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<Abstract>

THE TRANSVERSE CONFORMAL FIELDS
ON THE NON-HARMONIC FOLIATIONS

Kang, Eun-Young

Mathematics Education Major
Graduate School of Education, Cheju National University
Cheju, Korea

Supervised by Professor Hyun, Jin-Oh

In this thesis we syudy the transverse conformal fields on the
non-harmonic foliation and prove the following theorem.
Theorem. Let (M, gy, F) be the compact manifold with
codimension q=2. Let s be a transverse conformal field of F.
If ov is non-positive everywhere on M, then every s paralled
along the mean curvature vector 1s v-parallel. If ov 1is
non-positive everywhere and negative at some point of M, then

every s paralled along mean curvature vector is trivial.

* A thesis submitted to the Committee of the Graduate School of Education, Cheju
National ~ University in partal fulfillment of the requirements for the degree of
Master of Education in August , 1997,
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1. Introduction

The foliation theory has its origin in the global analysis of solution
of ordinary differential equations. The general notion of a folation was
defined by Ehresmann and Reeb([l]). Over the last forty years the study
of foliated manifolds has produced an extraordinarly rich collection of
works.

In 1959, Rienhart([1]) introduced a particular type of foliation, name-
ly, Riemannian foliation, which is quite intuitive. This imposes the ex-
istence of a " bundle -like” Riemannian metric ypy on M, that is , a
metric for which the leaves of the foliation remain locally at constant
distance from each other. Actually, the condition for a foliation to be
Riemannian is a ” transverse property”, being given by the existence
on the local quotient manifolds of a supplementary geometric structure
that is invariant along the leaves.

In the case of a hamonic foliation, geometric transversal fields such as
transversal killing, transversal affine, transversal projective, transversal
confomal fields have been studied by F. W. Kamber and Ph. Tondeur,
and many others. In particular, F. W. Kamber and Ph. Tondeur ([3])

proved the following Theorem A.

Theorem A. Let F be a harmonic Riemannian foliation on a compact
and oriented manifold M. Assume the transversal Ricei operator py of
F to be < 0 everywhere, and < 0 for at least one point xr € M. Then

every transverse conformal field of F automorphism of F is tangential
Y ] S



to F.

In this paper, we study the transverse conformal fields on the nou-

harmoic foliation and prove the following theorem.

Theorem. Let (M, gar, F) be the compact manifold with codimension
q > 2. Let s be a transverse conformal field of F. If pv is non-positive
everywhere on M, then every s paralled along the mean curvature vector
is V - parallel. If py is non-positive everywhere and negative at some

point of M, then every s paralled along mean curvature vector is trivial.

We shall be in C® - category and only with connected and oriented

manifolds. We use the following convention on the range of indices :



2. Preliminaries

Let (M,gum,F) be a (p + ¢)-dimensional Riemannian manifold with
a foliation F of codimension ¢ and a bundle-like metric gpr with respect
to F. Let VM be the Levi-Civita connection with respect to gar. Let
TM be the tangent bundle of M and L the integrable subbundle of TM
given by F. Let 7 : TM — Q be the natural projection. The normal
bundle Q of F is given by Q@ = TM/L. The metric gp gives a splitting

o of the exact sequence
(2.1) 0— L— TM"Q —0

with 6(Q) = Lt , where Lt denotes the orthogonal complement bundle
of L in TM with respect to gp. Let gar be the holonomy invariant
metric on Q induced by gas, that is,
go(s,t) = gar(o(s),o(t)) forall s,teTQ.
This means that
8(X)go =0 for X €TL,

where 8(X) is Lie derivative. A conncetion V in @Q is defined by

Vxs=7n([X,2Z,)), for X € "L, s € TQ with n(Z,) = s,
(2.2)
Vxs=mn(VNZ,), for X e TLY, s € TQ with n(Z,) = s.

Let ¥V be any connection in the normal bundle on Q of a foliation. its

torsion is the Q-valud 2-form on M defined by
(2.3) To(X,Y)=Vxn(Y) = Vyn(X) - 7[X.Y]

3



for X,V € I(TM). Thus we have

Proposition 2.1([3]). The connection V in Q is torsion-free and met-

rical with respect to gas.

The connection V is called the transversal Riemannian connection of

F. The curvature Ry of V is defined by
(2.4) Rv(.Y, Y).S = V,\'Vys = VYV,\’S — v[.\’,Y]S

for any XY € IT'TM and s € I'Q. Since i(X)Ry = 0, where i(X)
denotes the interior product with respect to X € I'L([1]). Then we have

the following fact.

Proposition 2.2([3]). For any p,v € T'Q, the opreator Ry : Q — Q

1s a well-defined endomorphismn.

Let x € M and o C Q, a 2-plane in the normal bundle spanned by
two normal vector jir,v;. Then the sectional curvature of (F,gg) at

in directions of o is defined by

Kv(0) = gQ(Rv(ftz,v2 )0z, 112)/ 90tz 12)90 (Ve  v2) = 90 (ftes vr )P

The Ricci curvature pv is defined by

n

(2.5) (pvi)e = Y Ro(p,eaea,

a=p+1

4



where {€q}a=pt1,...n is an orthonormal basis of ().. And the scalar

curvature oy finally is given by

ov = Tracepy.

All these geometrie quantities should be thought of as the corresponding
curvature properties of a Riemannian manifold serving as model space

for F.



3. Infinitesimal automorphisms

Let F be an arbitary foliation on M. A vector field Y € TTM is an
infinstismal automorplasin of F if [Y,Z] € TL for all Z € TL. where Y’
is preserves the foliation, 1.e, maps leaves into leaves. Let 17 F) be the
space of all vector field ¥ on Af satisfying (Y, Z) € TL for all Z € TL. .

A transversal infinitesimnal avtomorphim s of F is an element of the

set

(3.1) V(F)={s€TQ|s =7Y. Y € V(F)}.
Lemma 3.1([4]). An element s of V(F) satisfies Vs =0 forall X €
I'L.

The trawsversal Lie derivative 0(Y) with respect to 17 € V(F) is

defined by

(3.2) A(Y)s = n([Y,Y,]) for all s € TQ with n(Y,) = s.

Definition 3.2. If Y € V(F) satisfies (Y )gq = 0, then s = =(Y") is
called a transversal killing field F.

Definition 3.3. If Y’ € V(F) satisfies 8(Y )go = 2fygq, where fy is
called a function on M, then s = n(Y') is called a transversal conformal

fields of F and fy is called the characteri-tic function of s.



Definition 3.4. If Y € V(F) satisfies 8(Y)V = 0, then s = n(Y) is
called a transverse affine field of F.

If gum is a bundle-like metric on M and Y € IT'TM a conformal vector
field (i.e. 8(Y)gm = fy ga for some function fy on (M, gum) ), then n(Y)
is transversal conformal field for gum- Infact, 8(Y )gr(s,t) = (Y )gq(s,t)
for all s,t € [(Q). But the converse is not necessarily true: Y € V(F)
may satisfy 8(Y )gq = fygq without satisfying 8(Y )gar = fy gar , where
fy and fy are some funtions on M. For the relation of Killing fields,

the following is well known([2]).

Proposition 3.5([2]). Let n(Y') be the transversal Killing field on M.
Then Y is a Killing field on M if and only if

(3.3) am(VYY, W) + gu(VNY,Z)=0

for any Z,W € T'L.

Now, we study the relations of conformal vector fields. First we cal-
culate (8(Y)gar)(Z,W) for any Z,W € TM. By properties of oY),

we have

(3.4)
(6(Y)gm)(Z, W)

=Yga(Z, W)~ gm(8(Y)Z, W) = gar(Z,0(Y)W)
= (6(Y)gL)(m 2, 7+ W) + (8(Y )go)(x Z, 7 W)

— gm (BT Z, 7t W) = gpr(8(Y)x W, ot Z),

-~
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where gar = g1 + g¢ and 7t : TAM — L is the projection. Since
6(Y)s = n[Y, Y], 7(Y,)=sfors € Q, the last two terms on the above

equation are zero. Also, by long calculation, we get
(3.5) (O(Y)gL)(x 2,7 W) = gL (VM Y, n W) + g4 (2, VM, , V).
Hence we have
(3.6)
(6(Y)gm)(Z, W)
=(6(Y)go)(xZ,7W) + ga(VY, Y, 7t W)
+gm(rt2Z,VM V).
From this equality, we have

Proposition 3.6. Let 7(Y) be the transversal conformal vector field

on M. If the infinitesimal automorphism Y satisfies
(3.7) am(VY Y, W) + gm(VMY,Z) = 0 for any Z,W €TL,
then Y is a conformal vetor field on M.

Corollary 3.7. Let n(Y') be the transversal conformal vetor field. If Y

is parallel along the leaves, then Y is a conformal vetor field.

.

Since the Riemannian foliation can be considered as Riemannian sub-

mersion locally, we can introduce the following tensors ([4]):
AxY = aVMrlY 4 ntvM ay
(3.8) TxY = aVM 7ty 4+ 2tOUM 2y

8



for any vector field X,Y € TAM. And the following properties hold:

Av =0 and ApV =-A,U

(3.9)
TU =0 and Tx Y = Ty.‘{

for any XY € T'L and U,V € T'Q. The Riemannian foliation is said
to be totally geodesic if all the leaved are totally geodesic submanifolds,
that is, T' = 0. Moreover the normal bundle Lt = Q is integrable if and
only if A = 0 (in this case the integral submanifolds of L1 are totally

geodesic ). By these properties of A and T, we have
(3.10) gm(VYL LY, 7 W) = gag(T2Y, 72 W) + gar (VM x by, n W),

From this equation, we have

Corollary 3.8. Let F be the totally geodesic foliation. Let n(Y) be
the transversal conformal vector field of M. If the tangential part of the
infinitesimal antomorphism Y is parallel along the leaves, then Y is a

conformal vector fiels of M.



4. Transversal conformal fields

Let Q"(M,Q) = I'(Q) ® Q"(M) be the space of Q- valud r-forms
over M, where Q"(M) is a space of differential r-forms on M. For any
s € I(Q) and 5 € Q7(M), the element s ® n € Q"(M,Q) is usually
abbreviated to s7. We can consider the connection V given in (2.2) as

an R-Liner map V : Q°(M, Q) — QY(M, Q) such that
(4.1) V(fs) = fVs + sdf
for any f € Q°(M), s € T(Q) and such that
(4.2) d < 81,8 >=Vs) Asy+ 53 A Vs,
for any s,,s; € Q%(M, Q), where we define

S1 A So12 =< 81,82 > A

for any s1m € Q7(M,Q) and sany € Q(M, Q). By the usual algebraic
formalism, V : Q°(M,Q) — Q'(M,Q) can be extended to an anti-
derivation

dv : Q(M,Q) — Q™ (M, Q)
by the following rule : if sy € Q7(M, Q), then
(4.3) de(sn) = Vs Ay + s(dy)

for s € T(Q),n € Q(M,Q). For a Riemannian metric ga; on M, we

extend the star operator * : Q"(M) — Q"~"(M)(n = dimM) to

*: QT(M,Q) - Q"7T(M,Q)

10



as follows : if s € T'(Q) and € Q"(M), then

(4.4) - *(sn) = s(xm).

Moreover the operator d3g, : Q7(M, Q) — Q7"1(M, Q) given by

(4.5) Yo =(-1)"UtD Ny do v g, $€Q(M,Q)

is adjoint of dy with respect to an inner product < -, - > defined by
(4.6) < s1m1, 82172 >= gQ(s1,82)(n, m2)-

The Laplacian A for Q*(M, Q) is given by

(4.7) A = dvdg + dydye.

Let e1,--- , e, be orthonomal basis of T, M and E,, .- , E, alocal fram-
ing of TM in a neighborhood of x, coinciding with e;,--+ , €, at r and
satisfying VfiE[; = (Vg’,‘ Ep); =0 (A, B=1,---,n), where V¥ de-
notes the Riemannian connection of (M, gar). Let w? be a coframe field

of e4. Then on Q*(M, Q), we have
(4.8) dv =) wiAV.,, db=-3 ile)Ve,,
where V is a connection on Q*(M, Q) defined as

Vx(sn) = (Vs + (V)

and
i) () = sfi( X))

11



for s € T'(L),n € A*(M). The Q-valued bilinear form a on M is defined

by
(4.9) ol X, Y) = —(Vam)(Y)

for all X,Y € TTAM([9]). Since a(X,Y) = 7(VYY) for all XY € TL.
we call « the second fundamental form of F([9]). The tension field 7 of

F is defined by

])
(4.10) 7= oEiE),

i=1
where {E;}i=1,... , Is an orthonormal basis of L. We remark that 7 =
dym € TQ([9]). The foliation F is minimal (or harmonic) if 7 = 0 ([9)).
For Y € V(F), we define an operator Ay(Y) : I'(Q) — I['(Q) by

(4.11) Av(}").s = Q(Y).S - Vys.
Then we have
(4.12) Av(Y)s = =Vy, n(Y),

for s = w(Y,). This shows that (i) Ag(Y) depends only on s = 7(Y"),
(i1) Av(Y) is a linear operator of I'(Q). Thus we can use Av(s) instead

of Av(Y)([4)).

Proposition 4.1([7]). ForY € V(F), it holds that
(8(Y)V)y,t = Ro(n(Y),s)t = (Vy, Ae(n(}))t

for any s,t € I(Q) with Y, = o(s).

12



Proposition 4.2 ([7]). Ifs € V(F), then it holds that

As = dgdys =V,s+ Z (VEGAV(S))EO

a=p+1

Theorem 4.3([7]). If s € V(F) is a transversal conformal field of F,

then we have

2
As = Vs + po(s)+ (1 = =)grad(dives),
q
where dives = 9o(VE, s, Eq).

Let By(s) : T(Q) — I(Q) (s € V(F)) be an operator defined by

(4.13) Bo(s) = Av(s) 4+ Av(s) + ~(dives)],

2
q

where I denotes the identity map of ['Q. Note that the operator By(s)

1s symumnetric.

Proposition 4.4 ([7]). A transversal infintisimal antomorphism s of F

is a transversal conformal field of F if and only if By (s) = 0.

Theorem 4.5 ([12]). Suppose that Al is compact. It holds that
/ divesdM = 7,5 >
A

for any s € T'Q).

Theorem 4.6 ([12]). Suppose that A is compact. It holds that
L As, t >=< Vs, Vt >

for any s,t € V(F). where € Vs, Vit >= fM 9o(V e, s,V t)dAf.

13



Proposition 4.7 ([7]). Forall 5~ € V(F). it holds that

(1) Ricw(s) + TrAg(s)Av(s) — (divy )2 + dive(Av(s)s) + dive (dives)s = 0.

(i) TrAv(s)Av () = —Tri Av(s)Av(s) + %Tr(.—'lv(.s) 4t Ae(s)?,

where TrC denotes the trace of an operator C @ T(Q) — T(Q) with
respect to gg, and 'Av(s) denotes the transposed operator of Av(s)

with respect to gq.

Theorem 4.8 ([8]). Let (M, gar, F) be a closd, oriented, connected
Riemannian manifold of dimension p + ¢ with a transversally oriented
foliation F of codimension ¢ > 2 and a bundle-like metric gar with
respect to F. Let s be a transversal infinitesimal antomorphism of F.

Then s is a transversal conformal field of F if and only if s satisfies

1
As = V,s+ po(s)+ (1 — =)grad(dives).

q
By the direct caleulation, we have
(4.14) go(grad(dive dive s, s) = o(s)(dive =)
(4.15) dive((dives)s) = c(s)(divys) + (dives)?

for any s € I'Q. From Theorem 4.8, (4.14) and (4.15), we have

2 ) ) _ ) .
go(As,s) = go(Vrs, s)tuq(pe(s), .\')+(l—a ){(Ilt'v((llv\—s)s—(dw\-.s)z}.

14



From Proposition 4.7, the above equation becomes

> >
(4.16) go(Vs,s) =(2- E)K/Q(Vr-“,ﬂ) + a!/Q(ﬂv(-*),ﬁ)
2 12 ,
+ (1= =)go(Vs,Vs) = 5(1 = =)TrBy(s)
1 ~ 1

1. 24 .
— (1= 3)=(2dives)?
2 q°4q

By mntegrating (4.16) and using Theorem 4.6, we get

(4.17)

K Vs, Vs >=(g—1) < Vos,5 > + K p(s),s >

/ TrBe(s)2dM -
hYl

¢ —2 q—2

/ (dives)?dM.

¥
LAY

The Ricel operator po of F is non-positive (rest. negative) at ¢ € M
if golpe(s),s),y <0 (resp.< 0) for any s € T(Q) (resp. s(x) # 0). If
pe 1s non-positive everywhere on M, then we have € pe(s),s >< 0
for any s € T(Q). If 5 € I'(Q) satisties Vs = 0 . that 1s , Vs = 0 for
any X € T(TA!), then s is called ¥ = parallel. From Proposition 4.4 and

(4.17), we have the following theorem.

Therorem 4.9. Let (M, ga . F) be the compact manifold with codi-
mension ¢ > 2. Let s he a transverse conformal field of F. If pe is
non-positive evervwhere on M then every s paralled along the mean
curvature vector 1s V-parallel. If pe is non-positive everywhere and neg-
ative at some point of A, then every ~ paralled along mean curvature

vector 1s trivial.
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