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SUMARY

The ocean equipments such as maritime radar and sonar system play a vital role in ship
navigation, collision avoidance and ocean investigation. Especially such equipments require
great accuracy and reliability. To improve the performance of those equipments, statistical
signal processing methods will be required.

Typical maritime radar is used either in the a-§ tracker or the Kalman tracker to track moving
targets. However, if o and B coefficients are not suitable, the a-f tracker does not guarantee the
accuracy of the position and velocity estimation for a non-linear moving target. The Kalman
tracker demands the statistical characteristics of the maneuvering targets and it has a heavy
computational cost. To solve the problems, the switched slide window tracker (SSWT) using a
moving piecewise window was proposed in this study. The proposed algorithm does not require
the statistical characteristics of a target and demands low computational cost. To verify the
algorithm, the maritime radar simulator with the proposed algorithm is implemented using a
TMS320C6711 digital signal processor (DSP) board and LabVIEW 8.5.

In the underwater communications, transmitted acoustic signal is corrupted by interference
from multipath. A parametric array transducer is capable of radiating a narrow beam with very

low sidelobe levels. In certain cases, the parametric array transducer can help the multipath



ii

problem. In the thesis, the sonar communication system using the parametric array transducer

was presented. To detect the signal without error, the measured signal was averaged for a

particular window size before applying the maximum likelihood method.

Our implementation has the potential to improve the performance of the ocean equipments

such as radar and sonar system.
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CHAPTER 1

Introduction

The ocean equipment such as maritime radar and sonar system play a vital role in ship
navigation, collision avoidance, ocean investigation and underwater communication [1].
Especially these equipments require great accuracy and reliability [2]. To improve the
performance of these equipments, the statistical signal processing method will be required [3].

Typical maritime radar is used either in the a-f§ tracker or the Kalman tracker to track moving
targets [4]. However, if a and B coefficients are not suitable in the case of a non-linear moving
target, the accuracy of the position and velocity estimation is not guaranteed [5]. The Kalman
tracker demands the statistical characteristics of the maneuvering targets and it has a heavy
computational cost [6]. To solve these problems, the switched slide window tracker (SSWT)
using a moving piecewise window was proposed in this study [7]. The proposed algorithm does
not require the statistical characteristics of a target and demands low computational cost. In
addition, our algorithm is more effective than the a-p tracking tracker for a non-linear moving
target. To verify the algorithm, the maritime radar simulator with the a-p tracker, the Kalman
tracker and the proposed algorithm is implemented using a TMS320C6711 digital signal
processor (DSP) board and LabVIEW 8.5 [8] [9].

In the underwater communications, transmitted acoustic signal is corrupted by interference
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from multipath [10]. A parametric array transducer is capable of radiating a narrow beam with

very low sidelobe levels [11]. In certain cases, the parametric array transducer can help the

multipath problem. In the thesis, the sonar communication system using the parametric array

transducer was presented. To detect the signal without error, the measured signal was averaged

for a particular window size before applying the maximum likelihood method [12]. The graphic

user interface (GUI) control programs for the sonar communication system are developed by

LabVIEW 8.5, which can be modified easily.

Chapter 2 presents the maritime radar simulator using the proposed tracking algorithm.

Chapter 3 presents the parametric array sonar system using the prototype parametric array

transducer. Finally, Chapter 4 describes some of the research results.
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CHAPTER 2

The Maritime Radar Simulator

2.1 Introduction

Maritime radar and sonar system play a vital role in ship navigation, collision avoidance [1].
Typical maritime radar is a track while scan (TWS) radar, which is used either in the a- tracker
or the Kalman tracker to track moving targets [4].

In cases where the statistical characteristics of the maneuvering targets are known exactly, the
Kalman tracker gives an excellent tracking performance [13]. However, it is difficult to find the
statistical characteristics of the maneuvering target in advance. Furthermore, the Kalman tracker
has a heavy computational cost [6].

The a-p tracker is more popular than the Kalman tracker because of its simplicity and it does
not demand high computational cost [7]. However, if o and 8 coefficients for non-linear moving
target are not suitable for a non-linear moving target, the accuracy of the position and velocity
estimation is not guaranteed [5].

To solve these problems, the switched slide window tracking (SSWT) algorithm using a
moving piecewise window was proposed in the thesis [7]. The proposed algorithm does not
require prior statistical characteristics of a target and demands low computational cost. In

addition, the proposed algorithm is more effective than the a-f tracking tracker for non-linear
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moving targets.

To verify the algorithm, the maritime radar simulator with the a-f§ tracker, the Kalman tracker

and the SSWT is implemented using a TMS320C6711 digital signal processor (DSP) board [8]

[9]. The simulator is used to track and display the moving target, and it has graphic user

interface (GUI).

Section 2.2 gives a brief overview of the different algorithms used in the a-f tracker, the

Kalman tracker and the proposed tracker. Section 2.3 presents the maritime radar simulator

using the proposed algorithm. Finally, Section 2.4 describes some of the research results.
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2.2 Conventional Algorithms

2.2.1 The a-p Tracker

The o- tracker is used for tracking targets. The a-f tracker is defined as

x, (k) =x, (k) + ot | x,, (k) —x, (k) |,
Ve(k)=V,(k)+ B/ T x, (k) - x, (k) |,
x, (k+1)=x,(k)+V,(k)T,
V,(k+1)=v.(k),

2-1)

where x, (k) is the x coordinate of the target’s measured position, x,(k) is the x
coordinate of the target’s predicted position, V,(k) is the predicted target velocity in the x
direction, x.(k) is the x coordinate of the filtered target position, V.(k) is the filtered
target velocity in the x direction at k, scan, 7' is the radar scan time or the scanning
period. a is the position smoothing parameter, and f is the velocity smoothing parameter. The a-

B coefficients are related by [4]
B=a’/2-a) (2-2)
Computer simulation was done to prove the performance of the proposed algorithm. The
performance with the different coefficient a, p was compared in the simulation. The criterion for

selecting the a-B coefficients is based on the best linear track fitted to radar data in a least

squares sense. The a-f coefficients is given by [4]

a =22k = D) k(K +1)). 2-3)

B =6/(k(k+1)). (2-4)
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where k is the number of the scan or target observation (k>2).

In the simulation, the radar measures the positions of the moving target once per second, and

200 iterations was performed. Two target models, a linear moving target model and a non-linear

moving target models are used in this simulation.

In the thesis, simulations with three moving target models were carried out. The moving

target models are described in Table 2-1.

Table 2-1. The target model for the simulation

Target Model Equations

Model 1 x,,(£) =10(¢)+10
v, (@) =10()+10

(a linear moving target model)

Model I x, () =37 (t) +15(t)—10(¢)"* +100
¥, (t) = 150sin(0.972(¢) /100) + 20

(a non-linear moving target model)

Model ITI x, ()=0.16141 —0.9682¢* +7.8083¢ + 6

(a non-linear moving target model) V() = 0.04¢% +0.4679 Sin(tz) +4t+5

The error function is defined as

N
err = Jx, (k) —x, (k) + (0, () — v, (k) 2-5)
i=1
where x,(k), y,(k) arethe x, y coordinates of the target’s true position, x,(k), y,(k) are

the x, y coordinates of the target’s predicted position.



15

Example I: Tracking a linear moving target model (Model I) using the a-f3 tracker

The a-f tracker is operated for the four different values of the coefficient a, 0.3, 0.7, 1 and the
variable obtained from (2-3). In the simulation, Gaussian noise with a mean of zero that is
distributed with a variance of 0.1 is used. The coefficient 3 is obtained from (2-4). Figure 2-1

illustrates the tracking when a target has a straight trajectory with constant velocity.

2500 T T 2500 T T
The true data The true data
~-—--- The measured data o= Varl able --—--- The measured data o= O 3
2000f| X By the - tracker 3 i 2000F| X By the a-f tracker b 1
1500 B 1500 B
E £l
8 8
S 1000 4 S 1000 .
o] o]
@ 1]
(=] (a]
5001 B 5001 B
of . of .
500 L L L L L 500 L L L L L
-500 0 500 1000 1500 2000 2500 -500 0 500 1000 1500 2000 2500
Distance (m) Distance (m)
2500 T T 2500 T T
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2000 X By the - tracker > 1 2000 X By the - tracker o 1
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E E
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@ @
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of . of .
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-500 0 500 1000 1500 2000 2500 -500 0 500 1000 1500 2000 2500
Distance (m) Distance (m)

Figure 2-1. Attained simulation results of the a-p tracker

As shown in Fig. 2-1, the a-p tracker shows good tracking performance for a linear moving
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target model (Model I). Using (2-5), the errors are calculated for the four different values of the

coefficient a, 0.3, 0.7, 1 and the variable from (2-3). Fig. 2-2 illustrate the error curves by the

coefficient o.

Error of the q-f trackerr

0.035r
o, = variable
....... @ o, &
0.03k @Q o =0.3
@ Q —— 4 =07
_' . T " Ha @ o=
0.025h i * 9@
A
, 002F
o H Q
W 0015} : Q

0.01

0.005

, 2 - < > @ 'e‘c\’
0 20 40 60 80 100 120 140 160 180 200

Time (second)

Figure 2-2. The error curves by the coefficient a

As shown in Fig. 2-2, the a-f tracker is not suitable for a linear moving target model (Model

I) in case of a coefficient a is 0.3. The errors are given in Table 2-2.

Table 2-2. Error of the o-p tracker
a variable 0.3 0.7 1
Error 112.2 1194.7 | 310.6 346.6

From the results, the a-P tracker shows the best tracking performance when the coefficient a
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is a variable. However, the coefficient a 0.3 is not suitable in case of the linear moving target

model (Model I).

Example II: Tracking a non-linear moving target model (Model II) using the a- tracker

The a-p tracker is operated for the four different values of the coefficient a, 0.3, 0.7, 1 and the

variable obtained from (2-3). In the simulation, the Gaussian noise used is same as in Example 1.

The coefficient P is obtained from (2-4). Fig. 2-3 illustrates the tracking when a target has a

sharp turn trajectory with variable velocity.

200 T T T T T 150 T T T T T
The true data
a = variable K -+ The messured catal f = (0,3
100} xxxxx 1 100F| X By the a-B tracker X 1
of X xX 1 50 1
E &l
8 8
S 100 12 o g
o] o]
2} 2}
[a] (a]
200} . 50} .
-300F The true data I 1001 1
-~~~ The measured data
X By the a-f tracker
400 L X L T T 150 L L L L L
-100 -50 0 50 100 150 200 -100 -50 0 50 100 150 200
Distance (m) Distance (m)
150 T T T T 150 T
The true data The true data
-~~~ The measured data o= O 7 100}| =~ The measured data o= 1
100F| X By the o-f tracker X By the a-p tracker
50
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— —_ of
£ £
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S o S 50
o] o]
@ @
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501 +
150 :
-100}
-200+ B
X X
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-100 -50 0 50 100 150 -100 -50 0 50 100 150
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Figure 2-3. Attained simulation results of the a-p tracker.
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Fig. 2-3 shows the effect of varying the coefficient a. From the Fig. 2-3, the a-f tracker
shows the best tracking performance when the coefficient a is a variable in case of the non-
linear moving target model (Model II). However, the a-f tracker lost a target when the
coefficient o is a variable. Using (2-5), the errors are calculated for the four different values of
the coefficient a, 0.3, 0.7, 1 and the variable from (2-3). The error curves by the coefficient a are

as shown in Fig. 2-4.

Error of the o-f trackerr

350 T T T T T T T T T
—>¢— (o = variable
300 | —6— o = 0.3 |
o =07
— =1
250 H -
E 20| |
0}
O
c
©
% 150
(]
10 -
50 I _
0 ’ ‘ D

0 20 40 60 80 100 120 140 160 180 200
Time (second)

Figure 2-4. The error curves by the coefficient a

As shown in Fig. 2-4, the error of the a-f tracker is increased monotonically with time when



the coefficient o is a variable. The errors are given in Table 2-3.

Table 2-3. Error of the a-p tracker

variable

0.3

0.7

Error

3560.9

1178.5

397.0

497.7

From the table 2-3, a variable coefficient is not suitable in case of the non-linear moving

target model (Model II). And when coefficient a is 0.7, the a-B tracker gives the best tracking

performance.
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2.2.2 The Kalman Tracker

The state equation of a target is given by [16]
X =FX, W, (2-6)
where X, = [xk Ve X yk] is state vector at time k. x,, y, and X,, y, represent the
positions and speeds in x, y coordinates, respectively.

The transition matrix F is given by

2-7)

S ONSH=
SHcE— O
= = ©
—_ o N o

where 7' is the sampling interval and W, is the process noise vector with covariance
matrix Q.
The measurement equation is
z,(k)=HX, +V, (2-8)
where V, is the measurement noise vector with covariance matrix R which is assumed to be
white with zero mean, and no correlation exists with W,

The measurement matrix H is given by

1000
H= (2-9)
{0 10 0}

The predicted estimate time update equations are
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(2-10)

where F,_, is estimation error covariance matrix.

The filtered estimate measurement update equations are

(2-11)

where the Kalman gain matrix is defined as

Re, = HP_H" +R

(2-12)
K, =P_H"(Re)"

and estimation error covariance is given by
P =(U-K,H,)F_, (2-13)

The Kalman tracking algorithm can be denoted as follows:

Procedure {Design Algorithm of the Kalman tracker}

Generate the measured position z(N)

Set the number of iteration of the Kalman tracker AV,
Set the initial state vector ico ;

Set the measurement noise covariance R and the process noise covariance P, Q;
Set the transition matrix F and the measurement matrix H,
For k=1, 2, ... N

Extrapolate the most recent state estimate to the present time;

Compute the Kalman gain;
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Update the state estimate;

Compute the covariance of the estimation error

End

Example I1I: Tracking a linear moving target model (Model I) using the Kalman tracker

The Kalman tracker is operated for the four different values of the noise variance Q, 1, 0.1,

0.01 and 0.001. In the simulation, the Gaussian noise used is same as in Example I. Fig. 2-5

illustrates the tracking when a target has a sharp turn trajectory with constant velocity.

2000 2500
The true data The true data
===f==- The measured data ==—=-- The measured data
1500 X By the Kalman tracker 2000 X By the Kalman tracker B
1500 B
E 1000 -3
8 8
e £ 1000 B
£ £
0 AL
a 500 a
500 -
0 4
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500 . . . . -500 . s . . .
-500 0 500 1000 1500 2000 -500 0 500 1000 1500 2000 2500
Distance (m) Distance (m)
2500 2500
The true data The true data
==—=-- The measured data ==—=-- The measured data
2000 X By the Kalman tracker 2000 X By the Kalman tracker
1500 =
€ E 1500 g
8 8
£ 1000 1 2
£ £
0 2 4
a A 1000
500 B
500 B
0 4
500 . . . . . . . . .
-500 0 500 1000 1500 2000 2500 500 1000 1500 2000 2500

Distance (m)

Distance (m)

Figure 2-5. Attained simulation results of the Kalman tracker

From the results, the Kalman tracker shows good tracking performance for the linear moving



23

target model (Model I). Using (2-5), the errors are calculated for the four different values of the

noise covariance Q, 1, 0.1, 0.01 and 0.001. The error curves by the noise covariance Q are as

shown in Fig. 2-6.

Error of the Kalman tracker

50 (08) T T T T T T T
—_— Q=1
450 1 R —%— Q=01 ]
N Q = 0.01
) AR —— Q=0.001 ||
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(@) \‘o
15 " \Y %
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\)
. -': » \‘ar R 4‘»'33"3'-,' oBans:
o) | g, Seli2 e%; ST Y e 88
0 20 40 60 80 100 120 140 160 180
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Figure 2-6. The error curves by the noise covariance

K

200

As shown in Fig. 2-6, the Kalman tracker shows the best tracking performance when the

noise variance Q is 1, in case of the linear moving target model (Model I).

Table 2-4, Error of the Kalman tracker

Q

1

0.1

0.01

0.001

Error

144.8

241.1

648.4

1298.3
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From the table 2-4, as the noise covariance Q decreases, the error of the Kalman tracker tends

to increase.

Example IV: Tracking a non-linear moving target model (Model II) using the Kalman tracker

The Kalman tracker is operated for the four different values of the noise variance Q, 1, 0.1,

0.01 and 0.001. In the simulation, the Gaussian noise used is same as in Example 1. Fig. 2-7

illustrates the tracking when a target has a sharp turn trajectory with variable velocity.

Distance (m)

Distance (m)

150

100}

The true data
===}-- The measured data
X By the Kalman tracker 4

o
=)

o

&
=}

-100}

-150

Q=1

150

100

The true data
--—-- The measured data
X By the Kalman tracker

Q=0.1

-100

150

100

33
=)

=)

50}F

E 50
©
] o
c
2
a O
50}
L ! ! I 100 L
-50 0 50 100 150 -100 50 0 50 100
Distance (m) Distance (m)
T 150 T T T T T
The true data The true data
=== The measured data === The measured data SOAX
X By the Kalman tracker 100} X By the Kalman tracker X E
Q=0.01 Q =0.001 X
501 1
£ X
g
3 X
X
s or X 1
8
k7]
[a]

&
=}

-100f

-100
-100

-50 0 50
Distance (m)

150

Figure 2-7. Attained simulation results of the Kalman tracker
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From the results, the Kalman tracker shows the best tracking performance when the noise
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covariance Q is 1. However, the Kalman tracker lost a target when the noise covariances Q are

0.1, 0.01 and 0.001. Using (2-5), the errors are calculated for the four different values of the

noise covariance Q, 1, 0.1, 0.01 and 0.001. The error curves by the noise covariance Q are as

shown in Fig. 2-8.
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Figure 2-8. The error curves by the noise covariance

As shown in Fig. 2-8, the Kalman tracker shows the best tracking performance when the
noise variance Q is 1 in case of the linear moving target model (Model I). The errors are given

in Table 2-5.
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Table 2-5. Error of the Kalman tracker

Q

1

0.1

0.01

0.001

Error

225.9

338.8

627.1

1338.3

From the table 2-5, the Kalman tracker shows the best tracking performance when the noise

covariance Q is 1. However, the Kalman tracker lost a target in case of noise covariance Q is

0.001 for a non-linear moving target model (Model II).
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2.3 Proposed Algorithm

2.3.1 The Switched Slide Window Tracker

The switched slide window tracker (SSWT) is composed of the a-f tracker to find the initial
parameters and slide window tracker (SWT) to track the targets. Fig. 2-9 shows the flow chart
of the proposed SSWT. First of all, the a-f tracker is running until the initial parameters for a
particular window size are obtained. Then the slide window tracker predicts the next position

using the weight value and the previously estimated position.
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NUMBER OF DATA < ITERATION ?
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Figure 2-9. Flow chart for the SSWT

The initial values are estimated by using the a-f3 tracker defined in (2-1).
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The SSWT is designed exploiting a piecewise linear model for a moving target. If a piecewise

linear model is used during the short time of a trajectory, the non-linear model can be treated as

a linear model as shown in Fig. 2-10.

X ()

Distance

X-(k—3)

S Time
Piecewise linear model

Figure 2-10. A piecewise linear model for non-linear moving target

Using the piecewise linear model, assume that our trajectory is satisfied as piecewise linear
moving at the same interval. The target position could be predicted by the present estimated
position. If the target position varies linearly, the predicted target position can be expressed by
the linear combination of the previously estimated position [7].

When initial positions are obtained greater than the window size, the process is switched to

SWT from the a-B tracker. The SWT can be defined by following equations:
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X (k) = x, (k) + ulx,, (k) —x,(k)],

xp(k+l)=xF(k—M)+§:a)m[xF(k—m+1)—xF(k—M)],

m=1

(2-14)

where x, (k) is the x coordinate of the target’s measured position, x,(k+1) is the x

coordinate of the target’s predicted position, x,(k) isthe x coordinate of the filtered target

position, @, is the weight value [10], and ¢ is the coefficient for the measurement update of

the slide window tracker (In the thesis, g =¢.). From (2-14), we can easily extend the

equation for a 2-D problem.

In the thesis, weight values @, are obtained for window size M=2, 3, 4 and 5 and the results

are shown in Table 2-6.

Table 2-6. The weight values

Window size
Weight value
, , , W, W
2 -1 2
3 -2/3 1/3 4/3
4 -0.5 0 0.5 1
5 -0.35 -0.2 0.25 0.5 0.8

Computer simulation was done to prove the performance of the proposed algorithm. The

proposed algorithm as described in Fig. 2-9 can be denoted as follows:
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Procedure {Design Algorithm of the SSWT}
Generate the measured position x, (V);
Choose a window size M (M =2,3,4,5);
Set the number of iteration of the a-f tracker MM (MM =M +1;
Set the initial position and velocity for a- tracker;
Select the a-P coefficients;
For k=1, 2, ..., MM
Compute initial positions using the a-f tracker in (2-1);
End
For k=MM+1, MM+2, ..., N
Switch to SWT;
Compute the predicted positions using (2-14);

End

For an a-f tracker, the criterion for selecting the o-f3 coefficients is based on the best linear

track fitted to radar data in a least squares sense. The a-3 coefficients is given by [4]

o =22k = D) /(k(k +1)). (2-15)

B =6 /(k(k +1)). (2-16)

where k is the number of the scan or target observation (k>2).

In the simulation, the radar measures the positions of the moving target once per second, and

200 iterations was performed. The window size for the SWT is M=2, 3, 4, 5. Two target models,

a linear moving target model and a non-linear moving target models are used to verify the
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proposed algorithm.

Example V: Tracking a non-linear moving target model (Model I) using the SSWT

The SSWT is operated for the four different values of the window size M, 2, 3, 4 and 5. In the

simulation, the Gaussian noise used is same as in Example I. Fig. 2-11 illustrates the tracking

when a target has a straight trajectory with constant velocity.
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Figure 2-11. Attained simulation results of the SSWT

As shown in Fig. 2-11, the SSWT shows good tracking performance for a linear moving

target model (Model I). Using (2-5), the errors are calculated for the four different values of the

window size M, 2, 3, 4 and 5. The error curves by the window size M are as shown in Fig. 2-12.
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Figure 2-12. The error curves by the window size.

As shown in Fig. 2-12, the SSWT shows good tracking performance for a linear moving

target model (Model I). The errors are given in Table 2-7.

Table 2-7. Error of the switched slide window tracker
M 2 3 4 5
Error 187.5 138.7 154.1 129.7

From the table 2-7, a small window size gives a better tracking performance for a linear

moving target model (Model I).

Example VI: Tracking a non-linear moving target model (Model II) using the SSWT
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The SSWT is operated for the four different values of the window size M, 2, 3, 4 and 5. In the

simulation, the Gaussian noise used is same as in Example I. Fig. 2-13 illustrates the tracking

when a target has a sharp turn trajectory.
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Figure 2-13. Attained simulation results of the SSWT
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As shown in Fig.2-13, the SSWT shows the best tracking performance when the window size

M is 2. Using (2-5), the errors are calculated for the four different values of the window size M,

2, 3, 4 and 5. The error curves by the window size M are as shown in Fig. 2-14.
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Error of the switched slide window tracker
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Figure 2-14. The error curves by the window size.

From the table 2-8, the SSWT shows the best tracking performance when the window size M
is 2, in case of a non-linear moving target model (Model II).
Table 2-8. Error of each tracking algorithm

M 2 3 4 5
Error 677.5 816.9 | 1072.3 | 1306.7

From the results, the SSWT shows better tracking performance when the window size M is

small in case of a non-linear moving target. The errors are given in Table 2-8.
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2.3.2 Comparison of Each Algorithm

In this simulation, the target model II and III are used for comparison. In the simulation, the

Gaussian noise used is same as in Example I.

Fig. 2-15 illustrates the tracking results by changing the coefficient o of the a- tracker for a

non-linear moving target model (Model II). The coefficient B is obtained from (2-4). The noise

covariance Q of the Kalman tracker and window size M of the SSWT are set as 1 and 2,

respectively.
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Figure 2-15. The trajectory of each algorithm
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As shown in Fig. 2-15, the Kalman tracker and the SSWT give good tracking performance for

a non-linear moving target model (Model II). To compare the tracking performance of each

algorithm, the errors are calculated using (2-5). The error curves of each tracking algorithm are

as shown in Fig. 2-16.
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Figure 2-16. The error curves of each algorithm
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As shown in Fig. 2-16, the a-f tracker gives the worst tracking result when the coefficient o

is a variable. The errors of each algorithm are given in Table 2-9.
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Table 2-9. Error of each tracking algorithm

Error
Type of algorithm
(2) (b) () (d)
The SSWT 629.2 653.1 728.2 723.3
The a-f tracker 3486.4 1152.8 426.7 525.4
The Kalman tracker 196.7 204.1 224.8 221.2

From the table 2-9, the Kalman tracker gives the best tracking performance in case of a non-

linear moving target model (Model II).

Fig. 2-17 illustrates the tracking results by changing the noise covariance Q of the Kalman

tracker for a non-linear moving target model (Model II). The coefficient [ is obtained from (2-4).

The coefficient o of the o-f tracker and window size M of the SSWT are set as the variable

obtained from (2-3) and 2, respectively.
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As shown in Fig. 2-17, the SSWT gives good tracking performance for a non-linear moving

target model (Model II). To compare the tracking performance of each algorithm, the errors are

calculated using (2-5). The error curves of each tracking algorithm are as shown in Fig. 2-18.
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Figure 2-18. The error curves of each algorithm

As shown in Fig. 2-18, the a-P tracker gives the worst tracking result. The errors of each

algorithm are given in Table 2-10.

Table 2-10. Error of each tracking algorithm

Error
Type of algorithm
(a) (b) (c) (d
The SSWT 691.6 674.7 699.4 668.9
The a-p tracker 3558.9 3537.1 3547.8 3561.1
The Kalman tracker 203.3 291.4 558.6 1194.1

From the table 2-10, the Kalman tracker and the SSWT give the good tracking performance

in case of a non-linear moving target model (Model II).
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Fig. 2-19 illustrates the tracking results by changing the window size M of the SSWT for a

non-linear moving target model (Model II). The noise covariance Q of the Kalman tracker and

the coefficient a of the a-P tracker are set as 1 and the variable obtained from (2-3), respectively.

The coefficient B is obtained from (2-4).
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Figure 2-19. The trajectory of each algorithm
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As shown in Fig. 2-19, the Kalman tracker and the SSWT give good tracking performance for

a non-linear moving target model (Model II). To compare the tracking performance of each

algorithm, the errors are calculated using (2-5). The error curves of each tracking algorithm are
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as shown in Fig. 2-20.
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Figure 2-20. The error curves of each algorithm

As shown in Fig. 2-20, the o-§ tracker gives the worst tracking result when the coefficient o

is a variable. The errors of each algorithm are given in Table 2-11.

Table 2-11. Error of each tracking algorithm

Error
Type of algorithm
(a) (b) (c) (@
The SSWT 679.0 878.5 1076.0 1345.5
The a-p tracker 3558.9 3570.0 3582.8 3558.3
The Kalman tracker 226.8 209.0 2154 210.2
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From the table 2-11, the Kalman tracker and the SSWT give good tracking performance in
case of a non-linear moving target model (Model II).

Fig. 2-21 illustrates the tracking results by changing the coefficient a of the a-f tracker for a
non-linear moving target model (Model III). The coefficient 3 is obtained from (2-4). The noise

covariance Q of the Kalman tracker and window size M of the SSWT are set as 1 and 2,

respectively.
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Figure 2-21. The trajectory of each algorithm

As shown in Fig. 2-21, the Kalman tracker and the SSWT give good tracking performance for
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a non-linear moving target model (Model III). To compare the tracking performance of each

algorithm, the errors are calculated using (2-5). The error curves of each tracking algorithm are

as shown in Fig. 2-22.
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Figure 2-22. The error curves of each algorithm

As shown in Fig. 2-22, the Kalman tracker gives the best tracking result. The errors of each

algorithm are given in Table 2-12.
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Table 2-12. Error of each tracking algorithm

Error
Type of algorithm
(a) (b) (c) (@
The SSWT 671710 671720 671730 671730
The a-p tracker 5275300 1151000 190640 74448
The Kalman tracker 24833 24837 24840 24837

From the table 2-12, the Kalman tracker gives the best tracking performance in case of a non-

linear moving target model (Model III).

Fig. 2-23 illustrates the tracking results by changing the noise covariance Q of the Kalman

tracker for a non-linear moving target model (Model III). The coefficient o of the a-f tracker

and window size M of the SSWT are set as the variable obtained from (2-3) and 2, respectively.

The coefficient B is obtained from (2-4).
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Figure 2-23. The trajectory of each algorithm

As shown in Fig. 2-23, the Kalman tracker and the SSWT give good tracking performance for

a non-linear moving target model (Model III). To compare the tracking performance of each

algorithm, the errors are calculated using (2-5). The error curves of each tracking algorithm are

as shown in Fig. 2-24.
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Figure 2-24. The error curves of each algorithm

As shown in Fig. 2-24, the a-f tracker gives the worst tracking result when the coefficient a

is a variable. The errors of each algorithm are given in Table 2-13.

Table 2-13. Error of each tracking algorithm

Error
Type of algorithm
(a) (b) (c) (d)
The SSWT 671710 671710 671730 671710
The a-p tracker 5275200 5275200 5275200 5275200
The Kalman tracker 24825 111390 401790 1235900

From the table 2-13, the Kalman tracker gives the best tracking performance in case of a non-
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linear moving target model (Model III).

Fig. 2-25 illustrates the tracking results by changing the window size M of the SSWT for a

non-linear moving target model (Model III). The noise covariance Q of the Kalman tracker and

the coefficient o of the a-P tracker are set as 1 and the variable obtained from (2-3), respectively.

The coefficient B is obtained from (2-4).
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Figure 2-25. The trajectory of each algorithm

As shown in Fig. 2-25, the Kalman tracker and the SSWT give good tracking performance for

a non-linear moving target model (Model III). To compare the tracking performance of each
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algorithm, the errors are calculated using (2-5). The error curves of each tracking algorithm are

as shown in Fig. 2-26.
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Figure 2-26. The error curves of each algorithm

As shown in Fig. 2-26, the a-p tracker gives the worst tracking result when the coefficient a

is a variable. The errors of each algorithm are given in Table 2-14.

Table 2-14. Error of the each tracking algorithm
Error
Type of algorithm
(@) (b) (c) (d)
The SSWT 671700 1093200 1595800 2139400
The a-f tracker 5275200 5275300 5275200 5275200
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The Kalman tracker 24814 24819 24829 24814

From the table 2-14, the Kalman tracker gives the best tracking performance in case of a non-

linear moving target model (Model III).

From all the results, on an average, the SSWT shows a good performance for not only a linear

moving target model but also a non-linear moving target model. As shown in the all figures, the

proposed method has better performance than the a-f tracker.
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2.4 Implemented Simulator

The maritime radar simulator is made up of a DSP and a host PC. Fig. 2-27 illustrates the

functional block diagram of the maritime radar simulator system.

Initialization I=>|Generate ideal data|

.|t
(500 | == €D

/
\ g

RS-232

The switched slide window tracker
The Kalman tracker

The a—B tracker

Figure 2-27. Block diagram of simulator

A TMS320C6711 DSP board was used to implement the maritime radar simulator for

proposed tracking algorithm. The photograph of the DSP is shown in Fig. 2-28.

Figure 2-28. The DSP board.
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A brief overview of the DSP board is shown in table 2-15.

Table 2-15. Specifications of the DSP board

DSP chip TI TMS320C6711
Type Floating Point DSP
Clock 200 MHz

ROM IM Byte Flash Memory

Memory (SDRAM) 32M Byte

Internal Memory 64K Byte On-chip SRAM

EMIF 16-bit External Memory Interface
Serial Port 2 McBSP, User RS232, JTAG Port
Boot Mode ROM Boot

Power 5V

Power Consumption 3.5 Watt

The DSP board has an SRAM that can be used to store programs and data. The instruction

rate of the chip is 235 MIPS [17]. The DSP board performs the operations such as generation of

actual data and tracking of maneuvering target. The DSP board is programmed so as to allow

the user to select a tracking algorithm from the o-f tracker, the Kalman tracker and the SSWT.

The DSP board tracks the predicted position and velocity using the selected tracking algorithm

and data association. The data association is to get the firm track. If the host PC sends the

predicted target of a track to the DSP board, the DSP chip sets a rough validation gate around

the targets. If there are detects in the rough validation gate, the validated detects are sent back to

the host PC. Then, PC sets a more refined validation gate on them, and chooses the best detect
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which will be used for the measurement update. The GUI software as shown in Fig. 2-29 is

written by using LabVIEW 8.5.

Maritime RADAR Simulator

Speed
1,408 KTS

BRG
54.38 DEG

Figure 2-29. The maritime radar simulator

Using the obtained position and velocity from the DSP, the GUI in a host PC displays the

information of the moving targets as follows [18]:

(1) Filtered range and bearing to the target,
(2) Predicted target range to the closest,

(3) True course and speed of the target.
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Figure 2-30. The maritime radar simulator
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2.5 Conclusion

The SSWT to track moving targets was proposed in this research. The proposed algorithm

can effectively track the target by using a piecewise linear model in a non-linear moving target

trajectory.

To verify the proposed algorithm, the maritime radar simulator with the SSWT is

implemented using a TMS320C6711 digital signal processor (DSP) board and LabVIEW 8.5

and is compared against the a-f tracker and the Kalman tracker.

The proposed algorithm is more effective than the a-f tracker for non-linear moving targets.

The computation time for each tracking algorithm running on this board was estimated. It turned

out that our algorithm requires much less time than the Kalman tracking algorithm. The

proposed tracking algorithm has a couple of advantages over the Kalman tracking algorithm in

terms of computation time, and non-requirement of the statistical characteristics of a target.

Our implementation by utilizing the proposed algorithm can improve the tracking

performance of the maritime radar.
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CHAPTER 3

The Parametric Array Sonar System

3.1 Introduction

The sonar system has an important role in underwater communication. In the underwater
communications, transmitted acoustic signal is corrupted by interference from multipath [10]. A
parametric array transducer is capable of radiating a narrow beam with very low sidelobe levels
[11]. In certain cases, the parametric array transducer can help the multipath problem. To
improve the performance of the underwater communications, the statistical signal processing
methods will be required.

In the thesis, the sonar communication system using a parametric array transducer was
demonstrated. The on-off keying scheme was applied to modulate the signal [19]. For a good
communication, the maximum likelihood method using averaged signal for a particular window
size is used in the system [12].

The system is composed of a parametric array transducer, a NI PXI system, a microphone, a
power amplifier, a PC with DAQCard, and the control software developed by LabVIEW 8.5.
The sonar communication system has GUI which allows the user to change the parameter. The
GUI can also be easily modified based on the characteristics of a parametric array transducer.

The implemented system can effectively evaluate the performance of the parametric array
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transducer.

Section 3.2 gives a brief overview of the detection algorithm. Section 3.3 presents the

implemented transmitter, receiver and the experimental results. Finally, Section 3.4 describes

some of the research results.
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3.2 Maximum Likelihood Method

The decision rule defined as [12]

d(z):{dl if p(z|m)>(z|m,) o

& ifp(z|m2)>(z|ml)

W g =N (3:2)
my,:z=s+n

where the observation of m, is the zero-mean unit-variance gaussian random noise, the

observationof m, is s+mn, s isthe mean value.

The conditional probability density of z given m, or m, as

p(z|m,) =%exp‘7zz
P (3:3)
1 —(z—s)
p(z|m2)=\/gexp ;
The decision regions are
le{z:p(z|ml)>p(z|ml)} 4)
Z, ={z:p(z|ml)<p(z|m1)}
The likelihood ratio A(z) defined as
p(zlm)
A(z)= (3-5)
B o zim)

Z :
(3-6)
Z :
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It can be expressed shortly

Az) 1 (3-7)

<
d

Using above the equations, the problem can be solved

oy 2 (el (e ]

P(Z|m1) (l/x/g)exp[—zz/ﬂ

[(z=57 -] )

=€X
P 2
(22 - s)
=€X
P g
The decision rule can be written as
(2z-5)%
zZ—S) >
exp F 1 (3-9)
dl
Take the natural logarithm of (3-9)
27-5%
Z =S >
B < (3-10)
dl
Then (3-11) is obtained
dz
> 8
275 (3-11)
d

and the decision regions can be defined as

amfereif(=d
e

Fig. 3-1 illustrates the signal that is obtained by the experiment. The experiment setup is

(3-12)
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explained in section 3.3.

Amplitude [voltage]

i i i i i i i i i
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Time [second]

Figure 3-1. Measured signal

To detect the signal, averaging technique was applied, additionally. The averaged signal is

obtained by

(3-13)

where N is the sample number.

The average value of the signal as shown in Fig. 3-2 is obtained based on (3-13).
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Figure 3-2. The average value of the signal

As shown in Fig. 3-2, the signal is absolute and averaged. Fig. 3-3 illustrates the probability

density function of the averaged signal. The averaged value of the signal has Gaussian

distribution.
T T T .
“““““““““““““ pdf of s1+n1
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1+ A T O e e Decision | |
0.8} n
& 0.6- i
o
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ol . , . .
0 0.05 0.1 0.15 0.2

Normalized signal

Figure 3-3. The probability density function of the signal
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The decision rule from the ML method is

VAR

z Z(SZ—;LSI) (3-13)

A

where s, and s, are mean values.

The standard deviations of s, +#n, and s, +n, are 0.0025 and 0.0169, respectively. The

means of s, +n, and s, +n, are 0.0094 and 0.1658, respectively. Hence, if z>0.0876, we

decide d, andif z<0.0876, we decide d, .
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3.3 Implemented System

3.3.1 Transmitter

The parametric array sonar system consists mainly of transmitter and receiver. The block

diagram of the transmitter is shown in Fig. 3-4 [20].

| Controller (N1 PXI-60708) |
Data input
@ D/A [ [
Modulation ::>

Figure 3-4. Block diagram of transmitter

The transmitter is composed of a parametric array transducer, a NI PXI system and a power

amplifier. The PXI system plays a role in the modulation and the digital to analog conversion

(DAC). The control software is programmed by LabVIEW 8.5. A brief overview of the NI PXI

system is shown in Table 3-1.

Table 3-1. Specifications of PXI-6070E

Item Description
Output Resolution 12 bits
Output Rate 1 MS/s
Output Range +10V
FIFO Buffer Size 2,048 samples

The prototype parametric array transducer is developed by vibration/acoustics and
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transducers laboratory of Pohang University of Science and Technology [21]. Fig. 3-5 shows the

structure of the prototype parametric array transducer.

Piezoceramics

Langevin Mechanical
transducer amplifier
Radiation
plate

Figure 3-5. Structure of the prototype parametric array transducer

The prototype parametric array transducer has 82 kHz and 122 kHz resonance frequencies,

and its size is 50mm x 50mm.
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3.3.2 Receiver

The block diagram of the receiver is shown in Fig. 3-6. The receiver is composed of a
microphone, power amplifier and a PC with DAQCard. The transmitted signal has 40 kHz
difference frequency because of the parametric array transducer characteristic [22]. The
received signal is amplified through a power amplifier. In the PC, signal is sampled, filtered and

demodulated. To remove the sampling noise, band-pass filter (38 kHz, 42 kHz) is used [23].

::> ::> A/D :> Band-pass filter
Data @
output <:| Demodulation

Figure 3-6. Block diagram of receiver

A brief overview of the NI PXI system is shown in Table 3-2.

Table 3-2. Specifications of DAQCard-6062E

Item Description
Input Resolution 12 bits
Output Rate 500 kS/s
Input Range +0.05to £10 V
FIFO Buffer Size 2,048 samples
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3.3.3 Experimental Result.

A simple communication experiment has been carried out in the air [24]. The signal was

generated by on-off keying modulation scheme. The primary frequencies are 42 kHz and 82

kHz, respectively. The signal frame consists of 20 bits flag and 130 bits data as shown in Fig.

3-7 and it was sent repeatedly [25].

1.5 sec

y
A
y
A
) /

10 bits 130 bits 10 bits

Figure 3-7. The structure of the signal frame

Fig. 3-8 illustrates the generated signal after ADC at the transmitter which is measured by an

oscilloscope. Fig. 3-8 (a) shows the form of the modulated signal, and Fig. 3-8 (b) shows a

period of the frame.

Ml
V\ U i l

Unda ~ Channels Undo + Channels
Autoscale All Autoscale Al

-
<
e
[ E—
= >

| |
Autoscale Menu 1o Menu

Figure 3-8. (a) The modulated signal and (b) a period of frame measured by oscilloscope
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Fig. 3-9 illustrates the software to control the transmitter of the sonar system.

Parametric Array Sonar System - Transmitter
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Figure 3-9. The GUI transmitter

As shown in Fig. 3-9, the control software has GUI which allows the user to change the

parameter. The user can control primary frequencies, the output voltage, the input data and an

additional noise. An additional noise is useful in case of simulation for an arbitrary channel.
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Fig. 3-10 illustrates the receiver of the parametric array sonar system.

Parametric Array Sonar System - Receiver
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010110000000000

Figure 3-10. The GUI receiver

As shown in Fig. 3-10, the receiver controller is designed to change the sample number, the

sample rate and the detection level. To detect the signal, the measured signal was averaged for a

particular window size before applying the maximum likelihood method. The window size is

same as the sampling number as shown in Fig. 3-10.
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3.4 Conclusion

The maximum likelihood method using averaged signal for a particular window size was

presented. The proposed algorithm can quickly and exactly detect the signal without error.

To verify the algorithm, the sonar communication system is implemented. The system is

composed of the control software, a parametric array transducer, a NI PXI system, a microphone,

a power amplifier and a PC with DAQCard.

The control software is easy to modify the program for the characteristic of the prototype

parametric array transducer by utilizing LabVIEW 8.5. The implemented system can effectively

evaluate the performance of the parametric array transducer.

Our implementations will be helpful to develop a sonar communication system using the

parametric array transducer.
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CHAPTER 4

Conclusion Remarks

The statistical signal processing algorithms were proposed. The thesis covers two major
implementations using these algorithms: 1) The maritime radar simulator, 2) The parametric
array sonar system.

For the maritime radar simulator, the SSWT was proposed to track moving targets. To verify
the proposed algorithm, the GUI maritime radar simulator with the SSWT is implemented using
a TMS320C6711 digital signal processor (DSP) board and LabVIEW 8.5. The simulator is
compared against the o-B tracker and the Kalman tracker. The proposed algorithm can
effectively track the non-linear moving target by using a piecewise linear model in a target
trajectory, which has better performance than the a-f tracker for non-linear moving targets. The
computation time for each tracking algorithm running on the DSP board was measured. It turned
out that our algorithm requires much less time than the Kalman tracking algorithm. The
proposed tracking algorithm has advantages compared with the Kalman tracking algorithm in
terms of calculation time, and our algorithm does not require prior statistical characteristics of a
target.

For the parametric array sonar system, the maximum likelihood method using averaged signal
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for a particular window size was presented. The algorithm can quickly and exactly detect the

signal without error. For the underwater communication, the sonar system with the proposed

algorithm is developed using a prototype parametric array transducer. The system is composed

of the control software, a parametric array transducer, a NI PXI system, a microphone, a power

amplifier and a PC with DAQCard. The control software designed by LabVIEW 8.5, could be

modified easily, according to different parametric array transducers. The implemented system

can effectively evaluate the performance of the parametric array transducer

Our results show that the maritime radar simulator and the parametric array sonar system

could be potential approaches to improve the performance of ocean equipments.
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