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ABSTRACT

Starting with Tani’s theory of nonlinear response and using
the operator method introduced by Argyres and Sigel, the field-
dependent self-energy for a weak electron-impurity coupling is de—
rived. The result in the lowest order approximation is identical with
that of Suzuki. '

1. INTRODUGTION

In recent years the behavior of electrons in very high electric (and
magnetic) fields has received considerable attention in connection with
the remarkable advance in technology of crystal growth and device
processing. Therefore, the study on this problem has become one of
the subjects of active theoretical and experimental investigations[1-
14].

Theoretically, many analytical(4-11] and numerical{12-14] attempts
have been made in order to develop the theories which would be capa—
ble of including a variety of high field effects. Through these intense
studies, some new transport phenomena, such as collisional broad-
ening and intracollisional field effects, have been predicted|3]. These
phenomena are closely related with the field dependence of the con-
ductivity or the self-energy. In this sense the transport is refered to
as "nonlinear”.

Almost all the theories reported so far on the nonlinear phenomena
are of lowest order in the scattering strength. It is to be noted that
the lowest order approximation cannot yield correct interpretation in
general. In the present article we derive a field-dependent self-energy
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general. In the present article we derive a field-dependent self-energy
operator using the projection operator method introduced by Argyres
and Sigel[15].

2. NONLINEAR CONDUCTIVITY TENSOR

If a dc electric field E is applied adiabatically to a system of non-
interacting electrons in a impurity field, the spectral density is char-
acterized by Tani's field-dependent conductivity tensor|4,11]

oo af ..
o (Er) = (lir(g(l/ﬂ)fo dt exp(—et) < "{}lij‘j,[a—'i]]k(t)} >imp (1)

for k,l = x,y,z. Here {1 is the volume of the system, < --- >,,,
denotes the averaging over the impurity background, "tr” means the
single electron trace. In Eq.(1) k() is given by

Ik (t) = exp(s Lt [R)y, (2)

where }’is the electron current operator and L is the Liouville operator
corresponding to the total Hamiltonian kr, and f is given by

f={eaplBhe+V +i-]-)}, (3)

where 3’ = (kgT.)”!, T. being the electron temperature, ¢ is the
chemical potential, & is a constant vector, and h, and V shall be
defined in detail in the following.

The total Hamiltonian hy is defined by

hT = h:E‘ +V (4)
which corresponds to L = L.g + L. Here

hg =h. + e E, (5)

V=Y Vieaplid- ), (6)
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where ef is the electron polarization operator, h, the single electron
Hamiltonian and V, the Fourier transform of an impurity potential.

The interaction term in the impurity average given by Eq.(1) can
be rewritten, by utilizing the residue theorem, as

1 -
> ﬂfdzf(z) <oy |ReiR: | 2>

oy 402

tr{lim| g;%]fk(t)}

X < az | gk(t) | a1 >, (7

where
f(z) = lezp{B(z — )} +1]7, (8)

Rz = (he + V- z)—la (9)

and a(= o1, a3) is the electron state index, the corresponding eigen-
state and eigenvalue being given by[11]

hela>=¢q | a>, (10)

hela>=E,|a> (11)

in approximation. This approximation is acceptable for weak fields

although the correct eigenstate corresponding to E, depends on the
field.

For weakly interacting systems, we can expand R, as

R. = Z_: RO:(_VROI)m’ (12)

where

Ry, = (he — 2)7". (13)
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Then, making an approximation|11] R, as Ry, and considering Egs.(1)
and (7), we have

on(Er) = —ih }i‘g{(l/ﬂ) E f(sal) : 5(602)]}0101 Thazay (El)s (14)

€a

a),0z 1 a2
where X, ,, =< 0, | X | @3 > and
Yk(EI) = (-ihf - L)_l]k (15)

3. FIELD-DEPENDENT SELF-ENERGY OPERATOR

Now it suffices to calculate Y;(E;) in Eq.(14) properly.

With the use of the projection operators P and P’ defined by
Argyres and Sigel[15,16] as

PX = IXazax /jkazal]]‘k’ (16)
P' =1- Pa (17)
we obtain

(LegP' X)aza; =0, (18)
Z(Plx)asax = E Xaga” (19)

oo agFoz
Z(P'X)azas = Z Xagaa’ (20)

o3 agFay

(LcE‘jk)azaq = (Eaz - Eal)jlmzan (21)



ERHBLHR

3

PLgP'X =0. (22)

Considering all these relations and following the procedure adotped
in ref.[16] we obtain from Eq.(15)

Thazay
Yiara (B1) = ' ’
kazou( l) —the — Em2 + Eal - Bkagal (El) (2 )

Here Bioya, (E1) is the field-dependent self-energy operator given by

Blmga, (El) = (jkazal)_l < Z[LI{GOPILI}N].k]aga, >imp1 (24)
N=1

Go = (—the — L.g)™", (25)

where we have used Eqgs.(18) and (22), taken into account the relation
PL.GoP'X = (L.gGoP'X) 430, = 0, and utilized the identity (A —
B)™ = A7'Y, _o(BA™!)™. It is to be noted that the self-energy
operator Bya,a, (E1) has been expanded with respect to L, or V, the
scattering potential.

The lowest order approximation is given, by taking N=1, as

B By = Y < oY [y e B )
2 &  EBa, —E, —the E, — E,, —ihe '™

where we have used Eqgs.(21), (22) and (23), taken into account the
following relation:

(GoX)aia; = (—ihe = Eo, + Ea;) " Xoia;s (27)

and dropped the vertex correction terms involving Vi, [11,17]. We
see that Eq.(26) is identical with Suzuki’s result.
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The collision broadening by scattering can be examined by calcu-
lating the real part of the dc conductivity, i.e.

RC{UH El)} Z Iolazjkazal f(€:l) : i(EGZ)
X rk0201 (El) , (28)

{Bay = Eay = Bpoyor (B} + TR0, (B)

where the linewidth T'y,,,, (E;) and lineshift Ag,,,, (E;) for the tran—
sition between | a; > and | &y >, respectively, are the imaginary part
and real part of the self-energy Byy,q, (Ei) in Eq.(26), which are

Fkazoq (EI) = ”z < I Va'zaz Iz 6(Em - Eax)

og

+ l Va:ax " 6(Eaa - Eaz) >"mP’ (29)

1 1
Vaa ’P'——‘*‘—>ima
+| an[ Eag—Eag P

(30)

o (BY) = Vasas | Po——
Akaz 1( I) as <I ztl Eal—Eag

where P denotes Cauchy’s principal-value integral.

So far we have derived the electric field-dependent self-energy
operator for the electron in a impurity field. The result in the lowest
order approximation is identical with that of Suzuki[11]. If we include
higher order terms, we expect to get more precise results.
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