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Abstract

An n x n matrix A over a chain semiring K is called regular if there exists
an n x n matrix G over K such that AGA = A. We study the problem of
characterizing those invertible linear operators T" on the matrices over K such
that T(X) is regular if and only if X is regular.
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1 Introduction

A semiring ([4]) consists of a set S and two binary operations on S, addition(+)
and multiplication(-), such that:

(1) (S,+) is an Abelian monoid (identity denoted by 0);

(2) (S,-) is a monoid (identity denoted by 1);
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(3) multiplication distributes over addition;

(4)s-0=0-s=0forall s €S; and

(5) 1 #0.

Usually S denotes both the semiring and the set. Thus all rings with identity
are semirings.

One of the most active and fertile subjects in matrix theory during the past one
hundred years is the linear preserver problem, which concerns the characterization
of linear operators on matrix spaces that leave certain functions, subsets, relations,
etc., invariant. Although the linear operators concerned are mostly linear operators
on matrix spaces over some fields or rings, the same problem has been extended to
matrices over various semirings([2, 10] and therein).

Regular matrices play a central role in the theory of matrices, and they have
many applications in network and switching theory and information theory((3, 4, 7]).
Recently, a number of authors have studied characterizations of regular matrices over
semirings([1, 3, 4, 7, 8]). But there are no known results on characterizing those
linear operators that (strongly) preserve regular matrices over semirings.

In this paper, we study the invertible linear operators that preserve regular

matrices over chain semiring including the Boolean algebra and the fuzzy scalars.

2 Preliminaries
Let B = {0,1}, then (B, +,) is a semiring (the Boolean algebra) if
0+0=0:-0=0-1=1-0=0 and 141=1-1=1.

Let K be any set of two or more elements. If K is totally ordered by < (i.e.,
T <yory <z for all distinct elements z,y € K), then define z + y and Ty as

T +y=max(z,y) and zy = min(z,y)

for all z,y € K. If K has a universal lower bound and a universal upper bound, then
K becomes a semiring, and called a chain semiring. The following are interesting

examples of a chain semiring.
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Let H be any nonempty family of sets nested by inclusion, 0 = N;epz, and
1 =Uzenz- Then S =HU {0,1} is a chain semiring.

Let a,w be real numbers with & < w. Define S = {§ € R : a < 8 < w}.
Then § is a chain semiring with & = 0 and w = 1. It is isomorphic to the chain
semniring in the previous example with H = {[e, 8] : @ < § < w}. Furthermore,
if we choose the real numbers 0 and 1 as a and w in the previous example, then
F={8:0<pB<1}is called fuzzy semiring.

In particular, if we take H to be a singleton set, say {a}, and denote @ by 0
and {a} by 1, the resulting chain semiring becomes the binary Boolean algebra
B = {0, 1}, and it is a subsemiring of every chain semiring.

Let M,(K) denote the set of all n x n matrices with entries in a chain semring
K. Algebraic operations on M, (K) and such notions as linearity and invertibility
are also defined as if the underlying scalars were in a field.

The matrix I, is the n x n identity matrix, J, is the n x n matrix all of whose
entries are 1, and O, is the n x n zero matrix. We will suppress the subscripts on
these matrices when the orders are evident from the context and we write I, J and
O, respectively. For any matrix A, A! is denoted by the transpose of A. A zero-one
matrix in M,(K) with only one equal to 1 are called a cell. If the nonzero entry
occurs in the i** row and the j*® column, we denote the cell by E; ;.

A matrix A in M,(K) is said to be invertible if there is a matrix B in M, (K)
such that AB=BA=1.

The notion of generalized inverse of an arbitrary matrix apparently originated
in the work of Moore (see [6]). Let A be a matrix in M, (K). Consider a matrix
X € M,(K) in the equation

AXA= A (2.1)

If (2.1) has a solution X, then X is called a generalized inverse of A. Furthermore
A is called regular if there is a solution of (2.1).

Clearly, J and O are regular in M,,(K) because JGJ = J and OGO = O, where
G is any cell in M, (K). Thus in general, a solution of (2.1), although it exists, is
not necessarily unique. Characterizations of regular matrices over semirings have
been obtained by several authors([1, 3, 4, 7, 8]). Furthermore Plemmons [7] have
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obtained an algorithm for computing generalized inverses of Boolean matrices under

certain conditions.

The following Proposition is an immediate consequence of definitions of regular

matrix and invertible matrix.

Proposition 2.1. Let A be a matriz in M,(K). IfU and V are invertible matrices
in M, (K), then the following are equivalent:

(i) A is regular in M,(K);
(ii) UAV is regular in M, (K);
(iii) A* is regular in M, (K).

Also we can easily show that for a matrix A € M, (K)
. . .| A O],
A is regular if and only if o B is regular (2.2)

for all regular matrices B € M, (K). In particular, all idempotent matrices in
M, (K) are regular. Let

1 1 1 0]
1 1
An =[Nyl = oot € Mp(K).
11
- 1_

Then the following Proposition shows that A, is not regular for n > 3.
Proposition 2.2. A, is regular in M, (K) if and only if n < 2.

Proof. Clearly A, is regular for n < 2 because A, I, A, = A,.

Conversely, assume that A,, is regular for some n > 3. Then there is a nonzero

n-1 n
B € M,(K) such that A, = A,BA,. From 0 = A\, = > > b;;, all entries of

i=1 j=2
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the 2% column of B are zero except for b, 2. From 0= Az; = Z b;,, all entries of
=2

the 1% column of B are zero except for ;1. Also, from 0 = A3z = Z Z b; j, we

. 1=3j=1

have b, ; = 0. If we combine these three results, we conclude that all entries of the
2

first two columns are zero except for by 1. But then 1 = A22 = Z Ybij=0a
i=2j=1
contradiction. Hence A, is not regular for all n > 3. O

The (factor) rank, fr(A), of a nonzero A € M, (K) is defined as the least integer
r for which there are B € M, (K) and C € M, 4(K) such that A = BC, see ([2))-
The rank of a zero matrix is zero. Also we can easily obtain

0 < fr(A) < min{m,n} and fr(AB)< min{ fr(A), fr(B)} (2.3)

for all A € M,(K) and for all B € My (K).

Lemma 2.3. Let A be a matriz in Mq(K) with fr(A) = 1. Then A is regular.

Proof. Since fr(A) = 1, there exist permutation matrices P and Q such that
al-‘

a,

PAQ=| "Iy - 5,0 - 0],

0

- -

where0 <a; <---<arand0< by <--- < b, Letm = max{a,,b,}. Then we
have (PAQ)(mJ)(PAQ) = PAQ so that PAQ and hence A is regular. O

The number of nonzero entries of a matrix A is denoted by |A|.

Corollary 2.4. Let A be a matriz in Mn(K) with |A] < 2. Then A is regular.

Proof. If |A] = 0 or 1, clearly A is regular because AAIA = A If |A| = 2, by

Proposition 2.3, we may assume fr(A) = 2. Furthermore, by Proposition 2.1, we
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B 0
may assume A = , where B = ¢ with ab # 0. Then we can easily
0O O 0 b

show that A is idempotent and hence A is regular. O

1 5
If A= [ 5 0 J € M;(F), then the below Proposition shows that A is not

regular.

Lemma 2.5. Let A be a matriz in My(K) with |A| = 3. Then A is regular if and

only if there exist permutation matrices P and Q, and nonzero a,b,c € K such that

b
PAQ = “ 0}, wherea<b<corb<a<ec.
c
Proof. (<=) Suppose that there exist permutation matrices P and @, and nonzero
b
a,b, c € K such that PAQ = N ol wherea < b < corb < a < ¢ Then we have
c
b 01 b b
N ¢ = . By Proposition 2.1, A is regular.
c 0 10 c 0 c 0
b
(=) Let A be regular. By Proposition 2.1, we may assume A = [ ¢ 0 } , where
: c
abc # 0 and b < c¢. Thus, there exists a nonzero matrix G = | ~ 7 such that
z w
AGA = A so that )
az + abz + acy + bw abz + bz _|a b | (2.4)
acz + cy bx “leo | ' '
From bz = 0, we have = 0 and hence (2.4) becomes
abz + acy + bw bz _le b . (25)
cy 0 c 0

If a < b, then we are done. Assume b < a. If ¢ < a, then we have abz + acy + bw =
bz + cy+bw < b+ ¢ < a. This contradicts (2.5). Hence we have a < ¢ and so
b<a<e a
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Lemma 2.6. Let A be a matriz in M3(K) with |A| = 4. Then A is regular if and
only if there erist permutation matrices P and Q, and nonzero p,q,7,s € K such
. that the form of PAQ is just one of the following:

P q
(1) ;
-p -
(2)'p q,wherquporrgp;
r.p_ ’ B
(3)'Lp , wherep<qg<randp<s<r withqg#s.
r s

Proof. (<) (1) Let X = [p q]. Without loss of generality, we may assume g < .
pr . , : :

01
If p< q<r,then XGX = X, where G = ) .Ifg<p<rorqg<r<p,then

1
X is idempotent. Hence X is regular and so A is regular.
(2) Let Y = P , where ¢ > p or 7 < p. Without loss of generality, we
T p

' 01
may assume ¢ < 7. If r < p, then Y is idempotent and if ¢ > p, then [1 0] Yis

idempoteﬁt. Hence Y is regular so that A is regular.

P q , where p < ¢ < 7 and p < s < r with ¢ # 5. Then we have
T S

01
P g Pl _ 1P 9 5 that Z is regular. Therefore A is regular.
r s| |1 Of|r s T S

(3) Let Z =

(=) Let A be regular. First suppose that all entries of A are distinct. By

P gq
T S

Proposition 2.1, we assume A = with p < ¢ < r and p < s. Since A is



Kyung-Tae Kang

z
regular, there exists a nonzero matrix G = [ y] such that AGA = A so that

z w
_|P 9
T S

If s > r, from the (2,2)*® entries of AGA and A, we have w > s. Therefore the
(1,1)* entry of AGA is ¢, a contradiction. Hence s < 7 and so (3) is satisfied.
Next, suppose that at least two entries of A are same. By Proposition 2.1, we

plx+y+2)+qu p(z+y)+q(z+w)
plz+2)+r(y+w) qglz+2z)+ry+sw

loss of generality in assuming that

A=[” "] or A=[P "].
pr rop

P q] , without loss of generality,
T p
we may assume ¢ < r. Suppose neither ¢ > p nor 7 < p. Then we have g <p <.

If A is the former form, then (1) is satisfied. If A =

x
Since A is regular, there exists a nonzero matrix G = Y| such that AGA=A
Z w

so that

[p(z+y) gz +z +w) +py} _r q]
ry p(y + w) r p|

From the equality of (2,1)'" entries of AGA and A, we have y > r. But then the
(1,2)** entry of AGA is p, a contradiction. Hence g > p or 7 < p. This shows that
(2) is satisfied. O

3 Invertible regular preservers

In this section, we have characterizations of invertible linear operators that pre-
serve regular matrices over chain semiring K including the fuzzy scalars F.

A mapping T : M,(K) — M,(K) is called a linear operator if T(aA + bB) =
aT(A) + bT(B) for all A,B € M, (K) and for all a,b € K. A linear operator on
M, (K) is completely determined by its behavior on the set of cells in M, (K). An

operator T is called invertible if it is surjective and injective.
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Let A, = {(i,j) : 1 < i,j <n}. For A= [ai;] and B = [bi;] in Mn(K), B
dominates A, denoted by AC B, if a;; # 0 implies b; ; # 0 for all (3,7) € A,

"Lemma 3.1. Let T be a liner operator on M, (K). If T is invertible, then there
exists a permutation 8 on A, such that T(E; j) = Egj) for all (3,7) € Bn.

Proof. Suppose that T is invertible on M, (K). Let E,, be an arbitrary cell in
M,(K). Since T is surjective, there exists a nonzero matrix X = [z;;] € Mn(K)
such that T(X) = E.,. Since T is linear, it follows that there exists z;; # 0 such
that T(E; ;) C E.,. This shows T(E: ;) = bi;E:,, for some nonzero b;; € K. Let

Crs={Eij: T(Ei;) = bijErs for some nonzero b;; € K}.

By the above, C;,, # @ for all (r,s) € Apn. Suppose T(Ex1) = bk Er,s for a cell Ex;
different from E;; with bg; # 0. Then we have

T(be,Eij) = bigT(Eij) = brgbijBrs = bi ;T (Ex;) = T(bi; Ex),

a contradiction to the fact that T is injective. Hence C,, is a singleton set for all
(r,8). Thus, there exists a permutation 6 on A, such that T(E;;) = bi;jEg(,;) for
some nonzero b;; € K. It remains to show b;; = 1 for all (i,5) € A,. Since T is
surjective and T(Ey,) Z Egg,j for (r, s) # (4,7), T(cEi;) = Ep,j) for some nonzero
¢ € K. By the linearity of T, we have

Eo(ijy = T(cE:;) = cT(Eij) = cbijBogi)-
That is, cb;; = 1 and hence ¢ = b;; = 1.

The converse is immediate. a

A matrix L € Mq(K) is called a line matriz if L = 3 Eq or Y_ E,; for some
k=1 =1

n n
ie{l,...,n}orj€{l,...,n}; Ri= ) Eix is an i*" row matriz and C; = )_ Eij
k=1 =1

is a j*P column matriz.

Lemma 3.2. If T is an invertible linear operator on M, (K) that preserves regular

matrices, then T preserves all line matrices.
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Proof. Suppose that T’ does not map some line matrix into 2 line matrix. By Lemma
3.2 and Proposition 2.1, without loss of generality, we may assume T(E,;) = E; ,
and T(E},) = E,,. Since T is surjective, T(E;;) = E, for some (i,5) € A, —
{(1,1),(1,2)}. Let X = E;; +pE\, +pE 2, where p # 0,1. Then X is regular: for,
ifi = 1 and j > 3, it follows from Lemma 2.3 that X is regular;ifi > 2and 5 > 3, X

A
is regular by (2.2); otherwise, X is regular by Lemma 2.5. Notice T(X)= [O OJ ,

1
where A =

p
not regular by (2.2). This contradicts to the fact that T preserves regular matrices.

g] - It follows from Lemma 2.5 that A is not regular and so T(X)is

Hence T preserves all line matrices. O
Now, we are ready to prove the main Theorem.

Theorem 3.3. Let T be an invertible linear operator on M, (K). Then T preserves
regular matrices if and only if there exist permutation matrices P and Q such that
T(X) = PXQ or T(X) = PX'Q for all X € M,(K).

Proof. Suppose that T is an invertible linear operator on M, (K) that preserves
regular matrices. Then T is bijective on the set of cells by Lemma 3.1 and T
preserves all line matrices by Lemma 3.2. Since no combination of s row matrices
and t column matrices can dominate J, where s + ¢ = n unless s=0o0rt=0, we
have that either

(1) the image of T of each row matrix is a row matrix and the image of T of each

column matrix is a column matrix, or

(2) the image of T' of each row matrix is a column matrix and the image of T of

each column matrix is a row matrix.

If (1) holds, then there are permutations ¢ and 7 of {1,...,n} such that T(R;) =
Ro(; and T(C;) = C(jy for all 4,5 = 1,... ,n. Let P and @ be permutation matrices

corresponding to o and T, respectively. Then we have

T(Eij) = Eoir() = P(E:i;)Q
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for all cells E; ;. By the action of T on the cells, we have T(X) = PXQ.
If (2) holds, then a parallel argument shows that there are permutation matrices
P and @ such that T(X) = PX'Q for all X € M, (K). O

References

(1] R. B. Bapat, Structure of @ nonnegative regular matriz and its generalized in-
verses, Linear Algebra and Its Applications, 268(1998), 31-39.

[2] L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean
rank-1 spaces, Linear Algebra and Its Applications, 65(1984), 55-77.

[3] J. Denes, Transformations and transformation semigroups, Seminar Report,

University of Wisconsin, Madison, Wisconsin, 1976.

[4] K. H. Kim, Boolean matriz theory and applications, Pure and Applied Mathe-
matics, Vol. 70, Marcel Dekker, New York, 1982.

[5] R.D. Luce, A note on Boolean matriz theory, Proc. Amer. Math. Soc., 3(1952),
382-388.

[6] E. H. Moore, General analysis, Part I, Mem. of Amer. Phil. Soc., 1(1935).

[7] R. J. Plemmons, Generalized inverses of Boolean relation matrices, SIAM J.
Appl. Math., 20(1971), 426-433.

(8] P.S.S. N. V. P. Rao and K. P. S. B. Rao, On generalized inverses of Boolean
matrices, Linear Algebra and Its Applications, 11(1975), 135-153.

[9] D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc.,
6(1963), 49-53.

[10] S. Z. Song, K. T. Kang and Y. B. Jun, Linear preservers of Boolean nilpotent
matrices, J. Korean Math. Soc., 43(2006), No.3, 539-552.





