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( Abstract )
THE CURVATURE OF A REGULAR CURVE
UNDER INVERSION

Kim, Soon-chan

Mathematics Education Major
Graduate School of Education, Cheju National University

Cheju, Korea

Supervised by professor Hyun, Jin-Oh

In this thesis we derive the formula which is a relation of the curvature
of a regular curve under inversion and the one of the given regular curve.
We show that if x and & are the curvatures of a unit speed curve a and the
inversion curve of a, respectively, then the necessary and sufficient condition
for the formula k = %/{ is that ||a(t)|| = At + B for some constants A
and B with At + B > 0 for all ¢t. Also, we find all unit speed curves which
satisfy the condition ||a(t)|| = At + B with the cases A = 0and A = 1 in E2.
Furthermore, we prove that there is no analytic unit speed curve a which

satisfies the condition ||a(t)|| = At(4 # 0, A # 1) for all t.

—i-



CONTENT

( abstract )

Introduction ... ... 1
The Curvature of a Regular Curve .............. ... ... 2
The Definition and Some Properties of an Inversion ............. . . . 7
The Curvature of a Regular Curve under Inversion ....... .. 10
REFERENCES ............................................. 28
(2 %) 30

~ i



Introduction

In this paper, our study of the curvature will be restrictied to the regular

curve in Euclidean space E3.

In section 1, we introduce the basic concepts of a regular curve in E3
and the Frenet formulas, a natural instruments which are useful to find the

curvature of a regular curve in E3.

In section 2, we introduce the definition and find some properties of

inversion in E3.

In section 3, we derive the formula which is a relation of the curvature
of a regular curve under inversion and the one of the given regular curve.
We show that if « and & are the curvatures of a unit speed curve a and the

inversion curve of a, repectively, then the necessary and sufficient condition

la()]®

for the formula & = 72

x is that ||a(t)|| = At + B for some constants A
and B with At + B > 0 for all ¢. Furthermore, we prove that if A = 1, then
o 1s part of a straight line passing through the orign, and if A = 0, then a is

part of a circle with center at the origin. Finally, we show that any analytic

unit speed curve a does not satisfy the equality la(t)]| = At.
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1. The Curvature of a Regular Curve

In this section, we introduce the basic concepts of the curvature of a
regular curve in E® and the Frenet formulas, a natural instrument which are
useful to find the curvature of a regular curve in E3.

A map o : I — E3 is called a curve of class C¥ if each of the coordinate
functions in the expression a(t) = (z(t),y(t), z2(t)) has continuous derivatives

up to order k.

Definition 1.1. A parametrized differentiable curve o : I — E? is

d
said to be regular if a is of class C? and d_(: #0foralltel

Definition 1.2.  The unit tangent vector field to a regular curve a(t)

is the vector-valued function

T(t) = (1.1)

d
where 1s the length of d—(:.




Definition 1.3.  The arc length of a regular curve a from ¢t = a to
t = b 1s the number

dt. (1.2)

Remark. If a(t) is a regular curve and s = s(t) is its arc length, then

t
d
(a) s=s(t) :/ d—‘: dt;
0 (1.3)
6 = =%
dt dt ||’
.. . . || de
Definition 1.4. A curve a : I — E3 is a unit speed curve if E” =1.

da(s)
s

=1 for each s in

Let a : I — E® be a unit speed curve, so

a . .
I. Then T = I, i the unit tangent vector field on a. Since T has constant

s
: .. d d’a : o
length 1, its derivative ds = .2 Measures the way the curve is turning in
S s

dT
E3. We call T the curvature vector field of a. Differentiation of (T,T) = 1
S

dT dT
gives 2 <d—, T> =0, so T is always orthogonal to T, that is, normal to a.
s s

dT . :
The length of the curvature vector field — gives a numerical measure-

ds

ment of the turning of a. Because of these considerations we are led to make

the following definition.



Definition 1.5. Let a : I — E® be a unit speed curve. Then the

real-valued function « such that

dT(s)

k(s) = “T , (1.4)

for all s € I is called the curvature function of a.

Definition 1.6. Let a be a unit speed curve with x > 0, Then the
T

unit-vector field N = 42 on q tells the direction in which « is turning at
K
each point. N is called the principal normal vector field of «. The vector
field B = T x N on a is then called the binormal vector field of a. The
) . . dB _.
torsion of « is the real-valued function 7 = — =)
» s

Remark. It is clear that x(s) = 0 for all s if a is a straight line and

1
k(s) = = for all s if a is a circle of radius 7.
r

Lemma 1.7. Let a be a unit speed curve in E3 with x > 0 . Then
the three vector fields T, N. and B on a are unit vector fields which are
mutually orthogonal at each point. We call T, N, B the Frenet frame field

on «.



Then it is well known the following Frenet formulas.

Proposition 1.8.(Frenet formulas) If a:I — E®is a unit speed

curve with curvature k > 0 and tosion 7, then

dT
= k(s)N(s);
(2: = —k(s)T(s) + 7(s)B(s); (1.5)

dB
= — 7(s)N(s).

Let 3(t) be a regular curve and let s(t) denote the arc length function.

Then ﬂ (t) = a(s(t)), where a(s) is B(t) reparametrized by arc length. Note
that — “

Proposition 1.9. If 3(¢) is a regular curve in E*, then

K= ——" ' (1.6)
%

Proof Since 3(t) = a(s(t)) where s is the arc length function of a, we

) d3 dads ds
find, using the formulas (1.1) and (1.3), that i d_T From the

-5 -



preceding Proposition 1.8, a second differentiation yields

d’B8  d%s ds dT
el vt g w

_dis (ds 2dT
~dt? dt) ds
and hence ,
dﬁ a'2ﬁ ds d?s ds
@@ T a (m”"(a N
ds\>
(%)
since T X T'=0and T x N = B. Taking norms, we find

(&) -5 %

d
because ||B|| =1, x > 0, and d—j > 0. Therefore we obtain




2. Definition and Some Properties

of an Inversion

In this section, we define an inversion in E* and find some properties
of an inversion. Let the sysmbol (O)g denote the sphere with center O and

radius R.

Definition 2.1. Two points P and P’ of E3 are said to be inverse

with respect to a given sphere (O)g if
OP .-OP' = R? (2.1)

where P, P' are on the same side of O and O, P, P' are collinear.

A sphere (O)r is called the sphere of inversion, and the transformation
which sends point P into P! is called an inversion. As point P moves on
a curve C, its inverse point P’ moves on a curve C' which is the inverse
curve of C'. But the center O of the sphere of inversion has no inverse point
because if P is at the center O then OP = 0 , which means that the relation

R?

OP' = —— is meaningless.

- oP



From now on, we take the center O as an origin of the coordinate system
in E3, and denote the distance from O to a point X € E*® by || X||. Then we

have the following properties.

Proposition 2.2. ([8])

(1) A line through O inverts into a line through O.

(2) A line not through O inverts into a circle through O.
(3) A circle through O inverts into a line not through O.

(4) A circle not through O inverts into a circle not through O.

Proposition 2.3. Let a : (a,b) — E3 be a regular curve. Define a
mapping f : E3 — {(0,0,0)} — E? by for all X € E* - {(0,0,0)}

R2X R?*X
0= 3y = X (22)

where (X, X) = X - X is the dot product. Then
(1) f is an inversion,
(2) new curve & = f o a is regular, and
(3) the arc-length 5(¢) of a regular curve segment a of a under inversion

is given by the formula

da
dt

(2.3)

t
g“):RQ/O ol

_8—



Proof.

da _ df(a)
dt dt
_ iRza
 dt ||af?
_ R da 2R
flall? dt  ||le|*
and so
da|’ _ /da da
dtll  \dt’ dt

da

(3) Since a(t) # 0 for all t € (a,b), we have

(2.4)

da \
dt,a [0

_/ R da R’ da
\llall? dt” flaf* dt

_ R [da da
- lef|* \ dt’ dt

_ R* |lda
el | gt
By using of (1.3), we get
_ ‘|| da

_R2 /t 1
o lledl?

(2.5)

da
dt




3. The Curvature of a Regular Curve

under Inversion

In this section, we derive the formula which is a relation of the curvature
of a regular curve under inversion and the one of the given regular curve. We
show that if k and & are the curvatures of a unit speed curve o and the

inversion curve of a, repectively, then the necessary and sufficient condition

la(t)]I”
R2?

and B with At + B > 0 for all ¢. Furthermore, we prove that if A = 1, then

for the formula & = « is that ||a(t)|] = At + B for some constants 4
a 1s part of a straight line passing through the orign, and if A = 0, then a is
part of a circle with center at the origin. Finally, we show that any analytic

unit speed curve a does not satisfy the equality [|a(t)|| = At.

Lemma 3.1. Let a : I — E? be a regular curve, and let f : E® —

{(0,0,0)} — E3 be an inversion of a. Then, for the new curve & = f(a),

d*a R? d’a 4R? <da >da

(1) - —.a ) —
dt? ”aH? dt? ;|a||4 dt dt
da

2R? <d2a > +‘ }2 4 <da >2
—_ —_—, _— - -, & Q
lafl* \\ dt?’ dt il laf? \ dt’

- 10 -
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da||?

da
dt

* R'|da|® 4R

= +
4 6
lacf|* Il dt? [l

8R* [da  \ /da da
A A A A YA

d%a
dt?

(2)

o)

(3.2)

(3) da d’a\ = R' /[da d’a\ 2R!|da
dt’dt?2/ " Jal* \dt’ d2 / " J[a|f || 4t

) e

2

da d*a
@) 1z * =
_ R |lda da|* = 4R® |lda]l®
la|® Il dt " dt2 [ 7 o' || dt (3.4)
4 ol s oy A e o 2 2o
lall||dz || \dez'*/ T ol || \a ¢/ \de @
4R ||dal* da 2
laZ et | \ae/ -

Proof. (1) Differentation of (2.4) gives the following ;

d*a szittzl” “ —2R2<dt’ >—'
d’ o
2B%of*[((%2,0) + (%, %)) e + (d2.0) L]

le])®

8R2||al| < a> «

lof®

-11 -



R? {’a 2R? <da >da 2R?
= — —_—a)— — ——
laf* d®  lal* \ dt at  |lafl*
2R? ||da||? 2R? <da >da
- — | a— —,a
llaef|* Il dt o/ \ dt

R? d%a 4R? <da > da
= — —,a ) —
lal* d2  la|* \ dt dt

2R? <d2a > N ‘ 2
lla|* \\ dt?
(2) From the formula (1), we get
da
dt

_(da da
T\ dt dt

da

dt

_ R ||d&a 2+ 16R* /da \’|da
“llall® || ae ol \dt’*/ | a
N 4R* d?a y da g 4
laf® \\a@2" %/ " | at|| " Jaf?

8R! /da o da
lal® \dt %/ \ a2 at

L 16R! fda \* [ /d% N
lal® \ @t a2

B 4 R4 d%a +
afl® \ \ @2

RY ||« 2

_ L 16R! /da \’
“allf e T el \ d

4R || da||*
]| ]} dt

2

da
dt

4

da
dt

+

~19 -

do
dt

(

_+_

lee]i®
d%a
PR

llel?

+64R4 da \! s8Rt
Jao\a %/ T Jals

(

4

el

2

2

(

da
= Y
dt’

E7

d®«a
dt?

8R?

da

4R*

(

a)a

; <d_“
dt ||a||6 dt’

>2)2||an?
7

EE
da

at’®

da
dt’

da
dt

y

a>2a
)

)
V) (e

d*a
az

)

)



32R* / do da|®  32R' /d’a da \?
||a||8<d_ > " laf® <W’“><E’“>
8R* /da d:'a da 16R* /da 2P
lalf® <d— a> T dt>+ W<E’a> <d7’a>
16R4 da da 64R* /da \' 4R* /d*a \’?
||a||8<d_ “> " o™ <E’“> ‘W<W’“>
4R* da 16R* /da \*/d%a
nanﬁ<dt2’“> dt +nan8<ﬁt""> <F“>
RY || 2a|®> 4R*|dal|* 4R' /d%a da|?
Tl | e lE +nor||“<W’°'> at
8R* /da d*a da
~ al® < ><dt2’dt>
(3) Differentiating both sides of (2.5), we have
2<g§ d2d> 2R (%2, 42 ) oll* ~ 4R %2 |llal (% o)
dt’dt2 ) le)®

da

) . 2R? <d_a d2a> 4R*
| \ dt” dt? lloe]f®

*/da
dt,a .

Hence

do
dt

da d*a R* /da d’a\ 2R ? / da
bt W — ==\ —.,a).
dt’ dt? Ilall4 dt’ dt? ||a||6 dt’

(4) From the formulas (2.5), (3.2), and (3.3), we obtain

2

da  da

dt dt?
|| e[ e - fda ey’
|l dt dt? dt’ dt?

- 13-



2 2 6

__R® |da]®||da 4R® |lda 4R® lda|* / d®a
TR N 22 TR 2 T 72 AN 72
_ 8R® || da|® /da da da R® /d%a da\’
”0,”10 dt dt %\ di2 dt lla|® \ dt? " dt

4R® ||da|® /da da\ /da 4R® |lda|* /de \®
la||*® |} dt dit?’ dt dt lia||"? | dt PR
_ R ||lda|’|| |’ R® /d’a da\® 4R® ||da|°
ClelPlidtll el jaf® \dt2dt /T a0 dt
4R |lda ! (da \ 4R ||da|’/da \/d%a da
e dt || \dez"%/ "o @ | \ &/ \ &
_ 4R Jda® /da \?
lla||*? ] dt /-
_ R |lda  d’a|® 4R® |/da]®
el dt T de | ) ]| dt
4R lda|" /o \  4R® |da|’/da \ /& da
ol ||t || \ 22" el |{dt || \at'*/\ae &
4R8 d_a 4 d_Ot 2
la|/*? ] dt gyt

Theorem 3.2. Let o : I — E3 be a regular curve with curvature «,
and let f: E® —{(0,0,0)} — E® be an inversion of a. Then the curvature

k of @ = f(a) under inversion is computed by the following formula
4 2 2 2
_2 _||a[] 2, 4llal 4 2 d_a . d_a
TR R T wpgp \ e (e

4fla)? <da ><d20 do->
- ——ﬁ -0, —‘—2./ —_ .
R4H:i1—t” dt dt? ' dt

- 14 -




Proof. By using of the formulas (1.6), (2.5), and Lemma 3.1, we have
2

_2 t t
k= —
(il
2
BF | 5% ] sl + el ] (Gee)
= Rl? + Rl2
l|a||”“ ” ||a||12“ “
o5 (5 0)” + [ (42, o) ( 48, 42 )
- R12
”a“u” ”
2
_lay |4 %2 el Sl (58 ) il
R e R RIET R’
4l (% a) (G, %)
Ri||%°

el ol 4 (e /e da  \*
@ —,a)—{ —,a
R4 R R4||"fd—‘i’||2 dt?’ dt’
4lla))®*  /da Pa da
R4“<§_?“4 dt @ di?2’ dt /-
Corollary 3.3. Let a be a unit speed curve with curvature x. Then
the curvature & of & under inversion is computed by the following;

4 2 2 2
_2 _ el 5 4ol 4 2 [d°a 4 /da
TR TR TR @) w69

da 2

dt’

Proof. Let a be a unit speed curve. Then =1, so

2
= 1. From the formula

Hence @, da = 0 by differentiation of
dt?’ dt -

(3.5), we get the formula (3.6).

da
dt



Theorem 3.4. Let a : (a,b) — E® be a unit speed curve with cur-
vature « and let f : E® — {(0,0,0)} — E® be an inversion. Also, let & be

the curvature of @ = f o a. Then, for any t € (a,b),

o)
R2

K=

if and only if |la(t)|]| = At + B

for some constants A, B with At + B > 0 for all ¢.

2
Proof. Let &k = %/{. Then, by Corollary 3.3,

fol? + Fal { G — (%2, =0 5.7

Put g(t) = (a(t),a(t)). Then g is a differentiable real-valued function and

g(t) > 0 for all ¢. Differentiating both sides of the formula

(a(t), a(t)) = g(t),

we have
da 1,
<E,a> = 59 > (38)

where g’ denotes the derivative of g with respect to t. Since a is a unit speed

curve, differentiating both sides of (3.8), we have

d*a 1,



Substituting the formulas (3.8) and (3.9) to the formula (3.7), we get the

differential equation

299" — (¢')* = 0. (3.10)

Case 1 : If ¢’ = 0, then there exists a positive constant B such that
g(t) = B since g(t) > 0 for all ¢.

Case 2 : If ¢’ # 0, then, from the formula (3.10),

Hence

(2Inlg’])" = (In|gl)";

and so

In(g")’ = InCyg,

where C, is a positive constant. Therefore we obtain

(¢')? = Cig.

Simplifying this equation, we get



By integrating both sides of this equation, we obtain

\/§=i'201t+%,

where C; is a constant. To get ||a(t)| = /g(t) = At + B, we choose

VG
2

= A and —C2—2 = B which are satisfied the inequality At + B > 0 for
all t. Then we are done.
Conversely, let ||a(t)|| = At + B; so ||a(t)||* = (At + B)?. Then, by

differentiating both sides of the above equation, we get

<§ﬂ>=mm+3y

By differentiating both sides of the above equation, we have

d*a da da 2
<F“>+<E’E> =4

Since -EH = 1, we have

dt

By Corollary 3.3, we obtain

a_lelt 4ol 4 :
e = Lol 2lelly 2 apar - 1) - L 2o
ol
R4

~ 18 -



Hence our proof is completed.

Proposition 3.5. Let a(t) = (z(t),y(t)) be a unit speed curve with
a(t) #0forallt > 0.

(1) If ||a(t)|| = B for any positive constant B, then a is part of a circle
with center at the origin.

(2) If |a(t)|| = t + B for any constant B > 0, then a is part of a straight
line passing through the origin.

Proof. Let a(t) = (z(t),y(t)) be a unit speed curve with a(t) # 0 for
allt > 0. Then

)2+ @) =1, (3.11)

where z' and y' are derivatives of z and y with respect to t, repectively.
(1) If ||a(t)|| = B(B is a positive constant), then it is clear that the
curve a(t) is part of a circle with center the origin and radius B.

(2) If ||a(t)|| =t + B for any constant B > 0, then we have
2 +y* = (t+ B). (3.12)
Differentiation of (3.12) gives

zz' +yy' =t + B. (3.13)

-19 -



Case 1: Either z(t) = 0 or y(t) = 0.
It is trivial from the formula (3.12).

Case 2: If z(t) # 0 and y(t) # 0, then, from the formula (3.13), we get

Substituting this formula to (3.11), we have

t+ B\?2
(r’)2+<—3x’++—> =1.
y y

Simplyfying this equation, we get
(t+ B)*(z')* — 2z(t + B)z' + 22 = 0.

Equivalently,
Hence we have

By integrating both sides of this equation, we obtain
In|z(t)] =InClt + B|,
where C is a positive constant, and hence

z(t) = Clt + B,

- 920 -



From (3.12), we have

y(t) = V1 - C?|t + B|
where 0 < C' < 1. Therefore we get

V1-C?

= ——07x
y C ,

and hence the curve a is part of a straight line passing through the origin.

Definition 3.6. A function which is represented by power series
oo
z(t) = ) ant™,
n=0
where a,’s are real numbers, in some open interval containg t = 0, is called

analytic. The curve a(t) is called analytic if each component function is

analytic.

Theorem 3.7. Given number A with A # 1 and A # 0, there is no

analytic unit speed curve

a(t) = ((t),y(t))

locally at t = 0 such that |a(t)|| = At.

-921 -



Proof. Suppose that there is an analytic unit speed curve

a(t) = (z(t), y(t))

locally at t = 0 such that ||a(t)|| = At. Without loss of generality, we assume

that y(t) # 0 locally at t = 0. Then we have
2 +y? = A% (3.14)

and

(") + ()" =1, (3.15)

where z' and y' are derivatives of z(¢) and y(t) with respect to t, respectively.

Differentiating both sides of the equation (3.14), we have
z(t)z' +y(t)y' = A%t

Since y(t) # 0 locally at t = 0, we get

Substituting y’ to the equation (3.13), we have

A%\ °
@ (-2 2 2,

y 4



and then

A’ (2')" ~ 24%z2" + A% (A% — 1) + 22 = 0.

Hence, finally, we have the following equation :
AP (') 12 — 247 (22 )t 4 % + A% (A2~ 1) #% = 0. (3.16)

Now, we assume that
e o]
I(t) = Z a,t”

n=0

Then z satisfies the differential equation (3.16).
To find the coefficients a,’s, we differentiate z(t) with respect to ¢, and

then we have

e o]
z'(t) = Z n &2 1
n=1

o0 [o o}
(Z nant"_l> (Z nant"—])
n=1 n=1

o0

(Pnt2" 4 Qnt2n+l),
=0

Hence we obtain

(z'(t))?

3

where

|
—

2(n—k)n+k+ 2)an_kan+k+2) + (n +1)%a2,,,

n
pn:(
k

0

~_93 -



and

Now,

where

and

Also,

where

and

Qn=2) (n—k+1)(n+k+2)an—ks1an+k+2.
k=0

z(t)z'(t) = (Z ant") ( nant"_l)

Z (Rnth + Snt2n+1),

n=0

(=]

Rn = (2TL + ]-)an—-kan+k+la
k=0

Sn = (Z 2(TL + 1)an—kan+k+2) + (Tl + 1)ai+1-
k=0

(z(t))? = (Z ant") ( nant">

Z (Fnth + Gnt2n+1),

=0

I

3

n—1
L2
F, = Z2an—-k—lan+k+l) T ay,,

k=0

n
Gn =2 Z An_—kQn4k+1-

k=0

—94 -



By substituting (z'(¢))?, z(t)z z'(t), and (z(t))? to the equation (3.16), we

have

(Z t2n +Qnt2n+l ) (Z t2n +Snt2n+1)>t

+ (Z (Fat?™ + Gnt““)) + A%(A* - 1)t =0,
n=0

and then

[\
2 (Z Qnt2n+3) + A2 (Z (Pn _ zsn)t2n+2>
n=0 n=0
+ (Z (G — 24%R,) t““) + <z Fntz") +AY (A2 -2 =0

n=0 n=0

Gathering terms according to the powers of ¢ and solving each term of t",

we have the following recursive formulas :

Fy =0,

Go — 2A%’Ry =0,

APy —1A%S, + A¥ (A’ - 1)+ F, =0,
A*+ G, —24’R, =0,

A%P, —2A4%S, + F, = 0,

A*Q, + G, — 24%R, =0,

APy — 24%S, + F3 =0,

A%Q, 4+ G3 —24%R; = 0,

A’P; — 24253 + F, = 0,

~95 -



A*Qno1 + G, —24%R, =0,

A*P, —2A%S, 4+ F,1y =0,

By a simple calculation, we get

ag:O ; ag =0,
(1 - A*)aga; =0,

(1-4%)(a] -A*) =0 ; o} =42
2(1-A%a1a; =0 ; a; =0,
2(1- AYaja3 =0 ; a3 =0,
2(1—A2)a1a4:O : o1z 5.40;
2(1 - A%ajas =0 ; a5=0,
2(1 - A%aja6 =0 ; ag=0,
2(1—A2)a1a7=0 ;a7 =0,



Thus we have
z(t) =ao + a1t + azt’ + -+ apt" + - --
= At.
From the equation (3.14), we have y(t) = 0.

This leads to a contradiction.
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