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(Abstract)

TERM RANK-SUM PRESERVERS
OF FUZZY MATRICES

In this thesis, we construct the sets of fuzzy matrix pairs. These sets are naturally occurred
at the extreme cases for the (zero) term rank inequalities relative to the sum of fuzzy matrices.
These sets were constructed with the fuzzy matrix pairs which are related with the term ranks
of the sums and the zero term ranks of the sums of two fuzzy matrices.

That is, we construct the following 5 sets;
Ti(F) = {(X,Y) € My n(F*H(X +Y) = ¢(X) + t(Y)};

T(F) = {(X,Y) € Mmna(FPH(X +Y) =1}
T(F) = {(X,Y) € My (FY?IHX +Y) = max{t(X), ¢(Y)} };
21(F) ={(X,Y) € Mmn(F)*|2(X +Y) = min{z(X), 2(Y)}};
Z5(F) ={(X,Y) € Mpmn(F)?2(X +Y) =0};

For these 5 sets of fuzzy matrix pairs, we consider the linear operators that preserve them.
We characterize those linear operatorddX’ ) = PXQ or T'(X) = PX'(Q with appropriate
invertible fuzzy matriced” and@. We also prove that these linear operators preserve above 5

sets.



1 Introduction and Preliminaries

The linear algebra over semiring is a subject of intensive research because of its purely
algebraic interest and its numerous applications to matrix algebra and combinatorial theory.
During the last century, problems on the characterization of the linear operators that leave
certain matrix subsets invariants were actively studied. For survey of these types of problems,
we refer to the article of Song([11]) and the papers in [10]. The specified frame of problems
is of interest both for matrices with entries from a field and for matrices with entries from
an arbitrary semiring such as Boolean algebra, nonnegative integers, and fuzzy sets. It is
necessary to note that there are several rank functions over a semiring that are analogues of
the classical function of the matrix rank over a field. Detailed research and self-contained
information about rank functions over semirings can be found in [1, 11].

There are some results on the inequalities for the rank function of matrices([1, 2, 3, 4]).
Beasley and Guterman ([1]) investigated the rank inequalities of matrices over semirings. And
they characterized the equality cases for some rank inequalities in [2]. The investigation of
linear preserver problems of extreme cases of the rank inequalities of matrices over fields
was obtained in [4]. The structure of matrix varieties which arise as extremal cases in the
inequalities is far from being understood over fields, as well as semirings. A usual way to
generate elements of such a variety is to find a matrix pairs which belongs to it and to act on
this set by various linear operators that preserve this variety. Song and his colleagues ([3])
characterized the linear operators that preserve the extreme cases of column rank inequalities
over semirings.

There are some results on the linear operators that preserve term rank([7, 8]) and zero-term
rank([5]). But in these papers, the authors studied the term rank and zero-term rank function
themselves.

In this thesis, we characterize linear operators that preserve the sets of matrix pairs which
satisfy extreme cases for the term rank inequalities and zero-term rank inequalities for the sum

of matrices over fuzzy semirings.



Definition 1.1. A semiringS consists of a sef and two binary operations, addition and

multiplication, such that:
e Sis an Abelian monoid under addition (identity denoted by 0);
e Sis a semigroup under multiplication (identity, if any, denoted by 1);
e multiplication is distributive over addition on both sides;
e s0=0s=0forallseS.

Definition 1.2. A semiring is calledantinegativef the zero element is the only element with

an additive inverse.

Definition 1.3. A semiring is callecchainif the setS is totally ordered with universal lower

and upper bounds and the operations are definedibly = max{a, b} anda - b = min{a, b}.

It is straightforward to see that any chain semiring is commutative and antinegative.
Throughout we assume that < n. The matrixI,, is then x n identity matrix, J,, », is
them x n matrix of all onesO,, ,, is them x n zero matrix. We omit the subscripts when

the order is obvious from the context and we write/, andO, respectively. The matri¥; ;,
called acell, denotes the matrix with exactly one nonzero entry, that being a one ia,the
entry. LetR; denote the matrix whosé&" row is all ones and is zero elsewhere, @iddenote
the matrix whosg'" column is all ones and is zero elsewhere. We gtdenote the number

of nonzero entries in the matrif.

Definition 1.4. Let R be the field of reals, leF={a € R | 0 < o < 1} denote a subset of
reals. Definet+ b = max{a, b} anda-b = min{a, b} for all a,b in F. Then(F, +, -) is called
afuzzysemiring. LetM,, ,(F) denote the set of ath x n matrices with entries in fuzzy

semiringZ. We call a matrix inM,,, ,,(F) as afuzzymatrix.
Definition 1.5. A line of a matrix A is a row or a column of the matriA.

Definition 1.6. A matrix A € M, ,(F) hasterm rankk (¢(A) = k) if the least number of

lines needed to include all nonzero elementsl a$ equal tak. Let us denote by(A) the least
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number of columns needed to include all nonzero elementsasfd byr(A) the least number

of rows needed to include all nonzero elements!of

Definition 1.7. A matrix A € M,, ,,(F) haszero-term ranki (z(A) = k) if the least number

of lines needed to include all zero elementsdaf equal tok.

Example 1.8. Let

1 2 3 1 00
A=12 04|, B=]2 3 0
1 3 2 0 0 0

Thent(A) = 3, z2(A) = 1,t(B) = 2andz(B) = 3.

Definition 1.9. A matrix A € M,,,(F) hasfactor rankk (rank(A) = k) if there exist
matricesB € M,, ,(F) andC € My, ,,(F) such thatd = BC andk is the smallest positive
integer such that such a factorization exists. By definition the only matrix with factor rank

equal to 0 is the zero matrig).

If S is a subsemiring of a certain field then there is a usual rank funetidn for any
matrix A € M,, »,(S). Itis easy to see that these functions are not equal in general but the

inequalityrank(A) > p(A) always holds.

Example 1.10. ConsiderZ,, the set of nonnegative integers. The semitfgis embedded
in the real fieldR. Then the matrix
01 2
S DR
3 3 3

has different values as, wherenk(A)=3 andp(A)=2.

Definition 1.11. Let F be a fuzzy semiring. An operatdf : M, ,(F) — My, (F) is
calledlinearif 7'(X +Y) =T(X)+T(Y) andT(aX) = oT'(X) forall X, Y € M,, ,,(F),
ac F.

Definition 1.12. We say an operatof,, preserves setP if X € P implies thatT'(X) € P,
or, if (X,Y) € Pimpliesthat(T'(X),T(Y)) € P whenP is a set of ordered pairs.
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Definition 1.13. An operator” strongly preservethe setP if X € PifandonlyifT'(X) € P,
or, if (X,Y) e Pifandonlyif (T'(X),T(Y)) € P whenP is a set of ordered pairs.

Definition 1.14. The matrixX o Y denotes th&Hadamardor Schur producti.e., the(i, j)

entry of XoYis T jYij-

Definition 1.15. An operator? is called a(P, (), B)-operatorif there exist permutation ma-
trices P and @, and a matrixB with no zero entries, such th@(X) = P(X o B)Q for all
X € Mpn(F),orifm=mn,T(X)=P(XoB)Qforal X € My, ,(F). A(P,Q,B)-

operator is called &P, ())-operatorif B = J, the matrix of all ones.

Itwas shownin [2, 4, 9] that linear preserves for extremal cases of classical matrix inequal-
ities over fields are types 6P, ())-operators wher# and( are arbitrary invertible matrices.
On the other side, linear preservers for various rank functions over semirings have been the
object of much study during the last years, see for example [6, 7, 8, 10], in particular term rank

and zero term rank were investigated in the last few years, see for example [5].

Definition 1.16. We say that the matrixl dominateshe matrix B if and only if b; ; # 0

implies thata; ; # 0, and we writeA > B or B < A.

Definition 1.17. If A andB are matrices and > B we let A\ B denote the matriX where
@===if bedl=" ()

CZ7] -
a;; otherwise

The behaviour of the functiopwith respect to matrix multiplication and addition is given
by the following inequalities:

Therank-sum inequalities
| p(A) = p(B) |< p(A+ B) < p(A) + p(B),
Sylvester’s laws
p(A) + p(B) — n < p(AB) < min{p(A), p(B)},
and theFrobenius inequality

p(AB) + p(BC) < p(ABC) + p(B),
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whereA, B, C are conformal matrices with coefficients from a field.

In[2, 3, 4, 9] they considered these sefs: — Q5.

1. Q1 =A{(4, B)lp(A+ B) = p(4) + p(B)};

2. Q2 ={(A,B)|p(A+ B) = [p(A) — p(B)|};

3. Q3 ={(4, B)|p(AB) = min{p(A), p(B)}};

4. Q1 ={(4, B)|p(AB) = p(A) + p(B) — n};

5. Q5 ={(4,B,C)|p(AB) + p(BC) = p(ABC) + p(B)};

They also characterized the linear operators that preserves these sets. For examples, bijec-

tive linear operator T preservé; if and only if 7(X) = aPXP~ ' orT(X) = aPX'P~L.



2 Term Rank Inequality Over Fuzzy Semiring

We obtain various inequalities for term rank of matrix addtion over fuzzy semirings. We
also show that these inequalities are exact and best possible.

We denote byd € B the block-diagonal matrix of the form

A O
O B

Note that in this sense the operati@his not commutative.

Proposition 2.1. Let F be an arbitrary fuzzy semiring. For any matricds B € M, ,(F)
we have:

t(A+ B) < min{t(A4) + t(B), m,n}.
This bound is exact and the best possible.

Proof. This inequality follows directly from the definition of term rank. The substitutign=
I, O,—r,Bs = O, I for each pairr, s),0 < r,s < n shows that this bound is exact
and the best possible in the case= n. It is routine to generalize this example to the case

m # n. O

Example 2.2. A nontrivial additive lower bound for the term rank of a sum does not hold over
an arbitrary semiring. It is enough to take= B = J,, ,, over a field whose characteristics
is equal to 2. Then(A + B) = ¢(0) = 0. Sincet(A) = ¢(B) = min{m,n}, we have
t(A+ B) < max(t(A),t(B)).

However for antinegative semiring there is a lower bound for the term rank of a sum which

is better than the one for fields or arbitrary semirings. Namely, the following is true.

Proposition 2.3. Let F be a fuzzy semiring. For any matricds B € M,,, ,,(F) the following
inequality holds:
t(A+ B) > max{t(A),t(B)}.

This bound is exact and the best possible.



Proof. This inequality follows from the antinegativity of, i.e.,a + b # 0 for anya, b € F,
a # 0, and the definition of the term rank. To prove that this bound is exact and the best
possible we consider the matricds = I, @ O,,—,, Bs = O,,—s @ I, for each pair(r, s),
0 < r, s < n shows that this bound is exact and the best possible in thencasen. It is

routine to generalize this examle to the case‘ n. O

Example 2.4. A nontrivial multiplicative lower bound does not hold over an arbitrary fuzzy
semiring. It is enough to také = B = J,, over a field whose characteristic is a divisomof

Thent(AB) = t(nJ,) = 0.
Over a fuzzy semiring the Sylvester lower bound holds:

Proposition 2.5. Let F be a fuzzy semiring. Then for adye M., ,,(F), B € M,, ;(F) the
following inequality holds:

0 if t(A) + t(B) < n,
#H(AB) >

t(A)+t(B) —n ift(A)+t(B) > n.
This bound is exact and best possible.

Proof. Let A € M, ,(F), B € M,, 1,(F) be arbitray matriceg(A) = ¢4, t(B) = tp. Then
A and B have generalized diagonals with andtz nonzero elements, respectively. Denote
them byD 4 andD g, respectively. Thed B > D 4 Dpg since F is antinegative. Since the prod-
uct of two generalized diagonal matrices, which hawandtz nonzero entries, respectively,
has at leasts + ¢t — n nonzero entries, the inequality follows.

In order to show that this bound is exact and the best possible for eacfrpgir0 < r,
s < nletustaked, = I, P O,_,, Bs = O,,_s P I, in the casen = n. It is routine to

generalize this example for the case# n. O

Example 2.6. Let A, B € M, ,(F). The inequalityt(AB) < min(t(A),¢(B)) does not
hold. Itis enough to takdl = C7, B = R;. Then

HAB) = t(J,) =n > 1.



However the following inequality is true.

Proposition 2.7. Let F be a fuzzy semiring. Then for ardye M., ,,(F), B € M,, (F) the

inequalityt(AB) < min(t,(A), t.(B)) holds. This is exact and the best possible bound.

Proof. This inequality is a direct consequence of the definition of the term rank and antineg-
ativity. The exactness follows from Example 2.6. In order to prove that this bound is the
best possible, for each pdir,s), 0 < r < m, 0 < s < k, consider the family of matrices

Ar:El,l‘i‘u-‘i‘Er,l andBS:E1,1+...+ELS. O

Example 2.8. For an arbitrary fuzzy semiring, the trip(€', R1,0) is a counterexample to
the term rank version of the Frobenius inequality, sit{¢& R1) + ¢t(R10) = n > t(C1R10) +

t(R1) = 1. However if F is a subsemiring oR ™ the following obvious version is true :

p(AB) + p(BC) < t(ABC) + t(B)



3 Zero-Term Rank Inequality Over Fuzzy Semiring

We obtain inequalities for the zero-term rank addition over fuzzy semirings. We also show

that these inequalities are exact and best possible.

Proposition 3.1. Let F be a fuzzy semiring. Fod, B € M,, ,(F) one has that
0 < z(A+ B) <min{z(A), 2(B)}.

These bounds are exact and the best possible.

Proof. The lower bound follows from the definition of the zero-term rank function.

In order to check that this exact and the best possible for eachmpai;, 0 < r, s <
min{m, n} let us consider the family of matrices. = J\(X!_, E; i), Bs = J\(Z{_1 Eii+1)
if s < min{m,n} andB; = J\(X:_{ E; i1 + Fs1) if s = min{m,n}. Thenz(4,) = r,
z(Bs) = s by definition andz(A, + Bs) = 0 by antinegativity.

The upper bound follows directly from the definition of zero-term rank and from the an-
tinegativity of 7. For the proof of its exactness let us take= J and B = O. In order to
check that this bound is the best possible we consider the following family of matrices: for
each paif(r, s), 0 < r, s < min{m,n} let us consider the matrice$. = J\(3]_, E;;) and

Bs = J\(E_,Ei;). O
Proposition 3.2. Let F be a fuzzy semiring. Fod € M,,, ,(F), B € M,, ), one has that

0 < 2(AB) < min{z(A) + z(B), k,m}.
These bounds are exact and the best possible tor2.

Proof. The lower bound follows from the definition of the zero-term rank function. In order
to show that this bound is exact and the best possible let us consider the family of matrices:
for each pair(r, s), 0 < r < min{m,n}, 0 < s < min{k,n}, we takeA, = J\(XI_, E;,),

By = J\(X5_Fi;11) if s <min{k,n} andB; = J\(2_{ Ei 41 + Es1) if s = min{k, n}.
Thenz(A,) = r, z(Bs) = s by definition and ifn > 2 then A, B, does not have zero elements

by antinegativity. Thus (A, B;) = 0.



The upper bound follows directly from the definition of zero-term rank and from the an-
tinegativity of F.

In order to show that this bound is exact and the best possible let us consider the family
of matrices: for each paifr,s), 0 < r < min{m,n}, 0 < s < min{k,n}, we taked, =

J\(Z7_, R;) and B, = J\(35_,C). 0

Example 3.3. The triple(C1, I, R;) is a counterexample to the zero-term rank version of the

Frobenius inequality, since
2(C1)+2(R1) =2n—2> 2(C1Ry) + 2(I) =n

for n > 2.
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4 Basic results for linear operator over fuzzy semiring

In this section, we obtain some basic results for our main theorems in the section 5 and 6.

For a surjective linear operator, we have the followings.

Theorem 4.1.LetF be afuzzy semiring aril : M,,, ,,(F) — M, ,(F) be alinear operator.

Then the following are equivalent:
1. T is bijective.
2. T is surjective.

3. There exists a permutationon {(i,5) | i = 1,2,--- ,m;j = 1,2,--- ,n} such that

T(E; ;) = B (5
Proof. That 1) implies 2) and 3) implies 1) is straightforward. We now show that 2) implies
3).

We assume thdf’ is surjective. Then, for any pait, j), there exists somé& such that
T(X) = E; ;. ClearlyX # O by the linearity ofT". Thus there is a pair of indexés, s) such
that X = z, ,E, s + X' where(r, s) entry of X’ is zero and the following two conditions are
satisfiedz, s # 0 andT'(E, s) # O. Indeed, if in the contrary for all pai(s, s) eitherz, ; = 0
orT(E,,) = O thenT(X) = 0 which contradicts with the assumptidi(X) = E; ; # 0.
Hence

T(mr,sEr,s) < T(-Tr,sEr,s) + T(X \ (-rr,sE'r,s)) = T(X> = Ei,j

That is,z, ;T (Ers) = T(zysErs) < E;j. ThusT (z,E,s) = oF; ; for a certaina € F.
That is there is some permutaieron{(¢,j) | i =1,2,--- ,m;j = 1,2,--- ,n} such that for
some scalar; j, T'(E; j) = b; jE,(; ;- we now only need show that the; are all units. Since
T'is surjective and’(E, s) £ E, ;) for (r,s) # (i, j),there is some such thatl'(a E; ;) =
E,i ;- Butthen, sincd is linear,T(aE; ;) = oT(E;j) = ab; jE,; ;) = Eyqj)- Thatis,

ab; ; =1, 0rb; ; is a unit. But 1 is the only unit over fuzzy semiring. O

11



Lemma 4.2. Let F be a fuzzy semirind’ : M, »(F) — M, »(F) be an operator which
maps lines to lines and is defined BYE; ;) = E,; ;), whereo is a permutation on the set

{(i,j)|i=1,2,--- ,m;j =1,2,--- ,n}. ThenT is a (P, Q)-operator.

Proof. Since no combination af rows andv columns can dominatéwhereu+v = m unless

v = 0 (or if m = n, if u = 0) we have that either the image of each row is a row and the image
of each column is a column, @t = n and the image of each row is a column and the image of
each column is arow. Thus, there are permutation matffcasd( such thafl’'(R;) < PR;Q
andT’(C;) < PC;Qor, if m =n,T(R;) < P(R;)'Q andT'(C;) < P(C;)'Q. Since each cell
lies in the intersection of a row and a column a@ndhaps nonzero cells to nonzero (weighted)

cells, it follows thatT(Em-) = PEZ'JQ, or, ifm=n, T(EZJ) = PEJJQ = P(Ei7j)tQ ]

12



5 The Term Rank Preservers Over Fuzzy Semiring

In this section, we obtain characterizations of the linear operators that preserve the set of
matrix pairs which arise as the extremal cases in the inequalities of term rank of matrix sums.
Below, we use the following notations in order to denote sets of matrices that arise as

extremal cases in the inequalities of term rank of matrix sums listed in section 2.
T(F) = {(X,Y) € Mun(F*[H(X +Y) = 1(X) +H(Y)};

T(F) = {(X,Y) € Mpn(FPH(X +Y) =1}

To(F) = {(X,Y) € Mo (FPHX + V) = max{t(X), (Y)} };

5.1 Linear Preservers of7; (F)

Consider the set of matrix pairs:
TI(F) = {(X,Y) € Mmn(F)? | X +Y) = t(X) +t(Y)}.
We characterize the linear operators that preserve thg G€1.

Theorem 5.1. Let F be a fuzzy semiring, : M, ,,(F) — M., ,(F) be a surjective linear
map. Ther{’ preserves the s&t (F) if and only if 7" is a (P, ())-operator, whereP and() are

permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have th@{(F; ;) = E,(; j foralli,j,1 <i<m,1<j<n,o
is a permutation on the set of paitis ).

Let us show thaf” maps lines to lines. Suppose that the images of two cells are in the
same line, but the cells are not, sBy;, E; are the cells such thatE; ; + Ej;) = 2 and
t(T(Ei; + Eyy)) = 1. Then(E; 5, Ey) € Ty but (T'(E; ), T(Ey,)) ¢ 71, a contradiction.
ThusT maps lines to lines. Thus by Lemma 4R2js a (P, Q)-operator wheré® and(@ are

permutation matrices of appropriate sizes.

13



Conversely(X,Y) € Ty thent(T(X) + T(Y)) = t(T(X +Y)) = t(P(X +Y)Q) =
HX+Y) =t(X)+t(Y) = t¢(PXQ)+t(PYQ) = t(T(X))+t(T(Y)). Thus(T(X), T(Y)) €
71 and T preserves; O

Theorem 5.2. Let F be a fuzzy semirindl’ : M, »(F) — M, »(F) strongly preserves the
set7,(F) if and only if " is a (P, Q)-operator, whereP and () are permutation matrices of

appropriate sizes.

Proof. Suppose thdl’ strongly preserve®;. There is some power af which is idempotent,
sayL = T9 andL? = L. Itis easy to see that strongly preserves;.

If X € M, »n(F)and(X, X) € 7; then necessaril)X = O. Thus, ifA # O, L(A) # O
sinceL strongly preserves;.

Suppose that there existsl < i < m, such thatl(R;) is not dominated by?;. Then
there is a pair of indexes:, s) such that, ; is not dominated by?; andL(R;) > E, ;. Then
(Ri, Ers) € Ty, andL(R;) = aE, s + X with 2, s = 0.

Now,

L(R; + aEys) = L(R;) + L(aErs)
= [?(R;) + L(aE,;)
= L(L(R;)) + L(aE;s)
= L(aE, s+ X) + L(aE, ;)
= L(X) + L(aEys) + L(aE, )
= L(X) + L(aE,s + aE,)
= L(X) + L(aE,)
= L(X +aE,y)

= L(L(R)))

14



Now, (R;,aE,s) € Ty but, L(R;) + L(aE,s) = L(R; + aE,s) = L(R;) and hence,
(L(R;), L(aE,s)) ¢ Tp, a contradiction.

We have established thét(R;) < R; for all . Similarly, L(C;) < C; for all j. By
considering thaf; ; is dominated by bottR; andC; we have that.(E; ;) < E; ;. SinceF
is fuzzy semiring, we have thdt also maps a cell to a cell, ¢¥'(E; ;)| = 1 for all ¢, j, and
T'(J) has all nonzero entries.

So T induces a permutations;, on the set of subscriptsl, 2,--- ,m} x {1,2,--- ,n}.
Thatis,T(E; ;) = E,(; ;- We have thal" is a (P, Q)-operator.

Conversely, all P, Q) operators preserve the term rank. O

5.2 Linear Preservers of7,(F)
Consider the set of matrix pairs:
To(F) = {(X,Y) € Mpmu(F)? [ t(X +Y) =1}
We characterize the linear operators that preserve thg €Y.

Theorem 5.3. Let F be a fuzzy semiring; : M, ,,(F) — M, (F) be a surjective linear
map. Ther{’ preserves the sk (F) if and only if 7" is a (P, ))-operator, whereP and () are

permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thdt(E; ;) = E,(; ;) foralld, j,1 <i<m,1<j<n,o
is a permutation on the set of pafisj).

The cellsE; ;, E, ; are in the same line, if and only #{E; ; + E, ;) = 1 if and only if
(Eij, Ers) € Tathen(T(E; ), T(Es)) € To. Thatist(T'(E; ;) + T(E,s)) = 1. Therefore
T(E; ;) andT(E;, ) are in the same line. Thus lines are mapped to lines, and we havE that
is a(P,Q)-operator by Lemma 4.2.

Conversely, lef” be a(P, @)-operator, andX,Y) € 7o. Thenl = (X +Y) = t(P(X +
Y)Q)=t(T(X+Y))=t(T(X)+T(Y)). Hence(T(X),T(Y)) € T>. That is,T preserves
7. O
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5.3 Linear Preservers of7;(F)
Consider the set of matrix pairs:
T5(F) = {(X,Y) € My (F)H(X +Y) = max(t(X), £(Y))}.
We characterize the linear operators that preserve tHg 6€1.

Theorem 5.4. Let F be a fuzzy semiring : M., n(F) — M., »(F) be a surjective linear
map. Ther{ preserves the sk (F) if and only if 7" is a ( P, Q)-operator, whereP and( are

permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thdt(F; ;) = E,(; j foralld, j, 1 <i <m,1 <j <mn,
whereo is a permutation on the set of paiis ).

Suppose that the images of two cells are not in the same line, but the cells akg ; say,
are the cells such thdt(E; ;), T'(E;;) are not in the same line, i.&(T(E; ; + E;;)) = 2.
Then(E; ;, E;;) € T3 but(T(E; ;), T(E;;)) ¢ T3, a contradiction. Thug—! maps lines to
lines. By Lemma 4.2 it follows thaf —! is a (P, Q)-operator where” and@ are permutation
matrices of appropriate sizes. Hen@eis also of this type.

Conversely, if X,Y) € Tz3thent(X +Y) = t(X), t(P(X +Y)Q) = t(PXQ), t(T(X +
Y)) = ¢(T(X)), t(T(X) + T(Y)) = t(T'(X)). Hence(T'(X),T(Y)) € 73. Thatis,T

preserveds. O
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6 The Zero-Term Rank Preservers Over Fuzzy Semiring

In this section, we obtain the characterizations of the linear operators that preserve the set
of matrix pairs which arise as the extremal cases in the inequalities of zero-term rank of matrix
sums.

Below, we use the following notations in order to denote sets of matrices that arise as

extremal cases in the inequalities of zero-term rank of matrix sums listed in section 3.
21(F) = {(X,Y) € Mynn(F)*[2(X +Y) = min{z(X), 2(Y)}};

Z3(F) = {(X,Y) € Mpn(F)?2(X +Y) = 0};

6.1 Linear Preservers ofZ,(F)

Consider the set of matrix pairs:
Z1(F) ={(X,Y) € Mppn(F)?2(X +Y) = min{z(X), 2(Y)}}.
We characterize the linear operators that preserve the;$&1).

Theorem 6.1. Let F be a fuzzy semiring’ : M, »,(F) — M., »(F) be a surjective linear
map. Therl” preserves the s (F) if and only if 7" is a (P, Q)-operator, whereP and Q) is

a permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have th@t(E; ;) = E,j foralli, j, 1 <i<m,1<j <n,
whereo is a permutation on the set of paifis ).
Let us show thafl” maps lines to lines. Suppose that the images of two cells are not in

the same line, but the cells are, shy;, E;; are the cells such that(E; ;), T(E; ) are

not in the same line. Then one has thatJ\E; j\E; ) + Eix) = 1 = 2(J\E;;\Ei),

ie. (J\Eij\Eir Eix) € 21, asfaras z(T'(J\E;;\Eix) + T(Eir) = 1< 2=
min{z(T(J\E; j\Eir)), 2(T(E;))}, i.e. (T(J\E; j\Eix), T(E;)) ¢ Z1, a contradiction.
ThusT maps lines to lines. By Lemma 4.2 it follows th&tis a (P, Q)-operator wheré” and

(Q are permutation matrices of appropriate sizes.
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Conversely, if(X,Y) € Z; thenz(X +Y) = 2(X), 2(P(X +Y)Q) = 2(PXQ),
2(T(X 4+Y)) =2(T(X)). Hence(T'(X),T(Y)) € Z,. Thatis,T preservess;. O

6.2 Linear Preservers ofZy(F)

Consider the set of matrix pairs:
Zy(F) ={(X,Y) € Mypun(F)?[2(X +Y) = 0}.
We characterize the linear operators that preserve th&$&t).

Theorem 6.2. Let F be a fuzzy semiring : M, ,(F) — M, ,(F) be a surjective linear
map. Therl" preserves the sefy(F) if and only if 7" is a (P, Q)-operator, whereP? andQ is

a permutation matrices of appropriate sizes.

Proof. By Theorem 4.1 we have thdt(E; ;) = E,; ;) foralli,j,1 <i <m,1 < j < n,
whereo is a permutation on the set of pairg, j)|1 <i <m,1 < j < n}.

Let us show thaf” maps lines to lines. Forall=1,2,...,n,letC; +... + C,_1 = X,
Y = C,. Thenz(X +Y) = 2(J) = 0. Hencez(T(X) + T(Y)) = 0 by assumption. Thus
each column is mapped to column. Similarly, each row is mapped to row. Tmaps lines
to lines. By Lemma 4.2 it follows thaf is a (P, (Q)-operator where? and(@ are permutation
matrices of appropriate sizes.

Conversely, ifz(X +Y) = 0 that is, sets of zero cells i¥ andY are disjoint. Thus the
same holds fof'(X') and7'(Y") sinceo is a permutation. Hence itT’(X ) +7'(Y)) there is no
zero elements. i.ex(T(X) +T(Y)) = 0. Thus(P, Q)-operator preserves the s&f(F). O

As a concluding remark, we have characterized the linear operators that preserve the ex-
treme sets of the term rank inequalities and zero-term rank inequalities of the matrix sums over
fuzzy semirings. For further research, we hope to study the term rank inequalities of matrix
product and zero-term inequalities of matrix product over fuzzy semirings. Moreover, we hope
to research the linear operators that preserve the extreme sets of the term rank inequalities of

the matrix product over fuzzy semiring.

18
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T1(F) = {(X,Y) € Muu(F)?[H(X +Y) = t(X) + t(Y)};

B(F) = {(X,Y) € Myun(FP?[H(X +Y) = 1};
To(F) = {(X,Y) € Muna(FPUX + ) = max{t(X), (Y)} };
Z1(F) ={(X,Y) € Mpn(F)?|2(X +Y) = min{z(X), 2(Y)}};

Zo(F) ={(X,Y) € Mpmn(F)?2(X +Y) =0};

€ AF IS A7ste] I FEIE ST 2 o133 A L HE JHE
BHESE AP AAAY] JEE T(X) = PXQ £+ T(X) = PXIQE VEIGE Ko

5L FF etk 123 o] HYAWA A 5 AFES HEFS SH
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