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< Abstract >

THE AREA OF REGULAR SURFACES UNDER INVERSION

Moon, Young-Bong

Mathematics Education Major
Graduate School of Education, Cheju National University

Cheju, Korea

Supervised by professor Hyen, Jin-Oh

A mapping f : E* —{(0,0,0)} — E® which sends a point p into a point
p' is called an inversion in an Euclidean space E3 with respect to a given
circle or sphere which center O and radius R, if OP - OP' = R? and if the
points P, P! are on the same side of O and O, P, P! are collinear.

This thesis shows that, a bounded region M of a regular surface S in
E? and a parametrization X (u,v) = (z(u,v),y(u,v), 2(u,v)) of § being giv-

en, the area of f(M) under inversion is equal to // 1|4 VEG — F?dudv,
Q

| X
where Q = X~ 1(M).
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Introduction

In this paper, our study of area will be restricted to the regular surface
in the Euclidean space E3.

In Section 1, we present the basic concepts of a regular surface in E3
and introduce the first fundamental form, a natural instrument to treat the
area of region on a regular surface. And we also show how to find the area
of a regular surface.

Next, in Section 2, we introduce the definition and some properties of
inversion in E3 and show that an inversion f : § — S of two regular surfaces
S,Sin E? is a local confofrnal mapping. That is, the first fundamental forms
of S, S are proportional.

Finally, in Section 3, we present the main theorem ; the area f(M) of

a bounded region M of a regular surface S under an inversion f:5—-Sis

equal to R* // ! VEG - F? dudv, where Q = X~!(M).
o)

X"




1. The area of a regular surface

We shall introduce the basic concept of regular surface in E3. Regular
surfaces are defined as sets rather than maps. A regular surface in E3 is a

subset of E3.

Definition 1.1. A subset S C E® is a regular surface if, for each
p € S there exits a neighborhood V of pin E3 andamap X : U -V NS
of an open set U C E? onto VNS C E? subject to the following three
conditions:

(1) X is differentiable.

(i1) X is a homeomorphism.

(iii) For each ¢q € U, the differential dX; : E? — E? is one-to-one.

If we write X(u,v) = (z(u,v),y(u,v), 2(u,v)),(u,v) € U, then the
functions z(u,v), y(u,v),z(u,v) have continuous partial derivatives of all
orders in U. Since X is continuous by condition (i), condition (ii) means that
X has an inverse X ™! : VNS — U which is continuous. Let us compute the
matrix of the linear map dX, in the canonical bases e; = (1,0),e2 = (0,1)
of E? with coordinates (u,v) and 7; = (1,0,0),i; = (0,1,0),73 = (0,0,1) of

~ 9



E3, with coordinates (z,y,z). Then, by the definition of differential,

Jdz Oy Oz ox
(11) d‘Xfl(el)_(a—usa_u’ a_u)— Su ‘—Xua
Oz Oy 0z oX
(1.2) dXo(e2) = (5.0 5050 = 5, = %o

Condition (iii) means that the Jacobian matrix J;(¢) of the mapping X at
each ¢ € U has rank 2. This implies that at each ¢ € U the vector product
%—‘Z-(- x %‘% # O (regularity condition), where (u,v) € U. Thus the regular
surface S is neither a point nor a curve.

The mapping X is called a parametrization or a system of local coordi-

nates in a neighborhood of p. The neighborhood VNS of p € S is called a

coordinate neighborhood.

Example 1.2. Let the sphere S? = {(z,y,2) € E®;22+y?+2? = a*}.

Consider the map X; : U = {(z,y) € E*z? + y* < a®} — 53 given by

Xi(z,y) = (2,4, /a? = (% + 7)) , where S% = {(,y,2) € 5%z > 0}.

Since z? +y? < a?, the function f3(z,y) = y/a? — (z2 + y?) has contin-
uous partial derivatives of all orders. Thus condition (i) holds. Since X is

one-to-one, and X; ! is the restriction of the projection : (z,y,2) — (z,y,0),

- 3-



X! is continuous and satifies condition ii). Condition 1i1) is easily verified,

10 U

since the Jacobian matrix g‘.’;)_ of the map X, at each ¢ € U has
0 1 —
Oy

rank 2. Thus the map X, is a parametrization of S2.

Similarly, we have the parametrizations

Xo(z,y) = (rr:,y,—\/a2 — (2 +y2)) :

Xi(z,2) = (z, Va? — (22 + 22), z) ,

Xy(z,2) = (x —Ja? — (2% 1 22),2) ,
Xs(y,2) = ( a® —(y? + 22),y,Z) ,
Xo(y,2) = (— a® —(y* + 2%),y, z) ,
which, together with X, cover S% completely, and show that $2 is a regular

surface.

Definition 1.3.  The tangent space of a regular surface S at p € S is

the set T,,(S) of all vectors tangent to S at p.

Definition 1.4.  The quadratic form I, on Tp(S), defined by I(w) =
< w,w >,= jw|® > 0, is called the first fundamental form of the regular

surface S C E® at p € S, where w € T,(S).



We shall now express the first fundamental form in the basis {X,, Xy}
associated to a parametrization X (u,v) at p. Since a tangent vector w €
T,(S) is the tangent vector to a parametrized curve a(t) = X(u(t),v(t)),

t € (—¢,¢€), with p = a(0) = X(uo,vg), we obtain
I,(a'(0)) =< &'(0),0'(0) >,
=< X u' + X,v', Xuu' + X o' >,
=< Xuy Xu >p (4')? 42 < Xy, Xo >p u'v'+ < Xy, Xy > (V)

= E@')? + 2Fu'v' + G(v')?,

where

(13) E(uo,vo) =< Xu7Xu >py
(14) F(uo, UO) =< Xu,Xv >ps
(1.5) G(uo,v0) =< Xu, Xy >p,

are the coefficients of the first fundamental form in the basis {X.,X,} of
T,(S). By letting p run in the coordinate neighborhood corresponding to
X(u,v) we obtain functions E(u,v), F(u,v), G(u,v) which are differentiable

in that neighborhood.



Definition 1.5. Let M C S be a bounded region of a regular surface
contained in the coordinate neigliborhood corresponding to the parametriza-

tion X : U Cc E? —» S. The positive number

(1.6) / | Xu x X, | dudv = A(M), Q=X"YM),
Q

is called the area of M.

The function | X, x X, |, defined in U, measures the area of the paral-

lelogram generated by the vectors X, and X,.

Proposition 1.6. In the coordinate neighborhood corresponding to

the parametrization X (u,v),

(1.7) A(M) = // VEG=F?dudv, Q= XT'(M).
Q
Proof. Let 8 be the angle between X, and X,. Then
| Xu X X, |? = | Xu|* X, sin? 6
= X} X,[*(1 — cos? 8)

2
= XX, (1 LIt s )

2 2
| X w1 X5 |
= | Xu 21X [P < Xu, X, >?

= EG — F2.
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Corollary 1.7. The parametrization X (u,v) has the regularity con-

dition if and only if EG — F? is never zero, that is, EG — F? > 0.

Example 1.8. Let S be a sphere with radius r and center O and let

U = {(u,v)EE2;0<u<27r,—%<v<g}. If X :U — E3? is given by

X(u,v) = (rcosvcosu,rcosvsinu,rsinv), then
E=1r%cos?v,F =0,G =r?.

Now, consider the region S, obtained as the image by X of the region Q.

m

given by Q,={(u,v);0+eSuSQW—E,—%—ESvS 5

+e},e>0.

Using (1.4), we obtain

2T—-¢ Z—¢
A(Sc)=/ /2+ VEG — F*dvdu
~Z+e

0+«

2r—e %—z
2
= / / r* cos vdv du
O+e¢ —-5+e

= 4r?(m — €) cose.

Letting € — 0,

A(S) = 4nrt.



2. The conformal map of two regular surfaces

under inversion

Let the symbol (O)g denote the circle (sphere) with center O and radius

Definition 2.1. Two points P and P' of E?(E?) are said to be inverse

with respect to a given (O)Rr, if
(2.1) OP-OP' = R?
and if P, P' are on the same side of O and the points O, P, P' are collinear.

A (O)g is called the circle(sphere) of inversion, and the transformation
which sends a point P into P’ is called an inversion.

The center O of the circle(sphere) of inversion has no inverse point.

The center O put the origin in the coordinate system. Denote the dis-

tance to the origin O of a point X € E® by | X |.

Proposition 2.2. An inversion in a space E3 is a mapping f : E* —
{(0,0,0)} — E? such that

R*X R*X

(2:2) X =xxs° X

_ 8-



Proof.  For some positive real number k, f(X) =kX,
because the points O, P, P' are collinear.

Since f(X) is the inverse of X, by means of (2.1),

| X |l f(X) |= B2,

k| X |>= R%.
Since | X |# 0 k= &
nce , = .
| X |

Hence (2.2) holds.

2
The inversion f(X) = |RX}|(2 is the vector of length R?| X |~ on the

ray of X, and is not defined for X = O nor is Y = O the image point of any

X € E3.

Proposition 2.3.
(1) A line through O inverts into a line through O.
(2) A line not through O inverts into a circle through O.
(3) A circle through O inverts into a line not through O.

(4) A circle not through O inverts into a circle not through O.



When the words line and circle are interchanged with the words plane

and sphere, respectively, Proposition 2.3 is stated in the next Theorem 2.4.

Theorem 2.4.
(1) A plane through O inverts into a plane through O.
(2) A plane not through O inverse into a sphere through O.
(3) A sphere through O inverts into a plane not through O.
(4) A sphere not through O inverts into a sphere not through O.
Proof. Let B be any vector in E® and consider the equation
(2.3) al X |*+ < B,X > +c = 0, where a, c are real numbers.
Then the equation (2.3) represents a sphere for a # 0,c¢ # 0, and a plane for
a=0,B#0.

2
For | X |# 0, multiplying both sides of (2.3) by i

| X2’
R*<B,X> R

2.4.a Ra + + =0
(24.) xF Tixr

2
Let Y = II;)I(?' Then

(2.4.0) %| Y |*+ <B,Y >+ R*a=0.

Thus (2.3) under inversion is transformed into (2.4.0).

- 10 -



(1) When a = 0,B # O,c = 0, (2.3) and (2.4.0) represent a plane
through O.

(2) When a = 0,B # O,c¢ # 0, (2.3) represents a plane not through O
and (2.4.)) represents a sphere through O.

(3) When a #0,B # O,c = 0, (2.3) represents a sphere through O and
(2.4.) represents a plane not through O.

(4) When a # 0,B # O,c # 0, (2.3) and (2.4.b) represent a sphere not

through O.

Definition 2.5. A conformal mapping f : S — S of two regular sur-
faces S, S in E? is a bijective differentiable mapping that preserves the angle
between any two intersecting curves on the regular surface S.

A mapping f : V — § of a neighborhood V of a point p on a regular
surface S into S is a local conformal mapping at p if there exists a neigh-
borhood V of f(p) € S such that f : V — V is a conformal mapping. If
there exists a local conformal mapping at each p € S, the regular surface S

is locally conformal to the regular surface S.

- 11 -



Theorem 2.6. A mapping f : S — S of two regular surfaces 5,5 is a
local conformal mapping at p € S if the first fundamental forms of S, S at
p, f(p), respectively, are proportional, that is, E = A2E, F = \*F, G = A\2G,
A(u,v) > 0.

Proof. Let X(u,v) be a parametrization of the regular surface S, and
f(X(u,v)) = X(u,v) be that of S. Let C;,C; be two curves on the reg-
ular surface S intersecting at a point p = X(u,v) given by the coordinate

functions, respectively,

(2.5) u = u(s1),v = vi(s1);u = uz(s2),v = v2(s2),

where s1, s, are the arc length of Cy, Cs.

Then the unit tangent vectors of Cy, C; at p are, respectively,

dul dv1
9 = _— _—
(..6) tl Xu dsl +Xv dé‘]’
du2 dvg
9 =X,— -
(2.7) = Xugm + Xo

From (2.5) the angle 8 between ¢;,%; is therefore given by

cosf = <¥,6 >
(2.8)

= [Eduldug + F(duldvg + dUQd’l)l) + deldvgl,
dslds-;_

- 12 -



provided that the sign of sin@ is properly chosen.Thus we have

sin?8 =1 — cos® 8

=1- (132(1 p ————[Eduydu, + F(duydv; + duzdvy) + Gdvydvy)?

= -(-des%-(EG - Fz)(du]dvz - dUdel )2,

where

ds? = Edu? + 2Fdu,dv, + Gdv3,
ds? = Edu} + 2Fduzdv; + Gd3.

Let 6 be the angle between the curves corresponding to C;,C, under f at

the corresponding point f(p) on the surface S. Then by replacing E, F, G,

respectively, by E, F, G, the coefficients of the first fundamental form on S,

using

. EG - F?
(2.9) smﬂ—W(du,dvg_ dug duvy),

and putting E = A2E, F = \?F,G = \2G, where A\? is an arbitrary nonzero

function of u, v, and the positive square root is to be taken for A, we have
cosf = e 2d 7 ———[Eduydu, + F(duydvz + duadvy) + Gdvydv,)
1

= \2ds;ds, /\2[Edu1du2 + F(duldvz + duzdvl) + deldv2]

= cos#,

- 13 -



sin = ———V EG — F?(du,dvy — duydvy)
d31d52
= —-—1—-/\2 V EG - Fz(duldvg - dugdvl)
/\2d81d32
= siné,

where

d.§? = Edu? + 2Fdu,dv, + édU?,

ds? = Edu} + 2Fduadv; + Gdv}

Thus 8 = 6, and f is a local conformal mapping.

Theorem 2.7. An inversion f : S — S is a local conformal mapping
of two regular surfaces, that is, S is locally conformal to S.

Proof. Let E,F,G and E, F,G be, respectively, the coefficients of the
first fundamental form of a regular surface S and its image regular surface
S = f(S).

By using of (2.2),

af(X) -—R""X“ <X, X>-X(< Xy, X>+< X, X, >)
Ju < X, X >?
_ RQX" <X, X>-2X< X, X >
<X, X >? '

- 14 -



af(X) __RQX,, <X, X>-2X<X,,X>

Jv <X, X >?
(2.10) E =< 8fa(f),afa(f) >= P}§—4I4 )
_ Rt
(2.11) F= WF,
_ R
(2.12) G= Xr

The first fundamental forms of S, S are proportional. Thus the regular sur-

face S is locally conformal to the regular surface S.

Remark. In the Theorem 2.7, if EG — F? > 0, then EG — F? > 0.

In an inversion f : § — S, two surfaces S, S are regular.

- 15—



3. The area under inversion

Theorem 3.1. Let M C S be the bounded region of a regular surface
S in E* — {(0,0,0)} and let X : U — S be a map given by X(u,v) =
(z(u,v),y(u,v), z(u,v)). If the mapping f : $ — S is an inversion,then the

area of f(M) is equal to

(3.1) R“// ! VEG — F2dudv,
Q

X!
where Q = X"V (M) = {(u,v); u1 L u<Luz, vy <v <l
Proof. Let Edu®+2Fdu dv+ Gdv? be the first fundamental form of an

image surface S = f(.S). Then, by using of (2.10), (2.11), (2.12), the area of

f(M) is given by

4
/ \/EG—F2dudv:/ |§I4\/EG—-F2dudv
Q Q

- R“//l;‘4 VEG — F? dudv.
Q

Example 3.2. Let S = {(z,y,2) € E3 2 =0,(z,y) € V : open set }
be the zy plane and let X : U — S be a parametrization of S given by

X(u,v) = (2ucos? v,2ucosvsinwv,0),

- 16 -



where U = {(u,v) € E%0< u,——% <v< g} . Then
E =4cos?v, F=—4ucosvsinv, G =4u?, |X|'=16u?cosv.

1
If Q= {(u,v);; <u<20<0< %} then

4

A(f(M))=R“/0?/;2 ! VEG — F2? dudv

X[
T 42
4 [° 1
= —————dud
R/(; _é dwdcostv
=—5\/§R“
32
R2 R2

On the other hand, if C] : £i(t) = ypo—
cos

Py Cy : B2(t) = cost’ as shown in

< Fig. 3.1 >, then

8201
A(F(M)) = / / rdr dt
Y B1(t)

1

~ 5 [ 1830~ g e

FTIRALGUIVERSTT)
= - — t dt
2/0 16R sec

_ IR
= g

5vV3 _,
3_2R.

x
6

0

Example 3.3. Let S = {(z,y,2);2z? + y* + (z — 2)? = 1} and let

X : U — S be a parametrization of a regular surface S given by

X (u,v) = (cos u cosv,sinu cosv,sinv + 2),

- 17 -



where U = {(u,v)|0 <u< 2#,—1 <v< 1} . Then
2 2
E=cos’v, F=0, G=1, |X|'=(5+4sinv)2.
Consider the region f(M). obtained as the image by f(X) of the region
Q. given by Q. = {(u v) € E%0+e<u <27r—e,—-2— +e<v< g 6}

as shown in < Fig. 3.2 > .

The area of f(M), is

Je i
Im—e 8 cos? v
M),
AU /% \/ (5+4smv
2m—e I+
1 2t cos v
= 1
R/ / e 5+4smv) (5 dsino) v

= T{(o—4cos=‘) — (5 +4cose) Y (2r — 2¢).

Letting € — 0,

A((M)) = (27r =2

TR

Q| >

On the other hand, in virtue of (2.3) and (2.4.0),iff e=1, B =(0,0,-4),

c = 3, then S = {(2,y,2); 22 + y? + (2 — 2)? = 1} is transformed into

5‘:{(w,z,~) 4y +(’—g§i>=§§4—}.

Thus
4 4
A(f(M)) = §7rR .
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8

/' < Fig. 3.1 >

€ < Fig. 3.2>
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