrange dynamics.

3.2. Controller Structure

The most important control strategy of physical
systems is reference tracking. To achieve this
objective, the control structure is shown by Fig. 1.
In Fig. 1, parameters in the block are all para-
meter dependent. It i1s shown in Fig.l that the
controller has two control parameters one of which
is state feedback and the other is control gain
with integrator. The input signal is described by

u(t)=— Flolx(D)~ K(p) [ et 21

where F(p) is a parameter dependent state feed-

back gain matrix and K{( b) is a integrator gan
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Fig. 1. Controller structure

matrix. Note that because of controller parameters
Fp) and K(p) are time-varving parameter
dependent, it is very complicated and complex to
computing controller gains. In order for obtain
controller gains F(p) and K(p), it is needed to
simplify control inputor controller structure. The
new state x,., can be defined at I in the Fig. 1.

Then the dynamic equation becomes

[E(%(t)) (1)][ o) [A(p(t)) 0 [xx(t) ]

xn+[(t) C O n+l(t)
B(p) 0
[ 207 o+[ 9o
(22.a)
HO=[Cp) m[x{(]‘gﬂ (22b)

and, the control input is

KD =[Fp) K@”[x"fﬁo (23)

It is known by the equation (23) that the control
input is state feedback for the system described by
the equation (22). The closed loop dynamics is

[E(p(l)) 0][ =D ]= [A(p)—»B(p)F(p) —B(P)K(p)]
0 oL ox... () - (p) 0
el [0
(24.2)

KD =[C(p) 01[ xx(fgt) (241b)

By substituting parameters in the equation (19)
into the equation (22.3), we can obtain the state
space representation of Lagrange dynamics as

I 0 0 » 0 I 0 v
‘0 S(o)M(0) 0 [ v =10 -S(p)Xp) 0 { v
0 0 1 Xyl 0 -1 0 Xyt
0 0
+| S(e)Bilp)jut| 0|7
0 I
(25.a)
y=00 7 0l[v o x..)" (%5b)

And by substituting parameters in the equation
(19) into the eguation (24.a) and (24b), we can
obtain the state space representation of closed loop
Lagrange dynamics as

Ec(o(0) )= A ()3 ) + Ber (o N (1)
WO =Ceq{p(D)x(t) (26)

where, x()=[v ¢ x,.,]” and

1 0 0
Eq(p)=|0 S(p)M(p) 0
0 0 1
0 1 0
A(‘L(P)= —BLFl(p) 'S[C+BILF2](P) ‘SBSK(P)
0 —

Ba=[0 0 07 Cqlo I 0)

The equation (26) shows the closed loop poles of
the Lagrange dynamics is the eigen-values of the

matrix EZ'A . The algorithm obtaining controller
gains F(p) and K(p) is derived following sub-

section.

3.3. Regional Pole Placement of Lagrange
Dynamics
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The LMI region is defined following definition{5].
Definition 1. LMI regions are convex subset D of

the complex plan characterized by
D={ze C:L+Mz+M'2") @7

where M and L are fixed real matrices, and 2

and 2z are complex valued scalar and its complex

conjugate pair. The matrix valued function
fl2)=L+Mz+M"2* (28)

is called the characteristic function of the region
D.

Following tree theorems describe the regional
pole-placement conditions and the main results of
this paper.

Theorem 1[5): The closed loop poles lie in the
LMI region D

D={ze C:L+Mz+M'2") (29)
where,

L=LT=[/1,}]lg M=[my]

Jok=m? 1</ k<m

if and only if there exists a symmelric matrix X

satisfying following inequalities.

[Ale+ "lijCLX+ mk,-A&]lg).'kgm<0
X>0 (30

Proof) Proof of this theorem is omitted and refer
Chilali and Gahinet's work {5} (QED).

We are now state a local pole placement. The

i-th parameter ©; is sampled by k which denoted
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as pf Let M ' (E,A.B,C) be the model
obtained by substituting the first parameter values
as i-th sample, the second parameter as j-th
sample, etc. And select a function u(p"" ') a
local convex function, then the model can be

approximated by
M) =M, p)+ 2 M(p) (3l.a)

,u(p:,i,--gl)Ml.;. “'I+/1(p‘ 1,;‘,v-».l)M: I AR

M (o)=| +ulp"’ Loy ppir 1o

+ cdos+ (e Hmer!
(3l.b)

where

ﬂ(pi.)."',l)_}_#(pr l.i.“'.’)+#(pl'.f*1."'.1)_+_
_ (32)
ek p(ptt ) =1

The approximation described by the equation
(31.b) is reasonable because the parameter value is
assumed to be continuous function of time and
parameters{velocities) of the Lagrange dynamic
systemn can be measured. For appropriately selected
function (""", which is a convex function
between [(i).1)~(i-1,.1}]. the approximation error is
small enough. The following theorem states the
algorithm of obtaining the controller gain matrix

for M~ (E, A,B, Q).

Theorem 2 For M“" "' (E,A.B, Q). the closed
loop poles lie in the LMI region D

D={ze C: L~ Mz+M"z")
where,

L=LT=[/1ik]l</,k',\m . M:[mik]lq,kgm



Lagrange S2{3t4l2] DLPD AlA8 22l 3 Xof

if and only if there exists a symmetric matrix X
satisfying following four inequalities.

(X + ma Al X+ mu A )T ]y om0
X0 (33

Proof) Proof of this theorem is simple extension of
theorem 1. QED

Theorem 2 states the local regional pole place-
ment of the M"* "' (E,A,B,C). Because the
equation(33) is not convex, we cannot obtain the
controller gain matrix. Define Y*/*"' & Fiid x
then conditions of local pole placement is summa-
rized by theorem 3.

Theorem 3. The closed loop poles lie in the LMI
region D if and only if there exists a symmetric
matrix X satisfying following inequalities.

(Ei./.'“.l) 'Al,i‘-' Ay
+(En./,---.l)’IBL/."-.IY'.J.‘",I) <0
(E"" '.l) le./.“'.lX T it
+ (Ei,j,"-.l) 1B.,/,‘ N Y-; '.I)

X>0 (35)

A ibX + mlt(

+m,,,(

Then the i-th state-feedback gain matrix is
[Fi'i"“'l K"‘l'“.'l]= Yl‘vl,’“.IXil (%)

Proof) The proof of this theorem is very simple
extension of the results of Chilali and Gahinet’s
work [5] (QED).

The theorem 2 and theorem 3 show the local
regional pole-placement condition and the way of
finding local controller gains. The global pole-
placement condition and global controller gain can
be achieved by using approximated plant. In order
for global pole-placement, the control input, made
up of local controller gain, is selected by

ﬂ:.iﬁ“.f(p)Fx.l.“'.l +pi‘L],"',I(p)l‘v’—l.l.“-.l
wl(f)=— . . . x( D)
PR RTINS A TN A (p)Fi 11
;‘X.}."'.I(P)Kl.]."‘.:' +lli-l"" "(P)K‘kl'l' el
, , v [enar
U QYR TI p ed IL (py p e d
(37

By noting the equation (37), the controller gain
is made up of local controller gains and which is
convex combination of local controller gains bet-
ween [(ij)~(i-1j,D]. The following theorem states
the global regional pole-placement.

Theorem 4. Assume that the plant model is
approximated by the equation (31) and local
controller gains are obtained by the equation (36)
for all parameter sampled points. Then the closed
loop poles are lain in the desired region.
Proof). The proof of this theorem is very simple
extension of the results of Chilali and Gahinet’s
work (QED).

The theorem 4 states the global global-place-
ment condition and controller design procedure is
summarized as 1) sampling model 2) design local

controller 3) combine it.

IV. EXAMPLES

In this section we show an example which is
inverted pendulum system. Inverted pendulum sys-
tem is shown Fig. 2 and its dynamic equation is

(J+ mi®) 8+ mIcosﬁi: mglsin =0 (38)
micos§ 0+ Mx—ml 8 siné=F

Matrix form of dynamic equation is,
sty ™ N2 e S L 21 R )57
Because the angle @ is measurable, we can
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Fig. 2. Inverted pendulum

select parameter value as

py=cos 8, py=sinb, p,= 4.

The state space realization is

M 0 micos®
0 1 0

x
.18
micos@ 0 j+4 mi* 8

00
3’00 1
00 /

Table 1 is the result of pole placement algorithm
for possible parameter values. The parameter value
is selected as the range

s S

6 << 6

In the Table 1, the state feedback gains are
shown for each sampled parameters. As shown in
the table, state feedback gains are similar. These

similarities are due to the structure of the plant.

Table 1. State feedback gains

158

V. CONCLUSION

In this paper, the state space model of the
Lagrange dyvnamics is presented. The presented
state space model is descriptor type linear para-
meter dependent system. Main result of this paper
is that the easyv way of treating the Lagrange
dvnarics is developed and controllerdesign algori-
thms in the linear system theory can be applicable
to the Lagrange dynamics by using the presented
state space model. Because of uncontrollable modes
which included in state-space modeling, some con-

servatism is exist.
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