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< Abstract >

The Basic Harmonic forms on a Non Harmonic

Foliation

Han, Jung-Eun

Mathematics Education Major

Graduate school of Education, Cheju National University

Jeju, Korea

Supervised by Professor Jung, Seoung Dal

We study the basic harmonic forms on non-harmonic foliations and

prove that on an isoparametric Riemannian foliation with transverse Killing

tension field, (i) if the transversal Ricci curvature is quasi-positive, then

H1
B(F) = 0, (ii) if the transversal curvature operator F is quasi-positive,

then Hr
B(F) = 0 for 0 < r < q.



1 Introduction

Let F be a transversally oriented Riemannian foliation on a closed manifold

M . Reinhart([7]) introduced a basic differential form to provide a general-

ized notion of forms on the quotient space M/F , which is not on a manifold

generally.

In particular, the basic de-Rham cohomology H∗
B(F) of the complex of

basic differential forms is of great interest and has been studied extensively.

In contrast to the special case of Riemannian mainfolds, the operators d

and δ defined as usual on the local quotients, are not in general adjoint

operators.

The defect is related to the mean curvature of the leaves. In [2], Kamber

and Tondeur studied this basic cohomology H∗
B(F) under the additional

assumption that the curvature form k of the leaves of F is a basic 1-form.

In 1991, M.Min-Oo and E.A.Ruh and Ph. Tondeur ([6]) proved the

following. Let ρ∇ : Q → Q be the transveral Ricci operator on the normal

bundle and F : ∧2Q → ∧2Q then transveral curvature operator. Then if

ρ∇ > 0, the H1
B(F) = 0 and if F is positive definite, then H2

B(F) = {0} for

0 < r < q.

In this paper, we study the new operator ∆̃ = ∆B − Aτ , where Aτ =

θ(τ)−∇τ .

In particular, we give the Weitzenböck type formula for ∆̃ and using the
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Bochuer technique, we estimate Ker∆̃ under some curvature conditions.
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2 Riemannian foliation

Let M be a smooth manifold of dimension p+ q.

Definition 2.1 A codimension q foliation F onM is given by an open cover

U = (Ui)i∈I and for each i, a diffeomorphism ϕi : Rp+q → Ui such that, on

Ui ∩ Uj 6= ∅, the coordinate change ϕ−1
j ◦ ϕi : ϕ−1

i (Ui ∩ Uj) → ϕ−1
j (Ui ∩ Uj)

has the form

ϕ−1
j ◦ ϕi(x, y) = (ϕij(x, y), γij(y)). (2.1)

From Definition 2.1, the manifold M is decomposed into connected sub-

manifolds of dimension p. Each of these submanifolds is called a leaf of F .

Coordinate patches (Ui, ϕi) are said to be distinguished for the foliation F .

The tangent bundle L of a foliation is the subbundle of TM , consisting of all

vectors tangent to the leaves of F . The normal bundle Q of a codimension

q foliation F on M is the quotient bundle Q = TM/L. Equivalently, the

normal bundle Q appears in the exact sequence of vector bundles

0 → L→ TM
π→ Q→ 0. (2.2)

If (x1, . . . , xp; y1, . . . , yq) are local coordinates in a distinguished chart U ,

the bundle Q|U is framed by the vector fields π ∂
∂y1
, . . . , π ∂

∂yq
. For a vector

field Y ∈ ΓTM , we denote also Y = πY ∈ ΓQ.
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Definition 2.2 A vector field Y on U is projectable if Y =
∑

i ai
∂

∂xi
+∑

α bα
∂

∂yα
with ∂bα

∂xi
= 0 for all α = 1, . . . , q and i = 1, . . . , p.

This means that the functions bα = bα(y) are independent of x. Then

Y =
∑

α bα
∂̄

∂yα
, where bα is independent of x. This property is preserved

under the change of distinguished charts, hence makes intrinsic sense.

The transversal geometry of a foliation is the geometry infinitesimally

modeled by Q, while the tangential geometry is infinitesimally modeled by

L. A key fact is the existence of the Bott connection in Q defined by

◦
∇Xs = π([X,Ys]) for X ∈ ΓL, (2.3)

where Ys ∈ TM is any vector field projecting to s under π : TM → Q. It is

a partial connection along L. The right hand side in (2.3) is independent of

the choice of Ys. Namely, the difference of two such choices is a vector field

X ′ ∈ ΓL and [X,X ′] ∈ ΓL so that π[X,X ′] = 0.

Definition 2.3 A Riemannian metric gQ on the normal bundle Q of a

foliation F is holonomy invariant if

θ(X)gQ = 0 for all X ∈ ΓL, (2.4)

where θ(X) is the transverse Lie derivative.

Here we have by definition for s, t ∈ ΓQ,

(θ(X)gQ)(s, t) = XgQ(s, t)− gQ(θ(X)s, t)− gQ(s, θ(X)t).
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Definition 2.4 A Riemannian foliation is a foliation F with a holonomy

invariant transversal metric gQ. A metric gM is a bundle-like if the induced

metric gQ on Q is holonomy invariant.

The study of Riemannian foliations was initiated by Reinhart in 1959([7]).

A simple example of a Riemannian foliation is given by a nonsingular Killing

vector field X on (M, gM). This means that θ(X)gM = 0.

Definition 2.5 An adapted connection in Q is a connection restricting

along L to the partial Bott connection
◦
∇.

To show that such connections exist, we consider a Riemannian metric

gM on M . Then TM splits orthogonally as TM = L ⊕ L⊥. This means

that there is a bundle map σ : Q → L⊥ splitting the exact sequence (2.2),

which satisfy π ◦ σ = identity. This metric gM on TM is then a direct sum

gM = gL ⊕ gL⊥ .

With gQ = σ∗gL⊥ , the splitting map σ : (Q, gQ) → (L⊥, gL⊥) is a met-

ric isomorphism. Let ∇M be the Levi-Civita connection associated to the

Riemannian metric gM . Then the adapted connection ∇ in Q is defined by
∇Xs =

◦
∇Xs = π([X, Ys]) for X ∈ ΓL,

∇Xs = π(∇M
X Ys) for X ∈ ΓL⊥,

(2.5)
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where s ∈ ΓQ and Ys ∈ ΓL⊥ corresponding to s under the canonical isomor-

phism Q ∼= L⊥. For any connection ∇ on Q, there is a torsion T∇ defined

by

T∇(Y, Z) = ∇Y π(Z)−∇Zπ(Y )− π[Y, Z] (2.6)

for any Y, Z ∈ ΓTM . Then we have the following proposition ([9]).

Proposition 2.6 For any metric gM on M and the adapted connection ∇

on Q defined by (2.5), we have T∇ = 0.

Proof. For X ∈ ΓL, Y ∈ ΓTM , we have π(X) = 0 and

T∇(X, Y ) = ∇Xπ(Y )− π[X, Y ] = 0.

For Z,Z ′ ∈ ΓL⊥, we have

T∇(Z,Z ′) = π(∇M
Z Z

′)− π(∇M
Z′Z)− π[Z,Z ′] = π(T∇M (Z,Z ′)) = 0,

where T∇M is the (vanishing) torsion of ∇M . Finally the bilinearity and

skew symmetry of T∇ imply the desired result. �

The curvature R∇ of ∇ is defined by

R∇(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] for X, Y ∈ TM.

From an adapted connection ∇ in Q defined by (2.5), its curvature R∇

coincides with
◦
R for X, Y ∈ ΓL, hence R∇(X,Y ) = 0 for X, Y ∈ ΓL. And

we have the following proposition ([3,4,9]).
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Proposition 2.7 Let (M, gM ,F) be a (p+q)-dimensional Riemannian man-

ifold with a foliation F of codimension q and bundle-like metric gM with

respect to F . Let ∇ be a connection defined by (2.5) in Q with curvature

R∇. Then the following holds:

i(X)R∇ = θ(X)R∇ = 0 (2.7)

for X ∈ ΓL

Proof. (i) Let Y ∈ ΓTM and s ∈ ΓQ. Since θ(X)s = π[X, Ys] for s ∈

ΓQ, θ(X)s = ∇Xs. Hence

R∇(X, Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

= θ(X)∇Y s−∇Y θ(X)s−∇θ(X)Y s

= (θ(X)∇)Y s = 0.

(ii) Let Y, Z ∈ ΓTM and s ∈ ΓQ. Then

(θ(X)R∇)(Y, Z)s = θ(X)R∇(Y, Z)s−R∇(θ(X)Y, Z)s

−R∇(Y, θ(X)Z)s−R∇(Y, Z)θ(X)s

= θ(X){∇Y∇Zs−∇Z∇Y s−∇[Y,Z]s}

−{∇θ(X)Y∇Zs−∇Z∇θ(X)Y s−∇[θ(X)Y,Z]s}

−{∇Y∇θ(X)Zs−∇θ(X)Z∇Y s−∇[Y,θ(X)Z]s}

−{∇Y∇Zθ(X)s−∇Z∇Y θ(X)s−∇[Y,Z]θ(X)s}
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= ∇Y (θ(X)∇Zs)−∇Z(θ(X)∇Y s)−∇θ(X)[Y,Z]s

+∇Z∇θ(X)Y s+∇[θ(X)Y,Z]s−∇Y∇θ(X)Zs

+∇[Y,θ(X)Z]s−∇Y∇Zθ(X)s+∇Z∇Y θ(X)s

= −∇θ(X)[Y,Z]s+∇[θ(X)Y,Z]s+∇[Y,θ(X)Z]s

= (−∇[X,[Y,Z]] +∇[[X,Y ],Z] +∇[Y,[X,Z]])s = 0. 2

By Proposition 2.7, we can define the (transversal) Ricci curvature ρ∇ :

ΓQ→ ΓQ and the (transversal) scalar curvature σ∇ of F respectively by

ρ∇(s) =
∑

a

R∇(s, Ea)Ea, σ∇ =
∑

a

gQ(ρ∇(Ea), Ea), (2.8)

where {Ea}a=1,··· ,q is an orthonormal basis of Q.

The second fundamental form α of F is given by

α(X,Y ) = π(∇M
X Y ) for X, Y ∈ ΓL. (2.9)

Proposition 2.8 α is Q-valued, bilinear and symmetric.

Proof. By definition, it is trivial that α is Q-valued and bilinear. Next, by

torsion freeness of ∇M , we have that for any X, Y ∈ ΓL,

α(X,Y ) = π(∇M
X Y ) = π(∇M

Y X)− π([X,Y ]).

Since [X,Y ] ∈ ΓL for any X, Y ∈ ΓL, we have

α(X, Y ) = π(∇M
Y X) = α(Y,X). 2
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Definition 2.9 The mean curvature vector field of F is then defined by

τ =
∑

i

α(Ei, Ei) =
∑

i

π(∇M
Ei
Ei), (2.10)

where {Ei}i=1,··· ,p is an orthonormal basis of L. The dual form κ, the mean

curvature form for L, is then given by

κ(X) = gQ(τ,X) for X ∈ ΓQ. (2.11)

The foliation F is said to be minimal (or harmonic ) if κ = 0.

For the later use, we recall the divergence theorem on a foliated Rie-

mannian manifold ([9]).

Theorem 2.10 Let (M, gM ,F) be a closed, oriented, connected Rieman-

nian manifold with a transversally orientable foliation F and a bundle-like

metric gM with respect to F . Then∫
M

div∇(X) =

∫
M

gQ(X, τ) (2.12)

for all X ∈ ΓQ, where div∇(X) denotes the transverse divergence of X with

respect to the connection ∇ defined by (2.5).
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Proof. Let {Ei} and {Ea} be orthonormal basis of L and Q, respectively.

Then for any X ∈ ΓQ,

div(X) =
∑

i

gM(∇M
Ei
X,Ei) +

∑
a

gM(∇M
Ea
X,Ea)

=
∑

i

−gM(X, π(∇M
Ei
Ei)) +

∑
a

gM(π(∇M
Ea
X), Ea)

= −gQ(X, τ) +
∑

a

gQ(∇EaX,Ea)

= −gQ(X, τ) + div∇(X).

By Green’s Theorem on an ordinary manifold M , we have

0 =

∫
M

div(X)dM =

∫
M

div∇(X)dM −
∫

M

gQ(X, τ).

This completes the proof of this Theorem. �

Corollary 2.11 If F is minimal, then we have that for any X ∈ ΓQ,∫
M

div∇(X) = 0. (2.13)
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3 The Basic Cohomology

Definition 3.1 Let F be an arbitrary foliation on a manifold M . A differ-

ential form ω ∈ Ωr(M) is basic if

i(X)ω = 0 θ(X)ω = 0, for X ∈ ΓL. (3.1)

In a distinguished chart (x1, . . . , xp; y1, . . . , yq) of F , a basic form w is

expressed by

ω =
∑

a1<···<ar

ωa1···ardya1 ∧ · · · ∧ dyar ,

where the functions ωa1···ar are independent of x, i.e. ∂
∂xi
ωa1···ar = 0.

Let Ωr
B(F) be the set of all basic r-forms on M . The exterior differential

on the de Rham complex Ω∗(M) restricts by the cartan formula θ(X) =

di(X)+ i(X)d to a differential dB : Ωr
B(F) → Ωr+1

B (F). then the differential

dB defines then basic De Rham complex :

0
dB→ Ω0

B(F)
dB→ . . .

dB→ Ωr
B(F)

dB→ Ωr+1
B (F)

dB→ . . .
dB→ 0. (3.2)

Definition 3.2 The basic cohomology H∗
B(F) = HB(Ω∗

B(F), dB) is define

by HB(Ω∗
B(F), dB)= Ker(dB)/Im(dB).

The basic cohomology H∗
B(F) = HB(Ω∗

B(F), dB) plays the role of the

De Rham cohomology of the leaf space M/F of the foliation.
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We also need the star operator ∗̄ : Ωr
B(F) → Ωq−r

B (F) naturally associ-

ated to gQ. The relations between ∗̄ and ∗ are characterized by

∗̄φ = (−1)p(q−r) ∗ (φ ∧ χF),

∗φ = ∗̄φ ∧ χF

for φ ∈ Ωr
B(F), where χF is the characteristic form of F and ∗ is the Hodge

star operator. So we can define a Riemannian metric < , >B on Ωr
B(F) by

< φ, ψ >B= φ∧∗̄ψ∧χF for any φ, ψ ∈ Ωr
B(F) and the global inner product

is given by

� φ, ψ �B=

∫
M

< φ, ψ >B .

With respect to this scalar product, the adjoint δB : Ωr
B(F) → Ωr−1

B (F) of

dB is given by

δBφ = (−1)q(r+1)+1∗̄(dB − κ∧)∗̄φ.

Let {Ea}a=1,··· ,q be an orthonormal basis with (∇Ea)x = 0 for Q and {θa}

its gQ−dual. Then we have the following proposition

Proposition 3.3 ([1]) On the Riemannian foliation F , we have

dBφ =
∑

a

θa ∧∇Eaφ, δBφ = −
∑

a

i(Ea)∇Eaφ+ i(τ)φ.

Definition 3.4 The basic Laplacian acting on Ω∗
B(F) is defined by ∆B =

dBδB + δBdB.
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Trivially, the basic Laplacian ∆B involve the mean curvature k. Let

Hr
B = Ker∆B (3.3)

be the set of the basic harmonic forms of degree r. It is well known ([2])

that for κ ∈ Ω1
B(F),

Ωr
B(F) = ImdB ⊕ ImδB ⊕Hr

B

with finite dimensional Hr
B.

Theorem 3.5 Let F be a transversally oriented Riemannian foliation on a

closed oriented manifold (M, gM). Assume gM to be bundle-like metric with

κ ∈ Ω1
B(F). Then

Hr
B(F) ∼= Hr

B(F).
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4 The basic harmonic forms

Let (M, gM ,F) be a compact Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM with κ ∈ Ω1
B(F). For any

Y ∈ ΓTM , We define an operator AY : Ωr
B(F) → Ωr

B(F) by

AY φ = θ(Y )φ−∇Y φ (4.1)

for φ ∈ Ωr
B(F), where θ(Y ) is a Lie derivative. We also introduce the

operator ∇∗
tr∇tr : Ω∗

B(F) → Ω∗
B(F) as

∇∗
tr∇tr = −

∑
a

∇2
Ea,Ea

+∇Y , (4.2)

where ∇2
X,Y = ∇X∇Y −∇∇XY for any X, Y ∈ TM . Then we have

Proposition 4.1 The operator ∇∗
tr∇tr satisfies

� ∇∗
tr∇trφ1, φ2 �B=� ∇φ1,∇φ2 �B (4.3)

for all φ1, φ2 ∈ Ω∗
B(F) provided that one of φ1 and φ2 has compact support,

where < ∇φ1,∇φ2 >B=
∑

a < ∇Eaφ1,∇Eaφ2 >.

Proof. Fix x ∈ M . We choose an orthonormal frame {Ea} satisfying

(∇Ea)x = 0. For any φ1, φ2 ∈ Ω∗
B(F),

< ∇∗
tr∇trφ1, φ2 >B = < −

∑
a

∇2
(Ea,Ea)φ1 +∇τφ1, φ2 >B

= −
∑

a

< ∇Ea∇Eaφ1, φ2 >B + < ∇τφ1, φ2 >B
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= −
∑

a

{Ea < ∇Eaφ1, φ2 >B − < ∇Eaφ1,∇Eaφ2 >B}

+ < ∇τφ1, φ2 >B

= −div∇(v) +
∑

a

< ∇Eaφ1,∇Eaφ2 >B

+ < ∇τφ1, φ2 >B

= −div∇(v)+ < ∇φ1,∇φ2 >B + < ∇τφ1, φ2 >B

where v ∈ Γ(Q) is defined by the condition that gQ(v, w) =< ∇wφ1, φ2 >B

for all w ∈ Γ(Q). The last line is proved as follows: At x ∈M ,

div∇(v) =
∑

a

gQ(∇Eav, Ea) =
∑

a

Ea < ∇Eaφ1, φ2 >B .

By the divergence theorem in Theorem 2.9 on a foliated Riemannian man-

ifold, ∫
M

div∇(v) =� τ, v �B=� ∇τφ1, φ2 �B .

Hence we have

� ∇∗
tr∇trφ1, φ2 �B =

∫
M

div∇(v)+ � ∇φ1,∇φ2 �B + � ∇τφ1, φ2 �B

= − � ∇τφ1, φ2 �B + � ∇φ1,∇φ2 �B

+ � ∇τφ1, φ2 �B

= � ∇φ1,∇φ2 �B .

Therefore, the proof is completed. �
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Put ∆̃ = ∆B − Aτ . Then ∆̃ is a transversally elliptic but it is not

self-adjoint. We call ∆̃ as the generalized basic Laplacian. By the straight

calculation, we have the following theorem.

Theorem 4.2 On the Riemannian foliation F , we have

∆̃φ = ∇∗
tr∇trφ+ F (φ) (4.4)

for φ ∈ Ωr
B(F), where F (φ) =

∑
a,b θa ∧ i(Eb)R

∇(Eb, Ea)φ.

Proof. Let φ be a basic r-form. Let {Ea} be an orthonormal basis for Q

with ∇Ea = 0 and {θa} its gi dual basis. Then we have

dBδBφ =
∑

a

θa ∧∇Ea −
∑

b

{i(Eb)∇Eb
φ+ i(τ)φ}

= −
∑
a,b

θa ∧∇Ea{i(Eb)∇Eb
φ}+

∑
a

θa ∧∇Eai(τ)φ

= −
∑
a,b

θa ∧ i(Eb)∇Ea∇Eb
φ+ dBi(τ)φ

and

δBdBφ = −
∑
a,b

i(Eb)∇Eb
{θa ∧∇Eaφ}+ i(τ)dBφ

= −
∑
a,b

{i(Eb)θa}∇Eb
∇Eaφ+ i(τ)dBφ+

∑
a,b

θa ∧ i(Eb)∇Eb
∇Eaφ

= −∇Ea∇Eaφ+
∑
a,b

θa ∧ i(Eb)∇Eb
∇Eaφ+ i(τ)dBφ.
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Summing up the above two equations, we have

∆Bφ = dBδBφ+ δBdBφ

= dBi(τ)φ+ i(τ)dBφ−∇Ea∇Eaφ+
∑
a,b

θa ∧ i(Eb)R
∇(Eb, Ea)φ

= θ(τ)φ−∇Ea∇Eaφ+
∑
a,b

θa ∧ i(Eb)R
∇(Eb, Ea)φ.

= −∇Ea∇Eaφ+ F (φ) + A∇(τ)φ+∇τφ

= −∇2
(Ea,Ea)φ+∇τφ+ F (φ) + A∇(τ)φ

= ∇∗
tr∇trφ+ F (φ) + A∇(τ)φ

Hence we have

∆̃Bφ = ∆Bφ− Aτφ = ∇∗
tr∇trφ+ F (φ).

Therefore the proof is completed. �

From the Proposition 4.1 and Theorem 4.2, we have the following theo-

rem.

Theorem 4.3 Let (M, gM ,F) be a compact Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM with κ ∈ Ω1
B(F).

If F is non-negative, ∆̃-harmonic forms are parallel. If F is quasi-positive,

then Ker∆̃ = {0}.

On the other hand, it is known ([7]) that if π(Y ) is a transverse Killing field,

i.e., θ(Y )gQ = 0 if and only if

< AY φ, ψ >B + < φ,AY ψ >B= 0 for φ, ψ ∈ Ωr
B(F). (4.5)
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From this equation, if τ is a transverse Killing field, then for any φ ∈ Ωr
B(F)

< Aτφ, φ >B= 0. (4.6)

Hence we have

< ∆̃φ, φ >B=< ∆Bφ, φ >B for any φ ∈ Ωr
B(F).

By Theorem 2.3, if φ ∈ Ker∆B, then we have

0 = |∇trφ|2+ < F (φ), φ >B .

Hence we have the following theorem.

Theorem 4.4 Let (M, gM ,F) be a compact Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM with κ ∈ Ω1
B(F).

Assume that the tension field τ is a transverse Killing field. If F is quasi-

positive, then every basic harmonic r-forms is zero. i.e., Hr
B(F) = 0.

Remark. If F is minimal, ∆B = ∆̃.

Let φ be a basic 1-form and φ∗ its gQ-dual. Then we have

< F (φ), φ > =<
∑
a,b

θa ∧ i(Eb)R
∇(Eb, Ea)φ, φ >

=
∑
a,b

i(Eb)R
∇(Eb, Ea)φ < θa, φ >

=
∑
a,b

< R∇(Eb, Ea)φ
∗, Eb >< Ea, φ

∗ >
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=
∑

a

< R∇(φ∗, Ea)Ea, φ
∗ >

=< ρ∇(φ∗), φ∗ >,

where ρ∇ is the transversal Ricci curvature. From this equation, we have

the following corollary.

Corollary 4.5 Under the same assumptions as in Theorem 4.4. If the

transversal Ricci curvature is non-negative, then every basic harmonic 1-

form is parallel. If the transversal Ricci curvature is quasi positive, then

every basic harmonic 1-form is zero, i.e., H1
B(F) = 0.
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<국 문 초 록〉

엽층구조를 가지는 조화적이  아닌 구조에서의  

basic harmonic 형식

  본 연구는 엽층들이 조화적(또는 극소적)이 아닌 경우 basic 

harmonic 형식들의 성질을 조사하였다.

 더구나 basic cohomology군의 특성을 횡단적 Ricci곡률의 조건하

에 일반다양체의 특성과 얼마나 차이가 있는지 조사 연구하였다.

  실제로 횡단적 Ricci 곡률이 0보다 크거나 같으면 basic 

cohomology군    임을 보였다.
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