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Abstract

In this paper, we construct the sets of Boolean matrix pairs. These sets are
naturally occurred at the extreme cases for the Boolean rank inequalities relative
to the sum of Boolean matrices. These sets were constructed with the Boolean
matrix pairs which are related with the ranks of the sums and difference of two
Boolean matrices or compared between their Boolean ranks and their real ranks.

That is, we construct the following 3 sets ;
51(B) = {(X.Y) € Mima(B)? | ra(X +Y) =75(X) +r5(Y)}:
52(B) = {(X,Y) € Mma(B) | 78(X +Y) =1}
53(B) = {(X,Y) € Mimn(B)? | ra(X +Y) = 75(X)};

For these 3 sets, we consider the linear operators that preserve them. We char-
acterize those linear operators as T(X) = PXQor T(X) = PX tQ with appropriate
invertible Boolean matrices P and Q. We also obtain the equivalent conditions for

these linear operators and prove their equivalence.

Keywords: Boolean linear operator, Boolean rank, semiring, (P,Q)-operator.
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1 Introduction

A semiring S consists of a set S and two binary operations, addition and multipli-
cation, such that: (1) S is a monoid under addition (identity denoted by 0); (2)Sis
a semigroup under multiplication (identity, if any, denoted by 1); (3) multiplication is

distributive over addition on both sides; (4) s0 = 0s = 0 for all s € S.

A semiring is called antinegative if the zero element is the only element with an
additive inverse. For example, the set of nonnegative integers is an antinegative semiring

with usual addition and multiplication.

Definition 1.1. A semiring S is called Boolean if S is equivalent to a set of subsets of a
given set N, the sum of two subsets is their union, and the product is their intersection.

The zero element is the empty set and the identity element is the whole set N.

It is straightforward to see that a Boolean semiring is commutative and antinegative.
If B consists of only the empty subset and N then it is called a binary Boolean algebra
(or {0, 1}-semiring) and is denoted by B.

Let Mum n(B) denote the set of m x n matrices with entries from the binary Boolean
algebra B. Matrix theory over semirings is an object of intensive study during the last
decades, see for example [5, 6] and references therein. In particular, many authors
have investigated various rank functions for matrices over Boolean algebra and their
properties, see [1, 9, 10, 13]. Among the rank functions that have the most interesting
applications is the well-known notion of the factor rank.

Let Mo n(B) be the set of m x n Boolean matrices. Throughout we assume that
m < n. The matrix I, is the n x n identity matrix, Jmn is the m x n matrix of all

ones, O, , is the m x n zero matrix. We omit the subscripts when the order is obvious
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from the context and we write I, J, and O, respectively. The matrix E; ;, called a cell,
denotes the matrix with exactly 1, that being a 1 in the (i, j) entry. Let R; denote the
matrix whose ith row is all ones and is zero elsewhere, and C; denote the matrix whose
7*P column is all ones and is zero elsewhere. We let |A| denote the number of nonzero

entries in the matrix A.

Definition 1.2. The matrix A € My, »(B) is said to be of Boolean rank k (rg(A) = k)
if there exist matrices B € My x(B) and C € M. n(B) such that A= BC and k is the
smallest positive integer such that such a factorization exists. By definition the only

matrix with Boolean rank equal to 0 is the zero matrix, O.

If B is considered as a subsemiring of a real field R then there is a real rank function

p(A) for any Boolean matrix A € Mmn(B).

Example 1.3. Let

(100 1)

A= € My 4(B).

\0011}

Then rp(A) = 4 from Example 2.3.1 [4]. But p(A) =3.

]

The above example shows that the Boolean rank and real rank of A are not equal.
However, the inequality rg(A4) > p(A) always holds.

The behavior of the function p with respect to matrix addition is given by the

following inequalities:
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The rank-sum inequalities:
| p(A) — p(B) |< p(A + B) < p(A) + p(B);
Sylvester’s laws:
p(A) + p(B) — n < p(AB) < min{p(A), p(B)},

where A, B are real matrices (see [7]).
Arithmetic properties of Boolean rank is restricted by the following list of inequal-

ities established from [3] because Boolean algebra is antinegative semiring .

1. rg(A+ B) <rp(A) +rg(B);

rg(4) if B=0
2.rg(A+B)29 rg(B) if A=0

1 if A#0Oand B#0

If B is considered as a subsemiring of R+, the positive real numbers, we have:
3. ra(A+ B) > Ip(4) - p(B)|.

As was proved in [3] the inequalities 1 ~ 3 are sharp and the best possible.

The natural question is to characterize the equality cases in the above inequalities.
Even over fields this is an open problem, see [2] for more details. In section 2, we
present the concrete sets of matrix pairs which come from the the extreme cases of the
inequalities of Boolean ranks.

In section 3 to 5, we characterize the linear operators that preserve the sets of matrix

pairs which come from the the extreme cases of the inequalities of Boolean ranks.
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2 Preliminaries

Let B be the binary Boolean algebra. Consider following notation in order to denote

sets of Boolean matrices that arise as extremal cases in the inequalities listed above:
Si1(B) = {(X,Y) € M n(B)? | r8(X +Y) =1p(X) +r8(Y)}

S:(B) = {(X,Y) € Mmn(B)? | rB(X +Y) =1}
S3(B) = {(X,Y) € M a(B)? | 78(X +Y) =7p(X)};
Definition 2.1. We say an operator, T, preserves a set P if X € P implies that

T(X) € P, or, if P is a set of ordered pairs [triples], that (X,Y) € P (X,Y,2Z) € P)

implies (T(X), T(Y)) € P [(T(X),T(Y),T(2)) € P.

Definition 2.2. An operator T strongly preserves the set P if X € P if and only if
T(X) € P, or, if P is a set of ordered pairs [triples], that (X,Y) € P [(X,Y,Z) € Pjif

and only if (T(X),T(Y)) € P [(T(X),T(Y), T(2)) € P}.

Definition 2.3. An operator T : Mma(B) — Mma(B) is called a (P, Q)-operator if
there exist permutation matrices P and @ of appropriate orders such that T(X) =
PXQ for all X € Mpa(B), or, if m =n, T(X) = PX'Q for all X € Mma(B), where

Xt denotes the transpose of X.

Definition 2.4. A mapping T : Mma(B) — Mmn(B) is called a Boolean linear

operator if T(Omn) = Omn and T(X +Y) = T(X) + T(Y) for all X,Y € Mumn(B).

Definition 2.5. A matrix A € My a(B) is called monomial if it has exactly one

nonzero element in each row and column.

Definition 2.6. A line of a matrix A is a row or a column of the matrix A.
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Definition 2.7. We say that the matrix A dominates the matrix B if b; 4 7 0 implies

that a;; # 0, and we write A > Bor B < A.

Definition 2.8. If A and B are Boolean matrices and A > B we let A\B denote the
matrix C where
0 ifd;=1
Cij = :
1 ifb;=0
Definition 2.9. The matrix X oY denotes the Hadamard or Schur product, i.e., the

(11.7) entry of XoY is Ty 5¥i g

Lemma 2.10. Let A = (ai;) € Mmn(B) where m,n > 2. Let (I,k) be any fized
pair of integers such that 2 < k < n, 2 <1 < m. Assume that Boolean rank of each
{ x k-submatriz of A is 1. Then the Boolean rank of each (I + 1) x k-submatriz (if any)

is 1 and the Boolean rank of each I x (k + 1)-submatriz (if any) is 1.

Proof. Let us consider any I x (k + 1)-submatrix of the matrix A. Applying a permu-
tation of rows and columns, if necessary, it is possible to assume that this submatrix
has the form A’ = (a;;), where 1 <i < 1,1 < j < k+1. Let us denote 4; = (@ig),
where 1 <i<I[,1<j<k, Az = (ai4), where 1 <i <!, 2 < j < k+ 1. By conditions,
there are four vectors s = (s1,...,8) € B, t = (t1,...,t) € BX, u= (uy,...,w) € B,
v =(v1,...,0) € B* such that 4, =s't and A, = u'v.

Consider the matrix A” = s (t1,22,...,t, 1 v;). Let us check that A’ = A”. The
first k columns of these two matrices are equal by definitions of vectors s and t. Consider
the last column.

We have

" 0 if 8 = 0
Qi k+1 = SiU1Uk =
UV if 8 = 1

DI si=0,airr1 = u1vg = 8itk41 = 0.
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) If s; = 1, G5 k41 = Wik = U1 Vk-
( For all i, j, 8;t; = wjvj—1 and s; = 1, then ¢; = w;v;;.
That is, t; = w1vj_1 , tj = ugvj-1, - , tj = Un¥j-1. ie w1 =uvj (Vi)
Thus wvg = uivk).
Thus @}, = Gik+1-
ie, A’ = A". Thus rp(A’) = 1. Similar considerations with an (I + 1) x k-matrix

conclude the proof. ]

The following two corollaries are straightforward.

Corollary 2.11. Let A = (a;j) € Mmn(B) where m,n > 2. Let rg(A’) = 1 for any

2 x 2-submatriz A’ of A. Thenrg(A)=1.
Proof. By Lemma 2.10. [

Corollary 2.12. Let A = (aij) € Mma(B) where m,n > 2. Let rg(A) > 1. Then

there erists a 2 X 2-submatriz of A of Boolean rank 2.

Proof. By Corollary 2.11. [ |
The following theorem implies the characterizations of the surjective linear operator

on Mp n(B)-

Theorem 2.13. Let T : M o(B) = Mma(B) be a Boolean linear operator. Then the

following are equivelent:
1. T is bijective.
2. T is surjective.

3. There exists a permutation o on {(3,7) | i = 1,2,--- ,m;j = 1,2,--- ,n} such

that T(E‘J) = Ea(i.j)-
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Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now show that 2)
implies 3).

We assume that T is surjective. Then, for any pair (4,5), there exists some X such
that T(X) = E;;. Clearly X # O by the linearity of 7. Thus there is a pair of indices
(r, s) such that X = E, ,+ X' where (, s) entry of X is zero and T(E,,) # O. Indeed,
if T(E,) = O for all pairs (r,s), then T(X) = O by linearity of T. Thus we have a

contradiction. But T(X) = E;; # O. Hence
T(Ers) S T(Eys) + T(X\ (E,s)) = T(X) = E.

That is, T(E;,) < E;; and T(E, ) = E;;. Since the set {(1,7) |i=1,2,--- ,m;j =

1,2,---,n} is a finite set, T is injective since it is surjective.
Therefore there is some permutation ¢ on {G.Hli=12,--- ,mji=12,- - ,n}
such that T(E; ;) = Ey(; ;- ]

Henceforth we will always assume that m,n> 2.

Lemma 2.14. Let T : Mmn(B) — Muma(B) be a Boolean operator which maps lines
to lines and is defined by T(E; ;) = E;(i5), where o is a permutation on the set {(4,3) |

i=1,2-,mj=12,-.-,n}. ThenT is a (P, Q)-operator.

Proof.  Since no combination of a rows and b columns can dominate J where a+b = m
unless b= 0 (or if m = n, if a = 0) we have that either the image of each row is a row
and the image of each column is a column, or m = n and the image of each row is a
column and the image of each column is a row. Thus, there are permutation matrices
P and @ such that T(R;) < PR;Q and T(C;) < PC;Q or, if m = n, T(R;) < P(R;)'Q
and T(Cj) < P(C;)*Q. Since each cell lies in the intersection of a row and a column
and T maps nonzero cells to nonzero (weighted) cells, it follows that T'(E; ) = PE;;Q,

or, ifm= n, T(Eij) = PE_.,‘"'Q = P(E{J)tQ. | ]
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Lemma 2.15. IfT(X) = X 0 A for all X € My n(B) and rg(A) = 1 then there exist

diagonal matrices D and E such that T(X) = DXE for all X € Mmn(B).

Proof. Ifrg(A) = 1 then there exist vectorsd = ld1,dz2, -+ ,dm] and € = [e1, €2, - ,€4q]
such that A = d'@or aij = die;. Let D = diag{dy,dz, - ,dm} and E = diag{ey, €2, - ,en}.
Now the (4,5) entry of T(X) is zja;; and the (i,7) entry of DXE is dizije; =

die;jz;j = @ jz;j. Thus the lemma follows. =

3 Linear preservers of S;(B).
Recall that

S1(B) = {(X,Y) € Mmn(B)? | ra(X +Y) =rp(X) +rp(Y)};

We begin with some general observations on Boolean linear operators of special

types that preserve §;(B).

Lemma 3.1. Let 0 be a permutation of the set {(i,j) |1 <i < m,1 < j < n}, and
T : Mpmn(B) = Mpyn(B) be defined by T(E;j) = Esij),i=1,--- m;ji=1,---,n.

If T preserves S\(B), then T is a (P, Q)-operator.

Proof. Consider the action of T on rows and columns of a matrix. Suppose that the
image of two cells are in the same line, but the cells are not, say E, F thenrg(E+F) = 2.
If rg(T(E + F)) = 1, then (E, F) € 5(B) but (T(E),T(F)) ¢ S1(B). Then T does not
preserve S;(B) which is a contradiction. Thus T maps lines to lines. By Lemma 2.14

T is a (P, Q)-operator. [ ]

Theorem 3.2. Let T : Mmn(B) = Mmpmq(B) be a surjective Boolean linear operator.

Then T preserves S1(B) if and only if T is a (P, Q)-operator.
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Proof. 1t is easy to see that multiplication with invertible matrices preserves Boolean
rank, since permutation matrices are the only invertible Boolean matrices [9]. Hence
(P, Q)-operator preserve the Boolean rank. For arbitrary (X,Y) € §(B),

r8(T(X) +T(Y)) = ra(T(X +Y)) = ra(P(X + Y)Q) = ra(X + Y)

= r8(X) +r8(Y) = ra(PXQ) + r5(PYQ) = rp(T(X)) + ra(T(Y)).

Thus (T'(X), T(Y)) € 51(B) and T preserves S;(B).

Conversely, if T is surjective then by Theorem 2.13 we have that T is defined by a
permutation o on the set {(1,7) | 1<i<m,1<j<n} ie T(Ey) =

By Lemma 3.1 we have that T is a (P, Q)-operator since T preserves S)(B). |

Over a binary Boolean algebra the assumption of surjectivity from the previous

theorem can be replaced with the assumption that T is a strong preserver.

Theorem 3.3. Let T : My n(B) —» Mma(B) be @ Boolean linear operator that strongly

preserves S1(B). Then T is a (P, Q)-operator.

Proof. It is proved in [4] that for a binary Boolean algebra there is a power of T' which
is idempotent. Thus only finite set of different matrices can be obtained by considering
the powers of the matrix A. Hence, there are integers s and t such that for all p,q > s,
P = g(modt) it holds that A? = A% Thus A* = A%*. Hence for a certain power of
any Boolean linear operator on binary Boolean algebra is idempotent. In both cases
we denote L = T¢ and L2 = L. One can easily check that L strongly preserves S;(B).

If X € My a(B) and (X, X) € 51(B) then rg(X + X) = rg(X) +rp(X). Therefore
rg(X)=0and X = 0.

Thus, if A # O then we have that (A, A) ¢ Si(B). Then (L(A), L(A)) ¢ S:1(B).

That is, ra(L(A)) + r8(L(A)) # ra(L(A)). i.e.L(4) £ O.
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We examine the action of L on rows and columns. Suppose that L(R;) is not
dominated by R;. Then there is some (r, s) such that E,, < L(R;) while E,, £ R;.
Then we have that (R;, E,) € S1(B) and there exists a matrix X = (Z;;) € Mmn(B)

with 7, = 0 such that L(R;} = E; s + X . Now,

L(R: + Ery) = L(R:) + L(Ers) = L(L(R:)) + L(Er.y)

= L((Er,a + X)) + L(Er,s) = L(X) + L(Er,s) + L(Er,s)

= L(X) + L(Evy) = L(X + By,0) = LIL(R) = L(R:).

Now, (R;, E,s) € 51(B) but,
L(R;) + L(Ey;s) = L(R: + E.s) = L(Ry)

and hence, (L(R;), L(Ev,s)) € S1(B), a contradiction.

We have established that L(R;) < R; for all i. Similarly, L(C;) < C;j for all j. By
considering that E;; is dominated by both R; and C; we have that L(E;;) < E;;. ‘
Since B is a binary Boolean algebra, we have that T also maps a cell to a cell, or
|T(E:;)| =1 for all 1,3, and T(J) has all nonzero entries.

So T induces a permutation o, on the set of subscripts {1,2,--- ,m} x{1,2,---, n}.
That is, T(E;;) = Eg(j)- Since T induces a permutation o, on the set of subscripts
{1,2,---,m} x {1,2,--- ,n} and T preserve S(B).

By Lemma 3.1 we have that T is a (P, Q)-operator. ]
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4 Linear preservers of S;(B).
Recall that

S52(B) = {(X,Y) € Mpu(B)? | r(X +Y) =1};

Theorem 4.1. Let T : My n(B) — My o(B) be a surjective Boolean linear operator-

Then T preserves Sz(B) if and only if T is o (P, Q)-operator.
Proof. Let T be a (P, Q)-operator. For (X,Y) € 8;(B), Since
L=rs(X +Y¥) = ra(P(X + Y)Q) = ra(T(X +Y)) = r5(T(X) + T(¥)).

Hence (T(X),T(Y)) € S2(B). That is, T preserves Sz(B).

Conversely, assume that T preserves So{B). Hence if T is surjective and Bis a binary
Boolean algebra then by Theorem 2.13 we have that T(E; ;) = Eyij) - 1t is easy to
see that the cells E; ; and E, , are in the same line if and only if rg(Ei; + En,) =11

and only if (E;, E;s) € S2(B). Since T preserves S3(B), if (E; j, Ers) € Sa(B), then
(T(Ei,j)vT(Er,s)) € SZ(B)-

That is,

r8(T(E:j) + T(Ers)) = 1.

Therefore T'(E; ;) and T(E,.,) are in the same line. Thus lines are mapped to lines,

and we have that T is a (P, Q)-operator by Lemma 2.14. ]

We have another characterization of the linear operators that preserve Sz(B).

Theorem 4.2. Let T : My n(B) — Mmna(B) be a Boolean linear operator that pre-

serves S2(B). Then these are equivalent :

1. T is surjective
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2. T strongly preserves Sa2(B)

3. T is a (P, Q)-operator.

Proof.  3) implies 1) : For any A € Mma(B), take P'AQ* € Mmn(B). Then
T(PtAQY) = P(P'AQY)Q = A.

3) implies 2) : For any (X,Y) € S3(B). Since
1=rg(X +Y)=rp(P(X +Y)Q) =rp(T(X +Y)) =ra(T(X) + T(Y)).

1) implies 3) : From Theorem 4.1, we have done.

2) implies 1) : Suppose that T strongly preserves S2(B). In order to prove this
it suffices to check that for each pair of indices (i,]) there exist Y € Mma(B) such
that T(Y) = E;;. Assume that this is not the case. Then T(J) < J. That is there
exists a Boolean matrix N such that n,, = 0 for some (r,s) and T(N) > T{(J ). Hence
T(I\Ers) = T(J).

One has that (J\Es, J\Es) & S2(B) since rank(J\Ers) # 1. While (J,J) €
S»(B), since rg(J) = 1. Hence, (T(J\Ers), T(J\Ey,)) ¢ S2(B) while (T(J), T(J)) €
S2(B), a contradiction with T(J) = T(J\Er,s). Thus there is no such a matrix N with
a zero entry such that T(N) > T(J). It follows that the image of a cell dominates only

one cell. Thus T is surjective on My (B). |

5 Linear preservers of S3(B).

Recall that

S3(B) = {(X,Y) € Mma(B)? | 78(X +Y) = rp(X)};

Theorem 5.1. Let T : My q(B) — M na(B) be a surjective Boolean linear operator.

Then T preserves S3(B) if and only if T is a (P, Q)-operator.
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Proof.  One can easily see that (P,Q)-operators preserve the set S3(B) :
For (X,Y) € §3(B), we have rg(X +Y) = r(X). Using T on both sides,

ra(P(X + Y)Q) = rg(PXQ). Then
r8(T(X +Y)) = rp(T(X)).

That is,
r8(T(X) + T(Y)) = ra(T(X)).

Conversely, let T' preserve S3(B). If T is surjective and B is a binary Boolean
algebra then by Theorem 2.13 we have that T'(E; ) = Eq(i j)- It is easy to see that the
cells E; ; and E, , are in the same line if and only if r(E;; + E,,) = rp(E;;) if and
only if (Eij, Er,s) € S3(B). Since T preserves S3(B) and (E; j, Ers) € S53(B), we have

(T(E:), T(Ers)) € S3(B). That is,

r8(T(Ei;) + T(Eys)) = ra(T(E;;)).

Therefore T'(E; ;) and T(E, ,) are in the same line. Thus lines are mapped to lines,

and we have that T is a (P, Q)-operator by Lemma 2.14. .
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