J. of Basic Sciences, Cheju Nat'l Univ.
15(2), 19~26, 2002

J|Enetel? HEUHET
15(2), 19~26, 2002

Analysis of 12C + '2C Elastic Scattering at E,, = 360 MeV Using
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We analyze the '>C + '2C elastic scattering at Eja, = 360 MeV using the second-order eikonal
model. The Fraunhéofer oscillations observed in the elastic scattering angular distributions could be
explained due to the interference between the near- and far-side amplitudes. The elastic scattering
pattern at large angles was dominated by the refraction of the far-side trajectories. The strongly
real and a rather weakly imaginary optical potentials are required to describe the experimental
data. The calculated effective potential shows drastic difference compared to ordinary potential in

the small r values.

I. INTRODUCTION

In recent years, our understanding of the
main features of the nuclear optical poten-
tial for light heavy-ions has advanced enor-
mously. In the description of heavy-ion col-
lisions, the strongly absorptive interaction is
usually present. However, the data from the
light heavy-ion system such as '2C + 12C and
16Q) 4 180 ghow in their angular distributions
refractive features which are interpreted as
the dominance of contributions from the far
side of the scattering center. The refractive
phenomena seen in the light heavy-ion elas-
tic scattering angular distributions uniquely
determine the major features of the optical
potentials.

A number of studies [1-8] have been made
to describe the refractive scattering between
the light heavy-ions. Shallow imaginary po-
tentials are found to be essential to describe
various sets of elastic scattering data for 12C
+ 12C and 190 + '2C systems at intermediate
energies [1]. Brandan and McVoy (4] made a
systematic study of the optical potentials for
light heavy-ions. They made several inter-
esting observations, especially on the char-
acteristics of the ratios of the imaginary to
real parts of the optical potentials and of the
imaginary to real parts of the phase shifts.
Ingemarsson et al. [3,6] have discussed the
effects of the real potential on the absorption
of light heavy-ion using the ”effective poten-
tial”.

The eikonal approximation [9,10] is widely
used for the description of the heavy-ions
elastic scattering. There are several efforts
[11-13] to describe elastic scattering processes
between heavy-ions within the framework of
the eikonal approximation methods. Aguiar
et al. [13] has discussed an extended eikonal
model to the regime of low bombarding ener-
gies in heavy-ion collisions. In a recent paper
[14], we have presented the first- and second-
order corrections to the zeroth-order eikonal
phase shifts for heavy-ion elastic scatterings
based on Coulomb trajectories of colliding nu-
clei and it has been applied satisfactorily to
the 10 + %0Ca and '°0 + %9Zr systems at
E.,=1503 MeV. The elastic scattering cross
sections of '2C + !2C system at Ejp= 240,
360 and 1016 MeV were analyzed [15] using
the first-order non-eikonal phase shifts.

Buenerd et al. [16] have measured the elas-
tic scattering of 1*C + 12C system at Ejp =
360 MeV and analyzed it using the optical
model. In this paper, we reproduce the 12C +
12Q elastic scattering Fip = 360 MeV within
the framework of the second-order eikonal
model based on the Coulomb trajectories of
colliding nuclei. The effects of real potential
on the absorption are also discussed. In sec-
tion II, we present the theory related with
the second-order eikonal model. Section IIT
contains the results and discussions for the
second-order eikonal model analysis. Finally,
concluding remarks are presented in section
Iv.
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II. THEORY

The eikonal expansion of the phase shift
function 4., as a power series in the strength
of potential possessing spherical symmetry, in
the distance of closest approach r. represen-
tation is given in the following compact form
(14):

1

)

2

bu(re) = Y 63(re),
n=0

where

K/ (Rk)*]™*1

(n+1)lr2n
00
/ U™ (r)dz
°
with r = /r2+22. And p is the reduced

mass and the distance of closet approach r,
is given by

d
8i(re) = - [rcz (1 +rcd'—'c

' 1 1.,11/2
re= ¢ {n+ [n’ +(L+ §)"] } (3)
with the Sommerfeld parameter 1.

The zeroth-order term in this expansion is
the ordinary Coulomb-modified eikonal phase
shift function, while the corrections given by
higher-order terms correspond to non-eikonal
effects. The expressions for the first three

terms in Eq.(2) are explicitly [14]
o) = 4 [TU0) as, @
Bhire) = - ;jks (14+rea / U?(r)dz(5)
3
8 = - (3+ 5rc -+ rfdrz)
/o ") dz. ©6)

The first- and second-order eikonal correction
terms of the phase shift, 6} (r.) and 6% (r¢) in
Eqs. (5) and (6) , can further be expressed
as following

dU(r )] dz,

(7)

2

8i(re) = s

/ [Uz( r)+rU(r)
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+21rU’7F + 8U3] dz. (8)

The closed expression of the effective phase

shift function including up to the second-
order correction term may be written as

bufr) = - / Ua(dz, (9)

where Uyg(r) is the effective optical potential
given by

Uet(r) =U U U
() { * ‘+6rx‘k4 ’}

(10)
with
dau
U = U+rdr (11)
U = 3r’U‘P—U+6r’( )2+21rU§ +8U2.
(12)

We can see that the phase shift calculation
including non-eikonal corrections up to the
second-order is equivalent to a zeroth-order
calculation with effective potential Ueg(r).
By taking U(r) as the optical Woods-Saxon
forms given by

_ Vo . Wo
U0 = —TraeRre ~ Tra—mje
(13)
with R, o, = r,,,,,,(Ai/a + A;/:’), we can use

the phase shifts, Eqs.(4)-(6) in the general ex-
pression for the elastic scattering amplitude.
The elastic scattering cross section is then ob-
tained from the scattering amplitude
1) = O + £ Z(L + )E"P(2'0L)
kis
(S — 1)Pi(cosf) (14)

where fr(0) is the usual Rutherford scatter-
ing amplitude, k i8 the wave number and
o the Coulomb phase shifts. The nuclear
S-matrix elements SY can be expressed in
terms of nuclear phase shifts d;, given by

SP = exp(2i6L). (15)
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TABLE I: Parameters of the fitted Woods-Saxon
potential from the second-order eikonal model for
120 4 12C gystem at Eip, = 360 MeV.

Vo Ty .23 Wo o O
(MeV) (fm) (fm) (MeV) (fm) (fm)

188 0661 0816 353 0.980 0.706

III. RESULTS AND DISCUSSIONS

The measured angular distribution [16] for
12C 4 13C elastic scatterings at Ey,= 360
MeV is given as the ratio of the experimen-
tal cross section to the Mott cross section.
This data exhibit a typical Fraunhdéfer diffrac-
tion pattern at small scattering angles fol-
lowed by an exponential fall-off at large an-
gles. The analysis has been carried out us-
ing the second-order eikonal model formalism
based on Coulomb trajectories of colliding nu-
clei. Woods-Saxon potential parameters were
adjusted to obtain the least x?/N fit to the
elastic scattering data. The potential param-
eter sets obtained from second-order eikonal
model fit to the data at 360 MeV are listed
in table I. The calculated results of the dif-
ferential cross sections for the elastic scat-
tering of 12C + 12C system at Ey,,= 360
MeV are depicted in Fig. 1 together with
the observed data [16]. In Fig.1, the dotted
curve is the result for the zeroth-order eikonal
phase shift, while the dashed and solid curves
are the results for the first- and second-order
corrections. As seen in this figure, the dif-
ferences between the dotted and dashed and
solid curves are substantial when compared
to the experimental results. The second-
order eikonal model reproduce the character-
istic refractive pattern observed experimen-
tally. Three calculated angular distributions
are nearly identical at forward angles but are
qualitatively different at large angles. As
a whole, our calculations lead to reasonable
predictions over the whole angular range for
the elastic scattering data in the !2C + 12C
system at Ej,= 360 MeV. The reasonable
x2/N value in the second-order eikonal model
is also obtained as listed in table II.

In Figure 2, we plot the transmission func-
tion T as a function of angular momentum

TABLE II: Strong absorption distances (R,/z),
reaction cross sections (og) and x?/N values
from the second-order eikonal model analysis for
12C + '2C system at Ea = 360 MeV. 10 % error
bars are adopted to obtain x*/N values.

Ry O';z OR Xz/N
(fm) (mb) (mb) &6 do +d1 S0+ 61 + 4
6.19 1204 1245 10.71 3.68 2.68

L, along with the partial reaction cross sec-
tion. As shown in Fig. 2(a), the lower par-
tial waves are totally absorbed and the T, is
decreased very rapidly in a narrow localized
angular momenta zone. The T, distribution
can be used to define the strong absorption
distance R,/;, a quantity which character-
izes the system with respect to strong absorp-
tion. The R,;;; value in table II is the dis-
tance of closest approach for which Ty, = 1.
For internuclear distances smaller than R,
the absorption dominates, whereas for values
larger than R, /, partial waves are mostly de-
flected in the elastic channel. We can see
that the strong absorption distance provides

FIG. 1: Elastic scattering angular distributions
for '2C + '2C system at Ejp = 360 MeV. The
solid circles denote the observed data taken from
Buenerd et al. [16]. The dotted, dashed and
solid curves are the calculated results for zeroth-
, first- and second-order eikonal corrections, re-
spectively.
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FIG. 2: (a) Transmission function T and (b)
partial reaction cross section o, from the second-
order eikonal model for !2C + '2C system at E),;,
= 360 MeV.

a good measurement of reaction cross section
in terms of o = xR},,. We found in Fig.
2(b) that the value of the partial wave reac-
tion croes section increases linearly up to L =
36. Beyond this L value, the partial reaction
cross section decrease quardratically.

More realistic insight into the diffractive
and refractive phenomena can be provided
by the representation of the elastic scattering
amplitude in terms of the near-side and far-
side components. The near-side amplitude
represents contributions from waves deflected
to the direction of 8 on the near-side of the
scattering center and the far-side amplitude
represents contributions from waves traveling
from the opposite, far side of the scattering
center to the same angle §. The near- and
far-side decompositions of the scattering am-
plitudes with the second-order eikonal model
for '2C + !2C system at Ejp,= 360 MeV,
were performed by following the Fuller’s for-
malism [17]. The contribution of the near-
and far-side components to the elastic scat-
tering cross sections is shown in Fig.3 along
with the differential cross sections. The dif-
ferential cross section is not just a sum of
the near- and far-side croes sections but con-
taing the interference between the near- and
far-side amplitudes as shown in Fig.3. At
small angles the near-side amplitude dom-
inates, corresponding to the positive-angle

FIG. 3: Differential cross sections (solid curves),
near-side contributions (dotted curves), and far-
side contributions (dashed curves) following the
Fuller’s formalism [17] from the second-order
eikonal model.

trajectories. At these angles the far-side con-
tribution i8 very small, but increases with
the angle whereas the near-side amplitude de-
creases. The Fraunhéfer diffraction pattern
at intermediate angles where two amplitudes
are of comparable magnitudes, is due to the
interferences between the near- and far-side
contributions. The magnitudes of the near-
and far-side contributions are equal, crossing
point, at 8 = 7.3°. However, the elastic scat-
tering pattern at large angles is dominated by
the refraction of the far-side trajectories and
carries important information on the interac-
tion potential between the heavy-ions.

In order to illustrate the effect of higher-
order non-eikonal corrections, we plotted in
Fig.4 both the real and imaginary parts up
to the second-order effective potential U.g(r)
given in Eq.(10). As shown in figure 4(a),
drastic changes in real parts of effective po-
tential was noticed, especially in the cen-
tral region of the nucleus. It is seen that
the effective potential of second-order eikonal
model increases the depth of the real part of
the optical potential in small r values com-
pared to one of the first-order eikonal model.
While in case of imaginary potential, there is
a dramatic differences between three poten-
tial as shown in figure 4(b). In the ordinary
eikonal model, the shape of imaginary poten-
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FIG. 4: (a) Real and (b) imaginary of ef
fective optical potentials fo?agc + Pza‘(‘l;‘s’sysbem
at Eip = 360 MeV. The dotted, dashed and
solid curves are the calculated results for zeroth-
, first- and second-order eikonal corrections, re-
spectively.

tial should not be affected by the real part.
In the first-order eikonal model, the effective
imaginary potential depends on the product
of the real and imaginary potentials and their
derivatives. The result of eikonal correction
increases the imaginary potential at small val-
ues of r. However, in second-order corrections
this simple picture is no longer valid since
the imaginary part is rather a complicated
function of both the real and imaginary parts
of optical potential. The effective imaginary
potential displays pronounced minimum and
maximum values. The pronounced minimum
value of imaginary potential for the second-
order eikonal model displaced towards the
right as compared to value of the first-order
one, while its depths were almost equal.

Figure 5 shows the angular momentum
dependence of real and imaginary parts of
zeroth-, first- and second-order eikonal phase
shift. The effective potentials in the small r
regions are also reflected in the phase shift
function through the inverse eikonal relation-
ship. The real phase shifts of first- and
second-order corrections are shifted toward
the right compared to one of zeroth-order
eikonal phase at the large values of L. How-
ever, we can also find the dramatic variations
of imaginary phase shifts for the non-eikonal
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FIG. 5: (a) Real and (b) imaginary parts of ef-
fective phase shifts for '2C + '*C system at Ejap
= 360 MeV. The dotted, dashed and solid curves
are the calculated results for zeroth-, first- and
second-order eikonal corrections, respectively.

corrections, as expected. Zeroth-order imag-
inary eikonal phase shift decrease monotoni-
cally as L increase. On the other hand, first-
order effective phase shift shows one broad
maximum near L = 18. While the second-
order eikonal one exhibit somewhat oscilla-
tory structure. We can see in the second-
order eikonal model that an absorption of
partial waves for large L increases, while the
absorption decreases until to the broad min-
imum and increases again at small L values.
The strong absorption in the nuclear surface
plays a dominant role to the scattering am-
plitude and thus to the characteristic diffrac-
tion pattern of the angular distribution. The
large-angle behavior is sensitive to the details
of the real optical potential over a wide radial
region from the nuclear surface towards the
interior.

Figure 6 show the ratio of the imaginary to
real parts of the optical potentials and phase
shifts, respectively. For small r values, imag-
inary potential of second-order eikonal model
is very weak compared to real potential over
the small r range. Such a potential feature
is responsible for large angle cross sections.
So to speak, the strong real potential make
it possible to deflect internal trajectories to
large negative angles. We can see that the re-
fractive part, dominated by the far-side com-
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FIG. 6: Ratio of imaginary to real parts of ga.)
optical potentials and (b) phase shifts for *
+ 12C system at Eiap = 360 MeV. The dotted,
dashed and solid curves are the calculated results
for zeroth-, first- and second-order eikonal correc-
tions, respectively.

ponent of the scattering amplitude, is related
with the deep real heavy-ion optical poten-
tial. In the large r ranges, both real and
imaginary potentials have exponential tails.

The peak values of the potential ratios in-
crease as the orders of non-eikonal corrections
are higher. Phase shift ratio show a similar
structure with the potential ratio, as shown
in Fig. 6(b). As expected, the imaginary
phase is small in the small L values, com-
pared to real one due to characteristics of
effective potential. Such a behavior of the
phase shift in the small L ranges is responsi-
ble for large angle cross sections which are di-
rectly related with the deep real part of opti-
cal potential, and corresponding trajectories
are penetrating the nuclear interior. Similar
to potential ratio, the pronounced maximum
of phase shift ratio is existed. The height of
peak values of phase shift ratio increase as
the higher-order non-eikonal corrections are
increase. Both real and imaginary potentials
have exponential tails in the large L ranges.

IV. CONCLUDING REMARKS

In this paper, we have analyzed the elastic
scattering of 12C + 12C systems at Figp= 360

MeV using the second-order eikonal model
based on the Coulomb trajectories of colliding
nuclei. The calculated result leads to a rea-
sonably good agreements with observed data.
We can see that the strong absorption dis-
tance provides a good measurement of reac-
tion cross section in terms of g = 1rR1 5 We

have also found that the value of the pa.rtlal
wave reaction cross section increases linearly
up to L = 36. Beyond this L value, the partial
reaction cross section decrease quardratically.
Through near- and far-side decompositions of
the cross section for '2C + !2C system, the
Fraunhofer oscillations at intermediate angles
are due to the interference between the near-
and far-side amplitude. The elastic scatter-
ing pattern at large angles was dominated by
the refraction of the far-side trajectories.

We found that the strongly real and a
rather weakly imaginary optical potentials
are required to describe the experimental
data and this potential features make it pos-
sible to interpenetrate each other between
the projectile and target nuclei. The ef-
fective imaginary potential in second-order
eikonal model displays pronounced minimum
and maximum values. The pronounced min-
imum value of imaginary potential for the
second-order eikonal model displaced towards
the right as compared to value of the first-
order one, while its depths were almost equal.
The first-order effective imaginary phase shift
shows one broad maximum near L = 18. On
the other hand, the second-order eikonal one
exhibit somewhat oscillatory structure. We
can see in the second-order eikonal model
that an absorption of partial waves for large L
increases, while the absorption decreases un-
til to the broad minimum and increases again
at small L values. Phase shift ratio show
a similar structure with the potential ratio.
The height of peak values of potential ratio
and phase shift ratio increase as the orders
of non-eikonal correction are increase. The
imaginary potential of second-order eikonal
model is very weak compared to real poten-
tial over the small r range. Such a potential
feature is responsible for large angle cross sec-
tions. The strong real potential make it pos-
sible to deflect internal trajectories to large
negative angles. As a result the projectile ion
can penetrate the nuclear surface barrier of
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the target, and the cross section becomes sen-
gitive to the value of the real potential at the

small r values.
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