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Abstract

We discuss the statistical convergence of interfacial two-phase av-
erages in the Rayleigh-Taylor instability associated with steady ac-
celeration. The statistical evolution of a planar, randomly perturbed
interface subject to Rayleigh-Taylor instability is explored through
direct numerical simulation in two space dimensions. We interpret
interfacial averages theoretically, and explore that interfacial averages
are convergent only in the outer portions of the mixing zone, where
there is a coherent array of bubble and spike tips.
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1 Introduction

In this paper, we discuss the statistical convergence of interfacial two-phase
averages in the Rayleigh-Taylor (RT) instability associated with steady ac-
celeration. This mixing process is nonlinear and chaotic, in the sense of
sensitive dependence on initial data. As RT instability develops, small per-
turbations of a smooth contact surface rapidly grow into interpenetrating
fingers of the distinct materials. Furthermore, only the statistical properties
of the initial interface perturbations are known. These features point to a
stochastic approach as the appropriate method to develop a predictive model
for the deterministic properties of an evolving mixing layer.

We derive a formula of interfacial averages for ¢ = v, p, pv and inter-
pret interfacial quantities. The computations of interfacial averages show
convergence only in the outer portions of the mixing zone, where there is
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a coherent array of bubble and spike tips. There are three clearly distin-
guished physical regions comprising the mixing layer. In contrast, mixing
models present a uniform description of the entire mixing layer, up to the
setting of phenomenological coefficients. There is a physical basis for treat-
ing the bubble and spike regions in this manner, in the same way that gas
bubbles in liquid bear a physical resemblance to liquid droplets in gas, but
the middle region of the mixing zone is highly disordered. At present, when
there is no comprehensive statistical description of this portion of the mixing
layer, it makes sense to concentrate effort on the more important spike and
bubble regions and use an interpolation scheme to bridge the gap. This ap-
proach has been followed to varying degrees in a number of two-phase flow
treatments [8, 7, 15].

We report on results of numerical simulations of constant acceleration RT
instability in two space dimensions. The data set that we have generated is
highly resolved and covers a large ensemble of initial conditions, allowing a
more refined analysis of closure issues pertinent to the stochastic modelling
of chaotic fluid mixing. In particular, we closely approach statistical con-
vergence of the mean two-phase flow under increasing ensemble size. The
most stringent test of statistical convergence is performed at the latest pos-
sible time. Other quantities that appear in the two-phase averaged Euler
equations are computed directly and analyzed for numerical and statistical
convergence.

An interface between two fluids is subject to the RT instability when an
external force is directed against the density gradient. This phenomenon is
of importance in natural and technological problems encompassing a vast
array of length scales, for example in supernova explosions, formation of salt
diapirs, and laser implosion of inertial confinement fusion targets. See [12]
for an overview of this problem, and [11] for further discussion.

2 Two-Phase Flow Equations

We study RT mixing of two immiscible, inviscid, non-heat conductiong gases.
The Euler equations comprise the microphysical description, and a two-phase
flow analysis begins with the ensemble average of these equations, with the
averaging applied strictly within each material. The two-phase flow has a
slab symmetry, with mean quantities varying only in the vertical (2) direc-
tion. There is also no shearing motion a time ¢ = 0, which combined with
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the symmetry assumption implies no shearing motion for all ¢, hence zero
transverse components of mean velocity. The averaged are then

O(Brpr) + O(Brorvx) -0

ot 0z ’ 21)
O(Brpxvi) | O(Beprvrvi) | O(Brpr) _ 0Xi\ _ O(BR«)
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Here the ensemble average is denoted (-). The function X is the phase
indicator for material k(k = 1,2); i.e., Xi(t,x) equals 1 if x is in fluid k at
time t, zero otherwise. The ensemble average of X, is the expected fluid k
concentration or volume of the density p and pressure p: px = (Xip) / (Xk),
px = (Xip) / (Xi). The quantities vy and ey are, respectively, phase mass-
weighted averages of the fluid z-velocity v, and specific total energy E: vy =
(Xipvs) | (Xxp), Ex = (XxpE) [ (Xxp). The averaging of the nonlinear terms
in the Euler equations contributes non-zero covariances which are redefined
and put on the right hand side (RHS) of the equations of motion. These
terms are defined through the relations

R, = (Xk,m)zvz) _ ()(kpuz)2 S, = (kasz) _ (kaE) (kavz)
* Br B Xip) ' " B Br(Xep)

We also average a material advection equation to obtain

9
_a’% +(v-VX) =0, (2.4)

which expresses the condition of no mass flux across material interfaces,
promoted via averaging to an evolution equation.

Equations (2.1)-(2.4) contain no modelling assumptions beyond the un-
derlying microphysics but the averaging of nonlinear terms introduces new
unknowns: bulk averages of nonlinear terms such as Ry, and interfacial av-
erages such as (p8Xy/8z). The closures has been proposed systematically in
9, 10, 1].

The modelling of interfacial averages has been a major challenge of two-
phase flow theory, whereas the volumetric or bulk averages of nonlinear terms
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capture fluctuation effects that are the focus of turbulence theory. Chaotic
fluid mixing exhibits both fluctuation and interfacial phenomena, yet we
are aware of few treatments [13, 4, 5, 14] that combine these effects in this
context.

The simulated flows are weakly compressible, with negligible density fluc-
tuations. Therefore the phase- and phase-mass averages of any variable are
nearly identical. The quantities Ri and Sy are then the velocity-velocity and
energy-velocity covariances strictly within material k, up to a factor of py.

It is important to distinguish between material-specific and global fluc-
tuations. Interfacial effects contribute to global correlations, but they are
mathematically separate from material specific correlations. For example, a
mathematical identity derived in [3] gives the global Reynolds stress in terms
of the material-specific R; and a two-phase cross term,

Ru: = BiRa + BiRs o+ 1572 (0r — va)? (2.5)

Note that the two-phase contribution does not introduce any new unknowns.
Chen et al. demonstrated that the cross term in (2.5) is usually a major
contribution to R, in weakly compressible RT mixing. Our work shows
that their observation breaks down on finer computational grids, probably
due to the enhanced velocity randomization arising from the resolution of
smaller scale structures.

The mean pressures are dominated by hydrostatics, yet the motion in-
duced by the instability is reflected in their non-hydrostatic components.
"Therefore, it is convenient to study the profiles of pressure after subtracting
the hydrostatic contribution. Specifically, we define p}, = px — Ph ik, Where
Pnx(2) is the pressure of fluid k at rest at height z at t = 0 (whether or not
it is actually present). For an isothermal stratification,

z — f
Phk = Pint €XP [chz‘—”L)J ) (2.6)
int k

where piy, is the pressure at the initial mean interface height z = zy, and
c2,x is the initial sound speed in fluid k.
The three interfacial averages that appear in Eqgs (2.1)-(2.4) are directly
computed and nomalized as follows
. _ (V- VX) « _ (p0X,/0z)

V==

* (pV . VXk)
8By [0z '

om0z = "o - 7
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These quantities are well defined despite the appearance of the index k in
their definitions because we ignore surface tension and assume perfect fluid
immiscibility. The interfacial average of the primitive variable ¢, ¢ = v, p, pv,
is gine = {qfix - VX&) / (A - V.Xi), where 72 is the unit normal vector into
fluid k at interface points. It is shown in Sec. 3 that that ¢* in (2.7) is actually
a weighted average of g at interface points. However, both gy, and ¢ have
the same boundary values, namely

ﬂ3133+q = ﬁ,}lgg+ Gint = Gk - (2.8)

3 Statistical Convergence of Interfacial Two-
Phase Averages

In this section, we discuss the statistical convergence of interfacial two-phase
averages. Since the fluid flow is chaotic, the most stringent test of statisti-
cal convergence is performed at the latest possible time. Unless indicated
otherwise, the times referred to in the following discussion are gt/c; = 1.42
for the Atwood number A = (pz — p1)/(p2 + ;1) = 0.5 and gt/c; = 1.07 for
A = 0.8. At these times, the material interface in any realization has evolved
to a stage exemplified by the snapshot [2].

The sample size for fluid k bulk averages is proportional to N ;. Despite
the small fluid k sample size near mixing zone edge k (due to small B;), the
microphysical flow is highly ordered in this region and the fluid k averages
are likewise stable. In the center portion of the mixing layer, the large fluid
k sample size (fx ~ 1/2) suppresses any statistical noise due to the highly
disordered material interface.

The evalution of interfacial averages uses only material interface points.
The material interface is stored and tracked as a set of piecewise linear
curves. Each curve contains a linked list of the (z,z) coordinates of each
linear segment-connecting point. For each point, there are also left and right
fluid states that are computed explicitly using Riemann problem solvers.
The left or right state at any location on a material interface is therefore
available via interpolation between the surrounding connecting points. The
normal vector at a location on the interface is the normal to the line segment
connecting the surrounding points.

In two dimensions, an interface average at a given height 2 uses state and
geometric information everywhere the material interface intersects a horizon-
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tal line of this height. Near the center of the mixing zone, where the number
of such crossings is maximized, there are 50 to 100 crossings in any realiza-
tion. The total maximum number of crossings for N = 20 was approximately
1100 for A = 0.5 and 1400 for A = 0.8. Despite these seemingly large num-
bers,the interfacial averages are plagued by severe noise in the disordered
region of the mixing zone.

The extraction of an interfacial average (gVX}) or (q- VX}) from nu-
merical data is not obvious. Here, we relate an interfacial average to a single
flow realization assuming (2.1) two-dimensional flow; (2.2) scalar ¢; and (2.3)
a horizontal average. After deriving Eq. (3.8) below, we relax these assump-
tions.

The material indicator X} is a generalized function. To remove the delta
function behavior at material interface points, we combine the horizontal
average with a spatial average over an e interval of z, evaluate the integral,
and then take the limit ¢ — 0. Thus we integrate over a narrow horizontal
strip. If the fluid domain extends from z = z; to = = z,,, then the e-strip
average of a field variable q is

1 z+€/2 i/ Tu p J
t,2) = ——— T T . .
@)=y [ et [Cargean. @

Consider the evaluation of (¢V X;)_, where q is any scalar field. The inte-
gral in Eq. (3.1) has contributions only where V.X; # 0, namely everywhere
the contact surface (curve) crosses the strip. We need analyze only one ar-
bitrarily chosen crossing, and then sum the contributions of all crossings to
complete the evaluation. We close up a section of the e-strip that is crossed
once by the contact surface. We label the left and right handed fluids 1 and
2, respectively, and by convection the normal vector n points into fluid 1.

The crossing contact surface divided this section of strip into two pieces,
labeled P, and P,. We also label the lower and upper boundaries of P as I;
and U;, respectively, and we define R; to be the right hand boundary of P,.
We re-arrange (¢V X;), as follows

(gVXy), = (V(gX1)), — (X1Vq), (3.2)

and evaluate each term on the righthand side of this expression. Applying
the divergence theorem to (V(gX1)),,

V(gX)dA = ¢X1dS = gdS.  (33)
PUP; L ULuUUU, LyulU,
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Since X; = 0 on the strip edges Ls and U, this integral reduces to

V(gX,)dA = qdsS . (3.4)

PiUPy Liulh

For the same reason, the second term, {X;Vg),, is evaluated only on the
section of strip where X; = 1, i.e., on P,. Applying the divergence theorem
to the area integral of V¢ on P;, we have

X1VgdA = qdsS . (3.9)
P,UP,; L\UU1UR,

Combining the last two expressions as in Eq. (3.2), the integrals on the
upper and lower boundaries of Py cancel, leaving

/ gV X1dA = — / qds . (3.6)
PiUPy

R

This integral is easily evaluated in the limit of small ¢, so that R, is a straight
line segment and g is nearly uniform on R;. Then

€

/ VX dA = g
PiuUP, |nz|

If ¢ is not continuous across R;, then qlg, is evaluated on the fluid 1 side of
Ry.

To evaluate (gVXi),, we apply Eq. (3.7) to every intersection of the
contact surface with the e-strip at height z. Then the factor of € in Eq. (3.7)
cancels the normalization factor in Eq. (3.1), and the ¢ — 0 limit is trivial,
leaving

(3.7)

Ry

(VX0 = = 2 (38)

The sum is over all points of intersection of the contact surface with the
horizontal line at height z, and the summed is evaluated at each such point.
If q is continuous across material interfaces, then (qVX3) = — (gVXy).

The extension of this result to vector g follows by replacing gn with q-n
in Eq. (3.8). The extension to a combined horizontal/ensemble average is
obvious, because we can imagine aligning all of the realizations side by side
and then applying a horizontal average to the combined system. If there are
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N realizations, then the normalization constant in Eq. (3.8) is N(z, — x;)
and the sum is over all crossings at height z in all realizations.

The result for 3D flow has a similar, but more complicated derivation, and
we state it here without proof. The intersection of the contact surface with
the horizontal plane at height z is a set of curves. The sum in (3.8) is replaced
by the line integral of gn/(n2 4+ n2)1/2 along all curves of intersection, and the
normalization constant is replaced by the lateral area of the fluid domain.

Setting ¢ = 1 in Eq. (3.8) yields a method to calculate the volume
fraction gradient directly from the interface information, as opposed to the
usual method of numerically differentiating the volume fraction itself. Con-
sequently, direct evaluation of ¢* = (q8Xx/0z) /(8B:/8z) is accomplished.
Eq. (3.8) makes clear the fact that ¢* is not the interfacial average of gq,
but rather a weighted sum of interfacial values of ¢, where the weights have
positive and negative values. The interfacial average of ¢ is

(e VX) 1 q
Qint = A b .A(.Tu _ xl) Z |nz, ’ (39)

where A is the average interfacial area per unit volume,

1
A=:ru-a:;z

xings

1
el (3.10)

It would be interesting and useful to develop a statistical characterization
of the complex interface geometry, in the framework of a set of evolution
equations for moments such as B and A. These ideas are discussed by Drew
and Passman [6].

We observe that there is a strong correlation between the region of non-
monotonicity of 8 and the extreme noise in the profiles. In the regions near
the edges both quantities exhibit roughly linear behavior with minor noise.
In view of our data, a more pragmatic modelling approach may be to focus
effort on the more important outer regions of the mixing zone, and bridge
the central region by interpolation.

4 Conclusion

A formula for interfacial two-phase averages is derived theoretically. Our sim-
ulations of two-dimensional Rayleigh-Taylor instability achieve a good sta-
tistical convergence of mean two-phase properties under increasing ensemble
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size. The numerical data is suitable for an order-or-magnitude understanding
of the mixing zone physics.
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