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Abstract

In this paper, we study the transversally conformal metric on a foliation.
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1 Known facts on a Riemannian foliation

Let (M, gum,F) bea (p+ q)-dimensional Riemannian manifold with a foliation F
of codimension ¢ and a bundle-like metric gum with respect to F.

We recall the exact sequence

0=-L-TMS5Q—0
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determined by the tangent bundle L and the normal bundle Q = TM/L of F.
The assumption of gps to be a bundle-like metric means that the induced metric
9q on the normal bundle Q = Lt satisfies the holonomy invariance condition
YQ7gQ = 0, where % is the Bott connection in Q.

For a distinguished chart ¢ C M the leaves of F in I are given as the fibers
of a Riemannian submersion f: U4 — V ¢ N onto an open subset V of a model
Riemannian manifold V.

For overlapping charts U, N Us, the corresponding local transition functions
Yap = fao fg "on N are isometries. Further, we denote by V the canonical
connection of the normal bundle Q of F. It is defined ([6]) by

™([X,Ys]) VX erlL

Vxs = ( 1.1)

n(VHY,) VX erL:
where s € 'Q and Y, € T'L- corresponding to s under the canonical isomorphism
Q = L*. The connection V is metric and torsion free. It corresponds to the
Riemannian connection of the model space N. The curvature RY of V is defined
by

RY(X,Y)=VxVy — VyVx —Vixy) for X, Y eTM.

Since (X)RY = 0 for any X € I'L([11]), we can define the (transversal) Ricci
curvature p¥ : I'Q — I'Q and the (transversal) scalar curvature 7V of F by

pY(s) =D RY(s,E)Ba, 0¥ =3 go(p"(E.), Ea),

where {E,}az1,.. 4 is an orthonormal basis of Q. F is said to be (transversally)
Einsteinian if the model space N is Einsteinian, that is,
1

p¥ = aav-z’d (1.2)

with constant transversal scalar curvature ¢V. The second fundamental form of

a of F is given by

o X,Y)=n(V¥Y) for X,Y €TL. (1.3)
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It is trivial that o is Q-valued, bilinear and symmetric. The mean curvature
vector field of F is then defined by

=Y ofE;,E), (1.4)

1

where {E;}i=1.., is an orthonormal basis of L. The dual form , the mean

curvature form for L, is then given by
k(X) = go(r,X) for X €TQ. (1.5)

The foliation F is said to be minimal (or harmonic) if k = 0.
Let Q%(F) be the space of all basic r-forms, i.e.,

Q(F) = {6 € O(M)] i(X)$ =0, §(X)$ =0, for X €TL}.

The foliation F is said to be isoparametric if £ € Q}(F). We already know that
k is closed, i.e., dk = 0 if F is isoparametric ([11]). Since the exterior derivative
preserves the basic forms (that is, (X )d¢ = 0 and i(X)d¢ = 0 for ¢ € Q%(F)),
the restriction dg = deL () is well defined. Let ép the adjoint operator of dp.
Then it is well-known([1,5]) that

dg = 0.AVs, &= =Y i(B) Ve, +ilks), (1.6)

a

where k5 is the basic component of &, {E,} is a local orthonormal basic frame
in Q and {6,} its gg-dual 1-form.
The basic Laplacian acting on Q%(F) is defined by

A3=d353+(53d3. (1.7)

If F is the foliation by points of M, the basic Laplacian is the ordinary Lapla-
cian. In the more general case, the basic Laplacian and its spectrum provide

information about the transverse geometry of (M, F)([10]).
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2 Curvatures of transversally conformal metrics

Let (M, gm,F) be a compact Riemannian manifold with a transverse spin folia-
tion F of codimension ¢ and a bundle-like metric g with respect to F. Now, we
consider, for any real basic function  on M, the transversally conformal metric
Jo = €*gg. Let V be the metric and torsion free connection corresponding to

9q. Then we have the following proposition.
Proposition 2.1 On a Riemannian foliation, we have that for X,Y € I'rM,
Vxm(Y) = Vxmn(Y) + X(u)r(Y) + Y (uw)r(X) — 9o(m(X), n(Y))gradv(u), (2.1)

where grade(u) = 37, Eo(u)E, is a transversal gradient of u and X (u) is the Lie

derivative of the function u in the direction of X.

Proof. Since V is the metric and torsion free connection with respect to Jq on

@, we have

2gQ(7xs,t) = XQQ(S,t) + YgQ(’lT(X),t) - Zth(ﬂ'(X), S)
= gQ(ﬂ-[X’ YS]>t) + gQ(ﬂ'[ZhX]aS) - gQ(ﬂ.[}/stt]aﬂ'(X)))

where 7(Y,) = s and 7(Z,) = t. From this formula, the proof is completed. O

Proposition 2.2 On a Riemannian foliation F, the curvature tensor associated

with gg is given by

RY(X,Y)Z =R%(X,Y)Z — go(n(Y), Z)Vxdpu + go(x(X), Z)Vydsu
+{Y(u Z(u) 9o(x(Y), Z)|dpul* — 9o(Vydpu, Z)}n( X)
—{X(w)Z(u) - go(7(X), Z)|dpul® —QQ(VXdBU Z)}m(Y

+{X( u)gQ(fr(Y),Z) =Y (w)go(n(X), Z)}dpu

for X,Y € TM and Z € T'Q. Here dgu := grady(u).

Proof. By long calculation with (2.1), we obtain the result. O
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Lemma 2.3 On a Riemannian foliation F, the mean curvature form K associ-
ated with gg = e**gq satisfies
Kg = e k. (2.2)

Proof. From (1.3) and (1.4), we have
gu(r, X) = gu(VEE, X), VX €TQ, (2.3)

where {E;} is an orthonormal basis of L. Let gu = g1 + g be a transversally

conformal metric of gy. So Y =Y forany Y € L. Hence we have

au(r5, X) = m(VEE,X) = gm(VEE:, X)
= _{Eth(EnX)"'EgM(X E:) — Xgm(E:, E)
—!JM([EnX] B - gm(1E:, X), E:) + 3 (B, B3], X)
= gM(VEiE,-,X) = gm(r, X).

In the last equality of the above equation, we used the fact that gy (X,Y) =0
for X € L, Y € Q and g;, = gr. Hence

e g0 (75, X) = (75, X) = gm(7, X) = 90(7, X),
which implies 7, = e~2*7 and so K3 = ek, O

Lemma 2.4 On a Riemannian foliation F, the basic Laplacian Ap associated

with §g = e **gq satisfies
Af = e {Apf — (a— 2)9q(dsf,dpv)} (2.4)
for any basic function f-

Proof. By the definition, we have

Apf = bsdaf = — 3 EuBul ) — 5l f) = Y Eo(£)3a(V e, Brr o)
a a,b
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where {E,} is an orthonormal basic frame associated to 9q- Note that from (2.1)
an Eb = E'b(u)Ea - e‘“éadeu. (2.5)

So we have

Apf=e{Asf ~(g-2) ) E.(f)Ea(w)},

which proves (2.4). O

A direct calculation gives
Agh™'f) = —fh™2Agh+ h'Apf — 2fh~%|dgh|* + 2h%go(dph, dp f). (2.6)
From (2.4) and (2.6), we have the following corollary.

Corollary 2.5 On a Riemannian Joliation F, we have the following. For any

conformal change g = e*gy = ha-2 90
e*Ap(h™'f) = B Apf — Fh~2Agh. (2.7)

The transversal Ricci curvature oY of 9o = €™go and the transversal scalar
curvature oV of 9o are related to the transversal Ricci curvature p¥ of gg and

the transversal scalar curvature ¢V of 9q by the following lemma.
Proposition 2.6 On a Riemannian foliation F, we have that for any X € Q,

e™p”(X) =p¥(X) + (2~ q)Vxgrady(u) + (2 — g)|grady (W)X

(2.8)
+ (¢ - 2) X (v)gradv(u) + {Apu — k(u)} X,

eroV =V + (g — 1)(2—q)|grady(u)® + 2(g — D{Apu — x(u)}. (2.9)

Proof. Let z € M and choose an orthonormal basic frame {E,} with the prop-
erty that (VE,), = 0 for all a. Then

PY(X) = Y RY(X,E.)E,

- Z vvaﬂE_"l - Z vE’avXE_a - Zv{x,ga]ga.
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By a direct calculation, we have
e* Z VxVs.Ea = (1-q){Vxgrady(u) + |grady(w)’X
—2X (u)grady(u)} + Z VxVEg E,.
Similarly,
S Ve VxBs = Y VeVxEi+) EBau)X

+Vgradg ()X — Z 9(VEe X, Es)grady(u)
—Vxgrady(u) —algradv(u)lzX — X (u)grady (u).

and

Y VixgaBa = Y VixgEs+ X (u)(g—1)gradv(u)

~VgradgwX + Y _ 9(VEX, E,)grady(w).

Since Apu = dgdpu = — 3, EoEu(u) + i(x)dpu, the above equations give (2.8).
On the other hand,

o7 =3 50(p%(Ea), Ba) = Y 9a(p” (Ea), Bo)-
From (2.8) we have u a
o’ = Y ga(e’"(E.), Ed)
B +(2-9) Y 90(Vegrady(u), Ea)
+Heg-1(2- f;)lgradv(uﬂ2 +q{Apu — k(u)}.
Since 3, go(VE.grady(u), Ea) = ¥, BaBa(u) = —Apu + £(u), we have
0¥ = ¢V + (¢ — 1)(2 — q)|grady (u)[* + 2(¢ — D{Apu — x(u)},

which proves (2.9). O
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Corollary 2.7 On a Riemannian foliation F, the scalar curvature oV associated

with §gg = e**gg = hq%?gQ is simplied as
w2 g 41 v
hq"?o’ = 4‘(]__2{A3h et K(h)} + 0o h (210)
Proof. For ¢ > 3, u = q_% Inh. Hence we have
Apu = zI_ff_z{h—2|gmdv(h) P+ A 'Agh), 2.11)
2
lgrady (u))* = (q—_—é)zh'2|gradv(h)|2. (2.12)

From (2.9), the proof is completed. O
So we define the basic Yamabe operator Y, by

)/,,:4q—;AB+0V. (2.13)

Theorem 2.8 On a Riemannian foliation F of codimension q = 3, the basic
Yamabe operator of the transversally conformal metric satisfies the following equa-
tion: For gg = hq—%gq,

g—1, =2

Yo(h ' f) = ho2 Yy f — 4 ST R(R) . (2.14)

Proof. From (2.7) and (2.10), we have
_ -1 -
k™) =4 =5 Ak ) + 0¥ (h71)

Rt k(h) f,

= ek vy 4971
=h {4q~2A3f+U f} 4(]—2
which implies (2.14). O

Corollary 2.9 On a Riemannian foliation F of codimension q > 3, the basic
Yamabe operator of the transversally conformal metric Jo = hi 9gq such that
k(h) = 0 satisfies

Yo(h'f) = RV, (2.15)
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Definition 2.10 For any vectors X,Y € TM and s € 'Q, the transversal Weyl
conformal curvature tensor WV is defined by
WY(X,Y)s = RY(X,Y)s (2.16)
1
+q—_§{9Q(PV(7f(X))>S)7f(Y) — go(p¥ (m(Y)), 8)m(X)
+9q(m(X),8)p" (n(Y)) — go(m(Y),5)p” (x(X))}

v
_’(q—_li)(qTQ_){QQ(‘”(X)a s)m(Y) — go(n(Y), s)n(X)}.

By a direct calculation, the transversal Weyl conformal curvature tensor WV van-

ishes identically for ¢ = 3, where g = codimF. Moreover, we have the following

theorem.

Theorem 2.11 Let (M, gu, F) be a Riemannian manifold with a foliation F and
a bundle-like metric ga with respect to F. Then the transversal Weyl conformal

curvature tensor s invariant under any transversally conformal change of gum -

Proof. By a long calculation with Proposition 2.2 and 2.6, we have that wY =
wv. o

3 Transversal Dirac operators of transversally

conformal metrics

Let (M, gum, F) be a compact Riemannian manifold with a transverse spin foli-
ation F of codimension g and a bundle-like metric gy with respect to F. Let
S(F) be the foliated spinor bundle([4,5]) associated with Pyin(F).

Proposition 3.1 ([7]) The spinorial covariant derivative on S(F) is given locally

by: ]
Vo =7 Z;‘QQ(VEa, Ey)Ea - By - Va, (3.1)
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where W, is an orthonormal basis of Sq. And the curvature transform RS on

S(F) is given as

RS(X,Y)® = iZgQ(RV(X, Y)Eu, B)Eo-Ey-® for X,Y € TM. (3.2)
a,b

where {E,} is an orthonormal basis of the normal bundle Q.

We now define a canonical section RY of Hom(S(F), S(F)) by the formula

RY(V) = > Ea- By - RS(E,, Ey)V. (3.3)

Theorem 3.2 On the foliated spinor bundle S (F), we have the following equa-

tions
RY = -¢", ' (3.4)

Z E, - RS(X,E,)V¥ = —épV(X) ‘¥ for X €T'Q. (3.5)

Proof. From (3.2), we have

1
D BR(X,E) =1 Y go(R¥(X, B.) By, E.) LB}

a,b,c

1
=1 2 9(RY(X,E)E, E)E.E,E.

a#b#c#a
1
+ Z Z gQ(RV(X) Ea)Eba Ec)EaEbEc

a=b,c

1
+ 7 2 9e(RY(X, E)Ey, E)E, By E,

a=c,b

1
=1 > 9o(RY(X, Ey)Ey, E.)E.
b,c

1
+3 > 92(RY(X, E.) By, E.)E.E,E..
4 b,c
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In the above equation, the first term of the second equation zero. In fact, the

first Bianchi identity implies

Z gQ(RV(X) Ea)Eln Ec)EaEbEc
a£b#c#a

=~ ) 9q(R"(Es, Ee)Ea, X)EByE:
a#b#c#a

= 5" {90(RY (B, Ea)Es, X) + 9Q(RY (Ea, By) Bz, X)} Ba B
atb#cta

=2 > 9o(RY(Ec, Ba)Ey, X)EyEcEa
a#tb#c#a

=2 Y 9o(RY(By, Eo)Ea, X) BB,
atb#c#a

which implies zero. From the Clifford multiplication, we have
1 1
S v v
E L) = ——= E , = ——p’(X).
d E.R°(X, E,) 22 RY(X, Ep)Ey 5P (X)

The proof of (3.4) is followed by (3.5) directly. O
The transversal Dirac operator D, is locally defined ([4,5]) by

D,V =Y E, V5¥- %n ¥ for ¥ € T'S(F), (3.6)

where {E,} is a local orthonormal basic frame of Q. We define the subspace

T'5(S(F)) of basic or holonomy invariant sections of S(F) by
[p(S(F)) = {¥ eS(F)Vx¥ =0 for X € 'L}.

Trivially, we see that D;, leaves I'g(S(F)) invariant if and only if the foliation F is
isoparametric, i.e., k € Q5(F). Let Dy = Dirlrg(siry : T(S(F)) — Ta(S(F))-
This operator Dy is called the basic Dirac operator on (smooth) basic sections. On
an isoparametric transverse spin foliation F with éx = 0, it is well-known([4,5])
that

D:V = V; V,, ¥ + leKaV v, (3.7)
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where KY = oV + |k|* and

ViVl = =) Vi W+ V0. (3.8)

The operator V},V,, is non-negative and formally self-adjoint (|4]). Now, we
consider, for any real basic function u on M, the transversally conformal metric
do = €™gq. Let Py,(F) and P,(F) be the principal bundles of go- and go-
orthogonal frames, respectively. Locally, the section 5 of P,,(F) corresponding a
section s = (E1, -, Ey) of Po(F)is §= (B, -, Ey), where E, = e™E, (a =
L,---,q). This isometry will be denoted by I,. Thanks to the isomorphism I,

one can define a transverse spin structure Py,(F) on F in such a way that the

diagram )
Psp,'n(f) “I;’ Pspin(f)
Po(F) —L2 Po(F)
commutes.

Let S(F) be the foliated spinor bundles associated with Pyyin(F). For any
section ¥ of S(F), we write ¥ = [V, If < | >gq and <, >5, denote respectively
the natural Hermitian metrics on S(F) and S(F), then for any ®, ¥ e I'S(F)

<PV > =<,V >, (3.9)
and the Clifford multiplication in S(F) is given by
X"¥=X-V for X eTQ. (3.10)
From (2.1), we have the following proposition.

Proposition 3.3 The connection V and V acting respectively on the sections of
S(F) and S(F), are related, for any vector field X and any spinor field ¥ by

VxV¥=VxV¥ - %T((X) -grady(u) - ¥ — %gQ(gmdv(u), T(X))0. (3.11)
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Proof. Let {E,} be an orthonormal basis of Q@ and denote by w and @, the
connection forms corresponding to go and gg. That is, for any vector field X €
TM,

VB =Y we(m(X)E, VxBy=) w(n(X))E.. (3.12)

From (2.1), we have
Dhe(m(X)) = whe(m(X)) + go(m(X), Ec) Eo(u) = go(m(X), Ev) Ec(u).  (3.13)

Let {Ua}(A = 1,--- ,2[81) be a local frame field of S(F). Then the spinor

covariant derivative of ¥ 4 is given ([7]) by
1
Vx¥a=3 Y whe(w(X)) By - Ee - Ya- (3.14)
b<c
With respect to gg, we have

1 o
Vx¥a = = DbC(W(X))EbTECT\IJA
2

b<e

= % D {wie(7(X)) + go(m(X), Ee) Eo(u) — go((X), Ey)E(u)}EyEY 4
b<c

— Vx¥a -5 Y galn(X), B Bo(w) BBy a

b#c
N | 1 _
= Vx¥4—=n(X) - grady(u) - ¥4 — zgo(grady(u),7(X))¥4. O
2 2

Let D,, be the transversal Dirac operator associated with the metric 3o = e*gg
and acting on the sections of the foliated spinor bundle S(F). Let {E,} be a
local frame of P,,(F) and {E,} alocal frame of P,o(F).

Locally, D;, is expressed by

1 -

Dtr‘i’ = ; Ea B Vga\i’ - §f€§ T, (315)
Using (3.10), we have that for any ¥,
_ Y g-1—
D,V = e *{Dy, ¥ + g grady(u) - V}. (3.16)
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Now, for any function f, we have Dy, (fV¥) = grady(f) - ¥ + fD, V. Hence we
have
Dy (f¥) = e “grady(f) - ¥ + fD,, V. (3.17)

From (3.15) and (3.16), we have the following proposition.

Proposition 3.4 Let F be the transverse spin foliation of codimension q. Then

the transverse Dirac operators D;, and Dy, satisfy

Di(eT¥) = e~ F D, ¥ (3.18)
for any spinor field ¥ € S(F).

From Proposition 3.4, if D, ¥ = 0, then D,,® = 0, where ¢ = e_gg_l“\ll, and

conversely. So we have the following corollary.

Corollary 3.5 On the transverse spin foliation F, the dimension of the space of

the foliated harmonic spinors is a transversally conformal invariant.

Let the mean curvature form x of F be basic- harmonic, i.e., & € QL(F) and

dpr = 0. Then by direct calculation, we have the Lichnerowicz type formula.

Theorem 3.6 On the transverse spin foliation with the basic harmonic mean

curvature form , we have on S(F)

D2V = ViV, ¥ +RY(¥) + KV, (3.19)
where
ViVl ==Y "V V¥ +Vsg, 5V +V,,V, (3.20)
K¥ = 50— 23 + 7IRP (3.21)
RY(W) =" E,- By RS(Eq, Ey)¥ (3.22)
a<b
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Proof. Fix z € M and choose a local orthonormal basic frame {E,} satisfying
(VE,); =0 at £ € M. Then by definition,

- - _ _ 1 -
Dt2r‘1’ = Dtr{z Ea, B VEG‘I’ - EK«g B ‘I’}

= —ZVEaVEa\I’+ZE Eb RS(EG’E)‘iI

a<b
+ZE Eb V[E Bb]‘p+ZEb vE E Vgu\il
a<b
e - e I B
—52135 T (Vi) " U+ ViU g0 7 15~ W
b

From (2.5), we have

S BBy Vg ¥ =6 {EE ~gradv(w) * Ve, ¥ + Voaow Vh

a<b

ZE,, Ve B Ve, ¥ =—€ “{qude(u)\Il+ZE - gradv(u) ~ Vg, ¥},

Z E.” (Vgkg) " ¥ = e‘“{E_E Vier- ¥+ (2—gs(u)¥}

From the above equations, we have

D:¥v = — ZVE.,VE‘.,‘E’ + Vg“%ﬂ,—;ﬂ + V., ¥

I 1 e
+z E,= Ey= R°(E,,Ep)¥ + 5(‘1 — 2)kg(w)¥ + Z|'€|2‘I’

a<b

This completes the proof. O

Lemma 3.7 Let (M, gu,F) be a compact Riemannian manifold with a foliation

F and a bundle-like metric gy with respect to F. Then
< VI,?:T‘I’, ‘i) >>§Q:<< vtr‘i/, V;,@ >>§Q

for all &,V € S(F), where < ViU, Vir® >g0= 37, < VeV, Ve, ® >5-
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Proof. Fix r € M and choose an orthonormal basic frame {E,} such that
(VE,); = 0 for all a. Then we have that at

VEG E, = e_Qu{Eb(u)Ea — Ogpgrady(u)}. (3.23)

Hence we have

Il

< VLV B >y =~ < VeV, >,
+(1 - q)e—2u < vgradv(u)qla ¢ >§Q + < v,‘§®, P >§Q
= =) E<Ve 0,85, +3 < V5,958 >,

+(1 - Q)e-zu < V_7gmdv(u)q/7 ¢ >3 + < v
< >

,® >
= —dwg(V)+ Z <Vg V¥, Vs d >5q t .,

Ve«

where V € I'Q ® C are defined by go(V, Z) =< V, ¥, & >g, forall Z € TQ. The
last line is proved as follows: At z € M,

divg(V) = 3 90(Vs,V.E) = EugolV, Ba) — go(V, Y Vi, E.)
= Z E'a < an\I/, ) >0 —(1- q)e‘z" < ?gmdv(u)\fl, P >5q -
By Green’s theorem on the foliated Riemannian manifold([12))

/ divg (V / dolrs, V), :/ < Vi, U, & >4 vy,
M

where v; is the volume form associated to the metric gy = 9.+3q. By integrating,
we obtain our result. O
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