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I. INTRODUCTION

With the continuous advance in epitaxial technologies and lithographic or etch-
ing techniques, various studies of low-dimensional systems such as quantum-well
structures, quantum-wire structures, quantum-dot structures, superlattice struc-
tures, and one-dimensional (1D) quantum box array structures have been in progress
for several years. Among these, the investigation of quantum resonance effects, such
as magnetophonon resonance (MPR) [1,2] and electrophonon resonance (EPR) (3] in
low-dimensional electronic systems is a subject of great current interest since it can
be used as a powerful spectroscopic tool to investigate various transport properties
in nanostructures.

The MPR effect was predicted by Gurevich and Firsov [2], which can be used a
powerful spectroscopic tool to investigate the physical properties such as a precision
determination of the effective mass and the detailed information of electron-phonon
interactions in semiconductors. Under the action of a magnetic field, the MPR effect
occurs whenever the optical phonon energy is equal to an integral multiple of energy

separations between two Landau levels, and the ordinary MPR condition is given as
Nhwe = hwro, N =1,2,3,---, (1.1)

where w, = eBy/m* is the cyclotron frequency of the electron with the effective mass

*

m” in the resonance magnetic field By and hwyo is the longitudinal optical (LO)
phonon energy. The resonances which are caused by the absorption of thermally
generated phonons at high temperatures in low electric fields (linear regime) are

3

known as the “ normal ” MPR effect. These resonances are almost exclusively due
to the absorption of LO phonons, and due to the requirement that there should be a

significant phonon population, they are usually only observed at temperatures above



~ 50 K. The scattering process causes a relaxation of carrier momentum, which
is then reflected in the various transport coefficients of the material under study.
A necessary condition for observing the “ normal ” MPR effect is (1) that Landau
levels should be sharp and well defined so that w,7 > 1 (7 is the mean time between
collisions), (2) that scattering by LO phonons should make a significant contribution
to limiting the carrier transport, and (3) that temperature is high enough (typically
T > 77K ) such that there exist a sufficient number of LO phonons needed for
absorption.

These three factors combine to give the characteristic temperature dependence
of the amplitude of the oscillations. At high temperatures the thermal broadening
of the Landau levels reduces the strength of the resonant extrema, while at lattice
temperatures well below the characteristic temperature of the LO phonon, the pop-
ulation of the phonons falls off and the scattering is no longer important. There is
thus an optimum temperature for the observation of magnetophonon oscillations,
which is typically in 50 ~ 150 K depending on the LO phonon energy.

At low temperatures, in degenerate materials, conduction takes place within a
small region around the Fermi energy. As the magnetic field changes, the singu-
larities at the bottom of each Landau level cross the Fermi level in succession, and
thus give rise to a succession of structures in the resistivity which are periodic in
1/B. The first experimental demonstration of this effect was the observation by
Shubnikov and de Hass of small oscillations in the magnetoresistance of bismuth
[1]. These oscillations, known as Shubnikov-de Hass effects, are observed at very
low temperatures, around 4.2K, and are dependent upon the carrier concentration
in the material. In contrast the MPR effect usually occurs at higher temperatures,

and is almost independent of electron concentration.



From the above discussion, the magnetophonon oscillations may be easily dis-
tinguished from Shubnikov-de Hass oscillations which are strongest at the lowest
temperatures and almost universally show a rapid fall in amplitude as temperature
increases. The periodicity of the magnetophonon oscillations is almost independent
of the electron concentration, except for a small shift due to non-parabolicity, in
contrast to the Shubnikov-de Hass periodicity. Shubnikov-de Hass oscillations are
only observed in degenerate semiconductors with a high carrier concentration, while
the MPR effect is more usually observed in pure, non-degenerate samples where the
mobility is higher, although both effects may be observed in the same sample of
some narrow gap materials.

When the lattice temperature is reduced below 20 K in low electric fields the
LO phonon population has fallen so much that magnetophonon oscillations due to
the absorption of phonons are no longer observable. It has been found, however,
that when the electric field applied to the sample is increased the oscillations may
be made to reappear. This is due to the heating of the carriers by the electric
field called the hot-electron effect so that phonons may then be emitted. When
the magnetic field satisfies the resonance condition, a rapid emission of phonons
occurs at resonance, there is a resonant cooling of the carriers, and the electron
temperature decreases. This change in electron temperature affects the transport
properties, and a series of oscillations in the magnetoresistance results. The reap-
pearance of MPR effect called the hot-electron MPR effect at low temperatures in
high electric fields (non-linear regime) usually reflects the magnetic field dependence
of energy relaxation time rather than any direct variation in the momentum relax-
ation time. Because the energy of acoustic phonons is much smaller than that of

LO phonon, the energy relaxation process is dominated by emission of LO phonons.



Since electron-electron scattering is rapid compared with the momentum relaxation
rate, the resonant cooling produces almost identical structure in the transverse and
longitudinal magnetoresistances.

Another example of a resonant energy loss or gain process is when the phonon
energy is equal to energy separation between two subband levels in low-dimensional
electron gas system. This also gives rise to resonant structure in the transport

coefficients, and is known as the EPR effect [3]. The EPR condition is given as
AEm" = ,En - Eml = tho, (12)

where m and n are subband indices, respectively. The EPR has been recently re-
alized in a graded quantum well. To explain this phenomena theoretically, some
authors [3] have investigated the EPR effect in a quasi-two-dimensional electronic
system. However, concerning the hot-electron MPR and the hot-electron EPR in
low-dimensional systems, to the best of our knowledge, we are not aware of theoret-
ical work and are still at an initial stage both experimentally and theoretically. It is
therefore desired to develop a theory which could analyze MPR, EPR, hot-electron
MPR, and hot-electron EPR effects, in low-dimensional systems, ranging from very
small (linear regime) to large electric fields (hot-clectron regime).

In this thesis, we study theoretically MPR, EPR, hot-electron MPR, and hot-
electron EPR effects in low-dimensional systems with various confinement potentials
including a parabolic well, a square well, and a triangular well, using the formalism
of nonlinear response theory developed previously by Ryu et al. [4].

As the second subject, single electron tunneling (SET) in ultrasmall tunnel junc-
tions is investigated. The tunneling of a single charge across a tunneling barrier can
seriously affect the macroscopic state of the system. Furthermore, because of the so-

called Coulomb blockade, the microscopic tunneling transitions may be controlled by

4



means of macroscopic applied voltages such as bias or gate voltages. SET devices
whose fundamental operation principle is based on the Coulomb blockade effect,
where it is found that in a single small tunnel Junction, having tunnel resistance
Rr and capacitance C , such that Ry > Ry = h/e? = 25.8k) and charging energy
E. = €?/2C exceeds the characteristic energy krT of thermal fluctuations, i.e., E, >
krT, a suppression of single charge tunneling dramatically reduces the current at
voltages V' < e/2C. In practice, only islands having capacitances not much below
a fI' can be reliably designed, thus imposing experiments done at a few tens of mK,
now attainable with a dilution refrigerator. Essentially, condition Ry > R). ensures
that the wave function of an excess electron on an island is localized there. Condi-
tions Rr > Ry and E, > k;T ensure that the transport of charge from island to
island is governed by the Coulomb charge energy. A lot of work have been made on
the physics of SET phenomena and on the wide variety of SET device applications
[5,6].

These devices have been widely used to transfer, with the help of the Coulomb
blockade effect, and are, in particular, potentially useful for metrological applications
such as fundamental standards of dc current and for digital devices. The most
remarkable candidates for such standards are the single electron turnstile, where a
gate electrode controlled by an rf signal is capacitively coupled to the center of the
array, and the single electron pump, where two gate electrodes controlled by two rf
signals are capacitively coupled to the electrodes inside the array. One of the most
important features of these devices is that they all contain 1D long arrays of small
tunnel junctions. The use of long arrays results in at least three advantages: (1) it
1 easier to fabricate high quality devices with high Ry and low C in the form of

long arrays; (2) the electromagnetic environment influence, which tends to smear the



Coulomb blockade effect, can be kept at a minimum; (3) it possesses some unique
features of electronic transfer such as space correlation. Therefore, the study of long
arrays is a key to understand the physics of these devices. However, it is known
that charge fluctuations give rise to small deviation from the controlled dc current
flowing through these devices. Thus for possible metrological applications of these
devices, it is essential to know the error rate of the operation, which depends on
how frequent and by what processes the electrons transit the device in the presence
of Coulomb barrier.

The starting point in studying the electrostatics of the long array systems is
to identify the potential profiles for a given set up of the system. The key to our
approach is to rewrite electrostatic equations as matrix equations for the island
potentials {(;}; this enables us to derive the electrostatic equations in a tridiagonal
matrix form and obtain an exact analytic result for the finite 1D array of tunnel
junctions. With the help of the exact solution of the electrostatics of a 1D arrays,
we can also solve the electrostatic problems of other single electron device with long
arrays, such as trap, pump, and turnstile. Although the bias voltage controls the
average value of the current passing through the system, the dynamics of an electron
in the system at T = 0 is in principle solely determined by the Gibbs free energy.
The transfer of an electron from one island to another through the tunnel junction
between them is favorable if the Gibbs free energy decreases in this process, and
vice versa. Thus the essence of the dynamics is the evaluation of the Gibbs free
energy, which consists of a charging energy term and a work done term. The above
mentioned exact solutions of the electrostatics for the long arrays systems enable
us to perform systematic studies for the Gibbs free energy and derive an exact

analytical form for it at arbitrary charge configurations.



In this thesis, we first find an exact analytical solution to the electrostatic prob-

lem of the single electron dual-junction-array trap, which consists of equal stray

capacitances Cy, equal junction capacitances C, equal input gate capacitances C},
and coupling capacitance Cc. Second, we analyze the dynamics of single charge
transfer for various charge solitons including a single electron, an exciton, and a
combined exciton and single electron by studying the change of the Gibbs free en-
ergy.

This thesis is organized as follows. In chapter 2, we examine the influence of
the intracollisional field effect in the hot-electron regime of the transverse magne-
tophonon resonances in n-type germanium. In chapter 3, we deal with the phys-
ical characteristics of the MPR effects in quasi-two-dimensional electronic system
brought about by the electron confinement due to the electrostatic potential and
the magnetic confinement by tilting a magnetic field. In chapter 4, we study mag-
netophonon resonances and electrophonon resonances for various confinement po-
tentials in quantum wires. Occupation of several electric subbands due to these
confinement potentials leads to electrophonon resonances and the splitting and shift
of MPR peak positions. Dependence of both resonance peak positions on the mag-
netic field, the thickness of the well, the confinement frequency, and the bias field
is shown explicitly. In chapter 3, we obtain the magnetoconductivity in quasi-one-
dimensional electronic systems in tilted magnetic fields, based on a simple model of
parabolic confining potentials, and investigate the qualitative features of the MPR
effects according to the strength of electrostatic potentials and the tilt angle of the
applied magnetic field in the quantum limit condition. In particular, the behaviors
of the MPR lineshape, such as the appearance of subsidiary MPR peaks, the shift

of these MPR peaks, and a change in MPR amplitude and width will be examined



in detail. In chapter 6, we obtain the longitudinal magnetoconductivity of super-
lattices for polar and nonpolar optical LO phonons and investigate the qualitative
features of the MPR effects according to the miniband width and the temperature.
In particular, the behaviors of the MPR lineshape, such as the appearance of plateau
between neighboring MPR peaks, the disappearance of MPR peaks, and a change
in MPR amplitude will be investigated in detail. In chapters 7 and 8, we present an
exact analytical solution to the electrostatic problem of the biased single electron

dual-junction-array trap consisting of equal stray capacitances Cy, equal junction

capacitances C, equal input gate capacitances C;, and coupling capacitance Ce.
The threshold voltages are investigated for various charge solitons including a single
electron, an exciton, and a combined exciton and single electron. The hysteretic
voltage gap AV (m), the difference between the threshold voltages for single charge
soliton to tunnel into and escape from a single electron dual-junction-array trap
through an m-junction cotunneling process, is investigated for various charge soli-
tons including a single electron, an exciton, and a combined soliton. Conclusions

will be presented in the last chapter.



II. TRANSVERSE ELECTRIC-FIELD-INDUCED MAGNETOPHONON

RESONANCE IN N-TYPE GERMANIUM

With the recent advance of pulsed high magnetic field technique, it has been
possible to measure the MPR effect in very high magnetic field. Many studies on
the ordinary and hot-electron MPR effects in n-type Ge have been made for the
longitudinal and transverse configuration [1,7-12]. It is known that Ge exhibits rich
spectra of MPR because optical phonons and zone edge acoustic phonons couple
with electrons by the deformation potential interaction although it is not a polar
semiconductor. The MPR spectra in n-type Ge is quite complicated due to the
complexity of phonon branches and the variety of intervalley transitions, which
results in difficulties in the assignment of each electronic transition (12]. In the
high-field range, the MPR peaks for n-type Ge are well resolved from each other, so
that one can assign each peak to a specific transition.

For the transverse magnetoconductivity configuration, where the current and
the magnetic field directions are perpendicular to each other, Harper et al. [9] pre-
sented the experimental results of MPR in n-Ge for the magnetic field parallel to
the < 100 > and < 110 > directions. Their results show that the transverse mag-
netoconductivity oscillates as a function of the magnetic field. Eaves et al. [7] also
presented the experimental results of MPR in n-Ge for the magnetic field parallel
to the < 100 > and < 111 > directions. A recent review of the MPR effects was
given by Ridley [10].

For the longitudinal hot-electron magnetoconductivity configuration, where the
current and the magnetic field directions are parallel, Hamaguchi et al. [1,8] found

that in the electric field ranging from 17 V/cm to 73 V/em several different series



of oscillations for the < 100 > direction of n-Ge at 20 K were present. Recently,
Futagawa et al. [12] presented the new experimental results of n-type Ge for the
magnetic field direction parallel to the < 100 >, < 111 >, and < 110 > directions.
Their results show that the dominant MPR signal arises from the hot-electron tran-
sitions from the valley with lighter cyclotron mass to the valley with heavier mass
in n-type Ge. It was also shown that the hot-electron MPR peaks are observed for
the intervalley and intravalley scatterings. Note that all the experiments discussed
above were performed for the case where the intracollisional field effect (ICFE) are
not effective in the hot-electron regime. Therefore, our concerns are to investigate
the changes of the resonance fields due to the ICFE which are effective in the hot-
electron regime with electric fields of the order of 10° V/em [13].

In this work, we present a theory of transverse electric-field-induced MPR in
n-type Ge, on the basis of the high-field quantum-statistical transport theory [4]
developed by some of the present authors, and investigate the MPR extrema of
n-type Ge for the magnetic field direction parallel to the < 100 >, < 110 >, and
< 111 > directions as the strength of the electric fields increases.

The rest of the chapter is arranged as follows. In Sec. A, we describe a simple
model of the system. In Sec. B, we present the field-dependent magnetoconductivity
formula related to the relaxation rate, by using the result of nonlinear response
theory obtained previously. The transverse hot-electron MPR is discussed, where
special attention is given to the MPR peak positions. Results and conclusions are

made in Sec. C.
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A. Model of the System

We choose Cartesian coordinate axes with the z-axis parallel to the principal
axis of an ellipsoidal energy surface. In the presence of a static magnetic field tilted
with an angle of 6 from z-axis, B = B(sin#,0,cosf), and a uniform external electric

field E = E¥9, the one-clectron Hamiltonian is‘given as

l/ml 0 0
1
hee=5(P+eA)l 0 1/m, 0 |(p+eA)+eEy, (2.1)
0 0 l/ml

where A is the vector potential, p is the momentum operator, and m; and my
represent the transverse and longitudinal mass components of the ellipsoidal energy
surface of the conduction band, respectively. By taking into account the Landau
gauge A = B(-ycosb,0,ysinh), the one-electron normalized eigenfunctions and

eigenvalues of the s valley of the conduction band are, respectively, given by

(| As) =(r| N, ky, k., s) = U*(r)F\(r), (2.2)
B} = B} (ke ke) = & + eByj + TLy7 (2.3)

B

with

R k-B,
y= — 24
ex = (N+1/2)hw, + 2msB( B )7, (2.4)

h mymy Vy

s (2.5)

Yy = — [m¢k, sin@ — myk, cos @ +

eBm$
where N(= 0,1,2,---) are the Landau-level indices, k; and k, are, respectively,

the wavevector components of the electron in the z and z direction, the symbol s
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in the superscript or subscript indicates the valley index of the conduction band,
Va(= E/B) is the drift velocity, and w,(= eB/m}) and m} are, respectively, the

cyclotron frequency and the effective mass in the magnetic field direction, which are

1 cos?’f  sin’@
S =Y (2.6)
m? m? mymy
my = mycos> @ + m, sin’ 6. 2.7
B

Also in Eq. (2.2), U*(r) denotes the Bloch function of the s valley and F\(r) means

the envelope function given by

1 \ . |
F\(r) = mqﬁN(y — yx) exp(ik,z + ik, 2), (2.8)

where ¢ (y) in Eq. (2.8) are the eigenfunctions of the simple harmonic oscillator,
and L, and L, are, respectively, the z— and z—directional normalization lengths.
We assume that the Bloch function U*(r) and the envelope function F\(r) are,

respectively, normalized in the crystal as follows:

/C U (0)U* (r)d’r = 4, (2.9)

/Q F}(r)Fa(r)d® = 65, (2.10)
where C is the volume of the unit cell and Q(= L,L,L,) is the crystal volume in

the real space.

B. Field-Dependent Magnetoconductivity Associated with Relaxation Rates

We now want to evaluate the field-dependent magnetoconductivity o,,(E) for

the system modeled in section A, by using eigenfunctions and eigenvalues given in

12



Eqs. (2.2) and (2.3) and the general expression for the nonlinear dec conductivity
or(E)(k,l = z,y,2) derived in Ref. 4. It is straightforward to show that the
transverse magnetoconductivity o,,(E) can be expressed in terms of Egs. (2.2) and

(2.3) as

h $) Ty as(E
o (E) = 5 323 |(As i N5 [ £E8) = 7(Eh) Dol ,)2, (2.11)
As s St (E/{—E})
where j, = —(e/my)p, is the y component of a single electron current operator,

f(g3) is the Fermi-Dirac distribution function associated with the eigenvalue of Eq.
(2.4), and Txy xs(E) is the filed-dependent relaxation rate, which appears in terms
of the collision broadening due to the electron-phonon interaction. To obtain Eq.
(2.11), we have assumed that the energy difference (E5 — E3) between the Landau
energy of s-valley and that of s'-valley is larger than the quantities such as the width
and the shift in the spectral line shape, which is usually satisfied and which is in fact
the condition to observe the oscillavtory behavior of hot-electron MPR [14]. In the
intervalley transitions, the matrix elements of the single electron current operator

in Eq. (2.11) are given, in terms of Eq. (2.2), by

| <As |y | Ns'> P = S(s,5)orn, (2.12)

" >|* and the Kronecker symbols (6, =

where S(s,s') =|< s | j, | s
ON'.N+ Ok ke, Ok, k1, 0s.s) denote the selection rules.

Within the first-order Born approximation of scattering processes, the matrix
elements of I'(E) associated with the transition between the states | As > and
| As" > is generally given [4,14] by

’

My =3 lI< 28" [ 7q | Aisy > (B3] — EX + hwg)

A181
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2 '
+]< Ausi [ 74 ] As > x 6(E3} ~ B — huwy)),

2
Moo= 3[< A |7l | dasy >[ 8(ES! — B3 — hug)

A1y

+|< A8 |7q |/\S >|2. (214)

Here v4(= C(q)ezp(iq-r)) represents the one-electron operator. The phonons couple
to the electron via the interaction potential C'(q), the form of which depends on the
type of interaction. It should be noted that the prime on the summation sign in
Eq. (2.14) indicates the exclusion of the diagonal element of 74 and ¥, represents
the triple summations ¥y 2k, 2k, of the s valley. Also in Eq. (2.14), the 4-
functions express the law of energy conservation in one-phonon collision (emission
and absorption) processes, where the effect of the electric field (ICFE) is included
exactly through the eigenstate E§ of an electron. The energy-conserving ¢ functions
in Eq. (2.14) imply that when the electron undergoes a collision by absorbing the
energy from the field, its energy can only change by an amount equal to the energy
of a phonon involved in the transition. This in fact leads to electric-field-induced

MPR. In the representation of Eq. (2.2), the matrix elements in Eq. (2.14) are given

by
f< As I Yq ‘ N >’2:, C(q) '2 K(N, AT,, u)d,cmk:ﬁqrdk:,quz(SSYS,, (215)
where
Ny! Now=No [ (Nm=Na) (- 112
K(N,N' u) = —Fexp(~u)u LT ()] (2.16)
with
u= (1332/2)[(]: + (my/mim%)?(myq, sin 6 — myq, cos 0)?]. (2.17)

14



Here Iy = (h/mw;)'/?, N, = min(N, N'), N, = max(N, N'), and L0 (x) is the
associated Laguerre polynomial [15].

After some algebra, we obtain from Eqgs. (2.14) and (2.15)

M, ~ M_~|C(q [QZK N W) (V4 2)rws,—(1v+ )hwszthwq—f—hA}

(2.18)
where RA is the electric-field-dependent quantities given by
RA = (mami V7 [2)(1/m = 1/m) + eE(y}, — 33). (219)
To obtain Eq. (2.18) we used the following properties:
d(r + a) i "(a/z)"6(x) ~ 0(x) (for x >> a). (2.20)

Then, the relaxation rate (and hence magnetoconductivity) shows, from Egs. (2.11),
(2.13), and (2.18), that the clectric-field-induced MPR gives the resonance conditions

at
(N’ + 1/2)hwsf = (N + 1/2)hws F hwq — hA (2.21)

where N and hwg(= heB/m}), respectively, denote the quantum number and
the cyclotron energy of the Landau electron of the s’ valley, as do N and
hws(= heB/m;}). These peak positions strongly depend on the difference of Landau-
level indices, the difference in the effective mass between the initial and final states of
the intervalley scattering by phonons, the involved phonon energy, and the strength
of the electric field. If we take the limit E — 0 in Eq. (2.21), the last term of
the right-hand side in Eq. (2.21) vanishes and the expression gives the hot-electron
MPR condition, where the ICFE are not effective. These for the transverse config-

uration are same as the theoretical result of Futagawa et al. [12] obtained for the
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longitudinal configuration. In this case, the transition of an electron from the Nth
excited state in the s valley to the N’th state of the s’ valley, associated with the

emission of the phonons, occurs at the resonance magnetic field given by

B
By (0) = K’%w (Bry = wqm;/e) (2.22)

with ay = 1/2 — (N'+1/2)m?/m?,. The MPR conditions for intravalley transition

are given by
BNNI(O) = BFP/P (BFP = wqm;/e, P = 17\7 h .‘]V, = 1,2,3, b ) (223)

if we regard the same cyclotron mass before and after the transitions. In Eq.
(2.19), assuming [16] that y5, — y5 < 0 or y3 — yl > 0, depending on whether the
maximum in the magnetoconductivity appears at magnetic fields Byy:(FE) lower
or higher than Byy/(0) given by Eq. (2.22), we can make an approximation as
vho— 03 Elgy = £ + 15,)/2 with [y ~ (Vh/mueBy/2) (/i + /%) and
By = (2wg/e)(mimy / [m? — m2|). This assumption results in double peaks around

the MPR extrema without the ICFE. Eq. (2.19) can, then, be rewritten as
RA = (mem Vi /2)(1/mS — 1/m3,) + eElp,. (2.24)

Note that we did not perform the calculation of the amplitude of magnetoconduc-

tivity oscillation because we are interested in the hot-electron MPR peak positions.

C. Results and Conclusions

In this section, we present the numerical results for MPR peak shifts due to the
intracollisional field effect, by using Eqs. (2.21)-(2.24), and analyze these results

in terms of the strength of the electric field. For n-type Ge, it is known that the
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conservation of momentum allows electrons to be scattered by the phonons at I'-
and X-points [17]. As a result, the possible phonons [18] for n-type Ge are I-point
LO-TO (37.7 meV), X,-point TO (34.2 meV), X;-point LA-LO (29.8meV), and
X3-point TA (9.93 meV).

1 : : —(NN)=(10) . 191 g)
B/I<100> o e 1
0s s ) o E G et gfg}
- i /r,z.%:"'?;‘; _,,,_—_,:.q-";-.:.-:a:%&:;’? m 2.0
,..""l Mﬁ-ﬂa«ﬁ*”‘xm = ]
e imm

Resonance Field Shift AB(T)
A o

-1

Electric field (105V/m)
FIG. 1. Resonance field shift of n-Ge for B l< 100 >. The quantum number of the
Landau level for m; = 0.135m is indicated for each line. The dashed-double dotted,
dashed, dashed-dotted, and dotted line are for X3-point, X|-point, X4-point, and I'-point,

respectively.

To visualize the resonance field shifts AB associated with the emission of the
phonons, we plotted Figs. 1, 2, and 3 corresponding to B ||< 100 >, B ||< 110 > and
B ||< 111 >, respectively, where the dependence of the shifts on the strength of the
electric field, the magnetic field direction, the possible phonon energy, and the dif-

ference of Landau-level indices is presented. The shifts AB(= Byn/(E) — Byn(0))
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are the difference between the field-induced resonant magnetic field Byy:(E) given
by Eqs. (2.21) and (2.24) and the resonant field By (0) given by Eq. (2.22) or Eq.
(2.23), depending on the type of transitions.

The resonance field shifts of n-Ge in the transverse configuration are presented in
Fig. 1for B |[< 100 >. The intravalley MPR appears since all the equivalent valleys
have an identical effective mass for B [|< 100 >. As shown in Fig. 1, the shifts
increase with decreasing the possible phonon energy, linearly with increasing electric
field, and strongly with decreasing the difference of Landau-level indices before and
after the intravalley transitions. The splitting of the MPR peak positions take place,
which is due to the non-vertical transition at high electric field, as pointed out by
Mori et al. [16]. The upper and lower part in the figure correspond to Ay > 0 and
Ay < 0, respectively. Accordingly, in the former case, the resonance peak positions
are shifted to the higher magnetic-field side as electric fields are increased and as
the possible phonon energy and the difference of Landau-level indices are decreased,
while in the latter case, they are shifted to the lower magnetic-field side as clectric
fields are increased and as the possible phonon energy and the difference of Landau-
level indices are decreased. Note that our results for the limit £ — 0 reduce to the
previous results [19] which agree with the experimental values of Eaves et al. [7] and
Harper et al. [9] for the transverse configuration and with the experimental values
of Hamaguchi et al. [1,8] for the longitudinal configuration.

Unlike the case of B ||< 100 >, as can be seen from Figs. 2 and 3, the MPR peaks
of the intervalley scattering occur at X-points for B ||< 110 > and B ||< 111 >, due
to difference in effective mass between the initial and final states. As illustrated in
Fig. 1, the shifts increase with decreasing the possible phonon energy, linearly with

increasing electric field, and strongly with decreasing the difference of Landau-level
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indices due to before and after the intervalley transitions occurring at X-points and

due to before and after the intravalley transitions occurring at I'- points.

(NN)={00) (0,0)(0.0) (1.0)
1 : o o v . =
< > od P
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=
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~-3(1,0)

Electric field (10°V/m)

FIG. 2. Resonance field shift of n-Ge for B ||< 110 >. The quantum number of the
Landau level is indicated for each line. The dashed-double dotted, dashed, dashed-dotted,
and dotted line are for X3-point, X)-point, X4-point, and T-point, respectively. The
dotted lines are for m} = 0.099m and all the lines except for the dotted lines are for
mg; = 0.099m and mj; = 0.36m corresponding to the initial and final state of transition,

respectively.

Note that in the case of the limit £ — 0, our results occurring at X,-points for
B ||< 110 > and B ||< 111 > become the previous results [19] which are in good
agreement with the experimental values of Eaves et al. [7] and Harper et al. [9] for

the transverse configuration and with the experimental values of Yamada et al. [11]
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and Futagawa et al. [12] for the longitudinal configuration.

1 {N.N") = (0.0 {0.0)(0.0)
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FIG. 3. Resonance field shift of n-Ge for B |< 111 >. The quantum number of the
Landau level is indicated for each line. The dashed-double dotted, dashed, dashed-dotted,
and dotted line are for X3-point, X;-point, X4-point, and T-point, respectively. The
dotted lines are for m} = 0.082m and all the lines except for the dotted lines are for

my, = 0.082m and mg; = 0.207m corresponding to the initial and final state of transition,

respectively.

It is noted that our results for the relaxation rate and the dec magnetoconductivity
are based on the following approximation as Y — 5 ~ :tl_36 and 0(z + a) = §(x)
(for £ >> a). Furthermore, any analytical expression for the integration over q of Eq.

(2.13) has not been made since we are interested only in the electric-field-induced

MPR peak positions.
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In conclusion, we have presented a theory of electric-field-induced MPR in n-Ge
for the transverse configuration and obtained the MPR conditions given in Eqgs.
(2.21) and (2.24). As can be seen from Egs. (2.21) and (2.24), MPR peak positions
for the intervalley scattering by phonons strongly depend on the strength of the
electric field, the possible phonon energy, the difference of Landau-level indices,
and the magnetic field direction which leads to the difference in the effective mass
between the initial and final states. According to the non-vertical transition due to
the ICFE, double peaks take place. One of the peaks is shifted to the lower magnetic-
field side and the other is shifted to the higher magnetic-field side as electric fields
are increased and as the possible phonon energy and the difference of Landau-level
indices are decreased.

We expect that our results help to understand qualitatively the physical charac-
teristics of the electric-field-induced MPR effect in materials with the many-valley

structure.
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ITI. MAGNETOPHONON RESONANCE OF
QUASI-TWO-DIMENSIONAL ELECTRONIC SYSTEM IN TILTED

MAGNETIC FIELDS

Recently, MPR effects in low-dimensional electron gas (EG) systems have re-
ceived much attention from both experimental and theoretical points of views [20-26]
since the quantization of electron energies in low-dimensional EG systems under the
presence of a high magnetic field is different from a bulk (3DEG) system. Moreover,
a suitably directed magnetic field serves to add an extra confining potential to the
initial electrostatic confinement and causes a dramatic change in the energy spec-
trum, leading to so-called hybrid magnetoclectric quantization. As a consequence,
one would expect different behavior of the MPR effects in such system from the
known MPR effects in 3DEG systems.

The purpose of the present work is to investigate the MPR effects in quasi-two-
dimensional (Q2D) electron gas system to understand the qualitative behavior of
the MPR effects in such low-dimensional system, based on the simple parabolic
model for confinement potential. We shall derive the conductivity o, for the Q2D
electronic system subjected to a tilted magnetic field and obtain MPR conditions
as a function of the field strength parameter (wi) of the parabolic potential, which
characterize the strength of confinement of Q2D electronic system. We will examine
how the MPR effects are affected by the constraint due to the directionality of
applied magnetic fields. This gives an anomalous angular dependence of the field
positions.

The rest of the chapter is organized as follows. In Sec. A, an exactly solvable

model for Q2D electronic system is presented in an unified manner. In Sec. B, we
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present the general formula of the transverse magnetoconductivity oyy for the Q2D
system, which is closely related to the relaxation rate due to the collision process.
In Sec. C, the relaxation rate, which is closely related to the MPR, is evaluated
for bulk LO phonon scattering in the Q2D electronic system. The MPR conditions
for the model system are given explicitly. Here, special attention is given to the
behaviour of the MPR lineshape, such as the appearance of subsidiary MPR peaks
and a reduction in MPR amplitude. Numerical results are given in Sec. D. In
particular, the effects of tilted magnetic fields and the confining potential on the

shift of MPR peaks are discussed.

A. Model for Q2D Electronic System in Tilted Magnetic Fields

We consider the transport of an electron gas in a quantum-well structure. The
Q2D electron gas is assumed to be confined to the z —y plane by an ideal parabolic
potential %m*wfz?. In the presence of a magnetic field, one-particle Hamiltonian

(he) for such Q2D electrons is expressed in an unified manner by

1
he = (p+eA)? + Em*waQ, (3.1)

2m*
where A is a vector potential accounting for a constant magnetic field B = 7 x A
and m* is the effective mass. We shall consider the case where the magnetic
field B is applied in the transverse tilt direction to the plane of the system:
B = (B;,0,B;) = (Bsin#,0, Bcos#), with the Landau gauge A = (0,zB,—zB,,0).
Here the angle 6 is measured from the 2 axis in the z — z plane. Using the proper
canonical transform, the one-particle Hamiltonian (3.1) for those confined (Q2D)
electrons subjected to the transverse tilted magnetic field can be expressed in the

new Cartesian coordinates as
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1

1 1 1
he = P P} wi X2+ ——w?Z? 3.2
Come A + om*" % + 2m* WAt 2m* Y- (32)
where w? and w? are, respectively, given by
o _ 1.9 2 2)2 2,2
wi = 5[% +wi £ \/(wz — Q%)% + 4wiw?] (3.3)

with w, = eB;/m* = w,sinb, w, = eB,/m* = w,cos b, w, = eB/m*, and Q2 = w? +
w;. The Hamiltonian (3.2) expressed in the new Cartesian coordinates is basically
changed into the Hamiltonian for two independent 1D simple harmonic oscillators,
one with the effective cyclotron frequency w, in the X-direction and the other with
the effective cyclotron frequency w_ in the Z-direction.
The normalized eigenfunctions and eigenenergies of the one-clectron Hamiltonian
(3.2) are given by
(RIN) = (X,¥.Z [ m.Lky) = ()79 (X)0(2) explibyY) (3.4)

and
Ex=Eni(ky) = (n+1/2)hwy + (1 +1/2)hw_, (3.5)

respectively, where n(=0,1,2,---) and /(= 0,1,2, ---), respectively, denote the ef-
fective Landau (magnetic) level indices due to the tilted magnetic field, and U, (X)
and ¥,(Z) denote 1D simple-harmonic-oscillator wave functions. The states of the
Q2D system are specified by two Landau-level indices n and [, and the wave func-
tion exp(ikyY’) in Eq. (3.4) expresses a free motion in the y (i.e., Y’) direction. The
dimensions of the sample are assumed to be V = L.L,L.. As shown in Eq. (3.5),
the energy spectrum for the present Q2D system is hybrid-quantized due to the

presence of the tilted magnetic field. The set of quantum numbers is designated by
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(n,{,ky). We note that the dimensional crossover can be seen in the energy spec-
trum by simply varying the confining potential parameter; w; — 0 for the 3DEG
system. It is interesting that the dependence of the energy spectrum in Eq. (3.5)
on the confining potential parameter (w,), the direction () and strength of the ap-
plied magnetic field (B) has an important effect on the MPR effects for the Q2D

electronic system.

B. Magnetoconductivity Associated with Relaxation Rates

For the calculation of the transverse magnetoconductivity o,, for the model
system described in the previous section, we apply the general expression for the
complex nonlinear dc conductivity x(E) (k,l = .y, z) given in Ref. 4 to the
quantum well modeled in the previous section by using the representation (3.4).
Then, o,, can be easily obtained by the sum of the hopping parts due to the Landau-

level indices n and [, which are

5 e*w?i? 2w, ~
Oyy = VhZ3 (L—) z (n+ 1)[f(Enl(k)')) - .f(En+ll(k)’))]F(n + 1,0, ky;n, L, ky)
Wi Ly nlky
e*w? 2m .
Vh2w3 (L_)2 Z (l + 1)[f(Enl(kY)) - f(EnH—I(kY))]F(”, [+ 1, ky; n, l, k‘y)
- Y n,lky

(3.6)

for hw,,hw_ > T and the shift zero in the spectral line shape, where V is the
volume of the system, [, = m, W, = w, cos ¢ + w, sin @, and Wi = wz cos ¢ —
w;sing. Also, f(En(ky)) is a Fermi-Dirac distribution function associated with
the eigenstate | n,l,ky > of Eq. (3.4) and the energy E.i(ky) of Eq. (3.5). The
quantity T given in Eq. (3.6), which appears in terms of the collision broadening

due to the electron-phonon interaction, play the role of the relaxation rate in the
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spectral line shape. Note that the first term of Eq. (3.6) is the magnetoconductivity
given in terms of the electron hopping motion between the Landau level states n
and n + 1, while the second term of Eq. (3.6) is the magnetoconductivity given in
terms of the electron hopping motion between the Landau level states | and [ + 1.
To express the dc magnetoconductivity of Eq. (3.6) in simpler forms, we assume
that the f’ s in Eq. (3.6) are replaced by the Boltzmann distribution function for
nondegenerate semiconductors, i.e., f(E, (ky)) =~ Aexp[B8(Er — En(ky)], where Eg
denotes the Fermi energy. The normalization constant A is determined from N, =
Sniky f(Bnalky)) = (Ly/27) Lo [t o F(Ena(ky))dky, where the upper and
the lower limints are obtained from the fact that the electrons should be within
the crystal dimensions in the z direction, i.e., —L,/2 < z < L¢/2, N, is the total

number of electrons in the system, and the constant is given by

A= N, _ Smh exp[— B EF|sinh(Bhw, /2) sinh(Bhw_/2). (3.7)

€
m*w,L.L,

Then, we can further perform the sum over n (or {) (if n (or /) is large) by writing
> nexp(—an) = — a% >_exp(—an) and summing the geometric series. The transverse

magnetoconductivity can be expressed by

2 2 2 2
h o Ne€” (27 wy = ' Wy - '
g, - (E) [ﬁwir(n-Fl,l,k}},n,l,ky,z)—kmr(n,l*}-l,k‘y’wn,l,ky?) ,

(3.8)

where the electron density is given as n, = N,/V. As shown in Eq. (3.8), the
electronic transport properties (e.g., electronic relaxation processes, magnetophonon
resonances, etc.) for the Q2D system can be studied by examining the behavior of

I as a function of the relevant physical parameters introduced in the theory. In the
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next section, we shall analyze the relaxation rates in details in order to get insight

into MPR effects in the Q2D electronic system.

C. Magnetophonon Resonances in Tilted Magnetic Fields

An analytical expression of the relaxation rate in the lowest-order approximation
for the weak electron-phonon interaction and in the limit of weak electric fields can
be evaluated from the general expression for the electric-field-dependent relaxation
rate given by Eq. (4.39) of Ref. 4. Using the representation given by Eq. (3.4), the
Q2D version of the relaxation rates associated with the electron hopping motion for

optical phonon scattering can be expressed by

f(n + 1, l, kyz; n,l, k)'2) ~ f(n '+ 1,k‘y2;n, l,kyg)

47rD
AN 2D 243 3 M (An) Fur (AD)
ok n#" U U'#0 n'
x (N + % + 5)5[(71 — ) Yhw, + (I = hw_ F hwr), (3.9)

where D is constant, Ny is the optical-phonon distribution function given by ng =
[exp(BthI\) — 1]7! with wg = wr, n’ and !’ indicate the intermediate localized
Landau level indices, and

S+ An),_(2An+ 3), T(An+3)

Frta(dm) = ”>! (n!)?
11 1
X 3(1)2( n<,An+§ 5 i An +1,§—n<;1). (310)

Here n. = min{n,n'}, ny = max{n,n'}, the Pochhanner’s symbol (a), is defined
by (a), = ala+1)---(a+n—1) = I'(a+ n)/T'(a), and 3P1(a,b,c;d,e;z) is the
hypergeometric function [15]. The § functions in Eq. (3.9) express the law of

energy conservation in one-phonon collision (absorption and emission) processes.
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The strict energy—conserving ¢ functions in Eq. (3.9) imply that when the electron
undergoes a collision by absorbing energy from the field, its energy can only change
by an amount equal to the energy of a phonon involved in the transitions. This in
fact leads to MPR effects due to the Landau levels. We see from Eq. (3.9) that
the relaxation rates shows the resonant behaviors: magnetophonon resonances at
Phw; = hwy and Phw, = hw, F Alhw_ (P is an integer), which is due to the
Landau-level index n, and at Phw_ = hw; and Phw_ = hwy, £ Anhw,, which is
due to the Landau-level index [, where Al and An are the difference of Landau-level
index corresponding to the case where the virtual nonresonant transition takes place.
Thus, it is shown that additional MPR conditions (subsidiary peaks) appear at
Phw, = hwr FAlhw_ (or Phw_ = hwy, F Anhw, ) on both side of the MPR peaks at
Phw. = hwy, (or Phw_ = hwy ). The origin of the appearance of the subsidiary peaks
in the Q2DEG system is mainly due to the confinement to the z — y plane by the
parabolic potential. It should be noted that the relaxation rate for optical phonon
scattering diverges whenever the above conditions are satisfied. These divergences
may be removed by including higher-order electron-phonon scattering terms or by
inclusion of the fluctuation effects of the center—of-mass [27]. The simplest way
to avoid the divergences is to replace each § function in Eq. (3.9) by Lorentzians
with a width parameter v. Employing this collision- broadening model [23], setting
n—n',l—1" = P in the emission term and n —n',l — ' = —P in the absorption term
as some author did [20,23], applying Poisson’s summation formula [28] for the 3,
in Eq. (3.9), and taking into account the following property (15]:

sinh(2ma)
cosh(2ma) — cos(2mb)

P(a,b) =1+2) e *cos(2nsb) =

s=1

J(a>0)  (3.11)

we then obtain
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- - 4D 1 1
Pn+ 1,0 kyin, L ky,) = T(n L+ 1, ky,in, L ky,) & Y ETA Y (No+ 5 5)
D4

A= 3 FuAl) P, F Ao ) ]

wi G
w F Alw_
XU (y/hw,, LT)
+

1
+w— Ean/(An)F}y[(a}L F Anw+)/w_]

w F Anw,

XU (Y [hw_ | )} (3.12)

w_
for the MPR effects due to the Landau-level indices n and L. For simplicity, we
assumed that v = v (¢ =1, 2, and 3) for the collision damping terms in the quantities
V(v/hwy @ fwy ) and O(v/hwy, (w, + Alw_)/w.) of Eq. (3.12) and v; = '
(1 =4, 5, and 6) for the collision damping terms in the quantities ¥(y/hw_, @y /w_ )
and W(y/hw_, () + Anw,)/w_) of Eq. (3.12). Equation (3.12) gives a general
description of magnetophonon oscillations in the Q2D quantum-well structure for
the MPR effects due to the Landau-level indices n and I. For the MPR effect due
to the Landau-level index n, Eq. (3.12) shows the oscillation under the periodic
condition of Pw, = wy and exhibits additional complexity of oscillations with the
subsidiary (MPR) peaks appearing at Pw, = w; ¥ Alw_. It is shown that the
oscillation in the relaxation rate is damped by the direction and strength of the
magnetic field and the confinement frequency (w1) since these parameters give a
direct influence on the effect of collision damping. Similarly, the relaxation rates
of Eq. (3.12) associated with the MPR effect due to the Landau-level index ! have
another oscillatory period Pw_ = w; and the subsidiary (MPR) peaks appear at
Pw_ = wy, F Anw,. These MPR effects of Eq. (3.12) take place in the case where
magnetic field given in the tilt direction is applied to the Q2D quantum-—well system.

If the direction of magnetic field is taken in a specific direction of the system (8 = 0°
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or 90°), these effects arise from the Landau-level index n or [ only.

D. Numerical Results and Discussion

In this section, we investigate the physical characteristics of the MPR. effects
from the magnetoconductivity formula associated with MPR. obtained for the Q2D
electronic system based on the model described in Sec. A. By making use of the
MPR conditions due to the Landau-level indices n and ! at Phw, = hw; and
Phw, = hw, F Alhw_, and at Phw_ = hwy and Phw_ = hwp F Anhw,, the
resonance peak positions in the Q2D system are plotted in Figs. 4 and 5 as a
function of tilt angles 6 of the transverse tilted magnetic field B = (Bsin 6,0, B cos )
applied to the electronic plane for confinement frequency w; in the 2 direction,
where the optical phonon energy hw; was taken as 36.6 meV and three different
confinement frequencies (0.5w,, w,, and Sw.) were taken into account, in order to
examine the characteristics of the MPR effects according to the confinement in
the z direction. For ease of discussion, we considered the case where the MPR
arises from the transitions between two Landau levels (P = 1), together with the
nonresonant virtual transition between two Landau levels (Al or An = 1 ). As
shown in Fig. 4, we can see the following features for the Q2D system: (1) there
are three resonance peaks in the Oyy, which arise from the conditions w, = w; and
wy = wy £ w_; (ii) when the confinement in the z direction is strong, the resonance
magnetic fields appear in the lower magnetic-field side and their angle dependence
becomes small, and (iii) the peak positions obtained from the conditions Wy = wy,
and wy = wyp 4+ w_ are shifted to the lower field side whereas the peak positions

obtained from the condition w, = w;, — w_ are shifted to the higher field side, as
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the tilt angle 6 of the applied magnetic field is increased.
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FIG. 4. Tilt angle dependence of the resonance magnetic field for three different con-
finement frequencies in the z direction w;=>5w,, we, 0.5w, (from bottom on the right-hand
side of the figure to top). The solid lines, the dashed-dotted lines, and the dashed lines

are for the MPR conditions wy = wy, wy =wp +w_, and wy = wp, — w_, respectively.

31



s

Resonance Magnetic Field (T)
- 8

-h
(-]

Angle (6)

FIG. 5. Tilt angle dependence of the resonance magnetic field for three different con-
finement frequencies in the z direction w; =5w;, we, 0.5w, (from bottom to top). The solid
lines and the dashed lines are for the MPR conditions w_ = wr and w- = wy, — wy,

respectively.

We can also see the following features from Fig. 5: (i) there are two resonance
peaks in the o, which arise from the conditions w_ = w; and w_ = WL — Wy

and (ii) the resonance magnetic fields increase with the increase of the tilt angle 6.
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It is interesting to note from Figs. 4 and 5 that the MPR peak positions arising
from the conditions w, = wy, shift to the lower B side whereas those arising from
the conditions w_ = wy, shift to the higher B side when the tilt angle of applied
magnetic fields is increased.

According to the experimental results of Brumell et al. [21] for Q2D electronic
systems, all of the MPR peaks shift to the higher B side when the tilt angle of applied
magnetic fields is increased. Our theoretical results obtained from the conditions
W- = Wp, W =Wy —wy, and wy = wy, — w_ for the Q2D case agree qualitatively
with their experimental results. However, our theoretical results obtained from
the conditions w, = wy, and wy = wy, + w_ does not agree with their experimental
results. This disagreement may be due to the fact that their experiment is performed
under the magnetic field up to 10 tesla whereas our calculations are carried out for
the magnetic fields in the region more than 15 tesla, taking into account the effective
Landau and subband states, n = 0,1 and [ = 0,1 only. If we take into account
the electronic transitions up to the second excited levels (P > 2) and obtain the
MPR conditions valid under the magnetic field up to 10 tesla, we might expect
the present theory to reproduce their experimental results qualitatively. It should
be noted that our theoretical results are based on a model of parabolic confining
potential. For usual heterostructures it is well known that the confinement potential
in the z-direction is far away from being parabolic and is often approximated by
a triangular potential [23,25]. For direct comparison with experiments, realistic
modeling with the correct confinement potential should be required. We believe
however that utilizing a model with a parabolic confinement is good enough to
extract essential physics of MPR effects in Q2D electronic systems in tilted magnetic

fields. In other words, energy spectrum obtained from quasi-triangular potential
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and parabolic potential does not alter the essential physics of MPR effects in Q2D
electronic systems as far as the fundamental (P = 1) MPR, which we considered
here, is concerned.

Despite the above shortcomings of the theory, we believe that the simple model
we present captures qualitatively the essential physics on MPR in Q2D electronic
system brought about by the electron confinement due to the electrostatic poten-
tials and the magnetic confinement by tilting a magnetic field. We hope that new

experiments will test the validity of our prediction.
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IV. MAGNETOPHONON AND ELECTROPHONON RESONANCES IN

QUANTUM WIRES

Magnetophonon resonances and electrophonon resonances in low-dimensional
electron gas systems have generated considerable interest in recent years. Many stud-
ies have been made on these effects in 2DEG systems [1,3,14,20,22,29—34]. However,
less work has been done on these effects of a Q1DEG (23,24,35]. 1t is well-known
[1,3] that MPR effect arises from resonant scattering of the electrons in Landau
levels by LO phonons whenever the phonon energy is equal to an integral multiple
of energy separations between two Landau levels whereas EPR effect occurs when
the energy difference of two electric subbands AE,,, (m and n are subband indices)
equals the energy of a LO phonon Aw,. These resonance effects in low-dimensional
electron gas have shown that the type of material used to confine the electrons and
the form of the confinement potential significantly influence the interactions between
the electrons and optical phonons.

Vasilopoulos et al. [23] studied MPR effects in quantum wires assuming a
parabolic confinement potential of frequency €2, based on the Kubo formula [36]
and the quantum Boltzmann equation [30], and their calculations revealed that the
ordinary resonance condition w; = Pw, is modified to wy = P&,, where P is an in-
teger, wy, and w, are the LO phonon frequency and cyclotron frequency, respectively,
and w, is the renormalized cyclotron frequency given by @, = (w2 + Q%2 Mori et
al. [24] presented a theory of MPR for the same model as treated by Vasilopoulos
et al. (23], by utilizing the Kubo formula and the Green’s function method [37]. A
numerical analysis with respect to the magnetoconductivity has been performed for

weak and strong confinement potentials by introducing the current density operator
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due to the electron-phonon interaction and confinement potential. Recently, Ryu et
al. [35] have presented a theory of MPR for the same model as treated by Vasilopou-
los et al. 23], by taking the linear response limit of nonlinear response theory [4],
in order to investigate analytically the MPR effects in quantum wires. It should
be pointed out that they assumed that only the lowest subband level formed in
the heterostructures is occupied. This assumption leads to neglect of effects arising
from a consequence of occupation of several electric subbands such as EPR effect,
the splitting of MPR peak positions, and the shift of MPR peaks. The purpose of
the present paper is to study MPR and EPR effects of a Q1DEG in quantum wires,

where electric subbands are considered.

A. Model for Quantum Wires

We consider a simple model for a quantum wire, in which a two-dimensional
electron gas formed in heterostructures is confined by narrow gates or split gates,
and electrons are free along only one direction. We assume that a heterointerface
is normal to the z axis, and the confinement in the y direction is characterized by
a parabolic potential of frequency {2y. For the confinement potentials along the z
axis, we take the following potential wells: (1) the parabolic well and (2) the square
well, which both have the advantage that all subbands can be included in the cal-
culation; and (3) the triangular well, which is often used to model heterostructures.
Applying a static magnetic field B(|| Z) to the wire and considering the effective—
mass approximation for conduction electrons confined in the quantum wire, the
one-particle Hamiltonian (k) for such electrons together with its normalized eigen-

functions (|A >) and eigenvalues (E1), in the Landau gauge of vector potential
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A = (-By,0,0), are respectively, given by

he = (5 — eA)?/2m* + m*Q2y%/2 + h(z), (4.1)

A >= N.n, ke >= by (y — u)eap(ik, ) Ta(2)/ /Ly, (42)
Ex= Ennk, = (N +1/2)hd, + h2k2 /2 + ¢, (4.3)
On(y) = (1/2%n ' PIgNI)2 exp(—y?/20%) Hy (y /1), (4.4)

where 7' is the momentum operator of a conduction electron, N (=0,1,2,...) and n
denote the Landau-level index and the subband-level index, respectively, and @, =
(Wi+22)'/2 and 1 = m*@?/ Q22 are the renormalized cyclotron frequency with respect
to the cyclotron frequency w, = eB /m* and the renormalized mass with respect to
the effective mass m* associated with the characteristic frequency of the confinement
potential 2, respectively. Also Hy(z) are the Hermite polynomials and On (Y —y»r)
represents harmonic-oscillator wave functions, centered at y = Yr = —1~)l~23k1. Here k,
is the wave vector in the r direction, b = We/@e, and lg = (h/m*&.)1? is the effective
radius of the ground-state electron orbit in the (z, y) plane. The dimensions of the
sample are assumed to be V = L.L,L,. In zero magnetic-field case, the Landau
levels become the subband levels in the y direction, the renormalized cyclotron
frequency @, and the renormalized mass 7 in Eq. (4.3) reduce to the confining
frequency €, and the effective mass m*, respectively, and the center of harmonic-
oscillator wave functions in Eq. (4.2) becomes zero.

For a parabolic well given by h(z) = m*Q2z2/2 with the the characteristic fre.
quency of the confinement potential §,, the eigenfunctions ¥, (z) and the corre-

sponding eigenvalues ¢, are, respectively, given by
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Ua(2) = (1/2%' 2lgn!) /2 exp(—2%/203) H, (2/15), (4.5)

1
= (n+ A2, n =012, (4.6)

where lg = (h/m*Q,)V/2
For a square well of infinite height, the eigenfunctions and eigenvalues, respec-

tively, are known to be

en =n%c, n=1,2,3, ..., (4.8)

where g = h*r2/2m* L2,
For the half-triangular-well case given by h(z) = eF,z (z > 0) (2 < 0), the

eigenfunctions are given by Airy functions [38] as

U, (2) = Ai Kmﬁ:F 3)1/3 (z = GEF)J , (4-9)

where the eigenvalues are approximately given by

h2 2F2 2/3
5":< sz) [3”<n+ )/QJ ,n=0,1,2,... (4.10)

Here Fj is an applied bias field in the z direction of the heterostructure. In practical
calculation one is often forced to approximate Eq. (4.9) through variational wave

functions in order to keep the numerical calculations tractable. For the lowest sub-

band (n = 0) and the first excited subband (n = 1), the wave functions [39,40] are,
respectively,
Wo(2) = (b3/2)"/%2 exp(—byz/2), (4.11)
and
W, (z) = A(2/b3)/%2(1 — Bz) exp(—b;2/2) (4.12)

with by = 2(3eF,m*/2h)!/3, b, ~ 0.754by, A ~ 0.476%, and B ~ 0.292b,.

38



B. Magnetophonon and Electrophonon Resonances

The transverse magnetoconductivity o,, for Q1D version can be evaluated from
the linear-response limit with respect to Eq. (4.38) of Ref. 4 given in the nonlinear-
response theory, which is expressed by the sum of the hopping part o® and the

nonhopping part o™ as [35]

03z = (VLG NP /W20 V)T, (4.13)

0':: ~ (hGQJJCZN;D/m*Q;V)[fOAA]_I, (414)

where NJP = (/L2 /87h?BY, exp[B(Er — en)]/sinh(Bha./2) with Ep being the
Fermi energy, 8 = 1/kpT with kg being Boltzmann’s constant, Xy =< A | X | M >
for any operator X, and f‘o,\z,\l is the relaxation rate associated with the states A1 and
A2. To obtain the above equations we have performed the sum over the A state with
the use of Eq. (4.2). Using Egs. (4.2) and (4.3), the Q1D version of the relaxation
rate for the weak—-coupling case of an electron-phonon system, associated with the
electronic transition between the state |\, > and |A; >, is given, from Eq. (16) of
Ref. [35], as

fDAz,/\x = W(NO + 1/2 + 1/2) Z lc(q)'Q{ Z IJNzN’(u)IzlJnn’(q.z),2
A#X2

q
XO[(N1 = N')hioe + (€n, — €w') + ST (gz) F hwy]
+ Z lJN’Nl(u)|2|Jnn’(q2)|26[(N’ — No)hoe + (ew — €5,) + 57 () + hw},
NAA
(4.15)

where we have assumed that the phonons are dispersionless (ie., hw; = hwp ~

constant, where wy, is the LO-phonon frequency) and the system is of bulk (i.e.,
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three-dimensional). C(q) is the interaction potential for LO-phonon scattering, N’
indicates intermediate localized Landau states, and Ny is the LO-phonon distribu-

tion function given by Ny = [exp(Bhiws) — 1]7! with w; = w;. In Eq. (4.15)

§7(g2) = {n*kY; — 12 (koo F )2} /210, (4.16)

85 (¢:) = {h*(kvs F 42)° — R2k3,} /2, (4.17)

| Jons (£4.) |/ z)exp(tigqz) ¥, (2)dz|?, (4.18)
N,! C N

[ Tn (W)]? = N;!G_“UN’"‘N" (LN~ (u)]? (4.19)

with N, = min{N,N'}, N,, = maz{N,N'}, u = %22 + q2)/2, and L¥ (u) being
an associated Laguerre polynomial [15]. The energy-—-conserving ¢ functions in Eq.
(4.15) imply that when the electron undergoes a collision by absorbing energy from
the field, its energy can change only by an amount equal to the energy of a phonon
involved in the transition. This in fact leads to the MPR and/or EPR effects, for
which h@, and Ae,, > Ty, Proceeding as in Vasilopoulos et al. [23] with respect to
¢ in the ¢ functions in Eq. (4.15), making an approximation N’ + 1 ~ N’ for very
large N’, the relaxation rates fo,\+u and oy, can be written in a simple form:
Lot = Doan & 2r(No +1/2+1/2) Y " |C(q)?

q

X D 1T ()P T (@) PO[(N' = NYRo, + by, + hwi), (4.20)
MN#A

where wy, = (e — €,)/h and the selection rule ' # X in the summation of Eq.
(4.20) means (N',n') # (N,n), which contains the following conditions: (1) N’ #
Nand n' = n, (2) N = N and n' # n, and (3) N' # N and n’ # n. From
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these conditions, we can expect three possible transitions in quantum wires: (1) the
transition due to the Landau levels for the y direction, (2) the transition due to the
subband levels for the z direction, and (3) the transition due to both the Landau
levels for the y direction and the subband levels for the z direction.

Setting N'=N = — P in the emission term and N'—=N = P in the absorption term
(23] and considering Eqs. (4.13), (4.14), and (4.20), we see from the above condition
that the transverse magnetoconductivity shows resonant behaviors: MPR at Po, =
wy and at PO, = wi (P is an integer) with wf = w; + wy,. Those resonances
involving the terms w,, reflect the subband structure in the 2z direction and the
terms wys, give rise to the splitting of the MPR effects whenever the interelectric
virtual (nonresonant) subband transitions take place for a relevant energy separation
between two subbands for the z direction. The MPR condition at P&, = wy is
identical with those indicated by Vasilopoulos et al. [23]. Furthermore, we see from
the above condition that the conductivity shows another resonant behaviors: EPR
due to the subband in the z direction at wy, = w;. Note that, in zero magnetic-field
case, the relaxation rate (and hence the electric conductivity) obtained by replacing
we in Eq. (4.20) by , shows resonant behaviors: EPR due to the subband level in
the y direction at PQy = w;, and at PQ, = wi (P is an integer), and EPR due to
the subband in the z direction at wy,, = w; and at Wpn = wp = P, In this case,
we also see that the subband level for the y or z direction leads to the splitting of
EPR whenever virtual interelectric subband transitions take place.

Employing the collision-broadening [14,23] model and applying Poisson’s sum-
mation formula [28] for the 3p in Eq. (4.20) we then obtain the relaxation rate for

three different confinement potentials as
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3 . 27rmL n w__f nwi
~ Toan & 1/ 2L (N 1172+ 1/2) Fop -

AL
+\/%(2N0 +1)5%(n; '), (4.21)

where
s Re{Fy(N, N'; #I& 4 4L)} W (2, 4L) (parabolic well)
So*(n;n') = 50 nJm) Re{F,(N, N’; —7— +21)}¥ (2, 21) (square well)
3(12$+‘*—R {F,(N,N'; 22 B+ 22) }U(H ,12) (triangular well)
(4.22)
ZlC W Inwep(@) | Jam (a7, (4.23)
Fyn(n Z IC(Q)P|Inw ()| T (g:) (4.24)

sinh(2ma)

_ 2 —-2rsa ; —
(a,b) =1+2> ¢ cos(27 sb) cosh(2ra) — cos(2mh)’

s=1

with ) = /n?2+wrfeg — n, 73 = \/{(n+3/4)2/3 +wr/F}? — (n + 3/4), and
(1 = 1,2,3,4) being the damping parameters.

(a > 0) (4.25)

C. Numerical Results

To visualize the series of resonance positions associated with MPR and EPR
effects in the quantum wires, we showed the plots in Figs. 6, 7 and 8, where the

optical phonon energy has been taken as hwy, = 36.6meV for GaAs.
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FIG. 6. Energy diagram is plotted as a function of magnetic field depending on the
values of the both characteristic frequency of the y-directional confinement and energy
separation of the subbands for the z direction. The difference of the quantum number

of the Landau level (P = N’ — N) is indicated for each line. The solid, dotted, and

dashed-dotted lines are for Qy = 0.1w, Oy = w,, and 2y = 5w, respectively.

Figure 6 shows the energy diagram of the MPR at P&, = w; and at P&, = wi, as
a function of magnetic field. The quantum number of the Landau level is indicated
for each line, depending on the value of 2. The crossing points give the resonance
magnetic fields, which depend on the strength of confinement in the z direction. We
notice that the resonance magnetic field decreases as {2, increases. In the case where
only intraelectric-virtual-subband transitions (n = n' = n) take place, Le., wpy, =0,

there is no splitting of the MPR. However, we can see that whenever the interelectric
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(nonresonant)-virtual-subband transitions take place for a relevant energy separation
between subbands for the z direction, the splitting of the MPR peak positions occurs.
The shift of the peak positions increases as the energy separation between two
subband levels for the z direction increases. Figures 7(a)-7(c) show the energy
diagram of the EPR at hw,, = hw; for three different confinement potentials for
the z direction: a parabolic well, a square well and a triangular well, respectively.
The quantum number of the subband level in the z direction is indicated for each
line, where the initial and final states are represented by n and n’, respectively. Any
changes in the confinement frequency €,, the well width L., and the bias field F,
lead to changes of the energy separation between electric subbands, which allow us
to have the energy levels in resonance with the optical-phonon energy.The crossing
points given in Figs. 7(a)-7(c) indicate the resonance confinement frequency, the
resonance well width, and the resonance bias field, respectively. As can be seen
from Fig. 7(a), no EPR takes place for 2, > 5.56 x 10'3 sec™! since the energy
separation between adjacent subband levels is larger than the optical phonon energy
(hwy = 36.6 meV for GaAs). As ), decreases (i.e., the well in z direction becomes
wider), the energy separation between subbands n and n’ becomes closer. Therefore,
various resonance transitions from n to any n’ are allowed to take place due to the
LO phonons. Note that the reason for having the identical resonance frequencies for
adjacent subband resonance transition is due to the fact that the energy separation
between adjacent subband levels is all same. Unlike the parabolic well case, for the
square well case given in Fig. 7(b), the resonance well-widths for adjacent subband
resonance transition have different values, which is due to the fact that every energy
separation between adjacent subband levels is not the same because the subband

energy spectrum &, is proportional to n? and is not equidistant.
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y-directional confinement depending on the values of the energy separation of the sub-
bands for the 2 direction. The difference of the subbands (P = N'—N) for the y direction

is indicated for each line.

We can sce that as the thickness of the well increases, various resonance transitions
from the subband level n to any n' take place. The results for increasing the well
width L, ~ 1/4/Q, is similar to those for decreasing the confinement frequency (,
in the parabolic potential case. For the triangular well case given in Fig. 7(c), the
energy separation between adjacent subband levels is altered by changing the bias
field F,. As the bias field is increased the well width in the z direction is decreased.
As a result, the energy separation between adjacent subband levels becomes larger.

This is similar to the parabolic potential case because increasing the confinement
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frequency €, is identical with decreasing the well width. Figure 8 shows the energy
diagram of the EPR at PQ, = w;, and PQ, = wf,, as a function of Q, for
zero magnetic-field case. The quantum number of the subband level due to the
confinement in the y direction is indicated for each line. The crossing points give
the resonance confinement frequencies, which strongly depend on the strength of
confinement in the z direction. We can see that, as in the MPR case, the splitting
and shift of the peak positions increases as the energy separation between adjacent

subband levels in the 2z direction increases.

D. Conclusions

So far, we have studied the MPR and EPR. effect for a Q1D quantum-wire
structure in the presence and absence of any magnetic field, in which a Q1DEG
is confined by a parabolic well in the y direction and three kinds of confinement
potentials in the z direction, including the parabolic well, the square well, and
the triangular well. The transverse magnetoconductivity is directly related to the
energy relaxation rate. The relaxation rate of Q1DEG formed in the quantum-
wire structure was evaluated within the lowest-order approximation of the collision
processes for optical phonon scatterings and its behavior was discussed in connection
with the MPR and EPR effects. We see that the relaxation rate ( and hence the
transverse magnetoconductivity ) shows resonant behaviors: MPR at P&, = wy, and
at Pw. = wp £ wyy. In this case, change in w,, gives rise to the splitting of the
MPR effects whenever the virtual interelectric subband transitions take place for a
relevant energy separation between two subbands in the 2 direction. Furthermore,

the conductivity shows another resonant behavior: EPR due to the subband in
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the z direction at wp, = wy, which strongly depends on the subband structure
in the z direction. The MPR condition at P&, = w; is identical with those of
Vasilopoulos et al. [23], assuming that only the lowest subband level formed in
heterostructures is occupied. Occupation of several electric subbands gives rise to
the additional oscillatory behavior of MPR effect and EPR effect. It should be
noted that the MPR and EPR peak positions are strongly sensitive to the strength
of the magnetic field, the optical phonon energy, the characteristic frequency of
the y-directional confinement Q,, and the type of the confinement potential well
in the z direction. In zero magnetic-field case, the relaxation rates (and hence
the electric conductivity) show resonant behaviors due to the subband levels given
in two different directions: EPR due to the subband level for the y direction at
P, = wp and at PQ, = w; # w,,, and EPR due to the subband for the z direction
at wyy, = wyp and at wpy, = wy, + P,

In present calculation for the conductivity, we considered the most simple situa-
tion of linear transport and a nondegenerate electron gas. The nonlinear MPR and

EPR effects will be studied in a separate paper.
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V. MAGNETOPHONON RESONANCES IN QUASI-ONE-DIMENSIONAL

ELECTRONIC SYSTEMS IN TILTED MAGNETIC FIELDS

Over the past few decades, MPR effects in low-dimensional electron-gas systems
have received much attention from both experimental and theoretical points of view
since they can be used as an alternative magnetotransport tool for the measurement
of the effective mass of quasi-two-dimensional electrons [41] and for the determina-
tion of the energy difference between adjacent quasi-one-dimensional sub-bands (42].
Many studies of MPR effects in such low-dimensional electronic systems have been
reported [14,20-25,30,31,35,41-46]. However, most of the MPR theories presented
so far are mainly restricted to the case where the magnetic field is applied normal
to the interface layer of the system. Less work has been done [25] in the case where
a magnetic field is applied to the Q2D electronic plane at an arbitrary angle. In
this case, it is known that a suitably directed magnetic field serves to add an extra
confining potential to the initial electrostatic confinement and causes a dramatic
change in the energy spectrum, leading to so-called hybrid magnetoelectric quanti-
zation. As a consequence, one would expect different behavior of the MPR effects
in such systems from the known MPR effects in three-dimensional EG systems.

Recently, Ryu, Hu, and O’Connell [25] presented the MPR conditions of Q1D
systems in tilted magnetic fields, based on a simple model of parabolic confining
potentials. In their study, they neglected the coupling Hamiltonian term ~ B.B,xz,
since its contribution to the total electron energy is minor. This is valid for the
case where the initial electrostatic confinements are stronger than the magnetic
confinement. More recently, Suzuki and Ogawa [26] investigated in detail qualitative

features of the MPR effects, their physical origin, and the dimensional crossover
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between Q2D and Q1D systems in tilted magnetic fields, based on the same model
as Ryu et al. [25]. However, their studies are confined to the weak confinement
case where the electrostatic confining parameters are smaller than the cyclotron
resonance frequency. Therefore, a theory of MPR effects which is valid for the weak
confinement case and the strong confinement case is needed and it is necessary to
investigate various qualitative features of the MPR effects in Q1D systems, according
to the strength of electrostatic potentials and the tilt angle of the applied magnetic
field.

The purpose of the present work is to extend the previous results [25] by includ-
ing the coupling Hamiltonian term ~ B.B,zz, to understand various qualitative
behaviors of the MPR effects in Q1D electronic systems according to the strength
of electrostatic potentials and the tilt angle of the applied magnetic field, and to
compare our present results with the results presented by other authors. For this
purpose, we shall review the conductivity o, for Q1D electronic systems subjected
to a tilted magnetic field, on the basis of the simple parabolic model for confinement
potential, and obtain MPR conditions as a function of the strength parameters (wy
and w;) of the parabolic potentials, which characterize the strength of confinement
of QIDEG. We will investigate how the MPR effects are affected by the tilt angle
of applied magnetic fields and by the strengths of the confining potentials.

The rest of the chapter is organized as follows. In Sec. A, we review an ex-
actly solvable model for Q1D electronic systems. General formulae of the transverse
magnetoconductivity oy, for the Q1D systems are presented in Sec. B, where the
conductivity consists of the usual Drude term arising from the drift motion of elec-
trons and hopping terms associated with MPR. The relaxation rate, which is closely

related to the MPR, is evaluated for the quantum limit condition, assuming that the
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interaction with bulk LO phonon is the dominant scattering mechanism. Numerical
results of magnetoconductivity for the Q1D systems are presented in Sec. C. In
particular, the MPR conditions for the model system are given explicitly and the ef-
fects of tilted magnetic fields and the confining potential on the MPR are discussed.
Here, special attention is given to the behavior of the MPR lineshape, such as the
appearance of subsidiary MPR peaks, the shift of these MPR peaks and a change

in MPR amplitude and width. Concluding remarks will be given in last section.

A. Model for Q1D Electronic Systems in Tilted Magnetic Fields

We consider the transport of an electron gas in a quantum-wire structure as
treated by Thm et al. [47]. The Q2D electron gas is assumed to be confined to the
z — y plane by an ideal parabolic potential im*w2z?, whereas the Q1D electron
gas is assumed to be further confined in the z-direction by an additional parabolic
potential %m*wlzx?, thus restricting free motion to the y-axis alone. In the presence
of a magnetic field, one-particle Hamiltonian (he) for such Q1D electrons is expressed

in a unified manner by

1 1
(p+eA)? + Em*wf:rz + §m*w§z2, (5.1)

h, =
€ om*

where A is a vector potential accounting for a constant magnetic field B = v XA
and m* is the effective mass. We can see the dimensional crossover between the
Q2D and the Q1D electronic systems (i.e., w; — 0 or wy — 0 for the Q2D electronic
system) as well as the difference in the strength of each confinement by varying the
confining potential parameters (w; and w,) in Eq. (5.1) for the Q1D systems. We
shall consider the case where the magnetic field B is applied in the transverse tilt

direction to the wire of the system: B = (B,,0, B,) = (Bsin#,0, B cos 6), with the
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Landau gauge A = (0,2B, — zB,,0). Here the angle 6 is measured from the 2z
axis in the z — z plane. Then, the one-particle Hamiltonian (5.1) for those confined
(Q1D) electrons subject to the transverse tilted magnetic field can be represented
in the new Cartesian coordinates (z',y', z') as

P.  P: L1 P}

_ z m* =

e =gt m*Qiz"? + m 0327 — mrww,a's + 2m*’ (5.2)

which represents two coupled harmonic oscillators, where w, = wesinf, w, =
weeosl, we = eB/m*, m* = m* ({5 — wio?) fwiw?, O3 = W? + w2 and

5 = wi + w2 To obtain Eq. (5.2), we performed the following unitary trans-
formation: z} = Uyz,U" and P,y = U, P, UT! for an arbitrary z; (z; = z,y, and 2
for i = 1,2 and 3, respect‘ively). Here U, = exp[iG,/h] is a unitary operator with
Gy = w.P,Py/(°?) - w, PPy (i),

For the purpose of diagonalizing the one-particle Hamiltonian given by Eq. (5.2),
we take into account another unitary transformation: X; = UpziU; ' and Py, =
Ung:Ué"l for an arbitrary z} (2} = 2’,y/, and 2’ for i = 1,2 and 3, respectively),
where U, = expliGy/h] is a unitary operator having G, = {z'P, — 2'Py} ¢ with
¢ = arctan{Q] —w? /(23 — w?)}. Here w_ is the effective cyclotron frequency in the

Z- direction. Then, Eq. (5.2) can be expressed in the simplified manner as

1 1 1 1
Pi + P+ —w?X?+ —u?2% + ———P}, (5.3)

h, =
om* X 1 omx 2m 2m* 2m*

where w} and w? are respectively given by w? = 2+ 02+ \/(Q% — 03)? + 4w2w?).
The Hamiltonian (5.3) represented in the new Cartesian coordinates is basically
changed into the Hamiltonian for two independent 1D simple harmonic oscillators,
one with the effective cyclotron frequency w, in the X-direction and the other with
the effective cyclotron frequency w_ in the Z-direction. The last term in Eq. (5.3)

denotes the y-component kinetic energy of a confined electron with a field-dependent
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renormalized mass m* with respect to the effective mass m*. In particular, the
effective mass m* is influenced by a factor (2203 — w2w?) /w?w?, which depends on
a tilt angle 6, the cyclotron frequency w,, and the confining potential parameters
(w1, ws) characterizing the dimensionality of the system. The momentum component
P,(= Py) is a constant of motion and can be written as Py = hky, where ky is the
quasi-continuous wave vector of motion parallel to the interfaces (viz., wire in the
y(=Y) direction).

The normalized eigenfunctions and eigenenergies of the one-electron Hamiltonian

(5.3) are given by

(RN =(X,Y, Z | n, k) = (Li)l/Q\I/n(X)\III(Z) exp(ik,Y) (5.4)
y
and
(hky)?
Eyx=En(ky) = (n+1/2)hw, + (1 + 1/2)hw_ + S nl=01,2,---, (55)

respectively. In Eq. (5.4), ¥,(X) and ¥,(Z) denote 1D simple-harmonic-oscillator
wave functions. The state of the Q1D system are specified by two Landau level
indices n, | and the wave function exp(ik,y) in Eq. (5.4) expresses a free motion in
the y (i.e., Y') direction. As shown in Eq. (5.5), the energy spectrum for the present
Q1D system is hybrid-quantized due to the presence of the tilted magnetic field. The
set of quantum numbers is designated by (n, [, k,), where n and [ denote the effective
Landau (magnetic) level indices. We note that the dimensional crossover can be seen
in the energy spectrum by simply varying the confining potential parameters; w, or

wz = 0 for the Q2DEG system and w; and wy — 0 for the 3DEG system.
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B. Magnetoconductivity Associated with Relaxation Rates

In this section, we want to evaluate an analytical expression of the trans-
verse magnetoconductivity o,, for the Q1D systems previously described, by tak-
ing the real part of a general expression for the complex nonlinear de conduc-
tivity 6 (E) (k,l = z,y,2) given in Ref. 4 and the linear response limit, i.e.,

limg o Re{64(E)} = o4. The dc linear conductivity for weak electric fields is ob-

tained by the sum of the non- -hopping part az’/’;’ and the hopping part ayy, which
are

o= 10 4 k)T n,,k

=y % ky f (Eni(ky))[1 = f(Bui(ky))/T(n, 1, kyym, L, k), (5.6)

n €22 (n+ D (Builky)) = F(Busri(h)] L(n+1,L,ky;n,l k)
Oy = ——t 4 - i ] .
W Ve, g o Y e A TR+ 1,0 ki, L Ky

e’ "’13 L(n, 1+ 1,ky;n, 1, k)

}:k [+1 nl(ky))_ f( Enir (K u))]( )2+f~2(n,l+1,ky;n,l,ky)

(5.7)

for the shift zero in the spectral line shape, where V' = L.L,L, is the volume of the
system and 8 = 1/kgT with kg being the Boltzmann constant and T temperature.
Also, 1 = \/fm, h is the Plank constant divided by 27, f(Eni(ky)) is a Fermi-
Dirac distribution function for electrons with the eigenstate | n,l, k, > of Eq. (5.4)
and the energy E,(k,) of Eq. (5.5), and —e(< 0) is the electron charge. The
quantity ' given in Egs. (5.6) and (5.7), which appears in terms of the collision
broadening due to the electron-background (phonon or impurity) interaction, play
the role of the relaxation rate in the spectral line shape. To obtain Egs. (5.6) and

(5.7), we used the matrix elements |<ky,l,n|jy | k,,lI',n' >|? given by
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’< ky, l,n l]y f k;,l',n' >l2 = (ehky/m*)26nn’6ll'5kyky,
+(ewzl+/\/§)2[n(5nrn;1 + (n + 1)5n’n+1]511’6kyky1

+(ewl /V2) 6y + (1 + )81+1)0nmOkx, . (5.8)

where the Kronecker symbols (4,

nn

R 6kyky,) denote the selection rules, which
arise during the integration of the matrix elements with respect to each direction.
Equation (5.6) expresses the Drude term arising from the drift (non-hopping) motion
of electrons within the localized states through the electron-phonon interaction. In
contrast, Eq. (5.7) expresses the hopping terms, which are associated with electron
hopping motion between the localized (effective Landau- and /or sub-band-) states by
absorbing and/or emitting a phonon with an enecrgy hwq in the scattering events. In
fact, these terms are related to the oscillatory behavior of MPR effects. Accordingly,
hereafter we shall denote the transverse magnetoconductivity associated with these
hopping terms as O'!%PR. As shown in Eq. (5.7), the electronic transport properties
(e.g., electronic relaxation processes, magnetophonon resonances, etc.) in the Q1D
systems can be studied by examining the behavior of " as a function of the relevant
physical parameters introduced in the theory.

An analytical expression of the relaxation rate in the lowest-order approximation
for the weak electron-phonon interaction and in the limit of weak electric fields can
be evaluated from the general expression of the electric-field dependent relaxation
rate given by Eq. (4.39) of Ref. 4. The Q1D version of the relaxation rate associated
with the electronic transition between the states | n1,l1,ky, > and | n,l, ky > is

expressed by

~ D! )
F(nh lla kly; n, l, ky) - m " );( . Fnln’(An)E1l’(Al) /—oo qu
TI.,,' nlvl
X{(No + 1)8[(n = n'Yhuwy + (I = U)hw_ + S(ky, k,) — husy)
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+Nod[(n — n'Yhwy + (U= U)hw_ + S(ky, k,) + hwy)}

D' oo
t— > Fn’n(An)H’l(Al)/ dqy
47T l+l_ (n’,l’)#(n,[) — 00

x{(No + 1)é[(n" — ny)hwy + (I' = ) hw_ + S(ky, kiy) + hw]

+N05[(n' - nl)hw+ + (l’ - ll)hw_ + S(k‘l,kly) — th]} (59)

with S(ky, k,) = R*(k2—k?)/2m* and S(k), kr,) = h*(k2—k3,)/2m*, where Ny is the
optical-phonon distribution function given by N, = [exp(Bhwq) —1]7! with wq = wy
and n' and !’ indicate the intermediate localized Landau level indices. In order to
obtain the relaxation rates I of Eq. (5.9) for a specific electron-phonon interaction,
we considered the Fourier component of the interaction potential [20,25,26] for op-
tical phonon scattering given by D'/V with D' = hD?/2pw; ~ const, D being a
constant, and p being the density, where the assumption was made that the phonons
are dispersionless (i.e., hwg ~ hwy, =~ constant, where w; is the optical phonon fre-
quency) and bulk (i.e., three-dimensional). We also took into account the following

matrix element in the representation (5.4):

< Loy | U exp(aiq AU [ 1K > P=| Ty (ug) Pl (as) 2 Gy gy 2,

(5.10)
[ o 1) P= 2 L2 ) 1)
nn 'I’l>! ns > :
where nc = min{n,n'}, n, = maz{n,n'}, uy, = 12¢%/2, u_ = 12¢%/2, and L4 (u)

is an associated Laguerre polynomial [15] with An = n, — n.. In addition, we

utilized the following relation in doing the integral over gx and qz:

© 1
Fn/n(An) = ‘/0 %,Jn’n(u)qu
_ nd (L4 An)y_ (280 +3), T(An+})

ns! (n!)?
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11 1
X 3<I>2(—n<,An+E,i;An+1,§—n<;1). (512)

Here 3®,(a, b, c;d, e; x) is the hypergeometric function [15]

2 (a)n(b)n(c),
3¢2(a,b,c;d,e;x):§%%7

with the Pochhammer’s symbol (a), defined by (a), = a(a+1)---(a+n —1) =

(5.13)

I'(a + n)/T(a). It should be noted that the Landau level indices n; and I, given
in Eq. (5.9) are, respectively, replaced by n+ 1 and [ or n and [ + 1 for the elec-
tron hopping motion, depending on the type of the transitions associated with the
Landau-level index, and that the summations of Eq. (5.9) over the Landau level can
be, respectively, divided into two possible cases: (i) 2 nisn, 2p and 34,37y, and
(i) o vz, and 3, Ty since the condition (n',1') # (ns,l,) in the summation
of Eq. (5.9) contains three types of contributions:(i) n' # n;, I' # I, (i1) n' # ny,
I'" =11, and (iii) n" = ny, I' # {;. The § functions in Eq. (5.9) express the law
of energy conservation in one-phonon collision (absorption and emission) processes.
The strict energy-conserving § functions in Eq. (5.9) imply that when the electron
undergoes a collision by absorbing energy from the field, its energy can only change
by an amount equal to the energy of a phonon involved in the transitions. This in
fact leads to MPR effects due to the Landau levels.

Now, let us consider the case where the non-degenerate limit and the quantum
limit (hwy,hw_ > kgT) are satisfied so that the electrons can be in the lowest
Landau levels (viz., n = 0 and [ = 0). Then, the transverse magnetoconductivity of
Eq. (5.7) for the electron hopping motion due to the Landau-level indices n and [

can be expressed by

3h6 212
MPR __ 2. | B Wyly
Oy R nee’y T {1 — exp[—Bhw,]}
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hk,)? (1,0, k,;
X/dky eXp[_B( ~y) ] ( 3~7 y,0,0,ky)
2m*  (hwy)? + T%(1,0, ky; 0,0, &, )

| B3R% w2
+n.e? PO {1 — exp[—fhw_]}

2 r .
oAy Tt

(Aw_)? +T2(0,1, k,; 0,0, k,)’

where n, = N,/V is the electron density with N, = MZﬁz*L;/ﬁﬂhQ exp[B{EF —

h(ws + w-)/2}]. To obtain the dc magnetoconductivity of Eq. (5.14) in sim-

(5.14)

pler form, we assumed that the f's in Eq. (5.7) are replaced by the Boltz-
mann distribution function for non-degenerate semiconductors [23,25,26,35], i.e.,
f(Ena(ky) = exp[B(Ep — En(ky)], where Ep denotes the Fermi energy. We also
replaced one summation with respect to k, in 2-nik, Dy the following relation
[23,25,26,35): ok (--+) = (Ly/27) [°% dky(-+-). In the case where the quantum
limit (Aw,,hw_ > kgT) are satisfied, only one or two Landau levels are custom-
arily occupied. Accordingly, it may be sufficient for us to consider the electronic
transitions between the states specified by n; = 0,1 and [, = 0, 1 (: = 1,2) in Eq.
(5.9) for the fundamental MPR. Then, the relaxation rates of Eq. (5.9) for the
electron hopping motion due to the Landau-level indices n and [ are respectively
given, after the gy integration, by

. 1
[(1,0,k,;0,0,k,) = NoA{
! ! V0zm{hw_ — hw} /02 - k2|
N (3/4)
V0I2ms{hw, + hw_ — hwy } /A% — k2|
N 1
0z {hw_ — hw, — hwy} /A2 — 2|

1, (5.15)

- 1
B e DR o vy
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N (3/4)

V02 {hwy + hw_ — hw, /R — k2|
N 1

V012 {hwy — hw_ — hw } /B2 — k2|

1 (5.16)

where A = D'm* /4wl 1_h* Note that we considered only the phonon absorption
process since we are interested in the physical properties of MPR in a specific process.
As can be seen from Eqs. (5.14) - (5.16), the relaxation rates play an important role
to determine the height and width of the MPR peaks as well as their peak positions.
Equation. (5.14), supplemented by Egs. (5.15) and (5.16), is the basic equation for
the MPR spectral lineshape arising from the electron hopping motion between the
effective Landau states by absorbing a phonon with an energy hwg in the scattering
events, which enables us to analyze MPR effects in the Q1D electronic systems under

tilted magnetic fields.

C. Numerical Results and Discussion

In this section we present the numerical results of the magnetoconductivity for-

mula o)/P® in Eq. (5.14), which is related to the MPR for the Q1D electronic
systems based on the model described in Sec. A. Here, special attention is given
to the behavior of the MPR lineshape, such as the appearance of subsidiary MPR
peaks, the shift of these MPR peaks, and a change in MPR amplitude and width.
For our numerical results of Eq. (5.14), we consider the Q1D electronic systems with
effective mass m* = 0.067 mq with mg being the electron rest mass and LO-phonon
energy hwy, = 36.6 meV as an example. The sample temperature is assumed to be 50

K'in this calculation. The quantities n, and D’ in Egs. (5.14)- (5.16) are respectively
taken by \/2m*7r3h2/D’264ﬂ3 and 4v/2 x 10~2574%/,/m*3 NZ for simplicity.
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¥R [arb. units)

o™PR [arb. units)

¥R [arb. units]

FIG. 9. Magnetic field (B) dependence of the magnetoconductivity (O’%P R) for different

tilt angles (6’s): (a) w; = 0.2wy, wy = 0.5wr, (b) wi = 05wy, wy = 0.2w, and (c)

W) = w9y = 0.2(4}1,.
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FIG. 10. Magnetic field (B) dependence of the magnetoconductivity (U%P ) for (a) the
change of the confining potential strength ws in the z direction and (b) the change of the

confining potential strength w; in the z direction.
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MPR

s for the Q1D system as a function

Figure 9 shows the spectral lineshapes of o
of magnetic field B for various tilt angles 6 of the transverse tilted magnetic field
B = (Bsin#,0, cos §) applied to the electronic wire, where we considered three cases
for confinement frequencies w; and wy in the z and 2z direction: (a) w; = 0.2w;, and
wy = 0.5wy, (b) wy = 05wy and w, = 0.2w;, and (€) w1 = wy = 0.2wy, as an
example, in order to see the effect of tilted magnetic fields, viz., 8 dependency of
MPR depending on the condition of the confining potential parameters. Moreover,
to understand the effect of electrostatic confining potentials (characterized by wy,
wz) on MPR, we plotted the spectral lineshapes of o PR for the Q1D system in Fig.
10, as a function of magnetic field B for various confining potential parameters at
a fixed angles 0, where the tilt angle was taken as 30° as a matter of convenience.
In these figures, we can see the following features for the Q1D system: (i) there are
three peaks in the o)!P® under the magnetic field up to 40 Tesla; (ii) the shift of
the resonant peaks in the conductivity for w; # w, corresponding to an asymmetric
quantum wire is very sensitive to the tilt angle 6 of applied magnetic field and the
relative strength of the confining potential parameters w; and ws in the z and 2
direction, while for w; = w, corresponding to a symmetric quantum wire, it does
not depend on the tilt angle, and (iii) the height of these peaks and their resonance
widths are closely related to the tilt angle 6 and the confining potential parameters
w1 and ws.

Let us first examine feature (i). Since MPR is a phenomenon which occurs in the
electronic system subjected to quantizing magnetic fields, the resonant transition in
the Q1D electronic structure under tilted magnetic fields takes place in terms of the
Landau-level-indices n and I, whereby hwy,hw_ > T are satisfied. In this case, the

abrupt change of the relaxation time (and hence magnetoconductivity) is expected
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to occur at the resonant magnetic field when we vary the strength and/or the tilt
angle 6 of the applied magnetic field. As can be seen from Egs. (5.14)-(5.16),
there are four possible cases which change T abruptly under the condition that the
density of states is maximum (i.e., at k = 0): hw_ = hwy, hw, + hw_ = hwy,
hwy = hwy, and hw; — hw_ = hwy, which are the conditions for MPR giving
the peak positions (i.e., resonant magnetic fields) in the spectral lineshape, because
the condition Aw_ — hw, = hw; is obviously impossible from the definition of the
effective frequencies w. and w_. For given w; and w, in Figs. 9 and 10, however,

the resonant behaviors are actually given by the following three cases:
hwy + hw_ = hwy, hw, = hop, hw, — hw_ = hwy (5.17)

under the magnetic field up to 40 Tesla, which are reduced to the MPR conditions
of the Q2D system in tilted magnetic fields, if wy or wp — 0 is taken in Eq. (5.17).
In the course of scattering events, the electrons in the effective Landau and sub-
band levels specified by the level indices (n,1) could make transitions to one of the
effective Landau and sub-band levels (n/, I') by absorbing a LO-phonon energy hw;
when the conditions (5.17) are satisfied. The first condition indicates a process
corresponding to the electronic transition from (n, 1) = (0, 0) to (1,1), where quasi-
electrons having respective energy of fiw, and hw_ are created by absorbing a LO-
phonon with energy fiw;. The second condition indicates a process corresponding to
the electronic transition either from (0,0) to (1, 0) or from (0,1) to (1,1), where only
a quasi-electron with energy fhiw, is created by absorbing the same phonon energy.
The third condition indicates a process corresponding to the electronic transition
from (0,1) to (1,0), where, by absorbing a LO phonon with the same energy, a
quasi-electron with hw, is created and a quasi-electron with energy hw_ is however

annihilated. It is shown from Eq. (5.17) that additional MPR conditions (subsidiary
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peaks) appear at hw, + hw_ = hwy, on both sides of the MPR peaks at hw, = hwy.
The origin of the appearance of the subsidiary peaks in the Q2D/Q1D systems is
mainly due to the presence of the effective confining potential mw? Z2/2, ie., w_
in Eq. (5.17), which is unlike the MPR in a 3D electronic system (where only one
resonant peak appears at iw; = hw, = hiw; when P = 1. Here P is the difference of
Landau-level index.) [2,50-52]. Thus, the appearance of these subsidiary peaks in
the MPR lineshape seems to be a characteristic feature in Q2D and Q1D electronic
systems. If the frequencies w, and w_ in Eq. (5.17) are replaced by €, and Q,,
respectively, Eq. (5.17) is reduced to our previous result [25] for a Q1D quantum-
wire structure modeled by the same potential wells, which is valid for the strong

confinement potentials with respect to the cyclotron resonance frequency. Moreover,

if the frequencies w, and w_ in Eq. (5.17) are replaced by \/@f cos? f + w?sin? @ + w2

and \/wf sin® 6 + w3 cos? B, respectively, Eq. (5.17) is reduced to the result of Suzuki
et al. [26] for a Q1D quantum-wire structure modeled by the same potential wells,
which is valid for weak confinement potentials.

Next, let us pay attention to the shift of the resonant peaks in the conductivity
seen in Figs. 9 and 10, which is related to feature (ii). Their shift in the conductivity
can be understood in terms of the behaviors of hw, and hw, + hw_ in Eq. (5.17)
since the quantities iw, and hw, 4-hw_ intercept Aw,, at the resonant magnetic field
values. The quantities fiw, and hw, + hw_ are mainly influenced by the tilt angle
of the applied magnetic field and the strength of the confining potential parameters
(wi,ws). Therefore, we will concentrate on how MPR peaks change according to
these factors.

Figure 11 shows the shift of resonant peaks in the conductivity seen in Fig. 9 as

a function of tilt angle 6 depending on the confinement conditions given in Fig. 9.
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As can be seen from the figure, in the case of w; < ws, the resonant point for

— ho,=ho
40 - hm;hmf-hmx_
©,=0.%, ho +he_=ho,
®,=0.20,
) A B
El /N =
g 20 |
o ¥y
............. Yoo,
L 1+ 1) RO e
©,=0.50,
0 20 40 60 80

FIG. 11. Tilt angle dependence of the resonant magnetic fields (Bpeak), viz., the MPR
peak positions for w; = 0.2wp, wp = 0.5wy, and w; = 0.5wy,, wy = 0.2w;. The solid, dashed,
and dotted lines correspond to hw, = hwy, hw; — hw_ = hwy, and hwy + hw_ = hwy,

respectively.

the subsidiary peak in the low field side determined from the condition hw, + hw_ =
hwy, shifts to the corresponding point in the higher field side. Those resonant points
for the central peak given by hw, = hwy and for the subsidiary peak in the high
field side given by hw; — hiw_ = hwy, shift to the corresponding points in the lower
field side, respectively, as the tilt angle is increased, which has an identical behavior
as reported by Suzuki et al. [26]. However, the shift of the resonant peaks for w, >
wy is the contrary to that for w; < wy. In other words, for w; > w,, the peak in the
low field side of the magnetic field shifts to the lower field side whereas the peaks
in the middle and the high field side of the field shift to the higher field side, as the
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tilt angle 6 of the applied magnetic field is increased. It is noted that our present
results do not agree with the experimental results of Brummell et al. [44] for Q2D
electronic systems, indicating that all of the MPR peaks shift to the higher B side.
As mentioned by Suzuki et al. [26], this disagreement may be due to the fact that
their experiment was performed under the magnetic fields up to 10 Tesla whereas
our calculations were carried out for the magnetic fields in the region more than 15
Tesla, taking into account two different effective Landau states, n =0,1and [ = 0,1
only. Since the MPR peak on the lower B side shifts to the higher n or [ side even
in the present calculations, we might expect the present theory to reproduce their
experimental results qualitatively if we take into account the electronic transitions
up to the second excited levels and obtain the MPR conditions valid under the
magnetic fields up to 10 Tesla. The shift of the MPR peaks in the conductivity
seen in Fig. 10 is represented in Fig. 12, as a function of the relative strength
of the confining potential parameters for a fixed tilt angle 6. It is shown in the
figure that, for a fixed value of w; at a specific angle, the peaks in the low field and
the middle field side of the magnetic field shift to the lower field side whereas the
peak in the high field side of the magnetic field shifts to the higher field side, as
the relative confining potential parameter wy/w; is increased, while for a fixed value
of w,, all three MPR peaks shift to the low field side of the magnetic field as the
relative confining potential parameter w;/w, is increased. OQur present results for
the latter case agree qualitatively with those of Suzuki et al. [26]. Other interesting
features of the shift of the MPR peaks are expected according to the relative strength
of the electron confinement due to the electrostatic potentials with respect to the
magnetic confinement by an applied magnetic field. Their shifts for strong and weak

confinement potentials are plotted in Fig. 13, as a function of tilt angle 6, using the
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MPR conditions given by Eq. (5.17).
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FIG. 12. Relative confining potential strength dependence of the resonant magnetic
fields (Bpeqk) at a fixed angle § = 30°: (a) w; = 0.2wy, and (b) wy = 0.2w;. The solid,
dashed, and dotted lines indicate hw, = hwy, hwy — hw_ = hwy, and hwy + hw.. = hwy,

respectively.
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FIG. 13. Tilt angle dependence of the resonant magnetic fields (Bpeak): (a) wi,ws < w,

and (b) w;,ws > w,, where w, and w2 have been taken as 0.1w,. or 0.5w, for weak con-

finements and as 2w, or 5w, for strong confinements. The solid, dashed, dotted, and

dashed-dotted lines correspond to hwy = hwp, hwy —hw_ = hwy, hwy + how_ = hwy, and

hw_ = hwp, respectively.
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It is clearly seen in this figure that the resonant peaks for strong confinement appear
in the low field side and their angle dependence is small whereas those for weak
confinement appear in the high field side and their angle dependence is larger than
that for strong confinement. Moreover, the MPR peaks exhibit the similar angle
dependence of the shift, as in Fig. 11. Note that, in addition to the MPR conditions
in Fig. 11, the shift of resonant peaks given by hw_ = hw; appears in terms
of given confining potential parameters w; and w,. For direct comparison of the
MPR conditions presented by some authors, the shift of resonant peaks given by
hw,; = hw; as an example is represented in Fig. 14, as a function of tilt angle
according to the confinement strength, where the confining potential parameters
were respectively taken as 0.1w, and 0.5w, for weak confinement and 2w, and 5w,
for strong confinement as a matter of convenience. As shown in Fig. 14, the present
results of the angle dependence of the MPR peaks for weak confinement agree well
with those of Suzuki et al. [26] for a Q1D quantum-wire structure modeled by the
same potential wells, but they do not agree with our previous results [25] whereas the
present results for strong confinement agree qualitatively with those of our previous
results, but they do not agree with that of Suzuki et al. The difference between
the present result and their results [25,26] is due to the neglect of the coupling
Hamiltonian term ~ B,B,zz in Eq. (5.1) or Eq. (5.2). Let us turn to feature (iii)
for the height and width of the MPR peaks seen in Figs. 9 and 10. The height and
width of the MPR peaks seen in Figs. 9 and 10 can be explained by Eq. (5.14). The

height of MPR peaks are influenced by amplitude factors (Ymrw_ /mrwiw? fwd {1 -
exp[~Bhw.]} and/or \/m*w, /m*w_w?/w? {1 — exp[—Bhw_]}), in addition to the

Lorentzian spectrum function.
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FIG. 14. Comparison with the existing theories for the tilt angle dependence of the
resonant magnetic fields (Bpeqk), where w; and w» have been taken as 0.1w, or 0.5w, for
weak confinements and as 2w, or 5w, for strong confinements. The solid, dashed, and
dotted lines indicate the present result for hwy = hwr, Ryu et al.’s theoretical results,

and Suzuki et al.’s theoretical results, respectively.
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FIG. 15. Tilt angle dependence of the MPR peak heights: (a) w; = 0.2wy, wa = 0.5wy,
and (b) w; = 0.5wr, wy = 0.2wy. The solid, dashed, and dotted lines indicate hw, = hwp,

hwy — hw_ = hwy, and hw, + hw_ = hwy, respectively.
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FIG. 16. Relative confining potential strength dependence of the MPR peak heights at
a fixed angle 6 = 30°: (a) w; = 0.2wy, and (b) wy = 0.2wy,. The solid, dashed, and dotted

lines indicate hwy = hwy, hw, — hw_ = hwy, and hwy + hw_ = hwy, respectively.

Figure 15 shows the variation of the heights of MPR peaks in Fig. 9 as a function
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of the tilt angle of applied magnetic field. It is seen clearly in this figure that their
heights increase as the tilt angle increases. The increase is given in terms of the
amplitude factors and it is understood that the spikes on the curve arise from the
Lorentzian spectrum function.

The variation of the heights of MPR peaks in Fig. 10 is presented in Fig. 16, as
a function of the relative strength of confining potential parameters. The changes
of their heights in this figure can be understood by the amplitude factors, as in
Fig. 15. When the relative strengths of the confining potential parameters increase,
the heights of all three MPR peaks decrease, which agree qualitatively with the
experimental results of Brummell et al. [44] for Q2D electronic systems and with

the theoretical results of Suzuki et al. [26)].
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FIG. 17. Tilt angle dependence of the MPR widths for w; = 0.2wr, wy = 0.5w, and

wi; = 0.5wp, wy = 0.2wy. The solid, dashed, and dotted lines indicate hwy = hwg,

hwy — hw_ = hwy, and hw, + hw_ = hwy, respectively.
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The width of MPR peaks is mainly determined by the Lorentzian spectrum function
in Eq. (5.14) through the behavior of T' which appears in terms of the collision
broadening due to the electron-phonon interaction and plays the role of the width
in the spectral lineshape [53]. Therefore, the width broadening of MPR peaks shown
in Figs. 9 and 10 can be understood by the terms including (hwy)? in Eq. (5.14).
Figure 17 shows the variation of the width of MPR peaks as a function of tilt angle.
It can be seen from the figure that, as the tilt angle increases, the widths increase for
w; < wy, but they decrease for w; > w,. This means that, as the tilt angle increases,
the effective confinements for w;, < w, are tighter and electrons are further confined
in the narrow region, while for w; > w, the effective confinements are looser and
electrons are confined in the wide region. As a result, for w; < w,, the frequency
of collisions between electrons and LO phonons increases and the relaxation time
becomes shorter due to the collision (scattering), while for w; > ws, the frequency of
collisions decreases and the relaxation time becomes longer. Our theoretical results
for the angle dependence of MPR width for w, < wo agree qualitatively with the
experimental results of Brummell et al. [44] for Q2D electronic systems and with
the theoretical results of Suzuki et al. [26], which is unlike the case of w; > wy.
The variation of the widths of MPR peaks in Fig. 10 is presented in Fig. 18,
as a function of the relative strength of confining potential parameters. In this
figure, we can sce that the width broadening is increasing with increasing one of the
confining potential parameters. This means that, as one of the confining potentials
increases, the effective confinements are tighter and electrons are further confined in
the narrow region, as in the angle dependence of width for w1 < wp. Our theoretical
results for the strength dependence of confining potential parameters of MPR width

agree qualitatively with the experimental results of Brummell et al. [44] for Q2D
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FIG. 18. Relative confining potential strength dependence of the MPR widths at a fixed
angle 6=30°: (a) w; = 0.2wy, and (b) wy = 0.2w;. The solid, dashed, and dotted lines

indicate hw; = hwy, hwy — hw_ = hwy, and hwy + hw_ = hwy, respectively.
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electronic systems and with the theoretical results of Suzuki et al. [26] for Q1D
systems.

Through all figures presented here, we can summarize the physical chéracteristics
of MPR lineshape as follows: for the symmetric quantum wire, there are no shifts in
MPR peaks as the tilt angle is increased, while for the asymmetric quantum wire,
the shift of MPR peaks and the change of their amplitude and width are sensitive
to the tilt angle. The angular dependences of the shift of MPR peaks and of the
change of their width for w, > w, are contrary to those for w; < wy. As one of
the confining potential parameters (w; and wy) is increased, the MPR peaks in the
low field and the middle field side of the magnetic field shift to the lower field side
whereas the peak in the high field side of the magnetic field shifts to the higher field
side. In addition, the widths of MPR peaks are increased, but their peak heights

decrease.

D. Conclusions

In conclusion, we have derived the conductivity oy, for Q1D electronic systems
subjected to crossed electric (E||j) and magnetic fields B = (B, 0, B,), based on
a simple model of parabolic confining potentials and obtained the MPR, conditions
in the quantum limit condition, as a function of the strength (B) and tilt angle (6)
of the applied magnetic field (B) as well as the strength of the parabolic potential
parameters (w; and/or wp). With the MPR conditions, we have investigated the
physical characteristics of the MPR effects, according to the tilt angle of the ap-
plied magnetic field and the relative strength of the confining potential parameters,

in such low dimensional systems. In particular, we have studied the qualitative
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features of the MPR effects, their physical origin, and the dimensional Crossover
between Q2D and Q1D systems associated with the confining potential in tilted
magnetic fields and compared with the existing theoretical results because we are
not aware of any relevant experimental work on MPR on the dependence of the tilted
magnetic field on the o, for Q1D electronic systems. Some comments related to
this work should be made as follows: (i) our theoretical results are based on a model
of parabolic confining potential. For usual heterostructures it is well known that
the confinement potential in the z-direction is far from being parabolic and is often
approximated by a triangular potential [23,35]. For direct comparison with experi-
ments, realistic modeling with the correct confinement potential should be required.
We believe however that utilizing a model with a parabolic confinement is good
enough to extract the essential physics of MPR effects in Q1D electronic systems in
tilted magnetic fields; (ii) the single-particle picture has been used throughout this
work, and thus the electron-electron interactions have been ignored. The effect of
electron-electron interaction can be taken into account approximately by replacing
the electron-phonon interaction included in Eq. (5.9) by a screened electron-phonon
interaction iDh'/? /(2pw;, V) 1/2(1 +2%(q)/q¢?) [26], since the inverse screening length
A(q) depends on the electron density n., which in general depends on temperature T
and the magnetic field B. Therefore, we would expect the screening to be significant
only if the electron density n, exceeds a critical value ne (T, B). In this case, the
effects of electron-electron scattering would be significant, and the relaxation rate
will be changed and the MPR lineshape as well as the MPR linewidth would be af-
fected by electron-electron scattering; (iii) any modification of the electron—-phonon
interaction brought about by the confinement of phonons (we used the interaction

for bulk phonons) has not been taken into consideration. A possible influence of the

7



modification can be included [54] in the electron-phonon interaction in Eq. (5.9).
Although such modifications would be expected to affect the MPR lineshape consid-
erably, as in the electron-electron scattering case, they are not expected to change
the physical characteristics of MPR effects, such as the appearance of subsidiary
MPR peaks and the shift of these MPR peaks.

Despite the above shortcomings of the theory, we believe that the simple model
we present captures qualitatively the essential physics on MPR in Q1D electronic
systems brought about by the electron confinement due to the electrostatic poten-
tials and the magnetic confinement by tilting a magnetic field. We hope that new

experiments will test the validity of our prediction.
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VI. MAGNETOPHONON RESONANCES IN THE MINIBAND

TRANSPORT IN SEMICONDUCTOR SUPERLATTICES

Since initially predicted by Gurevich and Firsov [2], the MPR effect has
been widely studied in bulk semiconductors. The oscillations in the magnetore-
sistance, caused by resonant scattering of electrons between Landau levels in-
volving an interaction with optical phonons, has been used in order to investi-
gate the electron properties and the lattice vibrations in many polar semiconduc-
tor materials. Growth techniques such as molecular-beam epitaxy make it pos-
sible to realize High-quality low-dimensional electron gas systems and superlat-
tices. MPR effects in low-dimensional electron-gas systems have received much
attention from both experimental and theoretical points of views. Many stud-
ies of MPR effects in such low-dimensional electronic systeras have been reported
[14,20,21,23-26,30,31,35,43,45,55]. However, less work has been done in short-period
superlattices. The work related to the MPR in semiconductor superlattices was
performed by Noguchi et al. [56] in 1992. They have presented their experimental
results of longitudinal magnetoresistance in GaAs/Al,Ga,_,As superlattices under
high magnetic fields normal to the interfaces and parallel to the electronic fields.
Recently, Gassot et al. {57] have observed the strong oscillations of MPR on the
background of the longitudinal magnetoconductance in short-period GaAs/AlAs
superlattices resulting from electron interactions with both GaAs and AlAs LO
phonons and reported the miniband, electric-field, temperature, and pressure de-
pendences of MPR in superlattices. Although the main physics in the longitudinal
magnetic field configuration is clear, many details have not yet been explored and a

systematic theoretical treatment is still lacking [58].
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The purpose of the present chapter is to present a systematic theoretical analysis
of miniband transport of electrons in a GaAs-based superlattice under the influence
of a quantized magnetic field normal to the layer plane and to compare our present
results with the experimental and theoretical results presented by some authors
[56-58]. The investigations are based on the linear response limit of a general ex-
pression for the nonlinear dc conductivity developed previously [4], which have been
applied to low-dimensional electronic system [25,35] to check the validity of the the-
ory. The longitudinal magnetoconductivities for polar- and nonpolar-optical-phonon
scatterings are calculated for superlattices having miniband widths A = 2.0, 3.6, 5.7,
7.7, and 13.64 meV, where the conductivity is inversely proportional to the relax-
ation rates closely related to the MPR effect. From the relaxation rates, we obtain
the MPR condition and the energy range in which the relaxation rates are allowed.
As many as 21 Landau levels are included in the calculation of the longitudinal mag-
netoconductivity. At higher temperature when optical phonon scattering dominates,
strong oscillations of the longitudinal magnetoconductivity appear due to the reso-
nant scatterings of electrons between Landau levels by the longitudinal optical (LO)
phonons. Our calculated results related to the MPR effects in superlattices are in
good qualitative agreement with the experimental and theoretical results presented
by some authors [56-58].

The rest of the chapter is organized as follows. In Sec. A, we review a model
for superlattices. General formulae of the longitudinal magnetoconductivity o,, for
the superlattice is presented in Sec. B, where the conductivity consists of the usual
Drude term arising from the drift motion of electrons. The relaxation rate, which
is closely related to the MPR, is evaluated for polar- and nonpolar-optical-phonon

scatterings, assuming that the interaction with bulk LO phonon is the dominant
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scattering mechanism. Numerical results of magnetoconductivity for the superlat-
tices having various miniband widths are presented in Sec. C. In particular, the
MPR conditions for the model systems are given explicitly and the effects of mini-
band width and the temperature on the MPR are discussed. Here, special attention
is given to the behavior of the MPR lineshape, such as the appearance of the plateau
scattering between the two MPR peaks, the disappearance of MPR peaks, and a

change in MPR amplitude. Concluding remarks will be given in the last section.

A. Electronic Model

We consider a system consisting of N electrons in a superlattice with periodical
potential wells of period ds;, along the z direction under the influence of longitudinal
magnetic field B (in the z direction). The electron energy spectrum of the super-
lattice still forms minibands in the longitudinal direction due to the superlattice
periodic potential. In the superlattice layer (z — y plane), however, it is quantized
into Landau levels due to the magnetic field. Considering only the lowest miniband
the electron state can be described, in the Landau representation, by the quantum
number 7 of the Landau level, the wave vectors k, and k, (-7 /d < k, < 7 /d), and
the spin index 0. The electron energy can be written as (we neglect the spin-related

energy for simplicity)
en(k:) = (n+1/2)hw, +esp (k;), n=0,1,2,---, (6.1)

where n denote the Landau level index resulting from the magnetic confinement,
w, = eB/m* is the cyclotron frequency, m* is the electron band effective mass in

the z — y plane, and g1 (k,) means the energy dispersion of the lowest superlattice
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miniband, which is approximated by cosine shape, under the tight-binding approx-

imation, as

A
EsL (kz) = 5 (1 — COS kzdSL) , (62)

where A is the miniband width and dst, denotes the periodicity of the potential.
Then, the density of states (DOS) is expressed as
* [ 11; z
De) = m w2L yL 1
m2hds, 4 \/(S—En)(5n+A—6)
This indicates that the DOS has singular points at the top (e = ¢, + A) and the

0(c — €n)0(en + e — ). (6.3)

bottom (¢ = &,) of each miniband as shown in Fig. 19
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FIG. 19. Dispersion relation and density of states of a superlattice under high magnetic

fields and the resonant excitation of electrons by optical phonons. The number 7 on each

miniband is the Landau index.
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The electron wave function can be expressed by

(EIN) = (@02 | 1,k B = \}L_ explik,z]xn . (4)E, (2), (6.4)
where
1 Vv (y — yo)? Y — Yo
Xn k. (y) = (m) exp [—T} H, ( I ) (6.5)

with lp = \/h/m*w,, yp = %k, H, (z) is the harmonic function, and &, (2) stands

for the tight-binding Bloch function in the z direction.

B. Magnetoconductivity Associated with Relaxation Rates

In this section, we want to evaluate an analytical expression of the longitudinal
magnetoconductivity o,, for the model systems described in the previous section,
by taking the real part of a general expression for the complex nonlinear de con-
ductivity 6,(E) (k,1 = z,y,z) given in Ref. 4 and the linear response limit, i.e.,

limg_, Re{6(FE)} = ok, the dc linear conductivity o,, for weak electric fields is

given by
BezAzdng% /""/dSL .
2z — T o dkz kzd ’
7 16m2h 2 | _pygy, WRe ST (kadlsy)

X f(en(k))[1 - f(en(kz))]f“‘l(n,kx,kz;n,kz,kz) (6.6)

for the shift zero in the spectral line shape, where 3 = 1/kpT with kg being Boltz-
mann constant and T temperature. Also, n indicates the quantum state, % is Plank
constant divided by 2, f(e,(k,)) is a Fermi-Dirac distribution function associated
with the eigenstate | n, k,, k, > of Eq. (6.4) and the energy ¢, (k,) of Eq. (6.1), and

—e(< 0) is the electron charge. The quantity T given in Eq. (6.6), which appears
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in terms of the collision broadening due to the electron-background (phonon or im-
purity) interaction, play the role of the relaxation rate in the spectral line shape.
To obtain the longitudinal magnetoconductivity o,, of Eq. (6.6) for the model
systems, we used the matrix elements of the z-component single-electron current

operator |< k;, kz,n | j, | n', k., k. >|2 to be

|<keskeon | Go | 0/ KL K, >P= (eAds, sin(kzdSL)/th5nn:(5kzk1,6klkz,, (6.7)

since the matrix element with respect to the current operator in Eq. (6.7) is directly
proportional to the dc magnetoconductivity, where the Kronecker symbols (4,;,,
Okek,. Ok.,,) denote the selection rules, which arise during the integration of the
matrix elements with respect to each direction. We also replaced summations with
respect to kg and k, in 33, ;4. by the following relation [23,26]:

3 () = (LoLajan?) [ e / T (), (6.8)

ko K m*wcLy /2R —n/dsy

In addition, to express the dc magnetoconductivity of Eq. (6.6) in simpler
forms, we assume that the f’s in Eq. (6.6) are replaced by the Boltzmann
distribution function for nondegenerate semiconductors [23,26], i.e., f(en(k.)) ~
exp[B(Er — en(k.)], where Er denotes the Fermi energy given by Ep =
(1/8) In {4rhn.dg, sinh(ﬂhwc/2)/[m*wcexp(—BA/Q)IO(BAﬂ)]}. Here n, = N,/V
denotes the electron density and I(z) denotes the modified Bessel function [15]. As
shown in Eq. (6.6), the electronic transport properties (e.g., electronic relaxation
processes, magnetophonon resonances, etc.) in the superlattice can be studied by
examining the behavior of I" as a function of the relevant physical parameters intro-
duced in the theory. In the following, we shall analyze the relaxation rates in details

in order to get insight into MPR effects in the model system of the superlattices.
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An analytical expression of the relaxation rate in the lowest-order approximation
for the weak electron-phonon interaction and in the limit of weak electric fields can
be evaluated from the general expression of the electric-field dependent relaxation

rate given by Eq. (4.39) of Ref. 4 as follows:

f(n, kzakz;na kxykz) = WZ Z |C(Q)’2 ' Jnn’(u) '2 {(nq + 1)
q n'#n

xd[(n — n')hw, — %(cos k.dsy, — cos(k, — q.)ds.) — huwg)

A
+nqé[(n — n')hw, — —2—(COS k.ds, — cos(k, + q.)ds) + huwq)}

+13 2 2 1C@P | T (@) 2 {(ng + 1)

q n'#n

X(S[(n’ — n)f},u)c — -?—(COS(ICZ + qz)dSL — COS kzdSL) + hwq]

A
+ngd[(n" — n)hw, — E(Cos(kz —¢:)ds1, — cos k,dsi.) — hwg]},

(6.9)

where n' indicates the intermediate localized Landau leve] indices, ng is the optical
phonon distribution function given by nq = [exp(Bhwq) — 1]71, C(q) is the Fourier

transform of the electron-phonon interaction potential, and

[ 0) = P L3 (6.10)
Here n, = min{n,n'}, n, = maz{n,n'}, u = 1501/2 with ¢} = ¢2+¢2, and L3 (u)
is an associated Laguerre polynomial [15] with An = n, — n_. The § functions in
Eq. (6.9) express the law of energy conservation in one-phonon collision (absorption
and emission) processes. The strict energy-conserving ¢ functions in Eq. (6.9) imply
that when the electron undergoes a collision by absorbing energy from the field, its
energy can only change by an amount equal to the energy of a phonon involved in

the transitions. This in fact leads to MPR effects due to the Landau levels.
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To calculate the relaxation rates I' of Eq. (6.9) for electron-phonon interactions,
we consider the Fourier component of the interaction potentials [20,25,26,55] for
non-polar optical phonon scattering given by |C(q)|? = D/V with D being the
constant of the nonpolar interaction and for polar-LO-phonon scattering given by
|C(g)]> = D'/Vg¢* with D' being the constant of the polar interaction, where the
assumption that the phonons are dispersionless (i.e., hws =~ hwy, = constant, where
wy is the optical phonon frequency) and bulk (i.e., three-dimensional) was made.
Then, the relaxation rates associated with the electronic transition between the
states | n, kz, k; > and | n, k,, k, > can be expressed for non-polar and polar optical

phonon scatterings, respectively, by

- 0(1 — 407 (k.)/A?)
L(n, kg kin, ke, k) = no+1/2+1/2) : ,
12 AdSL EZ V1 - 463 (k,)/A?
(6.11a)
N 2D’
T (n,ky, kn, ke, k,) = S ([(no+1/2+1/2)
WAdSL n'#n *
K. (n,n';k, 4
£ ( ) g (1 - =93 (kz)) , (6.11b)

V1 - 2263 ()
where ny is the optical-phonon distribution function given by ng = [exp(Bhwg) —1]7!
with wq = wp, the symbol + in the summation indicates the phonon emission and
absorption processes, respectively, 6 (z) is the Heaviside step function defined by

6(z)=1forz >0andOforz <O,

A
04 (k) = (n' — n)hw, + & cos k.dsy + hwpo, (6.12)
and
K (nn'5t) = o [ dus e ()P —
n (TR I Y (TR | pip——
+(n, L L v+l

86



e 2 2k)! (2k)!
C 2(a+n, ';;mzo n, —k)!
(=1)™2™ (2k + 2a)! (a+m).

(2k —m)! (2a + m)!m!

r (—a — m, ai) . (6.13)

Here a = I} (k. — cos™ (204 (t) /A) /ds)? /2 with t = k,ds, & = n, —n_, and
I'(a,z)is the incomplete gamma function {15] defined by [(a,z) = [Fe 't ldt.
In order to obtain Eq. (6.11), we transformed the sum over q in Eq. (6.9) into an
integral form in the usual way as Xq (2:? o 12 Z/T‘;d dg.dg,dq, and used the
following property of Dirac delta function: 6[f(z)] = iz — zi]/|f'(x;)| with z;
being the roots of f(z). In addition, we utilized the following relation in doing the in-
tegral over ¢; and qy: [5° \/u|Jun(u)[?du = 1/13, to obtain Eq. (6.11a). It is clearly
seen from Eq. (6.11) that the relaxation rates diverge whenever the conditions
1~ 403 (k) /A? = 0 and the arguments aZ = 0 in the incomplete gamma function
r (—a - m, afk) (or Ky (n,n/;t)) are satisfied. From these conditions, the relaxation
rates (and hence, the longitudinal magnetoconductivities 0..) for both non-polar-
LO-phonon and polar-LO-phonon scattering show the same resonant behaviors at
Nhwe = hwro (N=n'-n=1,2,3, ...). When the MPR conditions are satisfied, in
the course of scattering events, the electrons in the Landau levels specified by the
level index (n) could make transitions to one of the Landau levels (n') by absorbing
a LO-phonon energy hwpo. In addition, from the fact that 1 — 402 (k,) /A? are
real and positive, we can obtain an energy range in which the relaxation rates are

allowed under the following condition:
hwro — A < Nhw, < hwio + A, (6.14)

which is identical with the results of Noguchi et al. [56] and Gassot et al. [57] obtained

from the dispersion relation and the density of states of a superlattice under high
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magnetic fields and from the resonant excitation of electrons by optical phonons. It
is to be noted that scatterings with optical modes is possible only within the energy
range and the condition is closely related to the miniband dependence of the MPR
spectra and the plateau feature, and that the energy range in which scatterings
with optical modes are possible is very sensitive to the miniband width and the
strength of applied magnetic fields. Equation (6.6), together with Eq. (6.11), is the
basic equation for the MPR spectral lineshape of superlattices, which enables us to

analyze MPR effects in the superlattices under magnetic fields.

C. Numerical Results and Discussion

In this section we present the numerical results of the longitudinal magnetocon-
ductivity formula o,, in Eq. (6.6), together with Eq. (6.11), which is related to the
MPR for the superlattices based on the model described in Sec. A. Here, special
attention is given to the behavior of the MPR lineshape, such as the appearance
of the plateau scattering between the two MPR peaks, the disappearance of MPR
peaks, and a change in MPR amplitude. For our numerical results of Eq. (6.6), we
consider the electronic systems in the superlattice with effective mass m* = 0.067
mg with mg being the electron rest mass and LO-phonon energy hwio = 36.6 meV.
The electron density and the period of superlattice are, respectively, taken to be
4.2x107'%cm~3 and 9.93 nm in this calculation. In addition, as many as 21 Landau
levels are included in the calculation of the longitudinal magnetoconductivity.

Figure 20 shows the miniband dependence of the longitudianl magnetoconduc-
tivities 0,, as a function of magnetic field B at T = 240 K, where various miniband

widths ranging from 2.0 meV to 13.64 meV are taken, in order to investigate the
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MPR effect depending on the miniband parameters. The inset indicates the en-
larged part of the magnetoconductivity for low magnetic-field side. In these figures,
we can see the following features for superlattices: (i) as the difference of Landau
level indices is increased, the MPR. peak positions are shifted to lower magnetic field
side, (ii) the number of peaks vary with the miniband width, and (iii) the plateaulike
features and the heights between neighboring MPR peaks are very sensitive to the
miniband width A. Feature (i) can be readily understood from the conditions for
MPR giving the peak positions (i.e., resonant magnetic fields) in the spectral line-
shape, which is mainly determined by the conditions 1 — 403 (k.) /A% = 0 and the
arguments a3 = 0 in Eqs. (6.11) and (6.13). The resonant behaviors are actually
given by Nhw, = hw; o (N=n'-n=1,2, 3,...). Therefore, the resonant magnetic
field is decreased since the Nw, is constant if the difference of the Landau level
indices is increased. The MPR peak positions for the N =1 and N = 2 resonances
shown in Fig. 20, which are given by 10.50 and 21 T, respectively, are in good agree-
ment with Noguchi et al.’s prediction [56]. According to their experimental results,
two large peaks are observed at 12 and 22 T in the superlattice having the miniband
width A = 20.2 meV. Let us pay attention to the number of the resonant peaks in
the conductivity seen in Fig. 20, which is related to feature (ii). The change of the
number of the resonant peaks in the conductivity depending on the miniband width
can be understood in terms of the dispersion relation and the density of states of
a superlattice shown in Fig. 19, together with Eq. (6.14). In the case where the
miniband width and the applied magnetic field are large enough and the minigap
between two minibands exists, DOS in each miniband is not overlapped each other.
However, if the strength of applied magnetic field is decreased, the energy separa-

tion between two Landau levels will be decreased. As a consequence, the minigap
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between two neighboring minibands will disappear and DOS in each miniband can

be overlapped.
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FIG. 20. Miniband dependence of the magnetoconductivity (o.,) as a function of ap-
plied magnetic field at T=240 K. The inset indicates the enlarged part of the magne-
toconductivity for low magnetic fields. The solid, dashed, dotted, dashed-dotted, and
dashed-double dotted lines are for A=2.0 meV, 3.6meV, 5.7 meV, 7.7 meV, and 13.64

meV, respectively.

When DOS in each miniband are overlapped, a lot of electron-LO phonon interac-
tions are expected under the condition of Eq. (6.14). Actually, the magnetoconduc-
tivity will be disappeared as shown in the figure. On the contrary, if the width of
the miniband is sufficiently small, the minigap between two neighboring minibands

is very large under the high magnetic fields. In this case, the minigap between two
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minibands is very large and DOS in each miniband will be never overlapped each
other. The remarkable thing is that DOS in each miniband begins to be overlapped
in lower magnetic fields, compared to the large minband case. Thus, when the mini-
band width is small, a lot of peaks appear, whereas the number of peaks decrease
with increasing the miniband width, as shown in Fig. 20. This feature that the
width of the MPR is better resolved as the miniband width decreases can be also
explained by Eq. (6.14), as Noguchi et al. [56] and Gassot et al. [57] did in details.
All these features are in good qualitative agreement with the experimental results
of Noguchi et al. [56] and Gassot et al. [57] and the theoretical results of Shu et al.
[58].

Next, let us turn to feature (iii) for the appearance of the plateau and the heights
between neighboring MPR peaks according to the miniband width. The appearance
of the plateau between the N — | and N = 2 resonance peaks shown in Fig. 20
has been well explained by Noguchi et al. [56], by using the dispersion relation and
the density of states of a superlattice shown in Fig. 19. As pointed out by Noguchi
et al., if a SL with sufficiently narrow miniband is placed in high magnetic fields
( hwe > A), the real minigap will be formed between the adjacent minibands.

Particularly when the condition

hwro + A

: < hwe < hwgo —A (6.15)

1s satisfied, final states are completely inside the minigap and the optical phonon
scattering in this region is effectively inhibited. This explains why the plateau scat-
tering appears between the two peaks. The plateau features appear at lower mini-
band width as the value of N increases, i.e., the resonance magnetic field decreases,

which can be understood in terms of Eq. (6.15).
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FIG. 21. Miniband dependence of the height of MPR peaks at T=240 K. The solid,
dashed, and dotted lines indicate the N = 1, N = 2, and N = 3 resonance peaks,

respectively.

The variation of the height of MPR peaks are shown in F ig. 21, as a function
of the miniband width at T = 240 K. The N = 1 resonance peak increases with
increasing the miniband width, whereas the N = 2 and N = 3 resonance peaks
show complicate behaviors: they increase with the increase of the miniband width
and then they decrease at a specific miniband width. Our results for the N — 1 and
N = 2 resonance peaks are in good qualitative agreement with the experimental
results of Noguchi et al. [56] and Gassot et al. [57]. For the N = 3 resonance peak,
our result is somewhat different from Gassot et al.’s experimental result in which the

N = 3 resonance peak decreases. Our results are also in good qualitative agreement
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with Shu et al.’s theoretical results [58] for the N = 2 and N = 3 resonance peaks,
unlike the N =1 resonance peak case. The amplitude of the N = 2 resonance peak
as compared to the N = 1 peak get smaller with increasing miniband width. This
can be understood by considering the relaxation rate, as pointed out by Noguchi
et al.; when the miniband is wide (~ 20 meV) and the Landau energy hw, is small
(<20 meV at 12 T), the minigap shown in Fig. 19 disappears. In such a condition
the resonant feature of the relaxation rate becomes weak since the DOS of each
miniband broadens and overlaps, resulting in the reduction of its peaked feature.
Hence, the discrete features of DOS are essential to observe clear resonance peaks.
These features are in good qualitative agreement with the experimental results of
Noguchi et al. [56] and the theoretical results of Shu et al. [58], but they is different
from Gassot et al.’s experimental results [57].

To understand the effect of temperature on MPR, we plotted the spectral line-
shapes of o,, for a superlattice in Fig. 22, as a function of magnetic field B for
temperatures ranging from 140 K to 390 K at a fixed miniband width A of 3.6 meV.
This figure has two important features. One is that when the sample temperature in-
creases, the magnetoconductivity decreases, which is in good qualitative agreement
with the experimental results of Noguchi et al. and Gassot et al. and the theoretical
results of Shu et al. The other is that when the temperature increases, the heights
of MPR peaks in magnetoconductivity decreases. The temperature dependence of
the heights of MPR peaks between two neighboring MPR peak positions is shown
in Fig. 23 for three different positions at the miniband width A = 3.6 meV. It is
clearly seen from the figures that our results for temperatures ranging from 140 K to
390 K are in good qualitative agreement with the experimental results of Gassot et

al. for above 125 K. The reason why the amplitude of these oscillations decreases at
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high temperature was explained by Gassot et al., which is due to three factors: the
increase of the linewidth of the Landau levels due to thermal broadening, the shift of
the electron distribution towards the center of the brillouin zone, and intraminiband
scattering of the distribution function around the quasi Fermi level. However, it is
reported that there exist some discrepancy between two experimental results [56,57]

on the temperature dependence of the heights of MPR peaks.

o MPRlarb. units]

B [T]

FIG. 22. Temperature dependence of the magnetoconductivity (o,,) as a function of
applied magnetic field at a fixed miniband width of A=3.6 meV. The solid, long dashed,

short dashed, dotted, long dashed-dotted, and short dashed-dotted lines are for T=140 K,

190 K, 240 K, 290 K, 340 K, and 390 K, respectively.
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MPR Peak Height [arb. units)
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FIG. 23. Temperature dependence of the height of MPR peaks at a fixed miniband of
A=3.6 meV. The solid, dashed, and dotted lines indicate the N = I, N=2 and N =3

resonance peaks, respectively.

According to the Gassot et al.’s experimental results (57}, the height increases as the
sample temperature increases until 125 K and then decreases, whereas Noguchi et al.
observed a monotonic increase in amplitude of the MPR in the magnetoresistivity
with increasing temperature and Shu et al. presented the theoretical results which
is in qualitative agreement with Noguchi et al.’s experimental results although there
is discrepancy between Noguchi et al.’s experimental results [56] and Shu et al.’s
theoretical results [58] below 155 K. Actually, our results contrast with Noguchi
et al.’s and Shu et al.’s results, reporting that the amplitude of the MPR in the

magnetoresistivity monotonically increase with increasing temperature, and Gassot
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et al.’s experimental results ranging from 4.2 K to 125 K. The reason is not clear at
this moment. This discrepancy may be ascribed to the acoustic-phonon-scattering,
the electron-impurity scattering, and the electron-electron scattering processes. This

point needs further investigation.

D. Conclusions

In conclusion, we have derived the longitudinal magnetoconductivity o,, for
a simple model of superlattices and obtained the MPR conditions and an energy
range in which the relaxation rates are allowed. With the MPR conditions and the
obtained energy range, we have investigated the physical characteristics of the MPR
effects in such superlattice systems. In particular, we have studied the qualitative
features of the MPR effects, according to the miniband width and the temperature
parameters and compared with the existing experimental [56,57] and theoretical [58]
results. Some comments related to this work should be made as follows: the single-
particle picture has been used throughout this work, and thus the electron-electron
interactions have been ignored. The effect of electron-electron interaction can be
taken into account approximately by replacing the electron-phonon interaction C (q)
by a screened electron-phonon interaction C(q) = iDR'? [ (2pwi)V)V2(1+ X%(q) /q?)
[26], since the inverse screening length A(q) depends on the electron density n,, which
in general depends on temperature T and the magnetic field B. Therefore, we would
expect the screening to be significant only if the electron density n, exceeds a critical
value n.(T,B). In this case, the effects of electron-electron scattering would be
significant, and the relaxation rate will be changed and the temperature dependence

of the height of MPR peaks would be affected by electron-electron scattering.

96



Despite the above shortcomings of the theory, we believe that our results pre-

sented here make it possible to understand qualitatively the essential physics on

MPR in superlattices.
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VII. EXACT SOLUTION OF THE ELECTROSTATIC PROBLEM FOR A
SINGLE ELECTRON DUAL-JUNCTION-ARRAY TRAP

Since Likharev’s report [59] on single electron tunneling devices whose funda-
mental operation principle is based on the Coulomb blockade effect, a lot of work
have been made [5,6,60-68] on the physics of SET phenomena and on the wide va-
riety of SET device applications. One of the most significant SET systems is the
single-electron “trap”, which is comprised of a Junction array and a capacitor as
shown in Fig.24(a). It serves as a memory cell by holding an electron or a hole
on the trap, i.e., “0” state for no extra charge on the trap and “1” state for an
extra charge on the trap. Numerous papers have already published [6,62-65,68]
on this subject. Recently, Amakawa, Fujishima, and Hoh [66] presented a more
complicate single electron memory circuit, single electron dual-junction-array trap,
which is composed of two capacitively-coupled normal traps as shown in Fig. 24(b).
In particular, they studied the charge transport in this system by using computer
simulation taking into account cotunneling, based on the tunneling rate obtained
from the approximation proposed by Fonseca et al. [65]. When an excess electron is
placed on one of the islands in the left-hand array, it is energetically favorable if there
1s a hole on the adjacent island in the right-handed array. Thus, an electron and a
hole tend to pair and move together along the single electron dual-junction array.
According to their results [66], the lifetime of the electron-hole pair (“exciton”) is
longer than that of the single electron when the coupling capacitance C, is large.
This means that the binding energy of the electron-hole pair (“exciton”) is so large
that a tunneling event in the left-handed array simultaneously induces a tunneling

event in the left-handed array when a small driving voltage is applied to the system.
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FIG. 24. (a) Single electron trap with N small junctions, with equal junction capaci-
tances C, equal stray capacitances Co, input gate capacitances C1, and well capacitance
Cc. The bias voltages of the two edges are, respectively, V and U. (b) Single electron
dual-junction trap with 2N small Junctions, with equal junction capacitances C, equal
stray capacitances Cp, equal input gate capacitances C', and coupling capacitance C..
The bias voltages of the two edges are, respectively, V/2 and —V/2, while the voltages in

the middle are U.
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If the coupling capacitance decreases the lifetime becomes shorter. This is due to the
decrease in the binding energy of the “exciton” and then the two arrays become
virtually independent. Thus, this system can be also used as a memory cell by
holding an electron-hole pair (“exciton”) on the traps, Le., “0” state for no extra
electron-hole pair (“exciton ”) on the traps and “1” state for an electron-hole pair
(“exciton”) on the traps. In a sense, it could be considered as a single “exciton”
trap [60]. The remarkable thing here is that their study is restricted to the case
where the coupling capacitance is smaller than the junction capacitance and the
role of the stray capacitance, which is known to be important in determining the
soliton width in a one-dimensional (1D) array, has been neglected.

The purpose of this study is to present an exact analytical solution to the elec-
trostatic problem of the biased single electron dual-junction-array trap consisting

of equal stray capacitances Co, equal junction capacitances C, equal input gate ca-

pacitances Cy, and coupling capacitance Cc, to derive analytical expressions for the
total free energy and the threshold voltages for various charge transfer processes (a
single electron, a single exciton, and a combined soliton), and to study the effects of
the stray capacitances, the input gate capacitances, the coupling capacitance, the
number of junction, and the cotunneling process on the threshold voltages of various
charge solitons.

The starting point in studying the electrostatics of the single electron dual-
junction-array trap is to identify the potential profiles for a given set up of the
system. For a single electron dual-junction-array trap with 2N junctions, one needs
to solve a set of 2V linear equations for the corresponding voltages (or equivalently,
the charges) on the 2N junctions. A set of 2N linear equations for the voltages

{Vi} across each of the 2NV Junctions are developed into a matrix form, and solved
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numerically without any presumptions. The key to our approach is to rewrite elec-
trostatic equations as matrix equations for the island potentials {®;}; this enables
us to derive the electrostatic equations in a tridiagonal matrix form and obtain an
exact analytic result for the single electron dual-junction-array trap.

Although the bias voltage controls the average value of the current passing
through the system, the dynamics of a single charge soliton in the system at T =
is in principle solely determined by the Gibbs free energy. The transfer of an soliton
from one island to another through the tunnel junction between them is favorable if
the Gibbs free energy decreases in this process, and vice versa. Thus, the essence of
the dynamics is the evaluation of the Gibbs free energy, which consists of a charging
energy term and a work done term. The above mentioned exact solutions of the
electrostatics for the single electron dual-junction-array trap enable us to perform
systematic studies for the Gibbs free energy and derive an exact analytical form
for it at arbitrary charge configurations. This allows us to predict many interest-
ing behavior of the system through the threshold voltage and compare them with
numerical results reported previously by Amakawa et al. [66].

The rest of the chapter is organized as follows: In Sec. A, we obtain an exact
analytic result of the island potentials {®;} for the single electron dual-junction-
array trap, based on the study of 1D array in Ref. 6. With the island potentials
obtained in Sec. A, an exact analytical form for Gibbs free energy at arbitrary
charge configurations will be derived in Sec. B. In Sec. C, we obtain the threshold
voltages for various charge solitons including a single electron, a single exciton, and
a combined soliton, using the exact analytical form for Gibbs free energy. In Sec. D,
we present the numerical results of the threshold voltages for various charge solitons,

to investigate the effects of the stray capacitances, the input gate capacitances, the
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coupling capacitance, the number of Junction, and the cotunneling process on the
threshold voltages of various charge solitons. Conclusions will be given in the last

section.

A. Potential Profile

We consider a single electron dual-junction-array trap, as illustrated in F ig.
24(b), where the end of two single electron traps is coupled to each other by a
coupling capacitor C¢, each single electron trap consists of N small tunnel junc-
tions in series, with equal stray capacitances Co and equal junction capacitances C,
and the end of which couples to an input gate capacitance C;. The bias voltages of
the two edges are, respectively, V/2 and —V/2, while the voltages in the middle are
U. Also, the tunneling resistance Ry of each junction is assumed to be the same and
Ry > h/e?, which ensures that the wave function of an excess electron on an island
is localized there. We denote the potential on each of the individual 2N islands
between the junctions in the array by the column vector ® = {®,,d,, - -+, ®an}7,
and the number of excess electrons on each of the individual 2N islands is denoted
by the column vector 7 = {n1,n2,---,nan}T. The electrostatic equations for the
island potentials {®;} and the number of the excess island electrons {n;} are derived
from the charge conservation and Kirchhoff’s law, and they obey a set of 2N linear
equations. These equations can be conveniently expressed in terms of a simple form

as

P =

|

w, (7.1)

Qe

where 7' means that the first, the N-th, the (N + 1)-th, and the last elements of
n' are replaced with n; — CV/2e, ny — CiU/e, nyy1 — C1Ul/e, and nyy + CV/2e,

102



respectively, to accommodate the effects of the bias voltages and Sisa 2N by 2N

symmetric matrix given by

= T] QT
S=| _ _ (7.2)
al TQ
with
_ M1\ o D' 17
T, = Ty = _ |, (7.3)
i’ D T M
_ 00| _ 01
1= T = (7.4)
107 00

Here, a = C¢/C is coupling constant, D' = —1 — (C,+Cc)/C, M is a (N-1)
by (N — 1) symmetric tridiagonal matrix, having the same diagonal elements D =
—(2+ Cy/C) and the same off-diagonal elements 1, and 0 denotes a (N —1) by
(N — 1) null matrix. In Egs. (7.3) and (7.4), the column vectors 1 = (0,0,---, l)T,
1 =00, - .07, and 0 = (0,0,---,0)" have N — 1 elements, respectively.

Then, by taking the inverse matrix of ?, ie., ﬁ, we obtain the analytical expres-

sion of potential profiles in Eq. (7.1) as
w, (7.5)

where the elements of the 2N by 2N matrix H have the following property: H,; =
Hj; = Hynt1-jony1-i and fl,fg,al, and 52 are N by N symmetric sub-matrices

to the matrix H. The symmetric matrix P, in Eq. (7.5) can be expressed by

1 R
D’+RN-1—02/(D’+RN_))
1 RT 1
D'YRy_,-a?/(D'¥Ry_1) D'YRn_1-a?/(D'+Rn_y)

vl

i
Il

) (7.6)
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where the elements of the N — 1 by N —1 symmetric sub-matrix B and the column

vector R are, respectively, given by

(B), =Ry = (=)™ My_\ My /My, fori<jandij<N-1, (17)

__ sinh A
"~ sinh N

= &N—l- (78)

Here, Mj,, = GM; — M;_, with M; = (~1)?sinh (j + 1) A/sinh A and G = D —
1/(D'—ao®/ (D' + Ry_y)), A is determined by —2coshA=D=—(2+ Cy/C), and
R; ; is the elements of the inverse matrix of a N — 1 by N — 1 symmetric matrix M

in Eq. (7.3), which is given by

_cosh (N + |5 —4]) A — cosh (N — j — i) A
2sinh A sinh N .

R, = ,j=1,2,---,N—1. (7.9)

In addition, the elements of the N by N symmetric sub-matrices, ?z,ﬁl, and

52 in Eq. (7.5) are, respectively, given by

(?2)1']' = R§V+1—jN+1-—i = R'N+1~z‘N+1—ja (7.10)
@1)ij = —aR§v+1_jNR4N, (7.11)
(52),-1 = —eRNN-iRy. (7.12)

It is to be noted that Eq. (7.5), supplemented by Eqgs. (7.6) and (7.10)- (7.12), is a
general expression for the potential profile of the single electron dual-junction-array
trap with 2N tunneling junctions with equal stray capacitances. If the value of « is
taken as 0, Eq. (7.6) becomes the identical expression of symmetric matrix appearing

in the potential profile for normal trap obtained by Hu et al. [6]. Moreover, Eq. (7.5)
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reduces to the Hu et al.’s result [6] of the potential profile for one-dimensional array
with 2NV + 1 tunneling junctions with equal stray capacitances if the value of « is
taken as 1. Equation (7.5), together with Egs. (7.6) and (7.10)- (7.12), is a basic
result of this paper. Once a charge profile {n;} is known, we can use Eq. (7.5) to

determine the potential profile {®,} for the single electron dual-junction-array trap.

B. Free Energy and Charging Energy

In this section, we want to evaluate the Gibbs free energy of the single electron
dual-junction-array trap, by using the exact solution & of Eq. (7.5). Since the free
energy is a crucial quantity in determining the rate of tunneling in small junctions,
one needs to define it in a precise way. Basically, the free energy contains two terms,

the electrostatic energy and the work done by moving the charged soliton through

the system.

For a biased single electron dual-junction-array trap as illustrated by Fig. 24(b),

the Gibbs free energy can be written as

F=FE+W, (7.13)
where the electrostatic energy is defined as
2N+1
Es=E.—¢ ) n, (7.14)
1=0
with the charging energy
CN—I C 2N -1 C Vv 2
E = 3 (iy1 — @)+ = > (i —9)+ 2 (‘I’l — —)
i=1 2 i=N+1 2 2
C 1% 2 C, C, N-1 C 2N
42 (@2N+—) T @n - )+ DY 02 D 5 g
2 2 2 2 i=1 2 1=N+2
C
+—2—‘ (U—-@n)+ 22 (U - dy,,) (7.15)



In addition, in Eq. (7.13), the work due to the charge redistribution associated with

the change of the charge profile {m} is given by

2N -1

=-C Z i1 =) =C Y (9, - 9,) - Cp (®ni1 — Dy)?
1=N+1
V2 14 ,
—C(@l -3) —C(<I>2N+ ) et Z@ G S @
2 2 i=N+42
~Ci (U= ®y)" - C) (U - ®y,1)2. (7.16)

In order to study the change of the Gibbs free energy in the event of a charge
soliton transfer, it is desirable to rewrite it as a function of the charge profile {n,}.
For this purpose, after some algebra with Eqgs. (7.5) and (7.13)-(7.16), we can

obtain the Gibbs free energy as

2 2N 2N
F=Ep- — Z anHz]nJ = ~V (Qo — Qans1) = ( v+ Q‘}’VH) ,  (7.17)

11]

where

1 C C
E = chz (1+ Hyy — Hppw) + CU? (1 + EIHNN + CIHNN+1) (7.18)

Qv=C(U-®y), Q4. =C, (U - Dni1), (7-19)

| %4 1%
Qo = nge+ C (5 - q’l) , Qanvgr =nonie+C (—5 - ‘DzN) - (7.20)

Equation (7.17) is a general expression for the Gibbs free energy of a single-electron
dual-junction-array trap with bias voltage {V, U}, charge profile {n;e}, and potential
profile {®;} on the islands. Based on the Gibbs free energy (7.17), one can directly
study the dynamics of the single electron tunneling by calculating the change of the
Gibbs free energy AF due to some charge transfer event. To be definite, here we

discuss the case where the charge transfer happened between two islands k and k',
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while the charges on the other islands are unchanged. We assume, however, that
the tunneling between two islands N and N + 1 is negligible, so that we have two
circuits that are independent galvanically but are coupled electrostatically [60]. We
denote the charges on these islands before and after the charge transfer as {ny, ny}
and {nj,n}, }, respectively, and the net transferred charges as @, where Q) can be a
single electron, a single exciton, or a combined soliton, which will be discussed in
the next section. Thus, we obtain, from Eq. (7.17), the change of the Gibbs free

energy AF? (k, k') due to the charge transfer {ne, ne'} to {n},n}
AFQ (k, k') = F ({n},np}) — F ({ng, nw}) = AE® (k, k') + W9 (k, k'), (7.21)

where the detailed form of the change of the charging energy AE? (k, k') and the
work done W< (k, k') in Eq. (7.21) can directly be worked out from Eq. (7.17).

C. Threshold Voltage

Now, let us calculate the change of the Gibbs free energy AF€? (k, k') due to some
charge transfer by means of Eq. (7.21). Here we consider three cases of particular
interest: (i) the single charge soliton (e) case, where an electron is transferred from
the kth island to the k’th island in the left-hand side array, i.e., ny — ny = —1,
M — M = Ly ) — Non_gpr = 0,noN_k41 — Nan—k41 = O ; (ii) the ezciton
soliton (electron-hole pair, ex) case, where an electron in the left-hand side array
is transferred from the kth island to the k’th island and an electron in the right-
hand side array is simultaneously transferred from the (2N — K’ + 1)th island to
the (2N — k + 1)th island, i.e., n} — nx = —1, Mg — M = 1, Ny g1 — NaN_ppy =
L, ngn_ g1 — Non—k41 = —1; (iii) the combined soliton (ezciton-single electron, ez-

e) case, where in addition to the exciton case, an electron in the left-hand side
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array is transferred from the k’th island to the k”th island, ie., nj —ny = —1,
Tl;cl — Ngr = O,TL;C:/ — Ny = 1, n,QN_k+1 — TIN-k4+1 = 1, nfm_k,H — ToN—k'4+1 = —-1.
Under the above conditions, the change of the Gibbs free energy for each charge

soliton transfer can be derived from Eq. (7.17) as

2
AF® (k, k') = Fe (K) - F* (k) = —2% (Hyw — Hix)

|
—56‘/ (o' — ok — Gony1h + dons1k — Hiw + Honpr + Hyp — Hyng),
(7.22)

2
/ exr / exr C
AF (k, k') = F (k') — F* (k) = ~c (Hiwr — Hyon_pryy — Hyg + Hion_k41)
—561”’ (Bok + San 1,28 —kr11 — Bo i — OaN+12N—k+1)
+eV (Hy — Hionlpiq — Hig -+ Hion ki), (7.23)
AFez—e(k’ k,; k”) — Fe:c—e (k", kll) _ Fer‘e (k)
2
e
= o0 (Hynpr + Hygo — 2Hynon kg1 — Hyg + Hion k1)

2€V (Bokn + Sanvt1on—ki41 — Sok — OaN+12N—k+1)

1
+§€V (Hiyer — Hign_pryq — Hion_griq + Hyp — 2H,y + 2HioN _k41),
(7.24)

where the bias voltage U was taken as 0 for convenience.

The tunneling of a charge soliton from the kth island to the k’th island in the
single electron dual-junction-array trap is energy favorable when the free energy
AF® (k,k') is less than zero, and vice versa. Thus, the threshold energy V; for the
transfer of a charge soliton from the kth island onto the k'th island, can be obtained
by equating AF9 (k, k') = 0. Applying this principle to Egs. (7.22)-(7.24), we can

obtain the threshold voltages for various charge soliton transfer cases as

108



2 (Hyw — Hyy)

Ve (k k) = £ ,
¢ (k k) C o — ok — Sonyrpr + Oan+1k — Hiw + Hong + Hyy — Hong (

7.25)

2e
Vi (k k') = bl (Hew — Hion _griq — Hyp + Hyon_k41)

/[(50,1: + 0N 12N k1 — do g — 52N+1,2N—k’+1)

+2(Hip — Hyon_prqy — Hyg + Hion _k11)], (7.26)
, 2e
‘/tez‘—e (k’ k/’k’) = E(Hkrk/ — Hk'?N—k’+1 —Hkk +Hk2N~k+l)

/[(—(50,k' — OaN+12N—k41 + dok + 52N+1,2N—k+1)

+2(Hion w41 — Hip — Hygy_giy + Hyy)). (7.27)

Equations (7.25)- (7.27) are key results of the threshold voltages for various charge
soliton transfer cases, which enable us to analyze the charge transport in the single
electron dual-junction-array trap. It is clearly seen from Egs. (7.25)-(7.27) that
the threshold voltages are very sensitive to the cotunneling process, the number of
Junction N, the coupling capacitance Cc, the stray capacitance Co, and the junction
capacitance C, as well as the input gate capacitance C, through the elements of the

2N by 2N symmetric matrix H.

D. Numerical Results

In this section, we present the numerical results of the threshold voltages obtained
for various charge soliton transfer processes (a single electron, an exciton, a combined
soliton). First, we study the Cj, C1, C¢, and C dependence of threshold voltages for
various charge soliton transfer processes in the case where one-junction tunneling,

i.e, m(=k'~k) =1for k = 0in Egs. (7.25)-(7.27), is allowed in the single electron
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dual-junction-array trap having only three tunnel junctions (N =3)

on each array

side, and then perform an analysis of the N and cotunneling dependences of the

threshold voltages at a fixed value of C1, C¢,

as an example.

and C for various stray capacitances,
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FIG. 25. Threshold voltages (in units of e/C)

island of single electron dual-junction-array trap with three junctions (N
side as a function of 7 = Co/C at 8 = C,/C = 0.05

in the inset is an enlarged part of the figure in the small region. Also, C¢, Cy,

for injecting a charge soliton into the first

3) on each
1,10 and @ = C¢/C = 0.5. Shown

C, and

Co are the coupling capacitance, input gate capacitance, junction capacitance, and stray

capacitance, respectively.
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The stray capacitance dependence of the threshold voltages (in units of e/C ) for
various charge solitons is illustrated by Fig. 25, where we plot the threshold voltages
in Egs. (7.25)-(7.27) as a function of the ratio of stay capacitance to the junction
capacitance, i.e., n = Cy/C at B = C/C = 0.05,1,10 and o = Ce/C = 0.5.
It is clearly seen from the figure that the threshold voltages of all charge solitons
decrease with the increase of the value of n. For n — 0 and small B(<1), the exciton
has the lowest threshold voltage than any other solitons. This means that the exciton
transport is dominant in the system, as reported by Amakawa et al. [66]. However,
as can be seen from the inset which is enlarged part of the figure in the small n
region, for large 3(>1) the combined soliton has the lowest threshold voltage and
the combined one is expected to be dominant. Thus, for no stray capacitance, the
solitons which are dominant in the system can be a single exciton or a combined
soliton depending on the Input gate capacitance. The small change of 5 in the small
n(<1) region leads to a lot of change of threshold voltage, but the threshold voltages
are almost constant in the large n(>1) region. The interesting thing is the 8 = 1
case. For small (< 1), the combined soliton has the lowest threshold voltage, while
for large (> 1) single electron or exciton has the lowest threshold voltage. Thus,
the dominant soliton transport varies with the stray capacitance. Moreover, the
threshold voltage of exciton merges into that of single electron for small n and large
B or large 1 and small 3. In that case, single electron and exciton transport coexit
and will be dominant. For large 3 and 7, however, the combined soliton transport
is expected to be dominant.

Figure 26 shows the dependence of the threshold voltage (in units of e/C ) on
the input gate capacitance for various charge solitons, where we plot the threshold

voltages in Eqs. (7.25)-(7.27) as a function of the ratio of input gate capacitance to
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FIG. 26. Threshold voltages (in units of e/C ) for injecting a charge soliton into the
first island of single electron dual-junction-array trap with three Junctions (N = 3) on each
side as a function of 8 = C1/C at @ = Cc/C = 0.5 and n=Co/C =0.5,1,5, where Ce,
C1, C, and Cj are the coupling capacitance, input gate capacitance, junction capacitance,

and stray capacitance, respectively.

the junction capacitance, Le., 8=C1/C at a = 0.5 for various stray capacitances of
n=0.5,1,5. As can be seen from the figure, if the value of 3 increases for a specific
value of 7, the threshold voltages of single electron and exciton remain constant,
whereas those of the combined soliton decrease. Moreover, the threshold voltage
of exciton merges into that of single electron for small 5 and large 3 or large 7

and small 3. In that case, single electron and exciton transport coexit and will be
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dominant. For large 8 and n, however, the combined soliton transport is expected
to be dominant.

Figure 26 shows the dependence of the threshold voltage (in units of ¢/C' ) on
the input gate capacitance for various charge solitons, where we plot the threshold
voltages in Eqs. (7.25)-(7.27) as a function of the ratio of input gate capacitance to
the junction capacitance, Le., 8 =C/C at o = 0.5 for various stray capacitances of
n =0.5,1,5. As can be seen from the figure, if the value of 3 increases for a specific
value of 7, the threshold voltages of single electron and exciton remain constant,
whereas those of the combined soliton decrease. As a result, the change of soliton
transports is expected from the increase of B. For small 7, exciton transport dom-
inates in the small 8 region, but if the value of B increases, the combined soliton
becomes dominant. Furthermore, if the value of 8 and 1 increases, the slight differ-
ence of the threshold voltages between exciton and single electron disappears.Then,
both soliton transport will be dominant for large 7 and small 8. Thus, the charge
soliton transport is sensitive to the values of the stray capacitance Cy, the junction
capacitance C, and the input gate capacitance C1. The results shown in Figs. 25 and
26 are restricted to the specific value of @ = 0.5. The threshold voltages (in units
of ¢/C") for various charge solitons is shown in F ig. 27, as a function of the ratio
of coupling capacitance to the Junction capacitance, i.e., @ = Cc/C at n = 0.05 for
various input gate capacitances of B =0.5,1,5. This figure shows that the thresh-
old voltages of all charge solitons remain constant, except for small o and 8. If the
coupling capacitance approaches to zero, or the value of 3 increases, the threshold
voltage of exciton merges into that of single electron.However, their threshold volt-
age have larger values than the combined soliton. As shown in the figure, for given

parameters § and 7 the combined soliton has the lowest threshold voltages than
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FIG. 27. Threshold voltages (in units of e¢/C ) for injecting a charge soliton into the
first island of single electron dual-junction-array trap with three Junctions (N = 3) on
each side as a function of o = Cc/C at n = Cy/C = 0.05 and B = C1/C = 0.5,1,5,
where C¢, Cy, C, and Cj are the coupling capacitance, input gate capacitance, junction

capacitance, and stray capacitance, respectively.

any other solitons and hence the combined soliton transport is expected to be dom-
inant for all given a. It should be noted that the results given in Figs. 24, 25
and 26 are valid for N = 3 and one-junction tunneling. As discussed before, the
threshold voltages of charge solitons are influenced by the parameters characterizing
the system, such as the coupling capacitance C¢, the stray capacitance Cy, and the
junction capacitance C, as well as the input gate capacitance C,. In addition, the

cotunneling effect and the number of Junction N also affect the threshold voltages of
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charge solitons.Figure 28 shows the dependence of the threshold voltages for various
charge solitons on the number of junction N at a fixed value of a =3 =0.,5 for

various stray capacitances n=10.051,5.
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FIG. 28. Threshold voltages for injecting a charge soliton into the first island of single
electron dual-junction-array trap as a function of the number of junction N at a fixed
value of a = C¢/C = 8 = C1/C=05and 5 = Co/C = 0.05,1,5, where Cc, C1, C, and
Cop are the coupling capacitance, input gate capacitance, Junction capacitance, and stray

capacitance, respectively.

It is clearly seen from the figure that, as mentioned in Fig. 25, the threshold voltages
decreases with the increase of the stray capacitance and the changes of the dominant

soliton in the transport is expected for N < 3, rather than N > 3. Comparing the
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threshold voltages of charge solitions for N = 2 and that of charge solitons for

N = 3 in the case of small 7, we can see that the exciton transport is expected to

be dominant for N = 2, whereas the combined soliton transport is dominant for

N = 3. Thus, the change of the number of junction leads to any change of charge

soliton transport. This is valid for a = B = 0.5. Note that the N dependence of the

threshold voltages for various charge solitons varies with the values of o and 3, as

is expected from Figs. 25, 26, and 27.
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FIG. 29. Threshold voltages of single electron dual-junction-array trap with

ten junctions (N = 10) on each side as a function of cotunneling (m) at

@=0Cc/C=p=C/C =05 and 1= C/C = 05,1,5, where Cg, Cj, C, and Co

are the coupling capacitance, Input gate capacitance, Junction capacitance, and stray ca-

pacitance, respectively.
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The cotunneling (m) dependence of the threshold voltages for various charge solitons
is shown in Fig. 29, where the circuit parameters were taken as N = 10, o = 3 = 0.5,
and 7 = 0.5,1,5 as an example. As shown in the figure, the threshold voltages have
various dependence on the cotunneling according to the stray capacitance. For small
n(< 1), the change of the dominant soliton in the transport from the combined
soliton to the exciton is expected as the cotunneling is increased. However, one can
see that if the stray capacitance increases, the single electron or exciton transport
becomes dominant because the threshold voltages for single electron and exciton
are nearly same. Thus, we can see that the threshold voltages of solitons can be
influenced by the effect of cotunneling. The results are restricted to the special
cases of N =10, @« = 8 = 0.5, and n=0.5,1,5. It should be noted that, as can be
expected from previous figures, the threshold voltages of charge solitons can shows

different cotunneling dependence, according to the values of N, a, 3, and 7.

E. Conclusions

So far, we have presented an exact solution for the potential profiles of the
biased single electron dual-junction-array trap with equal stray capacitances. Based
on Eq. (7.5), we have obtained an analytical Gibbs free energy, as well as the
threshold voltages of Egs. (7.25)-(7.27) for various charge solitons including a single
electron, an exciton, and a combined soliton. With the obtained threshold voltage,
we have performed the numerical analysis, in order to understand the dependence
of threshold voltages on the stray capacitance, the coupling capacitance, the input
gate capacitance, and the number of junction, as well as the cotunneling.

Our results for the case where one-junction tunneling is allowed in the single
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electron dual-junction-array trap having only three tunnel junctions (N = 3) on each
array side show that the threshold voltages of all charge solitons decrease with the
increase of the stray capacitance. For no stray capacitance and weak coupling and
input gate capacitances, the exciton transport becomes dominant in the system, as
reported by Amakawa et al. [66]. However, if the input gate capacitance is increased,
the combined charge soliton has lowest threshold voltage than any other charge
solitons and it becomes dominant in transport. Thus, for no stray capacitance, the
solitons which are dominant in the system can be a single exciton or a combined
soliton according to the input gate capacitance. A lot of change of threshold voltage
in the small stray capacitance region is expected, but the threshold voltages are
almost constant in the large stray capacitance region. In consequence, for the case
where the input gate capacitance is same as the junction capacitance, the dominant
soliton in transport can be a combined soliton, a single electron, or an exciton,
depending on the stray capacitance. Thus, for a specific coupling capacitance, the
dominant soliton in transport can be a combined soliton, a single electron, or an
exciton, according to the stray capacitance and the input gate capacitance..
Various charge solitons having the lowest threshold voltage are also expected for
specific values of the coupling capacitance, the input gate capacitance, and the stray
capacitance as the number of junction changes. In particular, the changes of the
dominant soliton in the transport is expected for N < 3, rather than N > 3, in the
case of a given value of & = 8 = 0.5. Comparing the threshold voltages of charge
solitions for N = 2 and that of charge solitons for N = 3 in the case of small 7, we
can see that the exciton transport is expected to be dominant for N = 2, whereas
the combined soliton transport is dominant for N = 3. Thus, the change of the

number of junction leads to any change of charge soliton transport. In addition, the
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effect of cotunneling, which is sensitive to the stray capacitance, plays an important
role in determining solitons which are dominant in the system. For small stray
capacitance, the change of the dominant soliton in the transport from the combined
soliton to the exciton is expected as the cotunneling is increased. However, one can
see that if the stray capacitance increases, the single electron or exciton transport
becomes dominant because the threshold voltages for single electron and exciton are
nearly same. Thus, various charge soliton transports are expected, depending on
the parameters characterizing the system, such as the coupling capacitance Cc, the
stray capacitance Cy, and the Junction capacitance C, the input gate capacitance
C1, and the number of junction, as well as the cotunneling.

We conclude that, in studying charge transport of the biased single electron
dual-junction-array trap with equal stray capacitances, it is necessary to treat the
electrostatic problem exactly. The quantitative behavior identified in this paper

should provide useful information pertaining to future experiments.
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VIII. HYSTERETIC VOLTAGE GAP FOR A SINGLE ELECTRON
DUAL-JUNCTION-ARRAY TRAP WITH STRAY CAPACITANCES

Correlated single-electron tunneling phenomena based on the Coulomb blockade
effect in nanostructures have been attracting wide attention. A lot of work have been
made [5,60,66,69,70] on the physics of SET phenomena and on the wide variety of
SET device applications. One system of our interest is the single electron dual-
Junction-array trap, which is composed of two capacitively-coupled normal traps as
shown in Fig. 24(b). In this system the currents in the left and right arrays flow in a
highly correlated manner because charge transport in the system is strongly affected
by electrostatic coupling. Recently, Amakawa, Fujishima, and Hoh [66] studied
the charge transport in such a system_by using computer simulation taking into
account cotunneling, based on the tunneling rate obtained from the approximation
proposed by Fonseca et al. [65]. However, their study is restricted to the case of
small coupling capacitance region, i.e. Cc/C < 1, where Cec and C are the coupling
capacitance and the junction capacitance, respectively. Therefore, there are still
some important questions which remains unanswered for the large C region. In
addition, the role of the stray capacitance, which is known to be important in
determining the soliton width in a one-dimensional (1D) array, has not been fully
explored. The purpose of this study is to present the hysteretic voltage gaps of
the single electron dual-junction-array trap consisting of equal stray capacitances
Co, equal junction capacitances C, equal input gate capacitances C;, and coupling
capacitance C¢ for various charge transfer processes (a single electron, an single
exciton, and a combined solition), on the basis of the exact analytical solution to

the electrostatic problem of the single electron dual-junction-array trap presented in
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the previous work [71], and to analyze them according to the parameters contained
in the system. In particular, we are interested in the effect of the stray capacitance
of the hysteretic voltage gap.

The starting point here is the Gibbs free energy, which can be written as [71]

62 2N

F=E,- %3:—'1 nH;n; — %VQO + %VQW\’-H -UQN - UQ%,,, (8.1)
where V' is the bias voltage, U is the gate voltage on the input gate capacitance, n, is
the number of excess electrons on the tth island, and Hj; is a matrix element which
depends on Cy, C, C;, and Cc. For detailed expressions of Een, Hij, Qo, Qan1, Q%
and UQY,,, we refer to Egs. (5)-(12) and (18)-(20) in Ref. 71.

Equation (8.1) is a general expression for the Gibbs free energy of a single-
electron dual-junction-array trap with bias voltage {V,U}, charge profile {n.;e} on
the islands. Based on the Gibbs free energy (8.1), one can directly study the dy-
namics of the single electron tunneling by calculating the change of the Gibbs free
energy AF due to some charge transfer event. To be definite, here we consider
the three cases where the charge transfer happened between two islands k£ and &,
while the charges on the other islands are unchanged: (i) the single charge soliton
(e) case, where an electron is transferred from the kth island to the k’th island in
the left-hand side array (or the right-hand side array); (ii) the ezciton (electron-hole
pair, e-h) case, where an electron in the left-hand side array is transferred from the
kth island to the k'th island and an electron in the right-hand side array is simul-
taneously transferred from the (2N — k' + 1)th island to the (2N — k + 1)th island;
(iii) the combined soliton (ezciton-single electron, ez-e) case, where in addition to
the exciton case, an electron in the left-hand side array is transferred from the k'th

island to the k”th island. We assume, however, that the tunneling between two

islands N and N +1 is negligible, so that we have two circuits that are independent
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galvanically but are coupled electrostatically [60]. We denote the charges on these
islands before and after the charge transfer as {ri, '} and {n},n}.}, respectively,
and the net transferred charges as Q, where Q) can be a single electron, an exciton,
or a combined soliton. Under the above conditions, the change of the Gibbs free
energy for three cases of charge soliton transfer can be derived from Eq. (8.1).
The tunneling of a charge soliton from the kth island to the k’th island in the
single electron dual-junction-array trap is energy favorable when the change of free
energy AF9 (k, k') is less than zero, and vice versa. Thus, the threshold energy V;
for the transfer of a charge soliton from the kth island onto the k'th island, can be
obtained by equating AF@ (k, k') = 0. From Egs. (8.1), we obtain (for convenience,
we take U = 0) for the single electron transfer case, the ezciton case, and the

combined soliton case, respectively, as

Ve (k) = = (Hiow = Hi) (8.2)
LA Cbop — ok — ony1pr + Oon+1k — Hip + Honp + Hig — Hong
ex , 2e
Ve (kK = C (Hyr — Hyon ki1 — Hyg + Hion_k+1)
/(G0 + Sans1on—ks1 — ok ~ Oan412N—ki41)
+2 (Hip — Hion g4y — Hyp + Hion k1)), (8.3)
2e

Ve (ki K E") = Cc (Hiw — Hpan—p 41 — Hix + Hyon_pp1)
/[(_6O,k’ — 52N+1,2N—k’+1 + 6(),k + (52N+1,2N—k+1)

+2(Hion k41 — Hip — Hipn_ gy + Hyy)). (8.4)

Equations (8.2)- (8.4) enable us to immediately find the tunneling and escape thresh-

old voltages at T = 0 in the m-junction tunneling sequence (k <— k + m) for the
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single electron transfer case, the ezciton case, and the combined soliton case, respec-
tively.

For the m-junction tunneling events of the single electron transfer case, the tun-
neling threshold voltage at T = 0 is given by VE(0,m) or VE(2N +1,2N + 1 —m)
because each absolute value is the largest for an electron tunneling into the trap
(Nth island) of the left-handed array or the trap (N + 1th island) of the right-
handed array, whereas the escape threshold voltage is given by V(N,N —m)
or VF(N+1,N+1+m) because each absolute value is the largest for an elec-
tron escaping from the trap (Nth island) of the left-handed array or the trap
(N + 1th island) of the right-handed array. As a matter of fact, V£ (0,m) and
V(2N +1,2N + 1 — m) for the tunneling threshold voltage have an identical quan-
tity, and VS (N, N — m) and V(N + 1, N + 1+ ) for the escape threshold voltage
are same each other because the circuit is symmetric. As a result, the tunneling and

escape threshold voltages are, respectively, given by

€ Hy
C’l_k-lflm _H2Nm,

Ve (0,m) = (8.5)

E HN—mN—m - HNN
CooN-m ~ HiN-m + Hy_mon + Hiy — Hinos

VE(N,N —m) = for 1 <m < N.

(8.6)

For the ezciton case, the tunneling and escape threshold voltages are, respec-
tively, given by V/** (0,m) and V,** (N, N — m) because their absolute values are,
respectively, the largest for an exciton tunneling into the traps (Nth and N + 1th

island) of both sides and for an exciton escaping from the traps, which are

ex € Hmm - Hm2N—m+1
= — 8.7
Ve 0,m) Cl+Hy — Honemyr 8.7)
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2e
VE(N,N —m) = vl (HN-mN-m = Hy_mns10m — Hyy + Hyyyy)

X[-60,N—m - 52N+1,N+m+1 +2(Hin_p — HiNimy1 — Hiy + H1N+1)]—1- (8.8)

Similarly, the tunneling and escape threshold voltages for the combined soliton, case,
are, respectively, given by V,¢*¢ (0;m, N) and V,e*—e (V;m, 0) because their absolute
values are the largest for a combined soliton tunneling into the trap and for a

combined soliton escaping from the trap, which are, respectively, obtained as

— € Hmm + HNN - 21{mN+1
Ve:r e O, m7N —_ s 89
e ) C2+H1m+H1N‘H1N+1 — Hion_myq (8.9)
Hmm - Hx
Vvtea:—e (N, m’ 0) —_ _ € HNN + VN+1 (810)

C1- Him 4+ Hion et + 2H\n —2H N

Equations (8.5)- (8.10) are general forms for the m-junctions cotunneling process,
where solitons tunnel across m Junctions at the same time. When m — 1, it becomes
the special case of one Junction tunneling.

An interesting phenomenon of the multi-junction trap, as in the measured [ —V
curves [64] is the hysteretic loop, i.e. the tunneling and escape of a soliton do not
occur at the same value of bias voltage V. Since we have obtained an analytic ex-
pressions for the threshold voltages for both the tunneling and escape of a single
charge soliton in the single electron dual-junction-array trap, we can now study the
hysteretic phenomenon in a quantitative way. For this purpose, we introduce the
hysteretic voltage gap AV, which is defined as the difference between the threshold
voltages for the tunneling and escape of a soliton in the single electron dual-junction-
array trap. By this definition one can obtain the results for the hysteretic voltage
gaps of a single-electron, an exciton, and a combined soliton with cotunneling trans-

fer cases, respectively, as
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AV (m) = V¢ (N,N —m) - v (0, m)

€ HN—mN—m - HNN Hmm

——_Tmm ) gq]
C HlN—m“HIN+m+1_HIN+H1N+1 1+H1m—‘H2Nm) (8.11)

AV (m) = Ve (N,N — m) — V,&* (0,m)

E_(HN—mN~m = Hy_mNi14m — Hyy + Hynyg

c Hiy_y — Hinymir — Hiy + Hiny,
Hmm - Hm2N—m+l

_ , 8.12

1+ H,, — H12N~m+1 ( )
and
Aler—e (m) = V¢ (N; m, 0) — Vje=—e (0; m, N)
— _E Hmm‘HNN+HNN+1
C'1-H,, + Hion iy +2H, 5 — 2H Ny
st s O H 254,

] + dny N+1 , (8.13)

2+ Hy,, + Hin — Hinyp ~ Hion mir

where m denotes the number of junctions the electrons tunnel across. The AV of
Egs. (8.11)- (8.13) is a measure of the hysteretic effect, for the single charge soliton
transfer of the single electron dual—junction-array trap. When AV > 0, there is a
difference between the threshold voltages for the escape and tunneling of a charge
soliton. After a charge soliton tunnels into the trap of system at a voltage above
Vi (0,m), the soliton cannot escape until the voltage is reduced to Vi(N,N —m).
Things are different at AV (m) < 0, where a reduction of the voltage from V, (0, m)
will immediately result in the escape of the soliton, i.e. the soliton cannot be trapped
in the system. The quantities Ve(N,N —m) and V, (0,m) are closely related to the
lifetime for thermally activated escape and tunneling of a charge soliton, since the
lifetime for thermally activated escape of a charge soliton from the trap is given
[64] by 7, ~ RC exp[V; (N, N — m) /kBT] and the lifetime for thermally activated

tunneling of a charge soliton into the trap is expressed by V, (0,m). Here T is the
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temperature and kg Boltzmann’s constant, and R denotes the tunnel resistance in
small tunnel junction. Therefore, the condition AV > 0 means that the lifetime for
the escape of a charge soliton is longer than that for the tunneling of a charge soliton,
whereas, in the case of AV (m) < 0, the lifetime for the escape of a charge soliton is
shorter than that for the tunneling of a charge soliton. The hysteretic voltage gaps,
together with the difference of the lifetime for the tunneling and escape of a charge
soliton, strongly depend on the stray capacitance C, the input gate capacitance Cy,
the coupling capacitance Cc, the cotunneling m, and the number of junction N.
Their dependence of the hysteretic voltage gaps can be analyzed using Egs. (8.11)-
(8.13). In the following, we study the Co,Cec, Cy, and m dependence of AV (m)
by taking N = 3 as an example. The stray capacitance dependence of AV (1)
(in units of e/C ) for various charge solitons is illustrated by Fig. 31, where we
plot the hysteretic voltage gap of Egs. (8.11)-(8.13) as a function of the ratio of
stay capacitance to the junction capacitance, i.e., (= Co/C)at N =3, m = 1, and
B(=C/C) =0.5,1,5 for two different coupling capacitances: (a) o (= Cc/C)=0.5
and (b) & = 5. This figure shows that all charge solitons, except for the single exciton
in the case of & = 5, have the maximum of hysteretic voltage gaps at 7 = 0 for all
given 3 and «, and their hysteretic voltage gaps are decreased as the value of n is
increased. For all given 8 and o = 9, the hysteretic voltage gaps of single exciton
have a more complicated dependence on the value of n: they reach their maximum
value at some finite value of 7, and then decrease with the increase of 7, as shown
in Fig. 30(b), where the maximum value of the hysteretic voltage gap depends on
the value of 8. As can be seen from Fig. 30(a), in the case of n = 0 the hysteretic
voltage gaps of exciton are highest than those of any other charge solitons for all

given S. This means that the difference of the lifetime for the tunneling and escape
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of exciton is largest than that of any other solitons. Hence, the use of single exciton

\ (@)a=05 ——— single electron
— — single exciton
........... combined soliton

p (8/C)
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-

Hysteretic Volitage Ga
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Hysteretic Voitage Gap (e/C

FIG. 30. The hysteretic voltage gaps AV (1) (in units of e/C ) of a single electron
dual-junction-array trap with N = 3 for various charge solitons, as a function of Co/C
at (a) C;/C = 05,1,5 (from left-hand side to right-hand side of the bottom for solid
lines and dashed lines, and from top to bottom of the left-hand side for dotted lines) for
Cc/C =0.5and (b) C,/C = 0.5,1,5 (from left-hand side to right-hand side of the bottom
for solid lines, from right-hand side to left-hand side of the bottom for dashed lines, and
from top to bottom of the left-hand side for dotted lines) for Cc/C =5 . Here Cq, Ch,
C, and Cj are the coupling capacitances, input gate capacitances, junction capacitances,

and stray capacitances, respectively.
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can be possibly useful for constructing more stable single electron circuits, as sug-
gested by Amakawa et a). [66]. When the value of B is small and the value of n
is large, the hysteretic voltage gaps of combined soliton are highest. Hence, the
difference of the lifetime for the tunneling and escape of combined solition is largest
than that of any other solitons. If the value of B is increased or the value of « is
increased as shown in Fig. 30(b), the difference of the lifetime for the tunneling
and escape of single exciton becomes largest for large n. It is interesting to note
that the value of n mainly contributes to decrease the hysteretic voltage gaps for all
charge solition, except for single exciton case for large . The another remarkable
thing in this figure is that for all given «, 3, and 7, the hysteretic voltage gaps of
all charge solitons, except for the combined solition, approach zero as the value of n
increases. In zero hysteretic voltage gap, no hysteresis loop exists and the lifetime
for the tunneling and escape of exciton is same. Ip consequence, all charge soli-
tons cannot be trapped in the System. As can be seen from the figure, the critical
stray capacitances 7, at which AV (1) =0 strongly depend on the values of a and
B. For small «, the critica] stray capacitances of single electron and single exciton
increase with the increase of the value of 3. However, for large « the critical stray
capacitances of single electron increase as the value of B increases, whereas those of
single exciton decrease with the increase of the value of B. Moreover, it is shown
in Figs. 30(a) and 30(b) that for a fixed value of B the critical stray capacitances
of all charge solitons increase with the increase of the valye of a. The dependence
of the critical stray capacitances on parameters given in the system can be readily
obtained by putting AV (1) = 0 in Egs. (8.11)-(8.13). The detailed investigation
will be discussed later.

The hysteretic voltage gap (in units of e/C' ) for various charge solitons is shown
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in Fig. 31, as a function of o at N =3, m=1, and B =0.51,5 for two different

——— single electron
— — single exciton
........... combined soliton

Hysteretic Voltage Gap (¢/C)
N

Hysteretic Voltage Gap (e/C)

FIG. 31. The hysteretic voltage gaps AV (1) (in units of e/C ) of a single electron
dual-junction—array trap with N = 3 for various charge solitons, as a function of Cc/C at
(a) C1/C=05,1,5 (from bottom to top of the left-hand side for solid lines and dashed
lines, and from top to bottom for dotted lines) for Cy/C = 0.5 and (b) C1/C =05,1,5
(from bottom to top of the right-hand side for solid lines and dahsed lines, and from top
to bottom of the right-hand side for dotted lines) for Cy/C = 2 . Here Ce, C1, C, and Co
are the coupling capacitances, input gate capacitances, junction capacitances, and stray

capacitances, respectively.
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stray capacitances: (a) n = 0.5 and (b) 7 = 2. Tt can be seen from the figure that,
for all given 8 and n the hysteretic voltage gaps of all charge solitons reach their
maximum value at some finite o and then remain constant or decrease, depending
on the value of £ as the value of « increases. As shown in Fig. 31(a) for n = 0.5,
if the value of 8 increases, the hysteretic voltage gaps of combined soliton decrease
for all given o , whereas those of single electron increase. However, the hysteretic
voltage gaps of single exciton increase, except for a specific « region. In the specific
« region, the hysteretic voltage gaps of single exciton decrease and then increase
with the increase of the value of 3, depending on the value of 5, as shown in Figs.
31(a) and 31(b). In very small o region, the hysteretic voltage gaps of combined
soliton show two different features as the value of n increases. When the value of n
is small, the hysteretic voltage gaps of combined soliton decrease with the increase
of the value of 3, whereas when the value of 1 is large, those of combined soliton
increase with the increase of the value of 8. In addition, for n=205and g = 0.5,
the hysteretic voltage gaps of combined soliton are highest than those of any other
charge solitons in very small a region. However, if the value of ¢ increases, the
hysteretic voltage gaps of exciton are highest than those of any other charge solitons.
As shown in Fig. 31(b), if the value of 7 increases, the highest region of combined
soliton increases. In this region, the difference of the lifetime for the tunneling and
escape of combined soliton is longest.

Figure 32 shows the cotunneling m dependence of the hysteretic voltage gaps
AV (m) (in units of e/C ) for various charge solitons at a = 0.5, B = 5, and
N =10, for different stray capacitances: 7 = 0.005, 0.05, 0.5. It can be seen from
the figure that the hysteretic voltage gaps of single electron and single exciton at

fixed values of q, B, and n become smaller for larger m. However, those of combined
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soliton increase slightly and then decrease or remain constant for given 7 as the
cotunneling increases. When the value of 7 is increased, the hysteretic voltage gaps
of combined soliton are lowered for all given m, whereas those of single electron and
single exciton have some interesting features, depending on the cotunneling: their
hysteretic voltage gaps at 17 = 0.005 change from lowest for small m to highest for

large m.

8

——— single electron
= = = single exciton
.............. combined soliton
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FIG. 32. The hysteretic voltage gaps AV (1) (in units of e/C ) of a single electron
dual—junction-array trap with N = 10 for various charge solitons, as a function of cotun-
neling m at Cc/C = 0.5 and C1/C =5 for Cy/C = 0.005, 0.05, and 0.5 (from top to
bottom of the right-hand side). Here Cc, C1, C, and Cp are the coupling capacitances,

input gate capacitances, junction capacitances, and stray capacitances, respectively.
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between 7. and « for various charge solitons is illustrated in Fig. 33, where we plot
M as a function of o at B = 0.5,1,5 for N =3 and m = | As expected in Fig.
30, we can see from Fig. 33 that the critical stray capacitances of single electron
increase slightly with the increase of the values of a and 3, whereas those of single
exciton and combined soliton increase with the increase of the value of a for all
given S, but they have a more complicated dependence on the value of 3 for fixed
values of a. In small o region, their critical stray capacitances increase with the
increase of the value of B. However, they decrease with the increase of the value of
B, except for specific regions of «, as the value of o increases. The N dependence of
the critical stray capacitances for various charge solitons according to the value of B
at o = 0.5 and m = 1 is presented in Fig. 34. It can be seen from the figure that for
given « and 3, the changes of the critical stray capacitances of al] charge solitons
are expected for N < 3 and they are not influenced by the number of junction for
N > 3 since they remain constant according to the number of junction. Moreover,
for a fixed value of N, the critical stray capacitances for all charge solitons increase
with the increase of the value of 5.

So far, we have obtained the hysteretic voltage gaps of the single electron dual-
junction array trap with equal stray capacitances for various charge solitons in-
cluding a single electron, an exciton, and a combined soliton. With the obtained
analytical results, we have performed the numerical analysis of the hysteretic voltage
gaps, in order to understand their dependence on the stray capacitance, the coupling
capacitance, the input gate capacitance, and the cotunneling. In addition, we have
investigated the o, 8, and N dependence of the critical stray capacitances (n,) at
which AV (1) = 0 in Egs. (8.11)-(8.13). Unfortunately, we don’t have any experi-

mental results of the single electron dual-junction array trap, except for Amakawa et
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al.’s numerical results [66] obtained for no stray capacitance and weak coupling and

input gate capacitances. Our results show that the hysteretic voltage gaps, together

with the lifetime for the tunneling and escape of a charge soliton, strongly depend

on the stray capacitance C, the Input gate capacitance C}, the coupling capacitance

Cc, and the cotunneling m. The hysteretic voltage gaps of exciton at o = 0.5 and

n = 0 for all given 3 are highest than that of any other charge solitons.
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FIG. 34. The critical value ne of Cy/C for AV

= 0 for various charge solitons, as a

function of N at C /C =0.5,1,2 (from bottom to top of the right-hand side) for m = 1

and C¢/C = 0.5. Here, N is the number of tunneling junctions on each side of the single

electron dual-junction-array trap and Cc, C1, C, and C; are the coupling capacitances,

input gate capacitances, Jjunction capacitances, and stray capacitances, respectively. For

every point above each line there is no hysteresis.
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This indicates that the difference of the lifetime for the tunneling and escape of ex-
citon is largest than that of any other solitons. Hence, the use of single exciton can
be possibly useful for constructing more stable single electron circuits, as suggested
by Amakawa et al. [66]. However, when the value of 8 is small and the value of
n is large, the hysteretic voltage gaps of combined soliton is highest. This means
that the combined soliton can be a candidate for constructing more stable single
electron circuits. It is noted that if the value of B is increased or the value of a is
increased, the difference of the lifetime for the tunneling and escape of single exci-
ton becomes largest for large 7. Moreover, the hysteretic voltage gaps of all charge
solitons are very sensitive to the cotunneling effect. It is shown that the hysteretic
voltage gaps of single electron and single exciton decrease with the increase of co-
tunneling, whereas the combined soliton has different dependence of the hysteretic
voltage gaps on the cotunneling. They increase and then decrease or remain con-
stant as the cotunneling increases. In addition, the critical stray capacitances in
which no hysteresis is expected depend on the coupling capacitor Cc, the junction
capacitance C, the input gate capacitance C|, and the number of junction, as well
as the cotunneling. For given conditions, a lot of their changes are expected in terms
of the values of o and B, rather than the number of junction.

In conclusion, the hysteretic voltage gaps, together with the lifetime for the tun-
neling and escape of a charge soliton, are very sensitive to the stray capacitance C,
the input gate capacitance C, the coupling capacitance Cec, the cotunneling m, and
the number of junction N. A single exciton or a combined soliton can be a candidate
for constructing more stable single electron circuits, depending on their parameters
in the system. We expect the quantitative or qualitative behavior investigated in

this paper to provide useful information pertaining to future experiments.
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IX. CONCLUSIONS

So far we have studied theoretically two topics in nanostructures: (1) quantum
transport phenomena such as EPR effect in low-dimensional systems with various
confinement potentials including a parabolic well, a square well, and a triangular
well, and MPR effect in bulk and low-dimensional electronic systems, and (2) sin-
gle electron dynamics in single electron dual-junction—array trap. The results are
summarized in the following:

In chapter 2, we have presented a theory of electric-field-induced MPR in n-Ge
for the transverse configuration and obtained the MPR conditions given in Egs.
(2.21) and (2.24). As can be seen from Egs. (2.21) and (2.24), MPR peak positions
for the intervalley scattering by phonons strongly depend on the strength of the
electric field, the possible phonon energy, the difference of Landau-level indices,
and the magnetic field direction which leads to the difference in the effective mass
between the initial and final states. Our results show that double peaks take place
according to the non-vertical transition due to the intracollisional field effect. One
of the peaks is shifted to the lower magnetic-field side and the other is shifted to the
higher magnetic-field side as electric fields are increased and as the possible phonon
energy and the difference of Landau-level indices are decreased.

In chapter 3, we have investigated the essential physics of the MPR effects in
quasi-two-dimensional electronic system brought about by the electron confinement
due to the electrostatic potential and the magnetic confinement by tilting a magnetic
field. Qualitative features of the MPR effects according to the strength of the
electrostatic potential and the tilt angle of the applied magnetic field were discussed

in detail, based on a simple model of parabolic confining potential.
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In chapter 4, we have studied the MPR and EPR effects for a Q1D quantum-
wire structure in the presence and absence of any magnetic field, in which a Q1DEG
is confined by a parabolic well in the y direction and three kinds of confinement
potentials in the 2 direction, including the parabolic well, the square well, and the
triangular well. The relaxation rates (and hence the transverse magnetoconductiv-
ity) show resonant behaviors: MPR at Py, = wr and at Po, = w; + wypry, and EPR
due to the subband in the z direction at w,,, = wy,, which strongly depends on the
subband structure in the 2 direction. Occupation of several electric subbands gives
rise to the additional oscillatory behavior of MPR effect and EPR effect. It should be
noted that the MPR and EPR peak positions are strongly sensitive to the strength
of the magnetic field, the optical phonon energy, the characteristic frequency of the
y-directional confinement §2,, and 'the type of the confinement potential well in the
z direction.

In chapter 5, we have derived the conductivity gyy for Q1D electronic systems
subjected to crossed electric (E[lg) and magnetic fields B = (Bz,0, B,), based on
a simple model of parabolic confining potentials and obtained the MPR conditions
in the quantum limit condition, as a function of the strength (B) and tilt angle (¢)
of the applied magnetic field (B), as well as the strength of the parabolic potential
parameters (w; and/or w,). With the MPR conditions, we have investigated the
physical characteristics of the MPR effects, according to the tilt angle of the applied
magnetic field and the relative strength of the confining potential parameters, in such
low dimensional systems. In particular, we have studied the qualitative features of
the MPR effects, their physical origin, and the dimensional crossover between Q2D
and Q1D systems associated with the confining potential in tilted magnetic fields

and compared with the existing theoretical results because we are not aware of any

137



relevant experimental work on MPR. on the dependence of the tilted magnetic field
on the gy, for Q1D electronic systems.

In chapter 6, we have derived the longitudinal magnetoconductivity o,, for a sim-
ple model of superlattices and obtained the MPR conditions and an energy range in
which the relaxation rates are allowed. With the MPR conditions and the obtained
energy range, we have investigated the physical characteristics of the MPR effects in
such superlattice systems. In particular, we have studied the qualitative features of
the MPR effects, according to the miniband width and the temperature parameters
and compared with the existing experimental [56,57] and theoretical [58] results.

In chapters 7 and 8, we have presented an exact solution for the potential profiles
of the biased single electron dual-junction- array trap with equal stray capacitances.
With the obtained threshold voltage, we have performed the numerical analysis, in
order to understand the dependence of threshold voltages on the stray capacitance,
the coupling capacitance, the input gate capacitance, and the number of Jjunction,
as well as the cotunneling. For no stray capacitance and weak coupling and input
gate capacitances, the exciton transport becomes dominant in the system. However,
if the input gate capacitance is increased, the combined charge soliton has lowest
threshold voltage than any other charge solitons and it becomes dominant in trans-
port. Thus, for no stray capacitance, the solitons which are dominant in the system
can be a single exciton or a combined soliton according to the input gate capacitance.
For the case where the input gate capacitance is same as the Junction capacitance,
the dominant soliton in transport can be a combined soliton, a single electron, or
an exciton, depending on the stray capacitance. In addition, for a specific coupling
capacitance, the dominant soliton in transport can be a combined soliton, a single

electron, or an exciton, according to the stray capacitance and the input gate ca-
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pacitance. The hysteretic voltage gaps AV (m), together with the lifetime for the
tunneling and escape of a charge soliton, has a strong dependence on m, Co/C,
C1/C, Cc/C, and N, and that no hysteresis loop exists beyond a critical value of
ne of Cy/C. For no stray capacitance, as previously discussed in the literature, the
exciton can be a candidate for constructing more stable single electron circuits but
we find that in addition to the exciton, the combined soliton can be a candidate

according to the effect of stray capacitances.
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