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A semiclassical phase shift analysis of the 1°0 + 4°Ca elastic scattering
at Ey., = 1503 MeV is presented using the Mclntyre’s parametrized phase
shift. The calculated cross section is found to be good agreement with the
experimental data. The presence of an nuclear rainbow is evidenced. The
optical potential by inversion is calculated and compared with the one of
optical model analysis.

L INTRODUCTION

The study of elastic scattering is a basic ingredient to understand more complicated
reaction process in heavy ion collisions. To understand and systematize heavy ion re-
actions, various models have been used. In recent year, a number of studies have been
made to describe elastic scattering processes between heavy ions within the framework
of the McIntyre strong absorption model (SAM)[1-4] . This model could provide a good
description of nucleus-nucleus scattering data over a large energies range. Also, McIntyre
SAM gives a realistic deflection function and allows, consequently, the nuclear rainbow
effect observed in heavy ion scattering.

Elastic scatterings data for 12C and '%0 ions at intermediate and high energies have
been analyzed[2-4] sucessfully in the framework of the McIntyre SAM. Elastic scattering
of 180 + *°Ca system at Ejap, = 1503 MeV was measured and analyzed with the optical
model analysis[5] . Recently, there are several attempts[6-8] to evaluate optical potential
from parametrized phase shift. A practical solution of the inversion problems using the
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quasi-classical limit of the high-energy approximation is reported{6]. Fayyad et al.[7] have
shown by solving the inversion problem at high energies that the fundamental McIntyre
parametrization of the S-matrix, for heavy ion collision, would correspond to a Woods-
Saxon type optical model potential. The parameters of such a Woods-Saxon potential
were directly related to the corresponding parameters of the Mclntyre parametrization.
And, Eldebawi et al. [8] use the simple Ericson parametrization of the phase shifts to
analyze the experimental data and apply the Glauber approximation to evaluate the
corresponding optical potential.

In the previous papers[9-11], the semiclassical phase shift analysis of the heavy ion
elastic scattering by using the asymptotic Legendre function and Mclntyre SAM was
presented. It was applied satisfactorily to the elastic scattering data for Ejap/A = 35
MeV /nucleon 2C beams on °Zr and 2°8Pb target nuclei. Mermaz[3] have already fitted
with 10 % error bars for 150 + 4°Ca at Ej,, = 1503 MeV using Mclntyre SAM.

This paper reproduces a semiclassical phase shift analysis of the elastic scattering data
for Ejap = 1503 MeV O beams on 4°Ca target nucleus. Furthermore, optical potential
will be obtained by using the inversion procedure which Mclntyre parametrization of
the S-matrix is related to the Woods-Saxon type optical model potential ,and compared
with one of optical model analysis[5]. In section II, we present the scattering amplitude.
And the potential by inversion is presented in section II1. Finally, we give results and
conclusions in section IV.

II. SCATTERING AMPLITUDE

The elastic scattering amplitude for spin-zero particle via Coulomb and short-range
central force is given by

£(6) = 1(6) + o= 34+ ) exp(2ior) (SN — 1) (oos). 1)
=0

Here fr(f) is the usual Rutherford scattering amplitude, 0, = arg'(l + 1 + in) the
Coulomb phase shifts. The nuclear S-matrix ,S¥, can be obtained from the nuclear
phase shift x(I) given by

S{ = explix(!)] = expli(xz(®) +ixs()]- (2)

In this work, we use the McIntyre parametrization{l] of the S-matrix . The real and
imaginary parts of nuclear phase shift for McIntyre parametrization [1] are expressed

xr()) = 2p{1 + exp{(l — A1)/A1)]} (3)
and

x1(1) = In[1 + exp{(Az — 1)/ Az}]. (4)
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(From the above two equations, there are five adjustible parameters available for fitting
the cross section data : A;, Az, A;,A; and u. The two grazing angular momenta A;
and A; are related semiclassically to the interaction radius of the colliding nuclei while
the corresponding widths Ajand Agare related to the thickness of the region in which
the nuclear interaction between the colliding nuclei takes place without destruction of
the identity of either of the nuclei. The reduced radius ry /2 and diffusivity d are related
to the grazing angular momentum A; and angular momentum width A; through the
following semi-classical relationship[3]:

2

Az = kR, ;51 — WZ’/Z)‘/Z, (5)

Ag = kd(l — —1—)(1 — 2n )~1/2 (6)
KRy kR, /2

where Ry, = rl/g(Ai/3+A;/3), k is the wave number and 7 = mZ, Z;¢2/(h*k) the Som-
merfeld parameter. The remaining parameter, p, is required to introduce the strength
of the nuclear phase shift.

The semiclassical approximation assumes that contributions to the cross section come
mainly from the large angular momenta. The asymptotic form of the Legendre function
can be written as[12]

1 0 1
Pr(oos) = (1 + Lym( 2 1
7(o0s6) = (14 3)™ (202 lli+ D0l ©
which is valid for all m and all angles except when (v — 6) < I-!. The scattering
amplitude can now be written as an integral over the continuous variable A — 1+ %, using
the asymptotic form Eq.(7) with m = 0 and replacing S} by a continuous differential
function Sy (A},
f(0~101/2 A expl2i S,
N(0) = (=) 2 exp[2io(A)][Sn (A) — 1]Jo(A8)dA. (8)

ITL. POTENTIAL BY INVERSION

The real and imaginary parts of nuclear phase shift can be rewritten in terms of impact
parameter as

- 2
X0 = el —b7a] ©)

and

xi(8) = Inl1 + exp( 20 (10)
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where b and by are the impact parameters normally given by kb =1+ %, kb = A2 +%
and d is diffusivity with d = Ay/k.
Using the relation between nuclear phase shift and optical potential

X0 =% [0, (1)
we can write real and imaginary nuclear phase shifts as
xal0) =5 [ e (12)
and
xi0) =5 [ Tz (13)

Equation (12) and (13) are of Abel's (7] type and the inversion solutions of these equations
are given by

0L [ A s
and
oL [ o

Approximating the phase shift xz(b) and x;(b) in terms of sums of Gaussian shape
and inserting this appraximated phase shift forms into Eqgs.(14) and (15), we get

N
Vi) =-2E S o (-2 (16)
n=1
and
W(r) = Ewﬁexp(——) (1)

To relate above V (r) and W(r) with the familiar Woods-Saxon forms, let us rewrite V(r)
and W(r) in the forms

AuE 1
V(") =~ ka T+ opllr — B)/A] (18)
and
2E 1

W(r)=—

kB T+ expllr — F/A (19)
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With the above parametrization and as is shown in the Appendix of Ref.[7], the following
relations, between the parameters of the corresponding phase shifts, will hold. For the
real part,

L(R,A')  3IL(b,d)

LE,A) ~ 21,(,, ) (20)
and
IG(R’,A’) _ §I5(b(l)i’) (21)
L(R',AY 4 I3(bgy,d’) )
For the imaginary part,
I4(R,8) _ 5 Li(bo, d) -
Iz(R, A) 4 Ig(bo,d)
and

Is(R,A) ~ 6 I4(%,d)

where 1, (zo, ap) is an integral given by

v
IV(-’E(),Q()) = ‘/OQ 1 +exp[(:l: — -7"0)/‘10] dr. (24)

We can obtain parameters R and A’ from solving two nonlinear simultaneous Egs.(20)
- (21) and R and A from Eqgs.(22)-(23), respectively, by using a certain iteration procedure
such as the Newton method[13]. The parameters o and 3 in Egs.(18) and (19) are given
by

o= 2[1 + exp(~bo/d )l o(R, A) (25)

and
2 Io(R,A)
T rm[l + exp(bo/d)]

(26)

where IO(RI, A') is given by

I(R,A") =R + A'In[l +exp(—R'/A')]. (27)
Now, Egs.(18) and (19) can now be rewritten in the form
—Vo
Vir) = 8
O = el — my/AT (28)
and
W(r) T (29)

" T+expl(r - R)/A]

where Vo(= 4uE/Tka) and Wo(= 2E/mkf) represent the depth of the optical model

potential. .
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IV. RESULTS AND CONCLUSIONS

The elastic differential scattering cross sections are obtained from the scattering am-
plitude using Eq.(1) and Eq. (8). The elastic scattering angular distributions for %0
+ %0Ca system fitted with five independent parameters are presented in Fig. 1. The
fits are satisfactory and the corresponding parameters are given in table 1. The full and
broken curves represent the calculated cross sections obtained by using Fgs.(1) and (8),
respectively. The two numerical results agree well with the observed data[5]. In table
1, rpn and dgp, are the reduced radius and diffusivity for the nuclear phase shift xr(!).
These parameters are related to A; and A; by means of the semiclassical relationship,
Eq. (5) and (6). As shown in table 2, our calculated x?/N = 2.29 was improved com-
pared with x2/N = 4.3 by Mermaz|3]. The terms 8, in table 2 is the grazing angle equal
to 2ArcTan(n/Az) .
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FIG. 1. Elastic scattering angular distributions for 10 + *°Ca system at Ejq» = 1503 MeV.
The solid circles denote the observed data taken from Roussel-Chomaz et al. [5]. The full and
broken curves are the calculated results from Eq.(1) and Eq.(8).
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FIG. 2. (a) Deflection function and (b) partial wave reaction cross section for the '°0 + *°Ca
system at Ejap = 1503 MeV plotted against the angular momentum L.

The deflection function given by the formula,%(?m +xr(l)), is plotted in figure 2 along
with the partial wave reaction cross section. The quantities fcr and Oy g ,in table 2,
are, respectively, the Coulomb and nuclear rainbow angles obtained from the deflection
function. We can see in Fig.2(a) that an nuclear rainbow exists in the system of 150 +
1°Ca at Eiap = 1503 MeV. The partial wave contributions, o7 = w/k(20+ 1)(1 — |SN |?),
to the total reaction cross section as a function of [ is also presented in figure 2(b). Figure
2(b) show that regions of higer partial waves do not nearly contribute to the total reaction
cross section. We can find from in table 2 that the strong absorption radius (Rs.g).
corresponding to |S}¥{? = 1/2, gives a good measure of the reaction cross section in terms
of Op1/2 = WR%AR.

TABLE 1. Input values of the Mclntyre strong absorption model for 90 +
10Ca at Eiup=1503 MeV,

r12(fm) d{fm)
1.276 0.732

[ad ren(fm)  dpn(fm) A A, A, A
4.329 0.940 0.746 132.653  18.078 181.015

17.737

TABLE II. Analysis results from the Mclntyre strong absorption model (SAM) for 160 4
40Ca at, Elab=150 IMeV.

0y(deg) Oc.r.(deg) On.r.(deg) Rsar(fm) ori/a(mb) o™ (mb) oS (mb)® x*/N y2/N °
1.646 2.246 -4.615 8.137 2080 2163 1996

229 43
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2Values of the optical model analysis are taken from Roussel-Chomaz et al [5].
bValue of x2/N is taken from Mermaz [3] using 10 % error bars analysis.

(a)

W) (Mev)

FIG. 3. (a) Real V(r) and (b) imaginary W(r) parts of the optical potential. The full curves
are the calculated results by inversion procedure. The dashed curves are the results from the
optical model analysis taken from Ref.[5].

We have calculated the optical potential through the inversion procedure[7] . Using
the Mclntyre parameters,A;, Az, Ay, Az and g, obtained from fitting the data and calcu-
lating the other related parameters (such as 7, k,etc), we got the phase shift parameters
as by = 7.49171 fm, by = 5.49565 fm. Note that Coulomb effects have been substracted
off in evaluating the parameters cited above. Using these parameters and solving two
sets of nonlinear simultaneous Eqs (20)-(21) and Eqs(22)-(23) with the iteration proce-
dure such as the Newton method(13], we can solve for R, A, R and A'. Their values
are R = 5.79223 fm,A = 0.87921 fm, R = 6.31477 fm, and A" = 0.63274 fm. We get
from Egs. (25) and (26) and above parameter that a = 4.02267 fm and 3 = 0.36040 fm
. Accordingly, we obtain Vy = —60.713 MeV and Wy = —78.270 MeV. The comparison
of the real and imaginary parts of optical potential with those of Woods-Saxon poten-
tials obtained in optical model analysis{5] and the potentials previously deduced using
Mclntyre parametrization of S-matrix is shown in Fig. 3. The potential obtained in
the present paper agree with one obtained in the optical model analysis near the strong
absorption radius. The depth of imaginary potential by inversion give more deeper than
one of imaginary potential by optical model analysis[5]. We can find that the real po-
tential provide better agreements with the optical model result compared to imginary
one.

In this paper, we have found that using the asymptotic formula for the Legendre func-
tions we can convert the partial wave sum for the scattering amplitude to an integral
over the continuous variable \. We have also shown that the integral form gives cross
sections for the elastic scatterings of 150 + %Ca system at Ej., = 1503 MeV in sat-
isfactory agreement with the direct sum of partial waves. The presence of an nuclear
rainbow is also evidenced by the deflection function. We can see that the agreement
of real potential obtained from inversion procedure with the Woods-Saxon potential by
optical model analysis is more good compared to one of the imaginary potential.
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