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< Abstract >

ZERO-TERM RANK PRESERVERS
OF FUZZY MATRICES

Linear preserver problem is an important topic on linear algebra and matrix
theory. We studied the research papers on the fuzzy rank preserver and term
rank preserver. They gave us the motivation to the research on the zero-
term rank preserver. Zero-term rank of a matrix is the minimum number
of lines (rows or columns) needed to cover all the zero entries of the given
matrix. In this thesis, we study on the fuzzy semiring, zero-term rank of
fuzzy matrices and linear operator on the vector space of fuzzy matrices.
We also characterize the linear operators that preserve zero-term rank of the

m x n matrices over a fuzzy semiring.



1. Introduction

A semiring is essentially a ring in which only zero is required to have
an additive inverse (a formal definition is given in chapter 2). Thus all rings
with multiplicative identity are semirings. So are such combinatorially inter-
esting systems as the Boolean algebra of subsets of a finite set (with addition
being union and multiplication being intersection) and the nonnegative in-
tegers (with the usual arithmetic). Fuzzy matrices provide another example
of matrices over a semiring. In this case, the semiring of scalars consists of
the real numbers 0 < x < 1 with £ + y = max(z,y) and zy = min(z,y).
The concepts of matrix theory are defined over a semiring as over a field.
There is much literature on the study of those linear operators on matrices
that leave certain properties or subsets invariant. Boolean matrices also have
been the subject of research by many authors. Beasley and Pullman char-
acterized those linear operators that preserve Boolean rank in [1] and term
rank of matrices over semirings in [4]. L.B.Beasley, S.Z.Song, and S.G.Lee
obtained characterization of linear operators that preserve zero-term rank of
Boolean matrices in [3]. In this thesis, we consider the zero-term rank of
fuzzy matrices. We obtain characterizations of those linear operators that
preserve zero-term rank of m x n matrices over a fuzzy semiring F. In chapter
2. we introduce most of the definitions, notations, and preliminary results.
In chapter 3, we characterize a fuzzy rank preserver, and in chapter 4, we
give some characterizations of linear operators that preserve zero-term rank

of m x n matrices over a fuzzy semiring F.



2. Preliminaries

We start this chapter by introducing some basic definitions. A formal

definition of a semiring is as follows;

Definition 2.1. A semiring consists of a set S, and two binary operations

on S, addition and multiplication, such that ;

(1) Sis an Abelian monoid under addition (identity denoted by 0);
(2) S is a monoid under multiplication (identity denoted by 1):
(3) multiplication distributes over addition ;

(4) sO = 0s =0 for alls € S : and
(5) 0#1.

Usually S denotes both the semiring and the set. The set of all m x n
matrices with entries in a semiring S is denoted by M, ,(S). The zero matrix
and the n x n identity matrix I,, are defined as if S were a field. Addition,
multiplication by scalar, and the product of matrices are also defined as if S

were a field.

Definition 2.2.  The rank (or semiring rank) of a nonzero matrix A in
M, »(S) is the least integer k such that 4 = BC for some B in M, «(S) and
some C in My . (S).

The rank of a zero matrix is 0. We denote the rank of A by 7(.A4) or r5(A4) .



Definition 2.3. A square matrix A is said to be tnvertible if there exist

a square matrix X such that AX = XA =1,.

Lemma 2.1. The rank of a nonzero matrix A is the minimum number of

rank-1 matrices which sum to A.

Proof. Suppose B and C are mxk and k xn matrices over S. Let b; and ¢

denote the jth column of B and the jthrow of C. Then A = BC = Zle bic.

The lemma follows from this expansion. a

Since M, ,(S) is a semiring, we can consider the invertible members of its
multiplicative monoid. The permutation matrices (obtained by permuting
the columns of I,, ) are all invertible. If 1 is the only invertible member of
the multiplicative monoid of S, then the permutation matrices are the only

invertible members of M, ,(S).

Lemma 2.2. The rank of a matrix is unchanged by transposition, pre-

and post-multiplication by an invertible matrix.

Proof Let P, Q be fixed invertible matrices. Let T be any of the mappings
A AL A= PA A AQ. Then r(T(A)) < r(A) by Lemma 2.1. But T
is bijective, so r(A) = r(T YT (A))) < r(T(A)).

Suppose S is a semiring. A function 7' mapping M, »(S) into itself is

called an operator on M, ,(S).

Definition 2.4. Let T be an operator on M, ,(S).

(i) T is linear if T(aA + 8B) = oT(A) + 3T(B) for all o, 3 € S and all
A, B € M, ,(S);



(i) T preserves rank k if r(T(A)) = r(A) whenever r(A) = k;

(iii) Tisa (U,V) -operator if there exist invertible matrices U, V" in M, i (S)

and M, ,,(S) respectively such that for all A € M, ,,(S)

(1) T(A) =UAV  or
(2) m=n, T(A) = UA'V.

Lemma 2.3. (U,V) - operators are linear, are bijective, and preserve all

ranks.

Proof. Linearity follows from the linearity of matrix multiplication. The

rest follows from Lemma 2.2. 0

Definition 2.5. Let S be any set of two or more elements. If S is totally
ordered by < ( that is, z < y or y < z for all distinct z,y in S), then define
r+y=mar(zr,y) and zy = min(z,y) for all z,y € S.

If S has a universal lower bound and a universal upper bound, then S becomes

a semiring. This semiring is said to be a chain semiring.

Let H be any nonempty family of sets ordered by inclusion: 0 = Nyepz
and 1 = Uzeyz. Then S = H U {0,1} is a chain semiring. Let a.w be real
numbers with o < w. Define S = {3 : 3 € [a,w]}. Then S is a chain semiring
with @ = 0 and w = 1. It is isomorphic to the chain semiring in the previous
example with H = {[a, (] : a < 3 < w}.

Let R, be the nonnegative real numbers. Then (R, ,+, x) is a semiring
under real addition +, and multiplication x. The real numbers 0, 1 are

the additive and multiplicative identities for this semiring. But 0,1 is not a



subsemiring, because for example 1+ 1 # 1 (real addition). So (R, , +, X) is

a semiring but not a chain semiring.



3. Fuzzy Rank Preserver

Definition 3.1. Let F={3|0< 3<1, 3 € R} denote a subset of
reals. Define = + y as maxr{z,y} and zy as min{z,y} for all z, y in F. Then
(F, +. -) is called a fuzzy semiring. In the followings, F denotes both the
fuzzy semiring and the set. Let M, ,(F) denote the set of all m x n matrices
with entries in a fuzzy semiring F. We call a matrix in M, ,(F) as a fuzzy

matriz.

According to the definition of rank, a matrix A has rank 1 if and only if
A = rw! and . w are nonzero vector in M, (F) and M, ,(FF) , respectively.
Let j, denote the column vector of length k all of whose entries are 1 and

Jonn the matrix all of whose entries are 1. Then Jn,, = JmJt is a rank-1

matrix. If we denote ef by the pth column of Ii, then E7" = c;"(()}‘)t is a

rank-1 matrix. From now on, all matrices denote fuzzy matrices.

Definition 3.2. The norm of an arbitrary m x n matrix X is defined by
X | X

in X.

is the maximum entry

| = j*Xj the sum of all entries in X. That is,

Note that the mapping X +— ||X|| preserves sums and scalar multiples of
matrices X, and ||BC|| < ||B||||C]] for all matrices B,C. The symbol < is

read entrywise, that is, X <Y if and only if z;; < y;; for all (4, j).

Definition 3.3. If A is any rank-1 m x n matrix, let a = Aj , and u = A'j.
Then au! = A, and Furthermore for all z,w, if A = rw!, then a < r and

u < w. For that reason A = au' is called the minimum factorization of A.



Lemma 3.1. If 7(A) = 1 and ) is the minimum nonzero entry of A, then

A has a line consisting only of \'s and 0's.

Proof. Let au! be the minimum factorization of A. Then A = a,u, for
some (p.q). Either a, = A or ug = A. If @, = A, then ayu; = A unless u; = 0,

so the pth row of A contains only 0’s and A’s. a

Lemma 3.2. Ifr(A4) =1 and a,, = 0, then a,; = 0 for all i or a;, = 0 for

all .
Proof. Similar to Lemma 3.1’s proof. 0O

Definition 3.4. We define the floor of X | pu(X). as the minimum entry

in X.
Lemma 3.3. If r(A) = 1, then every entry in some line of A is y(A).

Proof. This is Lemma 3.2 if u(A) = 0, and it is Lemma 3.1 if u(A4) > 0.0
Lemma 3.4. Suppose A = ((Z Z) Then r(A) = 2 if and only if ad # be.

Proof. Let a = u(A). If 7(A) = 1, then A has a line of a’s(Lemma 3.3),
s0 ad = « and be = a. Conversely, if ad = be, then ad = « and be = «, Say

a=ca; then b=« or c = a.

So A = ((jid) (¢ d)or (Z) (a b+d).

Hence r(A) < 1. Similarly, 7(4) < 1ifd =« O



Lemma 3.5. If H is a submatrix of A, then r(H) < r(A).

Proof. A factorization A = BC where B is m x k and C is k x n induces

a factorization H = KL where K has k columns and L has k rows. O

Lemma 3.6. If Y is the sum of two rank-1 matrices and Y has a submatrix

of rank 2, then r(Y) = 2.

Proof. By Lemma 2.1, 1 < r(Y) < 2. Apply Lemma 3.5. O

Lemma 3.7. If r(A) =1, then r(A + aJ) = 1 for all scalars a.

Proof. au; +a = (a; + a)(u; + a) for all ¢, ;. O
We just made use of the fact that addition distributes over multiplication

. . . 7. . X «
in a chain semiring. If X is any k x ! matrix we let( o denote the mxn
a
Atri X ol
matrix :
ad o

Lemma 3.8. If u(X) > a, then the rank of (2 @

x

) is 1)

Proof. We may assume X # 0. Let M= (Z Z) Suppose first that

r(X) = 1,50 X = uv'. Then for some (p,q), p(u)pu(v) = upvy, s0 p(uyp(v) >

VAV
«. Thus M= (a) (v (1).

Next suppose r(X) = k > 1. Then X = ZleYj., where r(Y;) = 1 for all



J (see Lemma 2.1). Let Z; = u(X)J +Y;. Then r(Z;) = 1 by Lemma 3.7.
Also 35 Z; = X + p(X)J = X.

7.

Consequently Zle (a] Z) =M, and each <ij Z) has rank 1 by the first

case, since 1(Z;) > p(X) > «. Therefore r(M) < k. Thus 7(M) = k by

Lemma 3.5. O

Unless otherwise specified, all matrices are m x n matrices over a chain

semiring K, and min(m,n) > 1.

Definition 3.5. Rank-1 matrices A, B are said to be separable if there is
a rank-1 matrix X such that r(A4 + X)r(B + X) = 2. The matrix X is said

to separate A from B.

Lemma 3.9. Ifr(4)=7r(B) =1 and r(A+ B) = 2, then A separates A
from B.

Lemma 3.10. Ifr(A) =1 and a # 0, then aJ and A are separable if and

only if A is not a scalar multiple of J.

Proof. Suppose A is not a scalar multiple of J; then p(A) < ||A]. Now
I|All = apq for some p and ¢. By Lemma 3.3, p(A) occurs throughout a row
or column of A. Say without loss of generality that apx = p1(A). Then k # gq.
Let x;; = ||A|| for all i # p and all j. Let z,; = 0 for all j. Then r(X) =1
and r(A + X) = 2 by Lemmas 3.4 and 3.6. But r(aJ + X) =1 by Lemma
3.7. Therefore X separates aJ form A. Lemma 3.7 also implies that 3J can

not be separated from aJ. 0O



In theorem 3.1 below we will show that in fact, every pair of distinct
rank-1 matrices is separable unless both are scalar multiples of J. Let B be
the two element subsemiring {0,1} of K, and « be a fixed member of K,
other than 1. For each z in K define 2* = 0 if x < «r, and ® = 1 otherwise.

Then the mapping x — z® is a homomorphism of K onto B.

Definition 3.6. A mapping A —» A% of M,, ,(K) onto M,,,(B) preserves
matrix sums and products and multiplication by scalars. We call A® the

a-pattern of A.

Lemma 3.11. Suppose A, B are rank-1 matrices not both scalar multiples
of J, and a = u(A)u(B). If A, B have different a-patterns, then they are

separable.

Corollary. Rank-1 matrices with different floors are separable unless both

are scalar multiples of .J.

Lemma 3.12. If A, B are distinct 2 x 2 rank-1 matrices, not both scalar

multiples of J; 5, then they are separable.

Proof. Let o = u(A). By Lemma 3.11 and its corollary we may assume
a = ju(B) and A* = B®. Then A has k > 2 entries equal to a by Lemma 3.3.

By our hypotheses, k < 4. Suppose k = 2. By Lemma 2.2 we may assume

A= ((; (Ij) and B= (? 3) wherea<a<b a<cdanda <cd Ifa<cd

and a < b, then X:(S g) separates A from B, since r(X + A) = 2 by

Lemma 3.4 and r(X) = r(B+ X) = 1. If a < ¢d and a = b, then X=

10



(8 6) separates A from B, since r(X + A) = 1 while (B + X) = 2 by
Lemma 3.4. If a = cd, suppose a = ¢. Then b # d and we may assume b < d.

Then b separates A= ¢ ) from B= (¢ @ by Lemma 3.4. Now
b b a b a d

c a
suppose a < ¢. Then a = d. We may assume b < ¢; then (0 0) separates A

—(* ") romB={" @ by Lemma 3.4 unless a = b. But then ©
a b ¢ a 00

separates A= (z Z) from B= (? Z) by Lemma 3.4. Finally suppose
k = 3. By Lemma 2.2, we may suppose

A= (a a) i B= (a a), and a < b. But then <1 1)
o a a b a a

separates A from B by Lemma 3.4. O

Lemma 3.13. Suppose min(m,n) = 2. If A, B are distinct rank-1 matri-

ces, not both scalar multiples of J, then A, B are separable.

Theorem 3.1. Distinct rank-1 matrices are separable if and only if at

least one of them is not a scalar multiple of J.

Proof. By Lemma 3.10 it is enough to prove that distinct rank-1 matrices
A, B are separable if neither is a scalar multiple of J. Let a = p(A). Lemma
3.11 and its corollary let us assume that pu(B) = a and A* = B*. Lemma

3.13 lets us assume that m > 2 and n > 2. We may now assume that

'\ ; ! 7
A= (M Z) and B = (2 Z), where M and N are k x [ rank-1 matrices

X

11



with floors exceeding «, and k < m or [ < m. Without loss of generality we
may assume k < m. If M = 3J and N = vJ with 3 < ~, then let z;; = v
for ; # 1 and z;; = S.Here X separates A from B. We now assume that
M and N are k x [ rank-1 matrices not both of which are scalar multiples
of Ji,. Lemma 3.13 lets us assume min(k,[) > 2. Inductively there exists a
) separates A

k x [ rank-1 matrix Y separating M from N. Then ()0 g

from B by Lemma 3.8. O

We consider rank-preserving operators. Let K be a fixed chain semiring.

The set of matrices of rank k in M, ,(K) is denoted Ry.

Lemma 3.14. Let T be a linear operator on M, ,(K) with min(m,n) > 1.
If T preserves norm and rank 1 but is not injective on R;, then T decreases

the rank of some rank-2 matrix.

Proof. Since T is not injective, T(A) = T(B) for some A, B in R, with
A# B. If A=aJ and B = 3J, then a = 3 because T preserves norms,
contradicting our assumption that A # B. Therefore by Theorem 3.1 some
rank-1 matrix X separates A from B. Say r(X + A) =1 and r(X + B) = 2.
Then T reduces the rank of X + B from 2 to 1. O

Lemma 3.15. If T is a linear operator on M, ,(K), min(m,n) > 1, and

T preserves ranks 1 and 2, then T preserves norm.

Proof. Let A € M,,(K), a = [|A]], and 8 = [|[T(A)[|; then 3 < «a,
because T(0X) = oT(X) for all X € M, ,.(K). Suppose 3 < a. Then for
some (p,q), apg = . Let Y be the matrix whose entries are all a except for

Ypg = 0. Then aJ = A+Y. Sor(A+Y) = 1 while 7(3A+Y) = 2 by Lemmas

12



3.4 and 3.6. By the linearity of T and the definition of 3, T(34) = T(4), so
T reduces the rank of 4 + Y from 2 to 1, contrary to the hypothesis. D

Lemma 3.16. If T is a linear operator on M, ,(K), min(m,n) > 1, T
preserves norm, and A < T(A), then T9(A) = T™'(A) for all ¢ = mn.

LetA:{E,‘J:1§z’§m,1§j§n}.

Lemma 3.17.  Suppose T is a linear operator on M, »,(K) and min(m,n) >

1. If T preserves ranks 1 and 2, then T permutes A.

Proof. By Lemma 3.15, T preserves norm. Therefore by Lemma 3.14,
T is injective on Ry, the m x n rank-1 matrices over K. Suppose T(E;;) is
not in A for some (i, j). Now T(Ey;) = ¥ mwFu. But || T(Ey) = 1.
S0 T, = 1 for some (p, g). Without loss of generality, we may assume
(p. q) = (i, j), because if P, @ are permutation matrices, then the linear
operator X — PT(X)Q preserves the ranks T preserves (see Lemma 2.2)
and permutes A if and only if T does. Let E = Ej;. Then £ < T(E).
so E # T(E) < T%(E) < --- < THE) = T*™(E), where k is the least
integer for which equality holds and n > 0 is arbitraty. By Lemma 3.16
we are assured that k exists and is less than mn. Let B = T*"!(E); then
B # T(B) but T(B) = T(T(B)), despite the fact B, T(B) are both in R,
and T is injective there. This contradiction implies that 7' maps A into A.

By injectivity, T permutes A. O

Theorem 3.2. Suppose T is a linear operator on the m x n matrices over
a chain semiring and min(m,n) > 1. If T preserves ranks 1 and 2, then T is

a (U, V)-operator.

13



Proof. Recall that B = {0, 1} is a subsemiring of K. Let M = M, 2(B).

Lemma 3.17 and linearity imply that T maps M into itself. Let T denote
the restriction of T to M. From this definition of rank, the rank r3(X) of a
member X of M is at least r(X), its rank as a member of M, ,(K), because
B ¢ K. On the other hand, the mapping that takes a matrix A to its 0-
pattern A° preserves matrix products. Hence rx(X) = r(X) for all X in
M. Therefore T preserves ranks 1 and 2 over M. By (1, Theorems 3.1, 4.1,
4.2], T is a (U, V)-operator on M. The corresponding matrices U, V" are also

invertible over M, ,(K); in fact, they are just permutation matrices. Let
A€ My, (K). Then T(A) = Y a, T(E;;) = S a;T(E;;) as Ei; € M. Either

(1) f(E,]) = UE,V for all ¢, j or (2) m = n and T(Eij) = l»"Ef]-V for all
i.j, by the definition of (U, V')-operator the result follows from the linearity

of matrix multiplication. O

Theorem 3.3. Suppose T is a linear operator on the m X n matrices
over a chain semiring and min(m,n) > 1. Then the following statements are

equivalent:

(1) T preserves all ranks;
(2) T preserves ranks 1 and 2;
(3) T is a (U, V)-operator;

(4) T is bijective and preserves rank 1.

Proof. Theorem 3.2 establishes that (2) implies (3). According to Lemma
2.3, (3) implies (4). If T satisfies (4), then the lincarity of 7" and Lemma 2.1

14



ensure that T does not increase the rank of any matrix. For the same reason,

neither does T~!. Therefore (4) implies (1). O

15



4. Linear Operators That Preserve
Zero-Term Rank Of Fuzzy Matrices

Definition 4.1. Let E;; be the m x n matrix whose (¢, j)th entry is 1
and whose other entries are all zero, which is called a cell.
Let J denote the m x n matrix all of whose entries are 1 and A = {E;; : 1 <

i <m,1 < j < n} denote the set of cells.

Definition 4.2. The zero-term rank z(X) of a matrix X is the minimum

number of lines (rows or columns) needed to cover all the zero entries in X.

Definition 4.3. The term rank t(X) of a matrix X is the minimum

number of lines (rows or columns) needed to cover all the nonzero entries in

X.

Definition 4.4. Forany A, B € M, ,(F), we say A dominates B (written
A Z Bor B S A ) if(l,‘]' > bij for all Z,]

Then we obtain the following result.
Lemma 4.1. For any A4, B € M, ,(F), A > B implies that z(A) < 2(B).

Proof. If z2(B) = k, then there are k lines which cover all zero entries
in B. Since A > B, this k lines can also cover all zero entries in A. Hence

z(A) < k = z(B). 0

Definition 4.5.  If 2(T(X)) = k whenever z(X) = k, we say T preserves

zero-term rank k. If T preserves zero-term rank k for every k < min{m,n},

16



then we say T preserves zero-term rank.

Definition 4.6.  If t(T(X)) = k whenever t(X) = k, we say T preserves
term rank k. If T preserves term rank k for every k < min{m,n}, then we

say T preserves term rank.

Which linear operators on M,, ,(F) preserve zero-term rank? The opera-
tions of permuting rows, permuting columns, and (if m = n) transposing the
matrices in M,, ,(F) are all linear operators that preserve zero-term rank of
the matrices on M, ,(F).

If we take a fixed m x n matrix B in M,,,(F), then its Schur product is

defined B o X = [b;;z;;] for all X in M, ,(F).

Proposition 4.1. Suppose that T is an operator on M, ,(F) such that
T(X) = Bo X, where B is fixed in M, ,(F). Then T is linear.

Proof. Foralla,3 € F, A, B € M, ,(F),
T(aX + 8Y) = Bo(aX +3Y)=Bo(aX)+ Bo(8Y)
=a(BoX)+ 3(BoY)=aT(X)+ 8T(Y) O

Proposition 4.2.  Suppose that T is a linear operator on M, »(F) such
that T(X) = B o X, where B is fixed in M,, ,(F), none of whose entries is

zero in F. Then T preserves zero-term rank.
Proof. It follows the definition of Schur product. a

That these operations and their compositions are the only zero-term rank
preservers is one of the consequences of theorem 4.1 below. Such operators

are described more formally in the following definition.

17



Definition 4.7. If P and Q are m x m and n X n permutation matrices,
respectively and B is an m x n matrix, none of whose entries is zero, then T

is a (P, Q, B)-operator if
(1) T(X) = P(Bo X)Q for all X in My, o,(F) or

(2) m =n, and T(X) = P(Bo X")Q for all X in M, »(F).

From now on we will assume that 2 < m < n for all m x n matrices, and

a mapping T will denote a linear operator on M, »(FF).

Definition 4.8. Let £ = {(i,j) : 1 <1 < m,1 < j < n}. That is,
£ is a set of indices. Define T : £ — &£ by T'(i,j) = (u,v) whenever
T(Ei]') = bijEuv with 0 < bij < 1.

Lemma 4.2.  Suppose T preserves zero-term ranks 0 and 1. Then T maps
a cell onto a cell with a scalar multiple and hence T" is a bijection on the set

E.

Proof. If T(E;) = 0 for some E;; € A, then we can choose mn — 1 cells
E,.Ey, - -, Epn 1 which are different from E;; such that

T() = T(E,+Y . En)

mn—1

= T(Ey)+T(Y_, | En
= 0+7(X" B
= 73 B,

18



But z(J) = 0 and z(3)"", ' Es) = 1. Since T preserves zero-term ranks 0
and 1, we have z(T(J)) = 0 and z(T(37"" ' Ey)) = 1. This is a contradiction

because 0 = z(T(J)) = 2(T()™" 'Ex)) = 1. Hence T(E;;) dominates at
least one cell with a scalar multiple. That is, T(E;;) > b;;Ey,, for some
Ey,, € A with 0 < b;; < 1.

For some cell E;; € A, suppose T'(E;;) > bijEkl+b;jEuv for some Fy;, Ey, €

A with 0 < bl],b;j < 1. For some cell E,; except for both Ey and FE,,. we
can choose one cell E, such that T(FE}) dominates by E,; for some E,; € A
with 0 < by < 1 because T preserves zero-term rank 0. Since the number of
cells except for both Ey; and E,, is mn — 2, there exist at most mn — 1 cells

E\, Ey, -+ En,_ containing E;; such that

mn—1
HTOYERyEsy (4.1)
h=1
But 2(37" ') = 1. Since T preserves zero-term rank 1, we have z(T'( -

E,)) = 1. This contradicts to the equality (4.1). Hence T'(E};) = b;; Ey, for
all E;; € A. That is, T maps a cell into a cell with a scalar multiple.
Now we show that T is a bijection on £. If T'(3,5) = T (r, s) = (u,v) for

some different indices (7, j) and (r, s), then we have

T(']) - T({'] - (Eij + Ers)} + (Eij + Ers))

= T(J~-(Ey+Es)+T(E;+ Eyy)

= T(J - (Eij + Ery)) + T(Eij) + T(Er) (4.2)
Since T'(i,j) = T'(r,s) = (u,v), we have T(E;;) = by;Ey, and T(E;,) =

brs Eyy with 0 < by, 6,5 < 1.
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(case 1) by; > bys. By the equality (4.2), we have

T(J) = T(J—-(E;j+Ey)+T(E;) +T(Ey)
= T(J— (Eijj + Ers)) + bijEuy + brs B
= T(J— (Ey+ Ey)) + by Eyy
= T(J - (Ey + Ex)) + T(Ej;)
= T(J - (Ei; + Er) + E)
= T(J - Ey).

(case 2) b;, < bys. By the similar argument of case 1, we have

But z(J — E,,) = z(J — E;;) = 1 and 2z(J) = 0. This contradicts that T
preserves zero-term ranks 0 and 1. Therefore T is an injection on £ and so

T is a bijection on &. O

Lemma 4.3. If T preserves zero-term ranks 0 and 1, then T preserves

term rank 1.

Proof.  Suppose that T does not preserve term rank 1. Then there exist
some cells E;; and Ej; on the same row(or column) such that T(E;; + Ey) =
T(E;;)+T(Ey) = by Epg+ by Eyg with p # 7 and g # s, where T'(i,5) = (p,q)
and T'(i,1) = (r, s). Since T preserves zero-term ranks 0 and 1, we have that
T  is bijective on £ by lemma 4.2. Hence we have T(J) = B = (buy)mxn
for some B € M,,,(F) and 0 < b,, < 1. Since T preserves zero-term
rank 1 and 2(J — E;; — Ey) = 1, we have 2(T(J — Ej; — 1)) = 1. Since
T(E;+ Ey) = T(Ey;) + T(Ey) = bijEpq + by Ers, the image of J— E;; — Ey
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has zeros in (p,q) and (r, s) positions and otherwise nonzero entries. Then
2(T(J — E;; — Ey)) = 2 because p # r and ¢ # s. This is a contradiction.

Hence T preserves term rank 1. a

Lemma 4.4. If T preserves zero-term ranks 0 and 1, then T maps a row

of a matrix onto a row with scalar multiple (or column if m = n) in F.

Proof. Suppose that T does not map a row into a row with scalar
multiple (or column if m = n). Then T does not preserve term rank 1.
This contradicts to lemma 4.3. Hence T maps a row into a row with scalar
multiple (or column if m = n). Since T preserves zero-term ranks 0 and 1,
we have that T is bijective on £ by lemma 4.2. Then the bijectivity of T
implies that T maps a row onto a row with scalar multiple (or may be a

column if m = n). ]

Lemma 4.5 For the case m = n, suppose that T preserves zero-term
ranks 0 and 1. If 7 maps a row onto a row (or column) with scalar multiples
in F, then all rows of a matrix must be mapped some rows (or columns,

respectively) with scalar multiples in F.

Proof. Since T preserves zero-term ranks 0 and 1, T’ is bijective on £ by
lemma 4.2. Let R, = 37| Eij and C7 = 330 | Eyj, where 4,j = 1,2, - n.
Suppose T maps a row, say R, onto an ith row R; with scalar multiple B;
and another row, say Ry, onto a jth column C? with scalar multiple B’.
That is, T(R,) = B;o R; and T(R;) = B? o C7. Then R, + R, has 2n cells
but B;o R, + B’ oCY has 2n — 1 cells. This contradicts to the bijectivity of T'
on &. Hence all rows must be mapped some rows (or columns, respectively)

with scalar multiple . O
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We have the following characterization theorem for zero-term rank

preserver on M, ,(F).

Theorem 4.1. Suppose that T is a linear operator on My, ,,(F). Then

the following statements are equivalent :
(1) T is a (P, Q, B)-operator;
(2) T preserves zero-term rank;

(3) T preserves zero-term ranks 0 and 1.

Proof. (1) = (2): Suppose that T is a (P, Q. B)-operator and the zero-
term rank of X is k, that is , 2(X) = k. Since T is a (P, Q, B)-operator,
we have T(X) = P(B o X)Q or m = n, and T(X) = P(B o X*)Q, where
P and Q are permutation matrices and B is an m x n matrix over F, none
of whose entries is zero. Hence z(T(X)) = z(P(Bo X)Q) = k = 2(X) or
2(T(X)) = 2(P(Bo X")Q) = k = z(X) . Since k is an arbitrary, we have
that T preserves zero-term rank.

(2) = (3): It is clear.

(3) = (1): Suppose that T preserves zero-term ranks 0 and 1. Then T is
a bijection on £ by lemma 4.2. Lemmas 4.4 and 4.5 imply that 7" maps all
rows of a matrix onto rows with scalar multiples or columns onto columns
with scalar multiples. Thus, for all m x n matrix X, T(X) = P(Bo X)Q or
m = n, and T(X) = P(Bo X!)Q with some permutation matrices P and @
and B is a fixed m x n matrix over F, none of whose entries is zero. Hence

T is a (P, Q, B)-operator. 0

Lemma 4.6. For any A, B in M,,,(F), A > B implies T(A) > T(B).
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Proof. By definition of A > B, we have a;; > b;; for all ¢, .
Using A =37, 3" a;Eyj and B =371, 30 bi; Eij, we have

n m n

T(A) =TS ayEy) = YD a,T(Ey)

i=1 j=1 i=1 j=1

A%

Y > buT(Ey)

i=1 j=1

T(Y > byEy)

i=1 j=1

= T(B)

because of linearity and a;; > b;;. Hence T(A) > T(B). O

Definition 4.9.  We say that a linear operator T strongly preserves zero-
term rank k provided that 2(T(A)) = k if and only if z(A4) = k. And a linear
operator T strongly preserves term rank k provided that t(T(A)) =k if and
only if t(A) = k.

Lemma 4.7. If T strongly preserves zero-term rank 1, then T preserves

zero-term rank 0.

Proof. Suppose that T strongly preserves zero-term rank 1. Since 2(J) # 1,
we have z(T(J)) = 0 or 2(T(J)) > 2. Suppose z(T(J)) > 2. Let A be any
matrix in My, »(F). Then J > A and so T(J) > T(A) by Lemma 4.6. Lemma
4.1 implies 2 < z(T(J)) < 2(T(A)). Hence z(T(A)) > 2 for all A € My, (F).
For any cell E;; € A, let A= J—Ej;. Then 2(A) = 2(T(J - Ey;)) = 1. Since
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T strongly preserves zero-term rank 1, z(T(A)) = z(T(J — Ey;)) = 1. This
is impossible. Hence z(T'(J)) = 0. This means that 7" preserves zero-term

rank 0. a

Theorem 4.2. Suppose T is a linear operator on My, ,(F). Then T
preserves zero-term rank if and only if it strongly preserves zero-term rank

1.

Proof. Suppose that T strongly preserves zero-term rank 1. Then lemma
4.7 implies that T preserves zero-term rank 0. By theorem 4.1, T preserves
zero-term rank.

Conversely, suppose that T preserves zero-term rank. If 2(T(X)) =1
and z(X) # 1, then z(X) = 0 or z(X) > 2. If 2(X) = 0 (or z(X) > 2),
then 2(T(X)) = 0 (or 2(T(X)) > 2) by hypothesis. This contradicts to

2(T(X)) = 1. Hence T strongly preserves zero-term rank 1. a
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5. Concluding Remarks

In this thesis, we obtained the results on the linear operator preserving
zero-term rank in chapter 4. That is, we had the characterization of lin-
ear operators that preserves zero-term rank of fuzzy matrices. It turns out
that the linear operator is a (P, Q, B)-operator, which equals term rank pre-
server. Also, we obtained several kinds of conditions that are equivalent to a
(P, Q, B)-operator. We hope that more researches on this topic to generalize

our conclusion.
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