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(Abstract)

THE VOLUME OF A PARAMETRIZED 3-SURFACE UNDER INVERSION

Ahn, Seong-Eui

Mathematics Education Major
Graduate School of Education, Cheju National University

Cheju, Korea

Supervised by professor Hyun, Jin-Oh

A mapping f : E* — {{0.0.0)} — E* which sends a point P into a
point P’ is called an inversion in an Euclidean space E? with respect to a
given circle or sphere with center O and radius R, if OP - OP' = R* and if
the points P, P’ are on the same side of O and O, P, P' are collinear.

This thesis shows that, for a parametrized 3-surface in E® is given by

X(uy,up.ug) = (I(’lt] g ug)oyluy ug ug), z(wy  ug, us ))

oy ; 1 .
the volume of f(X) is equal to R‘)/ l—Yl—G\/ﬁdul duy dus ,where /g is the
[EE

absolute value of Jacobian matrix of .y, = with respect to uy, us. us.
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Introduction

In this paper, we study the volume of the parametrized 3-surface in

Euclidean space E?.

In section 1, we present the hasic concepts of a parametrized 3-surface in
E? and a natural instrument to treat the volume of a parametrized 3-surface

in E?. And we also show how to find the volume of a parametrized 3-surface.

In section 2, we introduce the definition and some properties of inversion

in E? and show that f(X): U — E? is a parametrized 3-surface, and

. Rﬁj
Vi = H—(ﬁ

Finally. in section 3. we show the volume of f(X') under inversion is equal

: 1 .

to R"/ '\—,IF\/a(lfl] duy duy. and give the example for the above theorem.
- )
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1. The volume of a parametrized 3-surface

In this section, we introduce the basic concepts of a parametrized 3-

surface in E?. And we define the volume of a parametrized 3-surface.

Definition 1.1 A parametrized 3-surface is a smoothmap X : U — E?

which is regular, where U C E? is open.
g 1

If we write X{uy.ug,us) =(oluy us uy) yluy,ugws) 2(uy uz,uy)) for
any (up.usoug) € U C  E*, then X is smooth if and only if
o{uy,ug. ug), y(uy, ug, uy) and z(uy, uz.uz) have continuous partial deriva-
tives of all orders in U. Regular condition means that d X, 1s non-singular (has
rank 3) for each ¢ € U. Let us compute the matrix of the linear map dX; with
respect to the canonical bases ¢; = (1,0,0),e; = (0,1,0) and e3 = (0,0,1)
of E* with coordinates (uj,uq.u3) and {4 = (1,0,0),2 = (0,1,0) and
i3 = (0.0,1) of E? with coordinates (x.y.z).

By the definition of the differential, we have



dr Qy Oz 9X
1X = . . = =X,
dXyle) (0111'0111'0111 Ouq '
: dr 0Oy 0= 0X .
d-Xy(e2) = (011.2 "Ouy Ouy’ T Ouy Kz
Jr 0Oy 0z 0X .
1X,(e3) = . . = =X,
X ’((3) (Ou;; Ouy Ous Ouy ’
Regular condition implies that for each ¢ € U,
dr Oy 0z
ox ox ov |on G %
A A A x Y )z
. = 0.
Ouy  Oduy X Jus Ouy,  OQuy  Juy 7
dr Oy 0z
Ous Ouy  Ouy

(1.4)

The mapping X is called a parametrization or a system of local coordi-

nates in a neighborhood of p € U.

Example 1.2

X(r,6,¢) = (rcos@sing,rsinf@siné.rcos o),

Let X : U — E? be defined by

where U = {(r,6,0) |0 <r <a,0 <8 <27,0< ¢ <7}

Then X : U — E? is a parametrized 3-surface

and the image X(U) = B\{(xy,r2.73) € B|zy; 2 0,22 = 0},

where B = {(r1. 29, 03) 2% + 22 + 23 < a?}.



Since z(r,8,0) = rcosfsing, y(r,0,¢) = rsinfsing and z(r,8,¢) = rcos ¢
have continuous partial derivatives of all orders in U, X is smooth.

Moreover, since

oX
Ei(p) = 5 = (cos Bsin ¢, sin fsin ¢, cos @),
-
0X . . .
E(p) = 26 = (—rsin@sing,rcosfsing,0) and
oX . oy
Ex(p) = 50 = (rcosBcos e, rsinfeos ¢, —rsing) for any p = (r.6,0) € U,
X 9X 0X
we have 5 8 X 90 # 0. Hence the regular condition is satisfied.

Example 1.3 Let X : U — E? be defined by X(p. ¢,t) = (pcos o, psin o, 1),
where U = {(p,0,t)|p 20,0 < 0 <27,—00 <t < oo}.

Then X is parametrized 3-surface.

Since z(p. 0, t) = pcos é, y(p,d.1) = psiné and z(p, 6,t) =t have continuous
partial derivatives of all orders in U, X is smooth.

Moreover, since

X
Ei(p) = aap = (cos ¢,sin ¢, 0),
oX
E.(p) = P = (—psing, pcos ¢,0) and
0X
Ep) = 22001 forany p=(pot) €.



ox ox ox
dp 0o ot

we have # 0. Henee the regular condition is satisfied.

Definition 1.4 Let X : U — E? be a parametrized 3-surface where
U € E? is open.
Then the volume of a parametrized 3-surface X denoted by V(.X) is defined

by

duy dus dus. (1.5)

. [lox ax  ox
A /( 1011, " Ony Oy

where (uy.uy. uy) is a local coordinate system on U.

The function | X, - X, x X,,| defined in U, measures the volume of a

parallelepiped generated by the vectors Xy, . Xu,, Xu,-

Proposition 1.5 Let X : U — E? be a parametrized 3-surface and

_Or O Oy Oy 0z 0=
~ Ou, Qu;  Ou; Ou;  Ou; O,

Then

let gi; = Xy, - Ay,

V(X) = / Vi duydugdusg, (1.6)

g G2 13
where g = \det { 921 922 g3

431 g3z g33



proof.
dr 9y 0z |?

) Ju, OJuy  Ouy
o0X 0X y O« or dy 0z
Ouy Ouy  Ouy Juy  Ouy  Ouy
dr Oy 0=
Jus  Ouy  Ouy
gu 912 Gi13
=921 Y22 g3
931 932 933

=g.

X 00X 00X
Thus o ~0”2 X Ollrrzl = /9

Note that /g is the absolute value of the Jacobian of x,y,z with respect to

Uy, U, U3,

Corollary 1.6 The parametrization X has the regularity condition iff

VI is never zero, that is \/(7 > 0.

Example 1.7 Let X : U — E3 be the parametrization in the example

1.2. Then



Hence we get

Il

/ / Vodrdfde
2m
/ / 2sin¢ dr df d¢

(13.

_ 4
-3
Example 1.8 Let X : U — E? be defined by X(p. é.t) = (pcos ¢, psin @, t),
where U = {(p,¢. )]0 < p<a. 0<d <2r,0<t <b, a,b>0}.

By using the results of example 1.3, we have

1 0 0
g=10 p* 0|=p%
0 0 1

Hence we get
g

b 2w a
' :/ / / Vi dpdé dt
J 0 0 0
b 2n a
:/ / / pdpdddt
) 0 0

9
= 7ab.



2. Definition and some properties of an inversion

In this section, we define an inversion in E? and study some properties
of an inversion.

Let the symbol (O)r denote the sphere with center O and radius R

Definition 2.1 Two points Pand P’ of E? are said to be inverse with

respect to a given sphere (O) g if

OP -OP' = R%. (2.1)

and if P, P’ are on the same side of O and the points O, P, P’ are collinear.

A (O)R is called the sphere of inversion, and the transformation which sends
a point P into P’ is called an inversion.

Note that the center O of the sphere of inversion has no inverse point.
From now on, we take the center O as an origin in E?, and denote the dis-

tance from O to a point X by |X].



Then we have the following properties.
Proposition 2.2 An inversion in a space E? is a mapping

f:E®*—1{(0,0,0)} — E? such that

R*X R*X
X)= = 2.2
S0 =~ s = TR (2.2
where < X, X >= X - X is the dot product.
proof. Since f is an inversion and O, X and f(.X) are collinear.

Hence f(X) = kX for some positive real number .

Since f(X) is inverse point of X. by means of (2.1),

X1 (X)) = R*.

k|X|* = R

Since |X'| # 0, we have

Re

2y

BNE

The inverse point f(X) = is the vector of length R?|X|~! on the ray

of X.



Theorem 2.3
(1) A plane through O inverts into a plane through O.
(2) A plane not through O inverts into a sphere through O.
(3) A sphere through O inverts into a plane not through O.
(4) A sphere not through O inverts into a sphere not through O.

proof. Let B be any nonzero constant vector in E?, and consider the equation
a X'+ < B,X > +¢c=0, (2.3)

where a,¢c € R.

Then the equation (2.3) represents a sphere for a # 0 and a plane for a = 0.

R?
For | X| # 0, multiplying both sides of (2.3) by W, we have

‘ RS S REE
2 ; = 0. 2.4
Ra + NE e RE 0 (2.4)

R*X

Let Y = .
‘ X2

Then we have

ﬁc—;|l’|"+ < B,Y > +R*a=0. (2.5)

Thus (2.3) is transformed into (2.5) under inversion. Hence we get:
(1) When a = 0,¢ = 0. (2.3) and (2.5) represent a plane through O.

(2) When a = 0,¢ # 0, (2.3) represents a plane not through O and (2.5)

—10 -



represents a sphere through O.

(3) When a # 0,¢ = 0, (2.3) represents a sphere through O and (2.5)
represents a plane not through O,

(4) When a # 0,¢ # 0. (2.3) and (2.3) represents a sphere not

through O.

. R*X
Define f o X : U — E* by (f o X)(uy uz. uz) Wa
where (uj us uy) € U and X = (-I'(“ullz-llrs),y(fllﬂ”2~“:;)~3(“1-‘112~“.'s))-

Theorem 2.4 Let X : U — E*—{(0,0,0)} be a parametrized 3-surface
for U ¢ E* and f: E* = {(0.0.0)} = E* be an inversion.

Then f(X) = foX is a parametrized 3-surface.

: - . . . R*X
proof. Since X is a parametrized 3-surface and fo X = f(\X) = W,
F(X) 1s smooth and regular.
Hence f(X) is a parametrized 3-surface.
Theorem 2.5 Let f(X): U — E? be an inversion of a parametrized

3-surface X. Then

]I -



_ af(X) O0f(X) R
= = = .- 9
o =< du; — Ouy > Rk Tus- (26)

1 < oX 0X .
wiere ¢, — s A~ .
HEEE Juy Ju; auj
R?
proof. Since f 1s an inversion, from (2.2), we have f(XX') = RE X.
Bv the cquat; af(Xx) R? OX 2R?0|X|
» the equation = _— - )
: ‘ du; X[ Ou; | |XPP 0w

— of(X) 0f(X
=< G T,
__ _1_?2_0;\ B 21R? 0|_\"1X R? 0X 3 2R? 0| X| %
X2 Ju,  |X|? Ju, X2 0wy |XP Ou, i
R* 9X R* 0OX

=T X 9w, IXTE O,
_mox ax
| X|* 7 Ou;’ Ju,

R
= Wﬂi}'-

Corollary 2.6 Let X : U — E? — {(0,0,0)} be a parametrized 3-
surface and f: E* = {(0,0,0)} — E? be an inversion.

6

Then the /7 of f(X) is equal to W\/ﬁ

-]12 -



proof
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931 .
A“z g
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3. The volume of a parametrized 3-surface under inversion

In this section, we show that the volume of V(f(X)) under inversion is

. 1 . .
equal to R"/ Tlli\/ﬁ(iu](luz(lu;; and give example for the following theo-
(" -

rernn.

Theorem 3.1 Let X : U — E? — {(0,0,0)} be a parametrized 3-
surface defined by

XN(upuaoug) = (wlugoug,us) yluy ugoug), 2(ug,uz,uz)) for (ug,uy, uy)

€U C E* andlet f: E® —{(0,0,0)} — E? be an inversion of X,

then the volume of f(X') under inversion is equal to

~ 1
V(f(X) =R W\/ﬁdul dusg dus. (3.1)
Juol-
proof. By corollary 2.6 and proposition 1.5,  we have

V(f(X)) = / \/Edrtl duy dus
N

R(i
=/ K (5\/(7(111., duy duz
(' -

; 1
= Rb/ IT—g\/—(jdul (111.2 (lll_'}-
-

— 14 -



Example 3.2 Let X :UU — E? — {(0,0,0)} be a mapping defined by
X(r,0,6) = (rcosfsind,rsinfsing,r cos @),

where U = {(r,8,¢)|1 <r <2,0<68<2m,0< ¢ <7}

Then, by example (1.2), X is a parametrized 3-surface, and

IX]* = 1% cos? @sin’ ¢ + r?sin® Bsin® ¢ + v cos? ¢

= r?sin? (f)(cosz 6 + sin? 8) + r? cos® ¢

= r2(sin® ¢ + cos® )
=72,

Thus |X]° =% and \/g = r?sine. Hence

T 2m 2
. 1
V(X)) =R° / / - smodrdfdo
o Jo 1 T
T R
- — .91 .92R®
2 i 3
o éwRﬁ.
On the other hand,
. R* .
J(X) = 5 X
2
= —(rcosflsiné,rsinfsin @, r cos ¢
2
2
= —(cosfsin ¢, sinfsin ¢, cos ¢).
,

— 15—



Thus
— If(X) R?

E\(p)= 5 = ——;;(cosgsin ¢,sinfsin @, cos ¢),
— af( X R?
Eq,(p) = fa(g ) = 1—_(——si1195in¢,c0895in ¢,0) and
— of(X R?
Es(p) = fa(é ) = T(COSOCOS¢,SiI]9CDSQ,—Sin¢).
Hence R
g g12 13
g=1921 G2 23
J31 g32 933
R4
vy 0 0
R!
=0 —sin’o 0
"
R4
0 0 z
4 8
= R—4 —‘1-sin2 ¢.
” "
Thus

T 2m 2
V(f(X)) :R“/ / / %sincﬁdrd&dqﬁ
0 0 1

TR°.

(o230 |

—J6 -
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