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THE UNIQUENESS OF INITIAL CONTROL FOR AN
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Sang-Uk Ryu

Department of Mathematics, Cheju National University,
Jeju 690-756, Korea

ABSTRACT. In this paper we are concerned with the uniqueness of initial con-
trol for an adsorbate-induced phase transition model. That is, by showing the
convexity of the cost functional, we prove that there exists a unique initial control.

1. INTRODUCTION

We consider the following initial control problem
(P) minimize J(u,v)
with the cost functional J(u, v) of the form

T T
Iuo) = [y v)-vallsde + [ 10w, v) - palloydt
+r{llullfrs @) + IvlEa @} (u,v) € H3(Q) x H*(Q),

where y = y(u, v) and p(u, v) is governed by the adsorbate-induced phase transition
model:

% o ady-dyly+ -1 -9 in Q@ x (0,7,
(L) 22=bAp+eV- {p(1 - p)Vx(u)} — FeXDp

gnli=%=o on 89 x (0,T],

¥(z,0) = u(z), p(z,0) = v(z) in Q.

Here, 0 is a bounded region in R? of C3 class. n = n(z) is the outer normal vector
at a boundary point z € 9 and 38; denotes the differentiation along the vector
n. y(z,t) denotes the order parameter which represents the structural state of the
surface at a position z € 2 and a time ¢t € [0, 00), and p(z,t) the adsorbate coverage
of the surface Q2 by a specific kind of molecules. x(y) is assumed to be given smooth
function for y, prototype of x(y) is

x(y) = —y*(3 - 2y).
a and b are positive diffusion constants. ¢,d, f,9,h,a and v are assumed to be
positive constants. We refer to (5] and (7] for the physical background of (1.1).
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In many situations, the initial condition of the state is unknown or only known
partially. This kind of problem is formulated as an nonlinear optimal control prob-
lem with the initial value serving as the control variable. Many papers have been
published to study the nonlinear control problem ([1], [2], [3], [6]). Recently, Ryu
and Jung [9] studied the initial control for an adsorbate-induced phase transition
model. In that paper they showed the existence of the initial control and obtained
the optimality conditions. In this paper, by showing the convexity of the cost func-
tional, we prove that there exists a unique initial control.

The paper is organized as follows. In Section 2, we recall some known results.
Section 3 is devoted to obtaining the uniqueness of the initial control.

Notations. R denotes the sets of real numbers. Let I be an interval in R.
LP(I;H), 1 < p < o0, denotes the LP space of measurable functions in I with values
in a Hilbert space H. C(I; H) denotes the space of continuous functions in I with
values in H. For simplicity, we shall use a universal constant C to denote various
constants which are determined in each occurrence in a specific way by 4, M, and so
forth.

2. FORMULATION OF PROBLEM

Let Ay = —aA +a and A2 = —dA + g with the same domain D(4;) = H2(Q) =
{z € HX(); & = 0 on 09} (i = 1,2). Then, A; are two positive definite self-
adjoint operators in L2(2). D(A?) = H?%(Q) for 0 < 6 < 2, and D(A?) = HZ(Q)
for 3 <6< % (see [11]). We set two product Hilbert spaces V C H as

V = H3(Q) x H3(Q), H=HZQ) x H(N).

By identifying H with its dual space, we consider V C ‘H = H’ C V'. 1t is then seen
that

V = HY(Q) x L?(Q),
with the duality product

((D) Y)V’XV = (Ai/2C1 /1‘3/23’)L2 + (‘P: A2p)L2$ ¢ = (C) ’ Y = (y) .

We denote the norms of V, H, and V' by || - ||, | - |, and || - ||+, respectively. (-,-) and
{-,-) denote the scalar product of H and the pairing between V and V'. We denote
the scalar products in ¥V and V' by (-, )y and (:, -}y, respectively.

We set also a symmetric bilinear form on V x V:

oY, V) = (A, Avd) 2 + (4720, A3%5) oy Y = (i),ff = (y) € V.
Obviously, the form satisfies
(2.1) (v, P)l < MIYIIPY, Y7 eV,
(2.2) a(Y,Y) 2 4|Y|? YeV

with some 4 and M > 0. This form then defines a linear isomorphism A = (/(1)1 /(; )
2

from V to V', and the part of A in H is a positive definite self-adjoint operator in
H with the domain D(A) = H3(2) x H3(N).
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(1.1) is, then, formulated as an abstract equation

(2.3) %+AY=F(Y), 0<t<T,
Y(0)=U
in the space V'. Here, F(:) : V — V' is the mapping
ay +dy(y+p— 1)(1 - y) (y)
FY) = , Y = .
(¥) (CV {p(1 = p)Vx(y)} — fexWp + h(1 - p) P

Here, U is defined by U = ().
As verified in [10, Sec. 3], F(-) satisfies the following conditions:

(f.i) For each 1 > 0, there exists an increasing continuous function ¢y : [0, 00) —
[0, 0co0) such that

IF()ll. < allYll + (YD), Y €V,
|IF(Y)| < nllYllpa) + #n(IY1), Y € D(A).

(£.ii) For each 5 > 0, there exists an increasing continuous function ¥y, : [0, 00) —
[0, 00) such that

IFY)-FY)|l. <allY Y|
+ (1P + 1Y)+ (Y +1YDIY — Y], Y. Y eV,
|F(V)-F(Y)| < allY - Yllp(ay
+ (IPlloeay + 1Y Il + DI+ IYIDIY - Y1, ¥,Y € D(A).
Furthermore, F(-) is first-order Fréchet differentiable with the derivative
F(YZ

= | eV{w( - 20)Vx(¥)} + cV{p(1 — V(X' ¥)2)} = fox' (¥)ze™XWp

—feexWy — hw

P w
F’(-) satisfies the following estimates (cf. [10, Sec. 3]):

(£.iii) For each 1 > 0, there exists an increasing continuous function 1, : [0, c0) —
{0, 00) such that

az+dz(y+ p—1)(1 — 2y) + dy(z + w)(1 — y) )

2MZIIPI+ (Y1 + D (IYDIZHIPI, Y, 2, P eV,
2 ZIIPI+ (Y1 + D (IYDIZNI P, Y, 2, P eV.

(f.iv) There exists an increasing continuous function v : [0, 00) — [0, 00) such that

IF'(¥)Z - F'(Y)Zl. < CIZIQ + Y + IY DY+ YDY - Y|, VY, ZeV.

(F)Z, Pl < {

We then obtain the following result (For the proof, see Ryu and Yagi (8]).

Theorem 2.1. Let (2.1), (2.2), (f.i), and (f.ii) be satisfied. Then, for any U € V,
there erists a unique weak solution

Y € H'(0, T(U); H) N C([0, T(U)}; V) N LA(0, T(U); D(4))
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to (2.3), the number T(U) > 0 is determined by the norm ||U||.

Now, let U,q be a closed, bounded, and convex subset in V and let S > 0 be
such that for each U € Uyq, (2.3) has a unique weak solution Y(U) € H*(0,S; H) N
c([o, S]; V) N L%(0, S; D(A)). Thus the problem (P) is obviously formulated as fol-
lows:

(P) minimize J(U),
where

S
J(U) = /0 1Y (U) = Yall%dt + AU|I%, U € Una.

Here, Yy = (%:) is a fixed element of L?(0,S5;V). v is a positive constant.

By using the compactness of the embedding V «— H, we obtain the existence of
an optimal control U € Uyq for (P) (cf. [9, Theorem 2.1]). Moreover, the differen-
tiability of Y'(U) with respect to U is obtained.

Proposition 2.2. The mapping Y : U,qa — H(0,5; V') NC([0,S); H) N L%(0,S;V)
is Gateaux differentiable with respect to U. For V € U,q, Y/(U)V = Z is the unique
solution in H(0, S; V') nC([0,S]; H) N L2(0, S; V) of the problem

dz

(2.4) G +AZ-F'(Y)Z=0, 0<t<S5,
Z(0)=V.
which satisfies
5
(2.5) 12|12 +/0 1Z(t)|12dt < C||V|>.

PROOF. The Giteaux differentiability of Y (U) was proved in {9, Proposition 3.2].
Therefore, the only thing to be prove here is the estimate (2.5) which will be useful
in the next section.

Taking the scalar product of the equation of (2.4) with Z and using (fiii), we
obtain that for 0 <t < S,

(2.6) gi—lz(lt)l2 + 8 Z@N* < (IY112 + Da(Y)IZ(e)?,

where fi : [0, 00) — [0, 00) is some increasing continuous function. Using Gronwall’s
inequality and | - | < C|| - ||, we obtain

1Z(8)]? < [V[2eds UYIP+DEIYE < oyyr2.

Using this result in (2.6) and integrating from 0 and ¢, we have

S
[izora<civie. o
0

With aid of Proposition 2.2, the optimality conditions for (P) are verified (For
the proof, see [9, Theorem 3.3]).

Theorem 2.3. Let U be an optimal control of (P) and let Y € H(0,S;H) N
c([0, S}; V) N L?(0, S; D(A)) be the optimal state, that is Y is the solution to (2.3)
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with the control U. Then, there exists a unique solution P € H!(0,S;V') N
C([o, S]; H) N L%(0, S; V) to the linear problem

_g +AP—F(VYP=A(Y —Ys), 0<t<S,

P(S)=0
in V', where A : V — V' is a canonical isomorphism; moreover, U satisfy

(%P(O) +AU,V-T)>0 forall Vel

3. UNIQUENESS OF THE INITIAL CONTROL

_In this section we obtain the uniqueness of the initial control for the problem
(P). By a direct calculation, the mapping F(-) : V — V' is second-order Fréchet
differentiable and have the following derivatives

F'(Y)(Z,Z)
d(z(z +w)(2—-3y) —22%(y+p—-1)—y(z + w)z)
=| e —2V{wVx(y)} + 2V{w(1 - 20)V(X'(¥)2)} + V{p(1 - )V (X" (¥)(2, 2))})
—f((ax'()2)* + ax" (¥)(2, 2) ) e*XW)p — 2f ax’ (y) ze** W

() ()

Lemma 3.1. (f.v) There exists an increasing continuous function s : [0,00) —
[0, 00) such that

IF"(Y)(Z, 2)I. < (1Y + D)=(YDIZ[12], Y, ZeV.
PROOF. The proof is similar to that of {10, Sec. 3]. O

Now we prove second-order Gateaux differentiability of Y (U) which will be useful
in the next.

Proposition 3.2. The mapping Y : Usq — H'(0, S; V')NC([0, S]; H)NL%(0, S; V) is
second-order Gateaux differentiable with respect to U. For V € Uy, Y (U)V,V) =
® is the unique solution in H1(0, S; V') N C([0, S); H) N L?(0, S; V) of the problem

and we have the following estimate.

(3.1) ‘%’ +AD - F'(Y)(Z,Z) - F/(Y)®=0, 0<t<S§,
&(0) =0,

where Z = Y/(U)V and & satisfies
S
(3.2) o)+ [ 18It < IV,

PROOF. Similar arguments as [9, Proposition 3.2] can be applied to second-order
Gateaux derivative. On the other hand, we consider the linear problem (3.1). From
(2.1), (2.2), (£.1), (f.ii), (f.iii), and (f.v), we can easily verify that (3.1) possesses a
unique weak solution ® € H!(0, S; V') nC([0, S]; H) N L%(0,S;V) on [0,S] (cf. [4,
Chap. XVIII, Theorem 2|). Therefore, we only prove the estimate (3.2).
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Taking the scalar product of the equation of (3.1) with & and using (f.iii) and
(f.v), we obtain that for 0 <t < S,
1d

(33) S IB® + @)

< gllq’ll2 + (V12 + DRAYDNZI%1 217 + (Y 12 + DAY 1%)22,

where &, i1 : [0,00) — [0, 00) are some increasing continuous functions. Therefore,
by Gronwall’s inequality and Y € C(0, S; V), we obtain

s - S
1B(2)[2 < eo IVIHDAIYOMds 71y 12 L 1)&(|Y (%)) Z(s) 12| Z(5)|2ds
0

< ClZWi2 0.5 1211 200,55
and thus, by (2.5),
12(t)* < ClIVII*.
Using this result in (3.3) and integrating from 0 and ¢, we have

S
[ iewia < civie. o
0

Theorem 3.3. If the time interval [0, S] is short enough, then there is a unique
initial control for (P).
PrOOF. We show uniqueness by showing strict convexity of the following map:

U € Upqg — J(U).
This convexity follows from showing for all U,V € U,q, 0 < h < 1,
g"(h) >0,
where g(h) = J(U + h(V = U)) (cf. (12, Sec. 25.5.)).
We denote Y* = Y(U + h(V — U)). By a direct calculation, we have
g0 = [ (@, D*ADY* ~ Yapd + [ IDZI%de + IV - I,

where Z is the solution of
‘fi—f+Az—F'(Y")z=o, 0<t< S,
zZ(0)=V -U
and & is the solution of
% +A® — F"(Y")(2,2) - F'(Y")® =0, 0<t<S,
o(0) =0.

Therefore, by (2.5) and (3.2), we infer that
s
(3.4) [ 1eira < e - vyt
0
By using (3.4), we have

S S
') 2 —(f o1t ([ IDTIZIDY" - Yaldt)' /2 + |V — U?
> (y=CIDIIDY* ~ Yal o s) IV — U1,
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where || - ||z denotes the operator norm. Thus, for fixed y > 0, we may choose S > 0
small enough so that v — C||D*||z|lY* — Yall2(0,5;v) = @ > 0. Hence, we obtain the
desired result. [l
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