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< Abstract >

WEYL AND BROWDER SPECTRA OF
A LINEAR OPERATOR ON A BANACH SPACE

In this thesis, we study several properties of Weyl operator, Browder operator

and their spectra on an infinite dimensional Banach space and investigate the sys-

tematic relations between Weyl’s(a-Weyl’s) theorem and Browder’s(a-Browder’s)

theorem, respectively. The followings are the main results of this thesis.

(1)

Fredholm, Weyl and Browder operators are stable under compact perturba-
tion and open with the norm topology. Also we give equivalent conditions

of Weyl and Browder operator, respectively.

The essential spectrum, Weyl spectrum and Browder spectrum are upper
semi-continuous and their spectral radius are also upper semi-continuous.

Also these spectra are invariant under similarity.

The spectral mapping theorem holds for the Browder spectrum of a bounded
linear operator. Also we extends this result as follows : If T € L£(X)

and f is a holomorphic function defined in a neighborhood of ¢(T"), then

f(ap(T)) = ou(f(T))-

We show that a-Weyl’s theorem implies Weyl’s theorem and Weyl’s theorem
implies Browder’s theorem for bounded linear operators. Also we obtain
that a-Weyl’s theorem implies a-Browder’s theorem, and that a-Browder’s

theorem implies Browder’s theorem for bounded linear operators.



1 Introduction

Let X be an infinite-dimensional Banach space and let £(X) be the set of all
bounded linear operators on X and (X)) the set of all compact operators on X. If

T € L(X), we shall write N(T")(= ker(T")) and R(T") for the null space and range

of T, respectively. We note that X/R(T) = N(T*). Also a(T) = dim N(T) =

dimker(7) and B(T) = dim N(T*) = dim(X/R(T)). Here X* denotes the dual

space of X and T € L(X™*) is the adjoint operator of T

In this paper, we will study several properties of Fredholm, Weyl and Browder
operators and the inclusion relations between Weyl spectrum, Browder spectrum
and other spectra.

The organization of this thesis is as follows:

In section 2, we introduce topological properties(openness, the stability under
compact perturbation, etc) of Fredholm, Weyl and Browder operators on an
infinite-dimensional Banach space X.

In section 3, we introduce various spectra(essential spectrum, Weyl spectrum,
Browder spectrum, etc) of a bounded linear operator on X and the inclusion
relations among them. Also we study the upper semi-continuities of various
spectra and their spectral radius. In particular we show that these spectra are
invariant under similarity, and that the spectral mapping theorem does not hold
for the Weyl spectrum of a bounded linear operator in general. But the spectral

mapping theorem hold for the Browder spectrum of a bounded linear operator.



In section 4, we determine whether T" obeys Weyl’s theorem, Browder’s the-
orem, a-Weyl’s theorem and a-Browder’s theorem respectively. We study the re-
lations between Weyl’s(a-weyl’s) theorem and Browder’s(a-Browder’s) theorem.

Also we give necessary and sufficient conditions of Weyl’s theorem and Browder’s

theorem.



2 Fredholm, Weyl and Browder operators

Definition 2.1. An operator T' € £(X) is called a Fredholm operator if N(T') =

ker(T') is finite dimensional, R(T") is closed and N(7T™) is finite dimensional.

The following properties of compact operators are well-known([1],[2]): For all

K, K'eK(X), TeL(X)and AeC
(1) K+ K' e K(X), AK € K(X) and so K(X) is a linear space over C.
(2) TK, KT € K(X) and so K(X) becomes an ideal in £(X).

(3) If T, — T in the norm and T}, € K(X), then T" € K£(X) and so K(X) is

closed in L(X).

From (1), (2) and (3), the quotient algebra L£(X)/K(X) is a C*—algebra
since £(X) is a C*—algebra. We call this quotient algebra the Calkin algebra

of X. Let m: L(X) — L(X)/K(X) denote the natural projection of L(X) by

T— n(T)=T =T + K(X).

Theorem 2.2. (Atkinson’s theorem [1]) An operator T' € £(X) is a Fredholm
operator if and only if 7(T") is an invertible operator in £(X)/K(X).

Proof. Suppose that T is invertible. There is an operator S € L(X) such that
S =T Then TS = I and ST = I and so there exist K1, Ky € K(X) such that
I-ST =K; and [ -TS = K,. We have to show that N(7') is finite dimensional

and that R(T') is a closed subspace of finite codimension. Since ST = I — Kj,



N(T) € N(ST) = N(I — K;). Since N(I — K;) is finite dimensional, N(T") is
finite dimensional. Consider R(T'). Since T'S = I — Ky, we have R(T) 2 R(T'S) =
R(I—K3), and R(I — K>) is a closed subspace of X of finite codimension. We can
make an obvious inductive argument to find a finite set of vectors vy, va, - , v,
such that R(T) = R(I — K2) + [v1,v2,- -+ ,vy]. Thus R(T) is a closed subspace
of finite codimension in X.

Conversely, suppose that 7" € ®(X). Then N(T) is finite dimensional and
R(T) is a closed subspace of finite codimension. There exist projections P, Q €
L(X) such that P? = P, Q? = Q, R(P) = N(T) and R(Q) = R(T). Since P and

I — @ are finite-rank, there exists S € £(X) such that
ST = [HaE TTS2=9 = M — Q)
Thus ST =1 =75 in £(X)/K(X). O

Corollary 2.3. (Atkinson’s theorem [1]) The following conditions are equivalent:
(1) T is a Fredholm operator.
(2) There is an operator S € £(X) such that I — ST and I —T'S are compact.

(3) There is an operator S € £(X) such that / — ST and I —T'S are finite-rank

operators.

Definition 2.4. An operator 7' € £(X) is called a left(right)-Fredholm operator
if 7(T) = T is left(right)-invertible in £(X)/K(X). T is called a Fredholm opera-

tor if 7(T) = T is invertible in £(X)/K(X). Let ®;(X), ®,(X) and ®(X) denote



the set of all left-Fredholm, right-Fredholm and Fredholm operators respectively.

Operators in the set S®(X) = &;(X) U ®,(X) are said to be semi-Fredholm.

By the definition, we see that ®(X) = &;(X) N ®,.(X).

Definition 2.5. The index of T € ®(X), denoted by i(T"), is defined by i(T) =
a(T) — B(T) = dim N(T) — dim N(T™).

For examples, if T' is normal operator(i.e., T*T = TT*) then ¢(T) = 0, because
N(T) = N(T*). And if T is hyponormal(i.e., T*T > TT*) then i(T') < 0, because

N(T) < N(T*) and so dim N(T') < N(T*).

Lemma 2.6. ([1]) Let 7' € K(X) be any compact operator. Then i(I —T) =0,
ie, dmN(I —-T)=dimN((I —T)*).

Proof. Let us assume that T is of finite-rank. Then there are closed subspaces
M and Z of X such that M is finite-dimensional, X = M & Z, TM C M and
TZ = {0}. Let (I —T)|p be the restriction of I — T to M. Then R(I —T) =
R(I-T)m)®Zand NI—-T)=N((I—-T)|m)-

For all x € X there are u € M and z € Z such that + = v + z. Hence
I-Thax=I-T)(u+z2))=(II-Thu+{I-T)z=I-T)u+ =z

and (I —T)u € M.
If(I-T)x=0,then z=Tu—u=—-u+Tuec MNZ={0} and so z = 0.
Then x =u € M. Thus (I —T)x = (I —T)|m.

Since (I —T)|p € L£(X) and M is finite-dimensional,



oo > dimN{I —-T)=dimN((I —T)|nm)

= codimR((I — T)|a) = codimR(I —T) =dim N(I — T)*

Thus i(/ —T) = 0. Since dim R((I — T')|a) < oo and Z is closed, R(I — T is

closed. O

Lemma 2.7. If T € £(X) is invertible, then T is a Fredholm operator in X and
i(T) =0.

Proof. Since T is invertible, N(T') = {0} and so a(T") = dim N(T) =0 < occ.
Since X is closed and R(T") = X, B(T) = dim N(T™) = dim(X/R(T")) = 0 < oc.
Thus T € ®(X) and i(T) = o(T) — 5(T) = 0. O

Let Z(X) be the set of all invertible operators. Then Z(X) C ®(X) by the

above Lemma 2.7.

Theorem 2.8. (The index product theorem [1]) Let 7', S be a Fredholm operator.
Then T'S is also a Fredholm operator and i(7'S) = i(T") + i(S).
Proof. Since T and S are Fredholm, n(7T") and 7(S) are invertible. Then

m(T)n(T)™! = 7(T) " 'n(T) = I and 7(S)w(S)~t = w(S) " *n(S) = I. Thus

Similarly [7(T'S)]"'7(TS) = I. Therefore 7(TS) is invertible and hence T'S is
Fredholm. a



Theorem 2.9. If TS € £(X) with T'S = ST and if ST is Fredholm, then S
and 7" are Fredholm.
Proof. Since N(T')UN(S) C N(T'S) , we have dim N(T") < dim N(T'S) < o0

and dim N(S) < dim N(T'S) < oo. Similarly,
N(T*)UN(S*) C N(T*S*) = N((ST)*) = N((T'S)").

Then dim N(T7*) < dim N((T'S)*) < oo and dim N(S*) < dim N((T'S)*) < oc.
Finally, we show that R(T") and R(S) are closed. If R(T") is not closed, then there

is z € X such that z = lim z,, 2, € R(T) and z ¢ R(T). Since z, € R(T),

n—oo

Sz, € S(R(T)) = R(ST). Since S is continuous, Sz = S(lim z,) = lim Sz,

n—oo n—oo

and Sz, € R(ST). Thus z € R(T). This'is a contradiction. Hence R(T) is

closed. Similarly, R(S) is closed. O

Theorem 2.10. ([2]) If T € ®(X), then T € ®(X™*) and i(T*) = —i(T).

Theorem 2.11. (The stability under compact perturbation) If 7" is a Fredholm
operator and K is a compact operator, then T+ K is also Fredholm and i(T+K) =
i(T).

Proof. By Atkinson’s theorem, there exists S € £(X) such that ST =1 — K;

and T'S = I — K9 where K;, Ko € K(X). Thus
S(T+K)=ST+SK=1—K, +8K=1— (K, —SK)=1—F,

(T+K)S=TS+KS=1-Ky,+KS=1—(Ky—KS)=1—F,

where Fi, F5 € K(X). Hence T+ K € ®(X) by Atkinson’s theorem.



By Lemma 2.6, (I — K1) =0 =i(] — F1) and so i(ST) = i(S(T'+ K)). Thus
i(S) +i(T + K) = i(S(T + K)) = i(ST) = i(S) +i(T) and so i(T + K) = i(T).

The proof is complete. o

Theorem 2.12. ([17]) Let T' be a Fredholm operator. Then there is an n > 0
such that T+S € ®(X) and i(T'+S) = i(T') for any S € L(X) satisfying ||.S|| < 7.
Hence ®(X) is open in £(X) with the norm topology.

Proof. By Atkinson’s theorem, there exists 71 € £(X) such that /T = I — K,
and TT; = I — Ky where K1, Ky € K(X). Let S be any operator in £(X)

satisfying ||S]| < 7. Then
Tl(T—I—S) =NTT+TS=1-K+T15,
(T+S)T1 =TT + 8T, =1— Ky + ST .

Take n = ”TllH Then ||T1.S] < || T1||||S]| = @ < 1. Similarly ||ST|| < 1. Thus

I+ TS and I + STy have bounded inverse. Consequently
(I+TS) ' (T +8)=T+TS) ' (I+TS—K)=1—-I+T1S) 'K,

(T + S)T (I +8ST)) ™ = (I 4 STy — Ko)(I+STy) ™' =1 — Ko(I+STy)™ " .

Hence T'+ S € ®(X). Moreover
i((I+TS) ™) +i(T) +i(T+S)=i(I — (I +T1S) ' K1) =0

Since i((I +T15)7Y) = 0 and i(Ty) +4(T) = i(TAT) = i(I — K1) = 0, we have

i(T + S) = —i(Ty) = i(T). 0



Corollary 2.13. ([1]) Let T be a Fredholm operator and let {7}, } be a sequence

in £(X) that converges to T in norm topology, i.e., lim ||T;, — T|| = 0. There is
n—oo

a positive integer ng such that for any positive integer n > ng, 7T, € ®(X) with

i(Ty) = i(T).

Theorem 2.14. The sets ®;(X), ®,(X) and ¢(X) are all open in £(X) with the
norm, and 7' € ®;(X) if and only if T* € ®,(X).

Proof. It G = { n(T) : n(T) is invertible} C £(X)/K(X), then G is open
since the set of all invertible operators is open in £(X). Since the natural
projection 7 : L(X) — L(X)/K(X) is continuous and onto, 7 1(G) is open.
Thus ®(X) = { T : «(T) is invertible} = { T.: T € 7 4G)} = »1(G)
and so ®(X) is open. Similarly, G; = {m(T) : w(T)is left-invertible} and
G, = {n(T) : w(T) is right-invertible} are open. Then W‘l(@l) and 7 1(G,)

r)

)

are open. Thus ®;(X) = {T: T € 7 1(G))} = 7 1(G,) and &,(X) = 7 (
are open.

Since T' € ®;(X), there is S € L£(X) such that ST = I. Then I = I* =

(ST)* =T*S* ie., T*S* = 1. Hence T* € ®,(X). 0

Definition 2.15. An operator 7' € L£(X) is called a Weyl operator if T is

Fredholm and i(T") = 0.

We write ®¢(X) ={T € L(X) : T € ®(X) and i(T) = 0} for the set of all

Weyl operators. Clearly Z(X) C ®¢(X) C ®(X) by Lemma 2.7.

Theorem 2.16. If K is compact, then I — K is a Weyl operator.



Theorem 2.17. If T is a Weyl operator, then there exists K € £(X) of finite-
rank such that 7"+ K is invertible.

Proof. Since T' € ®¢(X), i(T) = 0 and dim N(7') = dim N(T™) < oco. Since
X =(X/N(T)) & N(T)=(X/R(T)) & R(T), there exists an invertible operator
Fy : N(T) — N(T*) defined by F = Fy(I — P) where P is projection of X
onto X/N(T). Then F is finite-rank. First we show that T 4 F' is injective,
ie, (T'+ F)x = 0 implies z = 0. If x € N(T) then 0 = (T'+ F)x = Fu.
Since Fx = Fy(I — P)x = Fo(r — Px) = Fox = 0 and Fj is injective, z = 0. If
z € X/N(T) then Fx = Fyo(I — P)x = Fy(x— Px) = Fy(x—z) = Fy(0) = 0. Thus
0=(T+F)xr=Tz+ Fz =Tz, e,z € N(T). Since N(T) N X/N(T) = {0},
z=0.

Secondly we show that 7'+ F is onto. If 2 € X, then there are u € R(T") and
v € X/R(T) such that x = u+v. Then u = T'p for some p € X/N(T') and v = Fyq
for some ¢ € N(T). Thus z = u+v = Tp+Fpq. Put h = p+q € X/N(T)®eN(T) =
X. Then Fq = Fy(I — P)q = Foq, Fp=Fo(I — P)p= Fo(p—p) = Fo(0) =0
and so Fh = Fp+ Fq = Fyq. Thus x = Tp+ Foq = Th+ Fh = (T + F)h. Hence

T + F' is onto and hence T + F' is invertible. O

Theorem 2.18. If T' is Weyl and K is compact, then 7'+ K is a Weyl operator.
Proof. Since T' € ®¢(X), i(T) =0and T € ®(X). Then T+ K € ®(X) and
i(T+K) =i(T) by Theorem 2.11. Thus T+ K € ®(X) and i(T'+ K) = 0. Hence

T+ K € ®y(X). O

Corollary 2.19. If S is invertible and K is compact, then S + K is a Weyl

operator.
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Proof. If S is invertible, then S is Weyl. Since K is compact, by theorem
2.18, S+ K is Weyl. O

Corollary 2.20. Let 7' € £(X) be any operator. The following conditions are

equivalent:

(1) T is a Weyl operator
(2) T =S+ F with S invertible and F' finite-rank

(3) T'= S+ K with S invertible and K compact

Proof. (1)= (2) : From Theorem 2.17, if T' € ®¢(X) then there is K of
finite-rank such that 7'+ K is invertible. So T = (T+ K)—K = (T+ K)+ (—K).
If we take T+ K =S and —K = F, thenT =S+ F.

(2) = (3) : All finite-rank operator is compact.

(3) = (1) : It is clear from Corollary 2.19. O

Recall that a(T)(d(T') respectively), the ascent(descent respectively) of T,
is the smallest non-negative integer n such that N(7") = N(T"")(R(T") =
R(T™*1) respectively ). If no such n exists, then a(T) = oo and d(T) = oco. If

a(T) < oo and d(T) < oo, then a(T) = d(T)([5]).

Example. If T is invertible, then a(7T") = 1.

Proof. If T is invertible, then T is injective and so N(T') = {0}. Clearly
N(T) C N(T?). We show that N(T?) C N(T). If 2 € N(T?) then T%z = 0.
Since T is invertible, there exists 7~!. Then T-'T?z = 0 and so Tz = 0. Hence

x € N(T) and so N(T) = N(T?). Thus a(T) = 1.

11



Definition 2.21. An operator T is called upper semi-Browder if T € ®;(X)
and a(T) < co. An operator T is called lower semi-Browder if T € ®,(X) and
d(T) < oo. An operator T is called Browder if T is both upper semi-Browder

and lower semi-Browder.
Let B+ (X),B_(X) and B(X) denote the set of all upper semi-Browder, lower

semi-Browder and Browder operators, respectively.

Clearly, B(X) = B, (X) N B_(X).

Remark 2.1. ([3]) The following conditions are equivalent:
(1) T is a Browder operator.
(2) T is Fredholm of finite ascent and descent.

(3) T is Fredholm and T — X is invertible for sufficiently small A # 0 in C.

Theorem 2.22. ([5]) The sets By (X),B_(X) and B(X) are open subsets of
L(X).

Theorem 2.23. ([13]) If S,T € B(X) and ST =TS, then ST € B(X).

Theorem 2.24. ([13)) f T € L(X), K € K(X) and TK = KT, then T € B(X)

implies T'+ K € B(X).

12



3 Properties of several spectra

Definition 3.1. ([2],[8]) For any T' € £(X), we define various spectra as follows:
(1) o(T) ={X € C: T — X is not invertible } is called the spectrum of T

(2) op(T) ={X € C: T — Xis not injective } = {X € C: N(T — X) # {0}} is

called the point spectrum of T'.

(3) decom(T) ={A € C: R(T — \) is not dense in X } is called the compression

spectrum of T.

(4) 04p(T) = {X € C: there exists a sequence {x,} in X with ||z,| =1 for all

n, such that ||(T' — A)xy,|| — 0} is called an approzimate spectrum of T

We recall that o(7T) is a non-empty compact subset of C. Also if T is self-
adjoint operator then ¢(7") C R. In particular, if 7' € (X)), then 0 € o(T'), each
nonzero point of o(7T') is an eigenvalue of T' whose eigenspace is finite dimensional.
Also o(T) is either a finite set or it is a sequence which converges to zero ([2]).

The spectral radius of T, r(T), is defined by r(T') = sup{|\| : A € o(T)}.
Lemma 3.2. ([2]) For any T € £(X), we have the following properties:
(1) [Al < |IT'|| for any A € o(T).
(2) 0p(T) C o(T) and oeom(T') C o(T).
(3) 04p(T) is a nonempty closed compact subset of o(T).
(4) 0p(T) C 04p(T) C o(T) and do(T") C oqp(T).

13



Remark 3.1. 0,(T") need not a non-empty.
For example, if T is a unilateral shift operator on [?, then op(T) = ¢. For,

suppose that x = (21, z9,---) € [2. If Tx = Az with A # 0, then
T(x1,2z2,-+) = (0,21, 22, -+ ) = Az = (A\x1, A\X2, - ).

Then 0 = Az1, 1 = Axg, o = Ax3, ---. Since A # 0, x1 =0, 20 =0, ---.
Thus N(T — X) = {0}. If A =0, then Tz = (0,z1,22,---) = (0,0,---). Then
ry = x3 = --- = 0 and so z = (0,0,---) = 0. Hence A = 0 ¢ o,(7), ie,

op(T) = ¢.

Definition 3.3. For any T' € L(X), 0.(T) =o(n(T)) ={ e C: T—-X ¢ &(X)}
is called the essential spectrum of T'. Similarly, 0;.(T") = oy(7w(T")) and o,..(T) =

or(m(T)) are called the right and left essential spectrum of T, respectively.

Theorem 3.4. ([1]) For any T € £(X), 0.(T) is a non-empty compact subset of
o(T) and 0.(T) C{o(T+ K): K € K(X)}.

Proof. It A € 0.(T), then T — X\ ¢ ®(X) and so T'— A ¢ Z(X) since Z(X) C
®(X). Thus A € o(T) and hence 0.(T") C o(T"). Since 0.(T") = o(n(T')) and the
spectrum of every operator is a non-empty compact subset of C, o.(T') is a non-
empty compact subset of o(T"). Moreover, if A ¢ o(T + K) for any K € K(X),
then (T4 K) — X is invertible. Since Z(X) C ®(X), (T'+ K) — X € ®(X). By
the stability under compact perturbation of a Fredholm operator, T'— A € ®(X)

and so A ¢ 0.(T). Hence 0.(T) C [ o(T + K). O
KeK(X)

14



Theorem 3.5. ([2]) For any T' € £L(X), we have the following properties:
(1) 01(T) Uore(T) = 0e(T) and 04(T) = ore(T*)*.
(2) 01(T) Coy(T), 0ve(T) C 0p(T) and 0.(T) C o(7T)

(3) If K € K(X) then 01(T) = 01(T + K),0,¢(T) = 0re(T + K) and o.(T) =

oe(T + K)
Proof. (1) Note that

ANeoe(T) & T-A¢gPX)=eT - A¢gP(X) or T—X¢ D.(X)
& A€ 0(T) or N€o.(T)
& A€ 0(T)Uoane(T).

Similarly, we have

ANeo(T) & Meo((n(l)) e n(T—))is not left invertible
< 7(T*— ) is not right invertible & X\ € o, (7w(T"))*
& A€o (TH)".

(2) If X ¢ 0y(T), then T — X is left invertible and so there is S € £L(X) such
that S(T'—A) = 1. Thus [ = n(I) = n(S(T — X)) = n(S)m(T — X). Therefore
m(T) — X is left invertible, i.e., A & oy(7(T")) = 03.(T). Hence oy.(T) C oy(T).
Similarly, o,.(T) C o,.(T).

(3) Note that

Ao (T) & T—-Xed(X)
& (T— X))+ K € ®(X) where K € K(X) by Theorem 2.11.

& (T+EK)-Ned(X) & \¢oo(T +K).

15



Hence 0.(T) = 0.(T + K).

Similarly, 05.(T) = 01.(T + K) and 0,(T') = 0,..(T + K). O

Definition 3.6. For each T' € L(X), 0,y(T) ={A € C: T — X ¢ ®¢(X)} is called

the Weyl spectrum of T.

Theorem 3.7. Let T' € L(X) be any operator. Then

(1) ow(T)= N o(T+K)
KeK(X)

(2) 0w (T) is a non-empty compact subset of o(T) and o, (T) C 0, (T).
(3) 0w(T + K) = 0y(T) for any K € K(X).

(4) 0w (T) = 0,(T) if T is normal.

(5) Bow(T) C oo(T).

Proof. (1) If A ¢ 0,(T), then T'— X is a Weyl operator. By Theorem 2.19,
there exists a compact operator K such that T' — A + K is invertible and so

A¢ o(T+K) for some K € L(X). Thus A\ ¢ () o(T+K).
KeK(X)

Conversely, if A ¢ () o(T + K), then T+ K — X is invertible and so
Kek(X)

(T+ K —\)— K =T — \is a Weyl operator by Theorem 2.19. Thus A ¢ o0,,(T).
(2) If A € 0 (T), then T — A ¢ Bo(X). Since T(X) C ®o(X), T — A ¢ T(X).
Then A € o(T). Thus 0,(T) C ¢(T') and so 0,(T") is bounded. Since o(T+ K) is

bounded and closed for any K € K(X), () o(T+K)isclosed. Thus o,(T) is
KeK(X)

a compact. Since ®o(X) C ®(X), 0.(T) C 0y(T'). Hence o, (7T) is a non-empty.
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(3) Since K, K' € K(X), K + K' € K(X). Then

owT+EK)= ()| oT+E+K)= () oT+K)=o0u(T).
K'ek(X) KeK(X)

(4) If T is normal, then T'— ) is also normal for any A € C, i.e., for any A € C,
(T — N)z|| = (T — X\)*z|| for any x € X, and so N(T'— X) = N(T' — A\)*. Thus
i(T—A)=0andso{Ae€C:T—Ae€®(X)and i(T—\) #0} =¢. If A & 0.(T),
then T— X € ®(X). Since i(T—A) =0, T — X € p(X) and so A ¢ 0, (T). Hence
ow(T) C 0e(T'). Therefore o, (T) = 0.(T).

(5) Suppose that A € 00, (T") — 0¢(T'), then A ¢ 0.(T) and so T — X € &(X).
Also A € 0o,(T), there is a sequence {A\,} in 0,(7T)¢ such that A\, — X\ and
T — A\, € ©9(X) for all n. By the continuity of the index, T — X € ®¢(X) and so
A ¢ 0y(T). But 0,,(T) is closed since ,,(T") is compact. Then A € o,,(T"). This is
contradiction. Hence A ¢ 00, (T) — 0 (T) for any A € C. Then 00, (T) —0e(T') =

¢. Hence 00, (T') C 0.(T). O

Definition 3.8. ([5]) Let 7' € £(X) be any operator. op(T) ={Ae€ C: T -\ ¢
BX)}=n{oc(T+K):TK = KT, K € K(X)} is called the Browder spectrum

of T where B(X) the set of all Browder operators.

Let accK denote the set of all accumulation points of K C C. Then o(T) =

oe(T) Uacca(T) ([3],4)).

For example, let S, be the unilateral shift operator on (2. Then 0.(S,) =

{ANeC: A\ =1}, 0uw(Sr) ={A € C: |\ <1} and 0p(S,) = {A € C: [N\ < 1}.
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Theorem 3.9. For any T' € L£(X), we have the following properties:
(1) ow(T) C op(T), and hence oy(T) # ¢.
(2) op(T) is a compact subset of o(T).
(3) op(T 4+ K) = 0p(T) for any K € K(X) with TK = KT.

Proof. (1)If X ¢ op(T), then T— X € B(X),i.e., T—X € ®(X) and a(T—\) =
d(T — \) < oo where a(T)= ascent T and d(T)= descent T. Say a(T — \) =
d(T — \) =n. Thus

0 < i(T—)\) =dmN(T - \) — dim(X/R(T — X))
< dim N(T = \)" — dim(X/R(T —\)") =0
and so T'— X € &g(X). Hence X ¢ 0,,(T).

(2) Since op(T) = 0¢(T) U acco(T), o.(T) is closed and acco(T) is closed.

Hence o4(T) is also closed. And since o(T) C o(T'), op(T") is bounded. Thus

op(T) is a compact subset of o(T).

(3) If X ¢ op(T), then T'— X\ € B(X) and
(T—NK=TK —\K = KT — K\ = K(T — \)

for any K € K(X) with TK = KT. Thus by Theorem 2.24, (T —\)+ K € B(X),
ie, (T+ K)—Xe B(X). Thus A ¢ 03(T + K). Hence op(T + K) C op(T).
If A ¢ op(T+K) for any K € K(X) with TK = KT, then (T+K)—\ € B(X)
and
{(T+K)-A(-K) = T+K)(-K)-\XN-K) = —-TK-KK+)\K

= —KT+(-K)K — (-K)\ = (-K)(T +K - \).
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Thus by Theorem 2.24, (T'+ K — \) + (—K) € B(X), i.e., T — X € B(X). Thus

A ¢ op(T). Hence 0(T) C 0p(T + K). Therefore oy(T + K) = 0(T). O

A mapping p, defined on £(X), whose values are compact subsets of C, is said
to be upper (respectively lower) semi-continuous at T, provided that if T,, — T
then limsup p(T;,) C p(T)(respectively p(T') C liminf p(7,)). If p is both upper
and lower semi-continuous at 7', then it is said to be continuous at T and in this

case limp(7T,,) = p(T") ([11]).

Theorem 3.10. Let T' € £L(X) be any operator.
(1) The mapping T"— o(T') is upper semi-continuous ([8]).
(2) The mapping T" — o.(T') is upper semi-continuous.
(3) The mapping T' — o,,(T) is upper semi-continuous.
(4) The mapping T'— o(T") is upper semi-continuous.

Proof. (1) Let A be the set of all singular operators(=non-invertible operators)
and let ©(\) = d(T — X\, A) for any T' € L(X). Then ¢ is continuous. If Ag is
an open set containing o (T'), if A = By 7 (0) is a closed ball with center 0 and
radius 1+ ||7']| and if A € A — Ag, then A ¢ o(T') and so T'— A is invertible. Then
T—X¢ A. Since Ais closed, p(A) > 0. Since A—Ag = ANA is a closed subset of
A and A is compact, A — Ay is compact. Since ¢()) is continuous on A — Ay and
©(A) > 0 for all A € A — Ag, there exists € > 0 such that ¢(\) > . Suppose that

IT—8|| <&<1. IfAe AAg, then [(T—N)—(S—N)| < & < p(A) = d(T—A, A).
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Thus S — A ¢ A, ie., S— \is invertible. Then A ¢ o(95), i.e., if A € A — Ay then
A o(S). If A€ o(S), then

AL< IS =1 =Sl =T =S =T < T =S[[+ Tl <1+ T

and so A € A. Thus o(S) C A. Hence o(S) C Ay.

(2) Suppose that A\ ¢ 0.(T) then T'— X\ € ®(X). Then there exists £ > 0 such
that ||(T'—A) =S| <e — S € SP(X) and i(S) =i(T"— N). Since T'— X € (X)),
a(T — X)) < oo and B(T — A) < oo. Since i(S) = (T — N), «a(S) — 5(5) =
a(T — X) — B(T — X). Then a(S) < oo and [(5) < co. Also R(S) is closed.
Thus S € ®(X). Therefore we have shown that ||[(T"—\) = S|| <e — 5 € ®(X).
Since T;, — T, there is N > 0 such that for all n > N — ||T,, — T'|| < §. For all

p € Be(A) with [ — Al < § and for all n > N,

A =T) = (p =T

IN

A = | + [T = T

3

9
= |[A— T, —-T| <=

E.

Then p— T, € ®(X). Thus p ¢ 0c(Ty) for all n > N for all p € Bs(A).

Hence A ¢ limsupo.(T;,) and so limsupo.(T;,) C o.(T), ie., 0.(T) is upper

semi-continuous.

(3) Let A ¢ 0 (T) so that T'— A € $¢(X). There exists an € > 0 such that if
S e L(X)and ||(T—A) — S| <e, then S € &9(X). Since T,, — T, there exists

an integer N such that for any n > N

I(Tn =X = (T =Nl < 5.
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Let V be an open §-neighborhood of A\. We have for all 4 € V and n > N,

[(Tn —p) = (T =N = [[(Th—p) = (T =)+ (T =) = (T = N

IN

(T = A) = (T = N[ + [[(Tr — p) = (Tn = N
= [T0 =Tl +[|A = pll

9 g
— ITa-TI+P-p <5 +5

\V)

== 9

Thus T, — u € ®o(X), i.e., u & 0(Ty) for all n > N and for all p € V. Thus
V Now(T,) = ¢. Hence A ¢ limsup o,,(1,,) and so limsup oy, (15) C 0y (T).

(4) Let T,, — T, we show that limsup oy(1,) C op(T). Suppose that A ¢
op(T). If X ¢ o(T), then limsupoy(7,) C limsupo(7,) C o(T) and so A ¢
limsup op(73,). Let A € o(T)\op(T). Then A\ ¢ 0.(T) and A ¢ acco(T). Thus
T — X € &(X) and A is an isolated point of o(7T). Then there exists €1 > 0 such
that

(T —=A) =S| <e1= 85 € P(X)
Since T;, — T, there is Ny such that n > N, ||T,, — T|| < 1. Then

T — T = (T — A\) — (T — \)|| < e1, for all n> Ny

Thus T,, — A € ®(X), for all n > Nj. Since A is an isolated point of o(T"), there

is €2 > 0 such that o(T) N {p : |p — A < e2} = {A}. Put ¢ = min{ey,e2},

for all g with |p— A < e, p ¢ o(T). Then p ¢ limsupo(T,) = () U o(Tk)

n=1k=n

o0
and so p ¢ |J o(Tg) for some m, ie., u ¢ o(Ty) for allk > m. Let N =
k=

m
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max{m, Ni}. If A\ ¢ limsupo(7},), then A ¢ limsup op(7},). If A € limsup o(T},),

o0 o0
then A € |J o(Tk), for all n. Thus A € |J o(T}) and so A € o(T},) for some
k=n k=N

ki >N. And Ae |J o(Tk), then A € 0(T},) for some kg > k1 > N. There is
k=N-+1

a sequence {k,} such that A € o(T},) for all n, k, > N. Thus T}, — A € ®(X)
and A is an isolated point of o (T}, ) for all n. Hence A ¢ oy(T%,, ) for all n and so

A ¢ limsup o0(T,). Therefore limsup oy (7},) C op(T). O

Corollary 3.11.

(1) The spectral radius r(T") is upper semi-continuous, i.e., for each T' € L(X)
and for all € > 0 there exists § > 0 such that |7 — S|| < ¢ implies r(5) <

r(T) +e.

(2) The essential spectral radius 7.(7"), the Weyl spectral radius r,(7") and
the Browder spectral radius 7,(7") are upper semi-continuous, i.e., for each
T € L(X) and for all £ > 0 there exists 6 > 0 such that ||T"— S|| < § implies

ri(S) < 1i(T) + ¢ for i = e, w, b.

Proof. (1) Let ¢ > 0 and let ro. = r(T) +¢e. If A € o(T), then |\ < »(T)
and so |A| < r(T)+¢e =re. Thus A € B,_(0), i.e., o(T) C B,_(0). Since o(T)
is semi-continuous, there is § > 0 such that ||S — T'|| < ¢ implies ¢(S) C B,_(0).
For all A € o(5), |A\| < re. Thus (S) < r(T) +e.

(2) Let ¢ > 0 be given and let . = r;(T) + & > ri(T) for i = e,w,b. For
all A € 0y(T), |\| < ri(T) < ry(T) +e. Then A € B,_(0). Thus o;(T) C B,_(0).

Since 04(T") is upper semi-continuous, there is § > 0 such that || — T'|| < ¢
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implies 0;(S) C B,_(0). For all A € 0;(S), |A| < e, ie., |A] < 7(T) + €. Thus

sup{|A| : A € 0;(S)} < ri(T) + . Hence r;(S) < ri(T) +¢. O

Theorem 3.12. ([11]) Let T,, — T. If limo.(T},) = 0.(T), then limo,(T,) =
ow(T).

Proof. By Theorem 3.10.(3), limsupo,(T,) € o0,(T). It is sufficient to
show that o, (7) C liminfo,(7,). Suppose that A\ ¢ liminfo,(7},). Then
there is a neighborhood V' of A that does not intersect infinitely many o, (7},).
Since 0.(T},) C 0w(Ty), V does not intersect infinitely many o.(7,). Then \ ¢
limoe(T,) = 0e(T). Thus T — X\ € (X). Also A does not belong to o,(T},) for
infinitely many n and so T,, — A € ®¢(7"). Then i(T;, — A) = 0. By the index of
Fredholm is continuous and T;, — T, i(T = X) = 0. Thus T'— X\ € (X ). Hence

A ¢ 0y, (T) and so 0, (T) C liminf o,,(T3). O

We recall that a space in which all components are one-point sets is called
totally disconnected. A space X is totally disconnected if and only if, for any two
elements x and y of X, there exist disjoint open neighborhoods U of x and V of

y such that X is the union of U and V' ([2]).

Corollary 3.13. ([11]) Let T,, — T. Then limo,(7},) = 0, (T') in each one of

the following cases holds.
(1) T,,T =TT, for all n.
(2) o(T) is totally disconnected.

(3) T,, and T are normal operators.

23



Corollary 3.14. Let T,, — T and 04(T},) = 0.(Ty) for all n. Then 0, (T) =
oe(T) if one of the following cases holds.
(1) T,,T =TT, for all n.

(2) o(T) is totally disconnected.

We recall that two operators A and B are similar if there is an invertible

operator P such that P~'AP = B.

Theorem 3.15. Let S € £(X) be similar to T € £(X). Then

Proof. Since S and T are similar, there is an invertible operator U such that
UMTU =S and T =USUL.

(1) If X ¢ o(T), then T — X is invertible. Thus S — A\ = U™'TU — \ =
U—YT — \)U is invertible and so A ¢ o(S). Hence o(S) C o(T).

Similarly, we have o(T") C o(S). Therefore o(T) = o(5).
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(2) If X € 0,(T), then Tz = Az for any nonzero vector z € X. Then
S(U=ts) =U'TUWU 1 2) = U Y (Tx) = U ' (Ax) = AU '2). Thus Sy = Ay
for any nonzero vector y € X, i.e., A € 0,,(S). Hence 0,(T") C g,(5).

Similarly, we have 0,(S5) C 0,(T). Therefore o,,(T') = 0,,(.5).
(3) If A € 0com(T'), then R(T — X\) # X. Then there is € X such that = ¢

R(T —\). And R(S—X) = R(U™ITU—-\) = RUYT = \U) C R(T—\). Then

x ¢ R(S —X). Thus R(S — X) # X. So A € gcom(S). Hence geom (1) C oeom(5).

Similarly, we have 0o (S) C 0com(T). Therefore ceom(S) = ocom(T).

(4) If A ¢ 0o(T), then T'— XA € ®(X) and so m(T) — A is invertible. Then
(S —A) = a(UTU — \) = 7(U YT — NU) = 7(U ) {=(T) — \}=(U) is
invertible. Thus S — A € ®(X) and so A ¢ 0.(S). Hence 0.(5) C 0.(T).

Similarly, we have o.(T) C 0.(S). Therefore o.(T") = 0¢(5).

(5) If A ¢ 0,(T), then T'— X\ € ®(X). There is an invertible operator A
and a compact operator B such that T'— A = A + B by Corollary 2.20. Then
S—A=UTU-XN=UYT-\NU=UYA+B)U =U1AU + U'BU.
Here U AU is invertible and U~'BU is compact. Then S — A € ®y(X). Thus
A ¢ 0u,(S). Hence 0,(S) C 0 (T).

Similarly, we have o,,(T") C 0, (S). Therefore 0, (1) = 0, (5).

(6) By (1) and (4), 0.(T) = 0.(S) and o(T) = o(S). Then o,(T) = 0.(T) U

acco(T) = 0.(S) Uacco(S) = ap(5). O

From the above theorem, several spectra are invariant under similarity. More-

over, the index of Fredholm is also invariant under similarity. For if there is

an invertible operator U such that 7' = USU™! then i(T) = {(USU™!) =
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i(U)+i(S) +i(U™) = 4(S) since i(TS) = i(T) +1i(S) and the index of invertible

is zero.

Theorem 3.16. ([2])(the spectral mapping theorem) If T' € £(X) and p is any
polynomial, then o(p(T)) = p(a(T)).

Proof. Let A € o(T). Then we show that p(\) € o(p(T)), i.e., p(T) — p(A) is
not invertible. We may write p(T") —p(A) = (T'— \)q(T') where ¢ is a polynomial.

If p(A) ¢ o(p(T)), then p(T) — p(\) is invertible. Then

I'=(p(T) —p(\) (T — N)q(T).

Thus T — X is invertible. This is a contradiction to the fact that A € o(T"). Hence

p(A) € a(p(T)), i.e., p(a(T)) S o(p(T)):

Conversely, if © ¢ p(o(T)), then p(o(T)) — i # 0. Then

is polynomial and so q(T){p(T) — pu} = I, ie., p(T) — p is invertible. Thus

p & o(p(T)). Hence o(p(T)) S p(o(T)). O

Theorem 3.17. For any operator T and for all polynomial p, o, (p(T)) is a
subset of p(oy(T)), i.e., ow(p(T)) C p(ow(T)).

Proof. Let pu ¢ p(oy(T)) and p(A) — = a(A—X1)(A—A2) - (A—Ap). Then
p(T)—pl =a(T = )(T—Xo)-+- (T —Xy) and p(A\j) —pu=0for j =1,2,--- n.
Thus p = p(A;) ¢ plow(T)) and so A; ¢ o,(T). Thus T'— X; € Pp(X) for
j=1,2,--- ,n. By Theorem 2.8, (T'— A\ )(T'— A2)--- (T — \p) € ®o(X) and so

p(T) — ul € &o(T'). Thus p ¢ oy(p(T)). Hence o, (p(T)) C plow(T)). O
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Remark 3.2. We give the following example of an operator T" such that o, (p(T)) #
p(ow(T)).

For example, let H be a Hilbert space, let T' = U @& (U* + 2I) where U is the
unilateral shift operator and let p(A\) = A(A —2). Then R(U) = {(0,z1,z1,---) :
(w1, 22,23, --) € [?} and so R(U) is closed. Then N(U) = {0} and X/R(U) =
{(2,0,0,---) : 2 € C}. Thus i(U) =0—1= —1. For all z = {z,},y = {yn} in
H,

<U17,y> - <<O,$1,CC1,“'), (y17y27y37'”)>:x1y72+$2%+'”

= < (.’L'l,.’EQ,.’Eg,"'),(yQ,y3,y4,"') >=<u, U*y >

Thus U*(y1,y2, -+ ) = (2,93, -+ ). Also R(U*) = 1?2, N(U*) = {(z,0,0,---) :
z € C} and X/R(U*) = {0}. Thus i(U*) =1—0 = 1. Since —2 ¢ o(U*) and
2¢ o(U), U*+2I and U — 21 are invertible and so i(U* 4+ 2I) = 0 = (U — 2I).
Since p(A) = A\ —2),

p(T) = T(T—2I)=[Ua (U*+2D)|[U e (U* +2I) — 2I]

= [Ue U +2D)[(U - 2I) & U*].

Note that (T ® S) = i(T) + i(S) and i(TS) = i(T) + i(S). Thus i(T) =
(U@ U +2I) = —140=—1,i(T—2I) =i(U—-2I)®U*) =041 =1. Then
i(p(T)) = i(T(T — 2I)) = i(T) +i(T — 2I) = =1+ 1 = 0. Thus p(T) € Do(X)
and s0 0 & o,(p(T)). Since i(T) = —1, T ¢ o(X). Then 0 € o (T). Hence

0 € p(ow(T)).
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Theorem 3.18. If T is a normal operator. Then o,,(f(T)) = f(0w(T)) for every

continuous complex-valued function f on o(T).

Proof. If T is normal, then T is also normal in £(X)/K(X). Because TT* =
T(T)m(T)* = n(T)n(T*) = n(TT*) = 7(T*T) = n(T*)n(T) = n(T)*n(T) =

T*T. By the standard C*-algebra theory, f(T) = f(T). Since T is normal, f(T)

is normal. Note that if S is normal, then 0,(S) = 0¢(S). We have 0,(S) =
0e(S) = a(n(9)) = o(5), ie., 0u(S) = (5). Hence oy(f(T)) = o(f(T)) =

o(f(T)) = f(a(T)) = f(ow(T)). O

Theorem 3.19. Let T' € L£(X) be any operator. Then for any polynomial p,
p(ow(T)) = au(p(T))-
Proof. Let p € ap(p(T)).

Case I. p is not an isolated point of o(p(T")) = p(c(T)). Then there is a sequence
{A\n} in o(T) such that p = lim p(\,). Since o(7T') is a compact subset of C, {\,,}
has a convergent subsequence, say {\,,}. Let im\,, = A. Then \ € o,(T).
Since p(A) = p(lim Ap,, ) = limp(An,) = p, p(A) € p(op(T)). Thus p € p(op(T)).
Case II. p is an isolated point of o(p(T)) = p(o(T)). Then p € o.(p(T)) by
op(T) = 0.(T)Uacco(T), ie., p(T) —p= (T —M)(T —X2)--- (T — \y) ¢ O(X).
(0c(T)) C

p(op(T)). Hence op(p(T)) C p(op(T)). Let X € op(T). If X is not an isolated point

Then T'— A\ ¢ ®(X) for some k. Thus Ay € 0.(T) and so u = p(\g) € p(o

of o(T'), then p(A) is also not an isolated point of o(p(T")). Thus p(A) € op(p(T)).
If X is an isolated point of ¢(T"), then A € 0(T"). Thus T'— X ¢ ®(X) and so
p(T)—pAI) = (T = ) (T—X2)--- (T'— \,) ¢ ©(X). Note that if T'S = ST and

T ¢ ®(X), then T'S ¢ ®(X). Hence p(\) € a.(p(T)) C op(p(T)). O
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4 Weyl’s theorem, Browder’s theorem, a-Weyl’s the-

orem and a-Browder’s theorem

Definition 4.1. Let T' € £(X) be any operator.

(1) If moo(T) = o(T)\ow(T), then we say that Weyl’s theorem holds for T
where moo(T") denotes the isolated points of o(T') that are eigenvalue of

finite multiplicity.

(2) If poo(T) = o(T)\ow(T) then we say that Browder’s theorem holds for T

where poo(T) = o(T)\op(T) is the set of Riesz points of T

Theorem 4.2. ([12]) Let T' € £(X) be any operator. Then for any polynomial
p, we have o(p(T))\moo(p(T')) C p(o(T)\m00(T))-
Proof. Let A € o(p(T)\moo(p(T)) = p(o(T)\ oo (p(T)).

Case I. X is not an isolated point of p(c(T")). Then there is a sequence {\,} in
p(o(T)) such that A\, — A, and so there is a sequence {u,} in o(T") such that
p(pn) = A — A, Le., limp(u,) = A Then {p(u,)} is bounded and so {u,} is
bounded. Thus {u,} has a convergent subsequence, say {u,}. Let lim p, = uo.
Then p(po) = p(lim pp,) = lim p(py,) = A. Since o(T) is closed, pg € o(T"). Since
to € o(T)\moo(T), A € p(o(T)\moo(T)).

Case II. A is an isolated point of o(p(T")). Since A ¢ moo(p(T)), either A is not an
eigenvalue of p(T") or it is an eigenvalue of infinite multiplicity. Let p(T") — AI =

ao(T — pr I)(T — pol) -+ - (T — ppI). If X is not an eigenvalue of p(7T'), then none
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of p1, p2, -+, p can be an eigenvalue of T. If u; ¢ o(T) for all 4, then T — p;
is invertible and so p(T") — AI is invertible. This is contradiction to the fact

that A € o(p(T")). Thus for some k, pp € o(T), p is not an eigenvalue of T

and p € o(T)\moo(T). Since p(ug) — A = 0, A = p(ux) € p(o(T)\moo(T)). If

oo
A is an eigenvalue of infinite multiplicity, then N(p(T) — ) = U N(T — p).
k=1

Since dim N (p(T') — A) = oo, dim N(T' — py) = oo for some k. Thus py is an
eigenvalue of T" with infinite multiplicity. Hence ux € o(T)\moo(T) and A =

p(px) € p(a(T)\moo(T)). =

Recall that an operator T' € L(X) is said to be an isoloid if isolated points of

o(T) are eigenvalues of T'.

Theorem 4.3. ([12]) If T is isoloid, then o(p(T"))\moo(p(T")) = p(a(T)\m00(T))
for any polynomial p.

Proof. We show that p(o(T)\moo(T)) C o(p(T))\moo (p(T)).

Let A € p(a(T)\moo(T')). Then there is p € o(T)\moo(T") such that A = p(p)
and A € o(p(T)). Suppose that A € mpo(p(T)), i.e., A is an isolated point of
o(p(T)) and an eigenvalue of p(T) of infinite multiplicity. Let p(T) — A =
ao(T — pr I)(T — pol) - - (T — pn ). Then p = py, for some k. Since A = p(p) and
p € o(T)\moo(T), A = p(ug) where py € o(T)\moo(T). Thus gy is an isolated
point of o(T). Hence puy is an eigenvalue since T is isoloid. Since N(T — ) C
N(p(T)—A) and dim N(p(T) — A) < oo, dim N(T — pg) < oo. Thus ug € moo(T).
This is contradiction to the fact that A = p(ux) € p(o(T)\moo(T")). Hence X\ =

p(px) ¢ moo(p(T)) and A € o (p(T'))\moo (p(T))- -
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Theorem 4.4. ([12]) Let T be an isoloid operator and let Weyl’s theorem holds
for T. Then for any polynomial p, Weyl’s theorem holds for p(T") if and only if
Pow(T)) = ou(p(T)).

Proof. Suppose that Weyl’s theorem holds for p(7'). Then by hypothesis
ow(T) = o(T)\moo(T) and ou(p(T)) = o(p(T))\moo(p(T)). Thus ow(p(T)) =
o (P(T)\7on(p(T)) = p(o(T)\o0(T)) = p(o(T)) by Theorem 4.3. Hence
ow(p(T)) = p(ow(T))-

Conversely, if Weyl’s theorem holds for T', then o, (T") = o(T)\mpo(T"). Sup-
pose that p(ow(T)) = 0y (p(T')) for any polynomial. Then o,,(p(T)) = p(ow(T))
= p(o(T)\moo(T)) = o(p(T'))\moo(p(T')) by Theorem 4.3. Thus 0w (p(T)) =

o(p(T))\moo(p(T")). Hence Weyl’s theorem holds for p(T). O

Theorem 4.5. Let T € £L(X) be such that for any polynomial p then p(c,(T')) =

ow(p(T)). Then if f is a holomorphic function defined in a neighborhood of o(T),

then f(ow(T)) = ou(f(T)).
Proof. By Runge’s theorem, let p, be a sequence of polynomial converg-
ing uniformly in a neighborhood of o(T) to f so that p,(T) — f(T), i.e.,

nlLr&pn(T) = f(T'). By Theorem 3.12,
O'w(f(T)) = Uw(limpn(T)) = lim Uw(pn(T)) = hmpn(aw(T)) = f(o'w(T))'
The proof is complete. o

Theorem 4.6. Let T' € L(X) be an operator. If f is a holomorphic function

defined in a neighborhood of o(7T'), then f(o,(T)) = op(f(T)).
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Proof. By Theorem 3.19, p(0y(T)) = op(p(T")) for any polynomial p. By
Runge’s theorem, let p, be a sequence of polynomial converging uniformly in a

neighborhood of o(7T') to f so that p,(T") — f(T'). Then

op(f(T)) = op(lim pp(T)) = lim oy (pn (1)) = lim pn(0p(T)) = f(o3(T)).

The proof is complete. O

Definition 4.7. Let & (X) = {T € L(X) : T € ®,(X) and i(T) < 0}. Then
Oea(T) ={Ae€eC:T-X¢g & (X))} = {ou,p(T+ K) : K € K(X)} is called
the essential approzimate point spectrum and wiy(T) = {\ € isoogp(T) : 0 <
a(T — N) < oo} is called the set of eigenvalues of finite multiplicity which are
isolated in 04p,(T'). Let 0gp(T) = N{ogp(T'+ K) : TK = KT and K € K(X)} be

the Browder essential approximate point spectrum.

Clearly 0¢q(T) C 04(T) by the definition. In fact, g4(T) = 0eo(T) U

accoqp(T')([14]).

Definition 4.8. If 0.4(T") = 04p(T)\7§y(T) then we say that a-Weyl’s theorem
holds for T € L(X). If 0¢q(T) = 04(T") then we say that a-Browder’s theorem

holds for T € L(X).

Theorem 4.9.

(1) a-Weyl’s theorem = Weyl’s theorem = Browder’s theorem.

(2) a-Weyl’s theorem = a-Browder’s theorem = Browder’s theorem.
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Proof. (1)(i) If T' does not hold Weyl’s theorem, then 7oo(T") € o(T)\ow(T)
and then there exists A € o(T) such that A ¢ (7wo(T") Uow(T)). Thus A ¢ 0,,(T)
and A ¢ moo(T"). We have A € 0¢4(T") and A ¢ 7§y (T") since 0¢o(T') C 0 (T") and
76o(T) € moo(T). Since A ¢ 7y (T'), A € accoqy(T). By Theorem 3.2(3) 04, (T)
is closed, X\ € 04,(T"). This is a contradiction to the fact that o4,(T)\oeo(T) =
4o (T). Thus if a-Weyl’s theorem holds for T, then T" obeys Weyl’s theorem.

(ii) If T does not hold Browder’s theorem, then poo(T") = o(T)\op(T) #
o(T)\ow(T), i.e., op(T) # 04(T). We can take A € oy(T)\ow(T). Since oy(T) =
oe(T)Uacco(T), A € acco(T'). But since T obeys Weyl’s theorem and A ¢ o,(T).
Then A € mpo(T"). This is contradiction. Thus if Weyl’s theorem holds for 7', then
T obeys Browder’s theorem.

(2)(i) If T holds a-Weyl’s theorem, then o¢q(T") = 04p(T)\ 7Go(T). Since
acc 0ap(T)N7Ey(T) = ¢, accoap(T) C Teq(T). Then ogp(T) = 0eq(T)U acc o4p(T)
= 0eq(T"). Hence if a-Weyl’s theorem holds for T', then T' obeys a-Browder’s

theorem.

(ii) If T does not hold Browder’s theorem, then poo(T) = o(T)\op(T) #
o(T)\ow(T) and then op(T") # 0w (T), ie., there exists A € C such that A €
op(T)\ow(T). Then T — X\ € &¢(X) and a(T — A) = oo, it follows from ([14])
that A € 044(T). Since a-Browder’s theorem holds for T', 0¢q(T) = 044(T"). Then
A € 0ea(T) C 04(T). This is contradiction to A ¢ o,,(T"). Thus if a-Browder’s

theorem holds for T, then T obeys Browder’s theorem. |

Theorem 4.10. ([9]) If Browder’s theorem holds for T € £(X) and if p is a

polynomial. Then Browder’s theorem holds for p(T') if and only if p(o,,(T)) C
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ow(p(T))-

Proof. If Browder’s theorem holds for p(T), then oy(p(T)) = ou(p(T)), i.e.,
op(p(T')) C ow(p(T)). Since Browder’s theorem holds for 7', op(T) = 0y (T).
Thus by Theorem 3.19, p(ow(T)) € p(os(T)) = u(p(T)) C o(p(T)).

Conversely, if p(0w(T)) C 0w (p(T)) then by hypothesis and Theorem 3.19,
o (p(T)) = p(ov(T)) € plow(T)) C ow(p(T)). Since ouw(p(T)) C ou(p(T)),

ap(p(T)) = ow(p(T))- O

From Theorem 3.17 and Theorem 4.10, if Browder’s theorem holds for T €

L(X) and if p is a polynomial. Then Browder’s theorem holds for p(7') if and

only if p(oy(T)) = 0w(p(T)).

Theorem 4.11. ([9]) Browder’s theorem holds for 7" if and only if acco(7T) C
ow(T).

Proof.  Suppose that acco(T) C o, (T), then o(T)\ow(T) C isoo(T) and
then o(T)\ow(T) C isoo(T)\oe(T) = poo(T). Since poo(T) = o(T)\ow(T) C
o(T)\ow(T), poo(T) = 0(T)\ow(T). Hence Browder’s theorem holds for 7.

Conversely, if Browder’s theorem holds for T', then 04(T) = 0,(T"). Since

op(T) = 0.(T) Uacco(T), acco(T) C op(T) = o(T). O

Theorem 4.12. Necessary and sufficient for Weyl’s theorem is Browder’s theo-

rem together with either of the following:
(1) ow(T) Nmoo(T) = ¢
(2) mo0(T) € poo(T).
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Proof. Notice that (2) always implies (1). First we show that Browder’s the-
orem together with (1) implies Weyl’s theorem. Since poo(T) = o(T)\op(T) =
isoo(T)\oe(T) C meo(T) and Browder’s theorem holds for T, o(T)\ow(T) C
mo0(T). By (1), moo(T) C o(T)\ow(T). Then o(T)\ow(T) = meo(T), i.e.,
Weyl’s theorem holds for T. Second we show that Weyl’s theorem implies (2).
If A\ € moo(T), then X\ € isoo(T) and X\ ¢ o,(T) by Weyl’s theorem. Then

A € isoo(T)\ow(T') Cisoo(T)\oe(T) = poo(T). O
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