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< Abstract >

The Basic Harmonic forms on a Non Harmonic

Foliation

Han, Jung-Eun
Mathematics Education Major
Graduate school of Education, Cheju National University
Jeju, Korea

Supervised by Professor Jung, Seoung Dal

We study the basic harmonic forms on non-harmonic foliations and
prove that on an isoparametric Riemannian foliation with transverse Killing
tension field, (i) if the transversal Ricci curvature is quasi-positive, then
HE(F) = 0, (ii) if the transversal curvature operator F' is quasi-positive,

then Hp(F) =0for 0 <r <gq.



1 Introduction

Let F be a transversally oriented Riemannian foliation on a closed manifold
M. Reinhart([7]) introduced a basic differential form to provide a general-
ized notion of forms on the quotient space M/F', which is not on a manifold
generally.

In particular, the basic de-Rham cohomology Hj;(F) of the complex of
basic differential forms is of great interest and has been studied extensively.
In contrast to the special case of Riemannian mainfolds, the operators d
and ¢ defined as usual on the local quotients, are not in general adjoint
operators.

The defect is related to the mean curvature of the leaves. In [2], Kamber
and Tondeur studied this basic cohomology Hj(F) under the additional
assumption that the curvature form k of the leaves of F is a basic 1-form.

In 1991, M.Min-Oo and E.A.Ruh and Ph. Tondeur ([6]) proved the
following. Let p¥ : Q — @ be the transveral Ricci operator on the normal
bundle and F : A2Q — A%(Q then transveral curvature operator. Then if
p¥ >0, the HL(F) = 0 and if F is positive definite, then H%(F) = {0} for
0<r<y.

In this paper, we study the new operator A = Ap — A,, where A4, =
o(r) — V..

In particular, we give the Weitzenbock type formula for A and using the



Bochuer technique, we estimate Ker/A under some curvature conditions.



2 Riemannian foliation

Let M be a smooth manifold of dimension p + ¢.

Definition 2.1 A codimension g foliation F on M is given by an open cover
U = (U,)ier and for each i, a diffeomorphism ¢; : RPT? — U; such that, on
U; NU; # 0, the coordinate change goj_l 0wt (U;NU;) — goj_l(Ui nU;)
has the form

o; ' o wi(x,y) = (i (,9), 75 (Y)). (2.1)

From Definition 2.1, the manifold M is decomposed into connected sub-
manifolds of dimension p. Each of these submanifolds is called a leaf of F.
Coordinate patches (U;, ;) are said to be distinguished for the foliation F.
The tangent bundle L of a foliation is the subbundle of T'M, consisting of all
vectors tangent to the leaves of F. The normal bundle ) of a codimension
q foliation F on M is the quotient bundle Q = T'M/L. Equivalently, the

normal bundle @) appears in the exact sequence of vector bundles

0—-L—-TMSQ—D0. (2.2)
If (z1,...,2p;%1,...,Y,) are local coordinates in a distinguished chart U,
the bundle Q|U is framed by the vector fields Waiyl, e ,Waiyq. For a vector

field Y € TTM , we denote also Y = 7Y € I'Q.



Definition 2.2 A vector field Y on U is projectable if Y = 3", ai£ +

Zaba%vvith%‘:ZOforaHa:L.“,qand@':1,_.,,p,

This means that the functions b, = b,(y) are independent of x. Then
Y = Yol i, where b, is independent of x. This property is preserved
under the change of distinguished charts, hence makes intrinsic sense.

The transversal geometry of a foliation is the geometry infinitesimally
modeled by @, while the tangential geometry is infinitesimally modeled by

L. A key fact is the existence of the Bott connection in () defined by
%Xs =n([X,Y;]) for X € L, (2.3)

where Y, € T'M is any vector field projecting to s under 7 : TM — Q. It is
a partial connection along L. The right hand side in (2.3) is independent of
the choice of Y,. Namely, the difference of two such choices is a vector field

X'"eTl'L and [X, X'] € 'L so that 7[X, X'] = 0.

Definition 2.3 A Riemannian metric gg on the normal bundle @) of a

foliation F is holonomy invariant if
6(X)go=0 forall X eI'L, (2.4)

where 6(X) is the transverse Lie derivative.

Here we have by definition for s,t € I'Q),

(0(X)gQ)(s,t) = Xgq(s, t) — go(0(X)s, t) — go(s, 0(X)1).



Definition 2.4 A Riemannian foliation is a foliation F with a holonomy
invariant transversal metric gg. A metric gy is a bundle-like if the induced

metric go on () is holonomy invariant.

The study of Riemannian foliations was initiated by Reinhart in 1959([7]).
A simple example of a Riemannian foliation is given by a nonsingular Killing

vector field X on (M, gpr). This means that 0(X)gy = 0.

Definition 2.5 An adapted connection in () is a connection restricting

along L to the partial Bott connection V.

To show that such connections exist, we consider a Riemannian metric
gy on M. Then TM splits orthogonally as TM = L @ L*. This means
that there is a bundle map o : Q — L* splitting the exact sequence (2.2),

which satisfy m o o = identity. This metric gy on T'M is then a direct sum

guM = 9L D grt.

With gg = o*gp1, the splitting map o : (Q,g9) — (L', gr1) is a met-
ric isomorphism. Let V¥ be the Levi-Civita connection associated to the

Riemannian metric gp;. Then the adapted connection V in @ is defined by

Vs = Vys = n([X,Ys]) for X € L,
(2.5)

Vxs =n(VYY,) for X e 'Lt



where s € I'Q and Y, € I'L* corresponding to s under the canonical isomor-
phism Q = L*. For any connection V on @, there is a torsion Ty defined
by

Tv(Y,Z) =NVyn(Z) =N zrn(Y) —7lY, Z] (2.6)
for any Y, Z € T M. Then we have the following proposition ([9]).
Proposition 2.6 For any metric gy on M and the adapted connection V
on Q defined by (2.5), we have Ty = 0.

Proof. For X e 'L, Y € I'T'M, we have 7(X) = 0 and
Ty(X,Y)=Vxn(Y)—n[X,Y]=0.
For Z,7' € T'L*, we have
Tv(Z,2") =n(VYyZ) —n(VNY2) —7[Z, 2| = n(Tem(Z,2')) = 0,

where Ty is the (vanishing) torsion of V. Finally the bilinearity and

skew symmetry of Ty imply the desired result. O

The curvature RV of V is defined by
RY(X,Y)=VxVy —VyVx —Vixy] for X, Y eTM.

From an adapted connection V in @ defined by (2.5), its curvature RY
coincides with R for X, Y € T'L, hence RV(X,Y) =0 for X,Y € 'L. And

we have the following proposition ([3,4,9]).
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Proposition 2.7 Let (M, gu, F) be a (p+q)-dimensional Riemannian man-
ifold with a foliation F of codimension q and bundle-like metric gy with
respect to F. Let V be a connection defined by (2.5) in Q with curvature
RY. Then the following holds:
i(X)RY =0(X)RY =0 (2.7)
for X e 'L
Proof. (i) Let Y € I'T'M and s € I'Q). Since 0(X)s = 7w[X,Y;] for s €
I'Q,0(X)s = Vxs. Hence
RY(X,Y)s = VxVys—VyVxs—Vixys
= 0(X)Vys—Vy0(X)s=Vyx)ys
= ((X)V)ys=0.
(ii) Let Y, Z € I'TM and s € I'QQ. Then
OX)RV)Y,Z)s = O(X)RV(Y,Z)s — RV(O(X)Y,Z)s
—RY(Y,0(X)Z)s — R(Y, Z)0(X)s
= 0(X){VyVzs—=V;Vys—Vy s}
—{Vox)yVzs —VzVgx)yys — Vigxyv.z)s}
—{VyVox)zs = Voxy1zVys — Viyex)zst

—{VYVZQ(X)S - VZVye(X)S - V[Y’Z](%X)S}



= Vy(0(X)Vzs) = Vz(0(X)Vys) — Vox)y,z8
+VzVoxyys + Vipxy,z1s — Vy Vex)zs
+Vivoxyz1s — VyVz0(X)s + VzVy0(X)s
= —Vox)v.215 + Viexyv,.z1s + Viyvex)z)s

= (=Vixmz + Vixyz + Vyx,zy)s=0. O

By Proposition 2.7, we can define the (transversal) Ricci curvature pV

I'Q — I'Q and the (transversal) scalar curvature oV of F respectively by

ZRV s, Ey) ZQQ E,), E.), (2.8)

where {E, }4=1,... 4 is an orthonormal basis of ().

The second fundamental form o« of F is given by
a(X,Y)=n(VYY) for X,Y € 'L. (2.9)
Proposition 2.8 « is Q-valued, bilinear and symmetric.

Proof. By definition, it is trivial that « is ()-valued and bilinear. Next, by

torsion freeness of VM, we have that for any X,Y € 'L,
a(X,Y) =7(VYY) = n(V¥X) — n([X,Y]).
Since [X,Y] € T'L for any X,Y € 'L, we have

a(X,Y)=7(V¥X)=a(Y,X). O



Definition 2.9 The mean curvature vector field of F is then defined by

r=> a(E, E) =Y r(VIE), (2.10)

where {E;}i—1.... , is an orthonormal basis of L. The dual form , the mean

curvature form for L, is then given by
kK(X) =go(r,X) for X eTQ. (2.11)

The foliation F is said to be minimal (or harmonic ) if kK = 0.

For the later use, we recall the divergence theorem on a foliated Rie-

mannian manifold ([9]).

Theorem 2.10 Let (M, gy, F) be a closed, oriented, connected Rieman-
nian manifold with a transversally orientable foliation F and a bundle-like

metric gy with respect to F. Then

/M divg(X) = /M go(X,7) (2.12)

for all X € T'Q, where divy(X) denotes the transverse divergence of X with

respect to the connection V defined by (2.5).



Proof. Let {E;} and {E,} be orthonormal basis of L and @), respectively.

Then for any X € I'Q,

div(X) = ZgM VEX, E;) —l—ZgM (VM X, E,)

= Z—gM(XﬂVE +ZgM (VM X), E,)

%

= _gQ<X7 7—) + Z gQ anXa Ezz)

= —gQ(X, T) + dlvv(X)

By Green’s Theorem on an ordinary manifold M, we have

0— /M div(X)dys — /M dive (X)dys — /M Go(X, 7).

This completes the proof of this Theorem. O

Corollary 2.11 If F is minimal, then we have that for any X € I'Q),

/ divg(X) = 0. (2.13)
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3 The Basic Cohomology

Definition 3.1 Let F be an arbitrary foliation on a manifold M. A differ-

ential form w € Q"(M) is basic if

I(X)w=00(X)w=0, for X e T'L. (3.1)

In a distinguished chart (z1,...,2p;41,...,y,) of F, a basic form w is

expressed by

w= Z WayoarQYay N -+ N Ay, ,

a1 <--<ar

where the functions wy,..,, are independent of x, i.e. a%iwal...ar =0.

Let Q% (F) be the set of all basic r-forms on M. The exterior differential
on the de Rham complex Q*(M) restricts by the cartan formula 6(X) =
di(X)+i(X)d to a differential dp : QL (F) — Q5 (F). then the differential

dp defines then basic De Rham complex :

0ZOLF) Z . 2o 2o (F B . B0 (32

Definition 3.2 The basic cohomology H5(F) = Hp(Q25(F),dp) is define

by Hp(QU4(F), dp)= Ker(dg)/Im(dg).

The basic cohomology Hj(F) = Hp(Q5(F),ds) plays the role of the

De Rham cohomology of the leaf space M /F of the foliation.
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We also need the star operator % : Q5 (F) — Q%" (F) naturally associ-

ated to gg. The relations between * and * are characterized by

o= (—1)" % (¢ A xr),

%O = *O N XF
for ¢ € Q(F), where x £ is the characteristic form of F and * is the Hodge
star operator. So we can define a Riemannian metric <, >p on Q% (F) by
< @, >p= ¢ Axp A xF for any ¢, 9 € Qp(F) and the global inner product
is given by

<ov>i= [ <ow>n.
With respect to this scalar product; the adjoint 6p : Q% (F) — Q5 ' (F) of
dp is given by
opp = (—1) 1% (dp — kA)%¢.

Let {E,}a=1... 4 be an orthonormal basis with (VE,), = 0 for Q and {6,}

its gg—dual. Then we have the following proposition

Proposition 3.3 ([1]) On the Riemannian foliation F, we have

dp¢ =Y 0a AV, ¢, 050 =— i(E)VEé+i(T)é.

a

Definition 3.4 The basic Laplacian acting on Q5 (F) is defined by Ap =

dB(SB + 6BdB-

12



Trivially, the basic Laplacian Ap involve the mean curvature k. Let
B = KerAp (3.3)

be the set of the basic harmonic forms of degree r. It is well known ([2])

that for k € QL (F),
Qp(F) =Imdg & Imép & Hp
with finite dimensional H;.

Theorem 3.5 Let F be a transversally oriented Riemannian foliation on a
closed oriented manifold (M, gyr). Assume gyr to be bundle-like metric with
k € QR(F). Then

Hy(F) = Hp(F).

13



4 The basic harmonic forms

Let (M, gy, F) be a compact Riemannian manifold with a foliation F of
codimension ¢ and a bundle-like metric gy, with x € QL(F). For any

Y € I'TM, We define an operator Ay : Q5 (F) — Q(F) by

Ay =0(Y)¢ — Vy¢ (4.1)

for ¢ € QF(F), where 6(Y) is a Lie derivative. We also introduce the

operator V; Vi, : Q5(F) — Q5(F) as
ViV ==Y Vi g +Vy, (4.2)
where V% = VxVy — Vy,y for any X,Y € TM. Then we have
Proposition 4.1 The operator V;.V,, satisfies
L ViVud1, o2 >p=< Vo1,V >p (4.3)

for all g1, ¢o € Q5(F) provided that one of ¢1 and ¢ has compact support,

where < V¢, Vs >p= > < Vg, 01, Vg, b >.

Proof. Fix x € M. We choose an orthonormal frame {E,} satisfying

(VE,), = 0. For any ¢y, s € Qp(F),

<ViVudi b >p = < =Y Vig po1+ Veb, ¢ >p

= —Z < Vg, VE, 01,02 >p + < Vi¢1,02 >p

14



_ _Z{E“ < Vg, 01,02 >p — < Vg, 01,V 02 >p}
+ <aVT¢17 $2 >p

= —divy(v) + Z < VEg,01,VE,$2 >5
+ < V.o, ¢2a>B

= —divy(v)+ < Vo1, Voo >p + < V. 01,02 >p

where v € I'(Q)) is defined by the condition that go(v,w) =< V01, ¢2 >p

for all w € T'(Q). The last line is proved as follows: At z € M,

divy (v) = ZQQ(VEavaa) = ZEa < Vg, 01,02 >5 .

By the divergence theorem in Theorem 2.9 on a foliated Riemannian man-
ifold,

/ divy (v) = 7,0 >p=< V. 01,02 >p .
M

Hence we have

ViV, by S5 — / dive(v)+ < Vb1, Vor S5 + < Vodr, ds S5
M
= — <K<V, 01,02 >p+ <K< V1,V >p
+ KL V. 01,00 >p

= K< V¢,V >p.

Therefore, the proof is completed. O

15



Put A = Ap — A,. Then A is a transversally elliptic but it is not
self-adjoint. We call A as the generalized basic Laplacian. By the straight

calculation, we have the following theorem.
Theorem 4.2 On the Riemannian foliation F, we have

Ap = Vi,V + F(0) (4.4)
for ¢ € Vp(F), where F(¢) =3, , 0 A i(Ey)RY (Ey, E,)¢.

Proof. Let ¢ be a basic r-form. Let {E,} be an orthonormal basis for @

with VE, = 0 and {6,} its g; dual basis. Then we have

dB(SB¢ = 29 /\VEa Z{Z Eb VEb¢+Z( )¢}
_ _Ze AV g {i(E) VMHZ@ AV, i(T)o

- _ Z 0o Ni(Ey)VE, V¢ + dpi(T)d

and

0pdpd = = i(Ey) Ve {0 AVEd} +i(T)dpo
a,b

= = {i(B)0.}VE,VE,é+i(r)dpp + > 0 Ni(Ey) Vi, Vi,¢
a,b a,b

= —V.Veo+ Y 0. Ni(E)VE Ve +i(T)dso.
a,b

16



Summing up the above two equations, we have

Aqu = dB(SBd) + 6BdB§b

= dpi(T)¢ +i(T)dpd — V5, Vi,é+ Y 0d Ni(E)RY (Ey, Eo)o
a,b

= 0(r)¢— Vi, Ve,d+ Y 0. A i(Eb)éV(Eb, E,)o.
= —VgVgd+ F() +aﬁv<7>¢ + V¢
= —Vis, 50+ V-0 + F(6) + Av(r)¢
= ViVuo+ F(¢)+ Av(1)o
Hence we have

App = Apdp — A =V, Vi + F(9).

Therefore the proof is completed. U

From the Proposition 4.1 and Theorem 4.2, we have the following theo-

renn.

Theorem 4.3 Let (M, gy, F) be a compact Riemannian manifold with a
foliation F of codimension q and a bundle-like metric gy with k € QL(F).
If F' is non-negative, A-harmonic forms are parallel. If F is quasi-positive,

then KerA = {0}.
On the other hand, it is known ([7]) that if 7(Y") is a transverse Killing field,
ie., (Y)ggo = 0 if and only if

<Ay¢, ¢ >p + < ¢, Ay >p=0 for ¢, 1 € Qp(F). (4.5)
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From this equation, if 7 is a transverse Killing field, then for any ¢ € Q% (F)
< Arp, 0 >p=0. (4.6)
Hence we have
< Ap, ¢ >p=< App,¢ >p for any ¢ € Q5(F).
By Theorem 2.3, if ¢ € KerAp, then we have
0=|Vidf+ < F(¢),¢ >p .
Hence we have the following theorem.

Theorem 4.4 Let (M, g, F) be a compact Riemannian manifold with a
foliation F of codimension q and a bundle-like metric gy with k € QL(F).
Assume that the tension field T is a transverse Killing field. If F is quasi-

positive, then every basic harmonic r-forms is zero. i.e., Hp(F) = 0.

Remark. If F is minimal, Ag = A.

Let ¢ be a basic 1-form and ¢* its go-dual. Then we have

< F(9),6> =< Y 0a Ni(Ey)RY (Ey B, 6 >
a,b
= i(Ey)RY(Ey, Ea)d < 0o, 0 >
a,b
=Y < RY(Ey, E.)¢", By >< Ea, ¢" >
a,b

18



=Y < RY(¢",E,)E, ¢" >

V( ix *
=<p (¢"), 6" >,
where pV is the transversal Ricci curvature. From this equation, we have

the following corollary.

Corollary 4.5 Under the same assumptions as in Theorem 4.4. If the
transversal Ricci curvature is mon-negative, then every basic harmonic 1-
form s parallel. If the transversal Ricci curvature is quasi positive, then

every basic harmonic 1-form is zero, i.e., H5(F) = 0.
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