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1. Introduction

Let w = (wq,wy,---) where w; > 0 and I3,(C) be the set of all sequences
z = (20,21, - ) of complex numbers such that Y72, w; |z;]> < oo. Define an
inner product of vectors ¢ = (zn) and y = (yn) by <z, y > = Z;io w;T Y5
Then we show that [2(C) becomes a Hilbert space(Theorem 3.3). From this
result, 12(C) becomes a Hilbert space. Similarly, let H be a Hilbet space and
12 (H) be the set of all sequences (x,)7%, in H such that Yoo unllzal? <

oc. Then we show that [2(H) becomes a Hilbert space (Theorem 5.1).

In this thesis, we will study various spectra (spectrum, point spectrum,
approximate point spectrum, compression spectrum, residual spectrum and
continuous spectrum) of shift operators on the spaces I2(C), 2(C) and I*(H),
respectively and various spectra of weighted shift operators on the space
I2(C). Also we will study various spectra (spectrum, point spectrum, ap-
proximate point spectrum, compression spectrum, residual spectrum and
continuous spectrum) of diagonal operators on the spaces I2(C) and I%2(C),
respectively.

The organization of this thesis is as follows. In section 1, we look about the
basic properties of various spectra (spectrum, point spectrum, approximate
point spectrum, compression spectrum, residual spectrum and continuous
spectrum) of a linear bounded operator on a Hilbert space H and relations
among them. Also we introduce spectral mapping theorem of spectrum of
an operator A in B(H), where B(H) denotes the space of all bounded linear

operators on H.

In section 2, we deal with the various spectra of shift operators on 2 (C).
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First we prove that I2(C) becomes a Hilbert space. According to w =
(wo,wy, -+ ), we classify the space I2(C) into case 1 and case 2 and then
calculate the various spectra of weighted shift operators. From these results,
we can get the spectra of shift operators (right shift and left shift) on 1*(C) .

1L ...) where

In case 1, the condition of w = (wq,wy, -+ ) is w = (1, i

q > 0. Then the norm and the various spectra of shift operator on this space
are calculated.

In case 2, the space is more generalized. When wg,w,, -+ are positive,
increasing and bounded, the various spectra are calculated. In particular,
we are interested in the various spectra of weighted shift operator on {2 (C).

In section 3, we calculate the spectra of a diagonal operator in {?(C) and
I2(C). In I2(C), we let w = (wo,wy, -+ ) = (1, %, ql—“ ) (g > 1),

In section 4, we show that {2 (H) becomes a Hilbert space. In particular,
we show that a uniformly bounded sequence T = (A,) of operators in 1% (H)
is unitarily equivalent to T = €T when w = (1, %, ;—2, ), (¢ >0). And we
give a generalized proposition of N. Faour and R. Khalil ([3]). That is, for a
diagonal operator S with diagonal {4, } in 2 (H), S is compact if and only
if A, is compact and lim||A4,|| = 0.



2. Basic Properties of Spectra

Let H be a Hilbert space and let B(H) be the set of all bounded linear
operators on H. For any A € B(H), the spectrum o(A) of A is the set of
all A € C such that A — X\ is not invertible. A € o,(A) iff there exists a
unit vector z such that Az = Az, i.e., g,(A) is the set of all eigenvalues of
A. op(A) is called the point spectrum of A. 0,p(A) is the set of complex
numbers A such that 4 — A is not bounded below. The set 0,,(A) is called
the approzimate point spectrum of A. Equivalently, a number A belongs to
oap(A) if and only if there exists a sequence {x,} of unit vectors such that
(A = A)zn|| — 0. The compression spectrum of A, denoted by ocom(A), is

the set of complex numbers A such that the closure of the range of 4 — A is

a proper subspace of H, i.e., ocom(A) = {A € C: R(A—\) # H}. Thus
Teom(A) = {2 € C: A— Al is a right divisor of zero in B(H)}
={Ae C:(A—-M)(H) isnot densein H}.

The set of all complex numbers A such that 4 — AT is injective but its range
is not dense in a Hilbert space H is called the residual spectrum of A and
denoted by o,(A4). Thus o,(A) = 0com(A)—0p(A). The continuous spectrum
of A, denoted by o.(A4), is the set of all complex numbers A such that 4 — Al

is injective, has dense range, but is singular. Thus o.(A4) = o0(A4) — (0,(A4) U

Tcom(A)).
It is obvious from the definitions that o(A4) = o0,(A) U 0.(4) U 0.(A),

where the terms on the right are mutually disjoint.

Lemma 2.1. ([1]) 0(A) = 0ap(A) Uocom(A).
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Lemma 2.2. ([1]) If A € B(H) is an operator, then o,(A*) = gcom(4)*
and 0(A*) = 04p(A*) Uop(A)*.

Corollary 2.3. 0,(A) = 0com(A*)* and 04,(A) U 0,(A%)* = 0(A).

Theorem 2.4. ([1],[2]) For each operator A € B(H), the approximate point
spectrum 04p(A) is closed and do(A) C 04,(A), where 0o(A) is a boundary
of o(A).

Theorem 2.5. ([1],(2]) If A is a normal operator, then o¢om(A4) = 0,(A)
and therefore (A) = 0qp(A).

Theorem 2.6. ([2]) Let T € B(H) be any operator. The following condi-
tions are equivalent.
(1) A ¢ oup(T).
(2) R(T — M) is closed and dimker(T — A) = 0.
(3) A ¢ oi(T), the left spectrum of T.
(4) X ¢ o (T*), the right spectrum of T*.
(5) R(T* —X)=H.

From Theorem 2.6, we can know 0,,(T) = 0i(T) = o (T*)".

Theorem 2.7. ([5]) If A is an operator and p is a polynomial, then o,(p(A))
= p(op(A)),04p(p(A4)) = p(0ap(A)) and deom(p(A)) = p(dcom(A)). The

same equations are true if A is an invertible operator and p(z) = 1 for z # 0.



3. Shift Operators on [2(C)

Define 1?(C) to be the set of all sequences ¢ = (zg,;,---) of complex
numbers such that E;)io |z;|> < oo. Then [*(C) is a vector space over
C. For any ¢ = (zg,21,---) € I*(C), define a norm || - || on [*(C) by
llz|l = (Z;‘ZO |z;]?)}/2. Then [?*(C) becomes a normed space. Define an
inner product of vectors z = (z,) and y = (y») by < z, y >= ZJ?O:() z;7;.
Then [2(C) becomes a Hilbert space([2], [3]).

Definition 3.1. ([2],(3]) Define S, : I*(C) — I*(C) by S, = (xo,21,--) =

(0,20,x1,--- ). The operator S, is called a right shift operator (or unilateral
shift).
Obviously S, is linear and ||S,z|| = ||z||, = € I*(C). Thus S, is an isometry

of I2(C) into I*(C) and ||S,|| = 1. Also S, maps {?(C) onto a proper subspace,

i.e., S, is not surjective. Therefore S; is not invertible.

Definition 3.2. ([2],[3]) Define S; : I*(C) — I*(C) by Si(zo,z1,--+) =
(zy,22,---). The operator S; is called a left shift operator (or backward

shift ).

Obviously S is linear and ||Si|| = 1, but S; is not one-to-one. Hence S is
not invertible.

Let w = (wg,wy,--- ), where w; > 0. Define I2(C) to be the set of all
sequences T = (zg, 1, - ) of complex numbers such that Z;’;O wjlz;|? < oo.
Then 2(C) is a vector space over C. Forany x = (§0,&1,--- ),y = (mo, M1, )
€ I,(C),



(D) z+y=(& +n0,& +m1,-+-) € 13(C). For

Zw;le, +n,]* < ij(l&l + 1512 =) w;(1&1* + 21&]In; | + nj1?)

7=0 =0
z J|51|2+‘)Zw1|‘51||771|+zw1|771 < 00,

= =
which follows from the fact that

Z%I&;IImI = Z (V5151 (v/31n;1)
< [Z(M|s,-|>21%[z<¢w7|m|>21%

o0 oo
1 1
=D wile; P10 wjln)*)7 < oo
7=0 7=0
by the Cauchy-Schwarz inequality.

(2) az € I%(C) for all « € C since Z;«;o wjlag;|? = Z;io wilal?|¢]? =
|ar)? Z; o Wjl&i|* < co. For any z = (29,21, ) € [2(C), define a norm
I'llw on 13,(C) by ||z}|w = (E?io w;|z;|12)!/2. Then 12(C) is clearly a normed
space.

Theorem 3.3. Let w = (wq,w,--+) where w; > 0 and let I2(C) be
the set of all sequences = (z¢,z1,---) of complex numbers such that
Zj‘io w;|zj|* < o0o. Define an inner product of vectors z = (z,,) and y = (yn)

by <z, y>= E,ﬁo w;z;y;. Then I2(C) becomes a Hilbert space.

Proof. Clearly 1% (C) is a normed space. Let (z,) be any Cauchy sequence in.
the space 12 (C) where z, = (a((,") g") g"), -++). Then for any € > 0, there
exists an N € N such that for all m,n > N,

(o o]
n m 1
l2n = zmllw = (3 wjlas™ — i )% <. (3.1)
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It follows that for every 7 = 0,1,2,---, we have |(a§") — ag-m)),/wj] <
—1

e (n,m > N). That is, lag-") - agm)l < ew;* (n,m 2 N). For each

7s (agm))f,f:(, is a Cauchy sequence in C. Let 3; = limpy oo ag»m). Using

this limits, we define z = (f,51,832, ) and show that z € [%(C) and

|zn — z|]]w — 0 as n — oo. From (3.1), we have for all n,m > N,
k
n m 1
N wjlad™ —al™)i <o (k=0,1,2,3,--).
i=0

Letting m — oo, we obtain for n > N,
k
n L
(Y wilel™ — 3, <e (k=0,1,2,3,--).

=0
Letting k — oo, then for n > N,
n 1
2w — 2llw = (O wilal™ = 8,7 <.
=0
This implies that z, — z and z, —z = (agn) —3;) € I3(C). Since z, € I2(C),
we have 2 = (z — 2,) + 2z, € {3(C). Thus [2(C) is a Banach space.

It suffices to show that the norm satisfies the parallelogram law: for any

I = (Iﬂszlv"'), y:(yO-,yl"”) € I?p(C)v

oo o0
e+ yll% +llz =yl =D wilz; +y;l° + ) wile; -y,
;=0 j=0

o0 oo
=2 wile; P42 w;ly; )
= 2||z1%, + 2llyll%-

Hence 12,(C) is a Hilbert space. O

Case I.w:(l,%,q]—z,---)where g>0
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Lemma 3.4. Let ¢ > 0 be given and w = (1,%,;—2,---). Let 12(C) be
the set of all sequences * = (zq,z1,---) of complex numbers such that
oo olznl?’¢™™ < oo. Define an inner product of vectors z = (z,) and
y=(yn) by < z,y >= 500 y¢ "znyn. Then I3(C) becomes a Hilbert

space.

Lemma 3.5. Let ¢ > 0 be given and w = (1, %, ;—2,~--). Let A be the left

shift operator on I2(C). Then A is a bounded linear operator with ||A|| = \/q

and A* = qV where V is a right shift operator on [2,(C). Moreover, V* = %A‘

Proof. Clearly A is a linear operator. If zo = (0,¢,0,0,---), then ||Az¢|| =
1(g,0,-- )% = ¢* and ||zo|l%, = ¢*; = ¢. Thus [|Azo||}, = qllzol}, and so
V@ < ||A]l. Also for all z = (2, )72, € I2(C),

oo
Azl = l(z1, 22, )% =D g7 |25
1=0
=q¢) gV znlP =¢) g7zl
j:D j:l

e o)
<y a7z = ali(zosar,-- I = gllzll?-
=0

Therefore A is a bounded linear operator with ||A|| = \/g.
For any ¢ = (9,21, ) and y = (yo, 41, ) in [,(C),

. 1 _ 1 __
<A:1:,y>=<$,Ay>=xoy1+al‘1y2+q—2$2y3+"'
(1 _+1 _+1 T 4e)
=g\ —ToY1 —T1Y2 = T2Y3
q q* 7
=<Q(0,$0,$1,$2,"‘)a(yanlay2a"')>'

Since this holds for all y = (y,) € 2(C), A*z = A*(z9, 21, - ) = ¢(0, 20, 71,
z2,-+-) = qV(zo,z1,---) for any = = (z,) € I3,(C). Hence A* = qV. O
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Theorem 3.6. Let ¢ > 0 be given and w = (1, %, q%, ---). Let A be the left
shift operator on I2,(C). Then the followings hold.
(1) op(4) = {A e C: A < g}, o(4) ={r e C: A < g} and
sen(A) = (A € C: N < 3.
(2) gcom(A) = 6.
(3) 0,(A)=¢ and o.(A) = {A € C: |\ = /q}.
(4) For |A| < /g, ker(A — A) is the one-dimensional space spanned by
the vector (1, A\, A\%,---).

Proof. (1) Suppose that Az = Az for z = (2a) € I3(C). Then (21,2, ) =
(Azo,Az1,---), that is, Tup1 = Azn for n = 0,1,2,---. If zo = 0, then
z = 0in 2(C). Let A € o,(A). Then there exists a non-zero element
r = (r,) in I3(C) such that Az = Az. By the above fact, zp # 0. Thus
|Aellw = [[Az]lw < \/gllzllw and so 0,(A) € {A € C: |A] < /g}.

Let |A| < /@ and = (/3 A/@ A2/, ). Then

Iz)2 = ¢ +¢7 (M) +q 2\ g) + 93 (Xq) + -

A 4 /\6 qz
=g+ A tta Tt T e <

and Ar = Az, that is, A € 0,(A). Thus we have 0,(A) = {A € C: |A| < \/q}.
It is well known that o,(A) C 0,,(A) C o(A). Since o(A) is a closed subset
of Cand o(4) C{A e C: |\ < g}, 0(A) ={reC: A< g}
Since do(A) C 045(A) and 0,(A) C 04p(A4), 04p(A) = {A € C: |A] < /q}.
(2) It is well known that ocom(A) = (0,(A*)* = (0p(¢V))* = (gop(V))* =
qop(V)*. In fact, A € 0,(¢V) & 3z #0suchthat (¢V)z =Azr e Tz #0
such that Vo = 9z & 2 € 0,(V) & A € qo,(V). It suffices to show that
op(V) = ¢. Suppose that Ve = Az for some £ = (z,) and A # 0. Then
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(0,z0,21,- ) = (Azo, Az1, Az2,- -+ ), that is, Azg = 0 and Az,4; = z,, for all
n=0,1,2,---. Thus ¢ = 0 in [2(C). Since ||[Vz|lw = ||(0,20,%1, - )||w =
ﬁ”x”w for z = (zp) in I%(C), kerV = (0) and so A = 0 ¢ o,(V). Hence
0,(V) = ¢ and so g.om(A) = ¢.

(3) It comes from 0,.(A) = ocom(A) \ 0p(A) = ¢ and o.(A4) = o(A)\
(0eam(A)Ugy(4) = {A € C: A = ya}. 0

Corollary 3.7. Let S; be the left shift operator on I*(C). Then we have

the followings.

(1)

(2)
(3)

op(S1) = {A € C: |\ <1}, o(S) ={) € C: |\ <1} and
oap(S1) = {2 € C: |A| < 1}

Ocom(St) = 0,(S1) = ¢ and o.(S1) = {A € C: |\ = 1}.

For |A| < 1, ker(S; — A) is the one-dimensional space spanned by the
vector (1,A,A2%,--+).

Theorem 3.8. Let ¢ > 0 be given and w = (1,%,;‘,—,---). Let V be the

right shift operator on [%(C). Then we have the followings.

(1)

(2) 0. (V) ={deC: |\ <

op(V)=¢, oeom(V)={r e C:|A| < ﬁ}, ando(V)={ e C:
A< %)

7}
7t

(3) gap(V)={reC:|A| = ﬁ} = a.(V).
(4) For |A| < ﬁ, R(V — A) is closed and dim R(V — \)+ = 1.

Proof. (1) For any z = (z,,) € I%(C),

1 1 1
V|l = ||(0, 20,21, )| = E|350|2 + q—glf'»‘1|2 + - =—|z)|2,

q
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and so ||[Vz||w = %Hx”w Thus V is a bounded linear operator with ||V|| =
—\}—q_. Suppose that Vz = Az for some r = (z,) € [2(C) and A # 0. Then
(0,z0,21, ) = (Azo,Azy, Az2, -+ ), that is, Azg = 0 and Az,41 = z, for
n = 0,1,2,---. Thus ¢ = 0 and so A ¢ 0,(V). Since ||Vz|» = ﬁ“z”w
for any z = (z,) in I2(C), kerV = (0) and so A = 0 ¢ o,(V). Therefore
op(V) = ¢. Since V* = %A where A is the left shift operator on I2(C), by
Theorem 2.7, 0com (V) = (0,(V*))* = (ap(%A))* = (%ap(A))* = %(UP(A))*.
Since 0,(A) = {A € C: |A] < /g}, we have oom(V) = {A € C: )| < ﬁ}
Since geom(V) Ca(V)Cc {A e C: || < ﬁ} and (V) is a closed subset of
C o(V)={reC:|A < 7}

(2) It comes from o(V) = ocom(V)\op(V)={A € C: |A| < —ﬁ}

(3) Clearly {A € C: |A] = \/Lq_} = 0o(V) Co.p(V) Co(V). Let |A] < _\}—E
Then |(V=A)zllw 2 1Vl [Allul = (25~ [ADllellu and V= is bounded
below. Thus {A € C: |\ < \—}_E} Z 04ap(V). Therefore o,,(V) = {A € C:
A = L2}, Ao 0u(V) = o(V)\ (geom(V) U 0y(V)) = (V).

(4) For |A| < ﬁ, R(V = X) is closed from Theorem 2.6. Since ker(V* — X)

is one-dimensional space, dim R(V — A\)* = dimker(V* — X) = 1. O

Corollary 3.9. Let S, be the right shift operator on {*(C). Then we have

the followings.
(1) 0p(Sr) =&, com(Sr) =0.(Sr)={A € C:|A] <1} and o(S;) =
{AeC: A <1}
(2) Gup(50) = 0e(Sr) = 80(S,) = {A €C: ]A| = 1}.

Case II. General Case
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Theorem 3.10. Suppose 0 < wg < wy < wy < -+ such that r = supw, <
oo. Let A be the left shift operator on I2,(C). Then we have the followings.
1) Al =1
(2) op(A) = {A € C: [N\ < 1}, o(A) = {A € C: |\ £ 1} and
oap(A) ={AeC:|A <1}
(3) gcom(A) = 4.
(4) 0,(A) =¢d and o (A) = {A € C: || =1}.

Proof. (1) Note that
lAll= sup |lAzllw = sup (wole1]® +wilze|® +---)!/?

Izllw=1 lzllw=1

< sup (wilzm P +walzP 4 )2 < sup lzflw =1

Ihzllw=1 lzflw=1
Thus A4 is bounded. Let zx = (£,") € 2(C) where €\ = (1/,/;)é;x. Then
lzkllw = 1 for any k = 0,1,2,--- and ||Azi|% = ‘“;)—;‘(5 1) > 1ask — oo.
Hence ||A|| = 1.

(2) Suppose that Az = Az for z = (z,) € [(C). Then (z;,z2, ) =
(Azo,Azy,---), that is, zp41 = Az, for n = 0,1,2,---. If zg = 0, then
z = 0in [2(C). Let A € g,(A). Then there exists a non-zero element
z = (z,) in I2(C) such that Az = Az. By the above fact, zo # 0. Thus
IAlllzllw = IAzllw = | Az]lw < [|A]lllz]lw and so o5(A) € {A € C: |A] <1}
Let |A\| < 1 and z = (1,A,A%,--+). Then ||z]|2 = wo + w1|A]? + wo|A[* +
w3|A|® 4+ -+ < 0o and so x € I2(C). Also Az = Az, that is, A € g,(A). We
have 0,(A) = {A € C: |A| < 1}. It is well known that g,(A) C 0,,(A4) C
o(A). Since o(A) is a closed subset of C and ¢(A4) C {A € C: |\ < 1},
o(A) = {A € C:|A] £ 1}. Since 9o(A) C g4p(A), 0ap(A) = {A € C: |A| <
1}.
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(3) For any z = (z0,21, -+ ), ¥ = (yo,y1, - ) € I(C),
<Az,y > = <($1,.’E2,--'), (yo,ylv"') >

Wo __ wy __ wa__
= wﬂl(;%yo) + wzlz(w—zyz) + waxs(l—v—ays) + -

Wo w
=< (.‘Bo,.’tl,xg,"'), (0, '——yOv_lyl"") >.
w1 wo

Since this holds for any = = (z,) € I2(C), A*(z0,21,-+-) = (0, 22 w2, BhTy,
-+). Suppose that A*z = Az for z = (zn) and A # 0. Then (0, 220, &1 11,
0,1,2,---. Thus ¢ = 0 in I2(C) and so 0 # A ¢ o,(A*). Also ker A* = (0)
and so A =0 ¢ 0,(A*). Thus 0,(A*) = ¢. Hence 0com(A) = 0,(A*)* =
(4) From ocom(A) = ¢, 0-(A) = dcom(A4) \ 0p(A) = ¢ and 0c(A) =
o0(A)\ (0eom(A) Uop(A)) ={A e C: || =1} O

) = (Azg, Azy, Az, - ), that is, Azg = 0 and Az,nqy = —%’:xn foralln =

Corollary 3.11. Let S; be the left shift operator on 12(C). Then we have
the followings.
(1) 0,(S)) = {A € C: A <1}, o(S) ={r € C: |\ L1} and
sap(S1) = {A € €A £ 1),
(2) Geom(St) = 0n(S1) = ¢ and 0.(S) = {A € C: A = 1}.

Theorem 3.12. Suppose wy > w; > wy > --- such that r = infw, > 0.
Let V be the right shift operator on I%2(C). Then the followings hold.
() vi=1.
(2) op(V) = ¢
(3) oup(V) = {AeC: N =1},
(4) deom(V)={r€C:|A\|<1},ando(V)={A e C: |\ <1}
(5) oe(V)={A€C: |\ =1} and or(V) = (A € C: [A| < 1}.
(6) If|A\| <1, then R(V — }) is closed and dim R(V — A\)1 =
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Proof. (1) Note that
IVlls, = (0,20, 21,22, )I* = wifzo[* + wale1|* + - --
< wolzol® +wilz* + walz2|® + - = ||zl
Thus V is bounded. Let z; = (£,") € I2(C) where ¢* = (1/,/@;)6,x. Then
lzkllw =1 for any k = 0,1,2,--- and [[Vai|?, = 52 (< 1) > las k — co.
Hence ||V] = 1.

(2) Suppose ¢ = (zg,z1,--) € I*(C) and A # 0. If Vz = Az, then 0 =
AZg, o = Azy,--- . Since A # 0,z = 0 and so A ¢ o,(V). Also kerV = (0)
and so A = 0 ¢ ,(V). Therefore 0,(V) = ¢. Since |[V]| = 1, o(V) C {} €
C:|Al <1}

(3) Let |A| < 1. Then there exists a real number ¢ such that |A| < ¢ < 1.
Since lim =2%! = 1, there exists a positive integer N such that ¢ < ¥2% <
1 for any n > N. Thus for any z = (0, -+ ,0,zn,ZNn41, -+ ) € I3(C),

Vel = wilzol® + walza[* + -

> wl|$0|2 +w2|$1|2 +"'+UJN|ZEN_1|2 +qu|~TN|2 4+ .-

= qllz|l3,
and so |[Vz|l}, > gllzllf,. Therefore |[(V = Nzllw 2 [[Vzllw — [Alllz]lw >
(V4 — IM)llzllw for any z = (z,) € I%2(C). Since Vi—IAl >0,V —-Xis
bounded below and so A ¢ 0,,(V). Since 0,,(V) C (V) and 9o(V) = {) €
C: A =1} Coap(V), 04p(V)={A e C: || =1}
(4) For any z = (zn), y = (ya) € I,(C),
<Vz,y>=wzoq1 +woz1y2+ -

wy W
=weTo—Y1 + w11 —Y2 + -
Wo wy

w w2
=< (xoal'lv"')v(w_oyla l—u‘l‘y%"‘) > .
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Thus V*(yo,y1,- ) = ($2y1, 32y2,- ). Let [A] < 1and choose z = (1, mA,

%‘21/\2,---). Then
w w
z]|%, = wo + w1|~2,\|2 +w2|—?—)\2|2 4o
wy w2
1 1 1
= [wol*(— + — AP+ —[AI*+---)
Wo wq we

2
w
SL:—|(1+|/\|2+I,\|4+---)<00

and
Ve = VAL 20, P00 Ly o (B, W Wy
un w9 Wy w1 wn wo
= (X 2)2,...) = Az
wy

Therefore {A € C: |A] < 1} C 0,(V*). We know that a,(V*) C o(V*) =
o(V)* = {A € C: |A] < 1}. Suppose that there exists A € o,(V*) with
|A| = 1. From V*r = (a1, 3232, ) = (Azo, Az1,--+) = Az, it is clear
that if o = 0, then z = 0 and so rg must not be zero. But

IV*alll = wol b w2 4

w) wy
= —~w1|x1|2+—-w2|x212+---
Wo wq

IN

wiler|* + w2z + - < 2|3,
This is a contradiction to the fact |[V*z|ly, = |A|||z|lw = ||*]|w. Thus X ¢
0,(V*) when |A| = 1 and so0 gcom(V) = a,(V*)* = {A € C : |A| < 1}
Since 0com(T) C o(T) for any operator T, {A € C: [A| < 1} C (V) and
from (1), o(V) C {A € C: |A] < 1}. Since o(V) is a closed subset of C,
(V)= {h: <1}

(8) It comes from o, (V) = 0com(V) — 0p(V) = 0com(V) = {A €C: |A] <
l}and 0(V) =0(V) = (0com(V)U 0,(V)) = {A € C: || = 1}.
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(6) For |A| < 1, R(V — A) is closed by Theorem 2.6 and dim R(V — A\)+ =

dimker(V* — X) = 1 since ker(V* — }) is one-dimensional space. a

Corollary 3.13. Let S, be the right shift operator on I*(C). Then the
followings hold.
(1) 0p(Sr) =&, Ocom(Sr) = 0.(Sr) = {A € C: || <1} and o(S;) =
{AeC: A <1}
(2) 0ap(Sr) =0c(Sr) =00(S;)={A e C:|A] =1}

Theorem 3.14. Suppose that 0 < wyg < wy S wy <--- < u =supw, < 00
and 0 < lag] < |ay| € -+ < r = supla,| < oo. Define the operator
A:B(C) — IA(C) by A(zg,z1,22, ) = (a1T1, 22, -+ ). Then we have
the followings.

(1) op(A)={A e C:|A <1}

(2) o(A)={ e C:|A| <r}.

(3) 04p(A)={A€C: A <r}.

(4) ocom(A) = ¢.

(5) o-,(A)=¢ ando(A)={ e C: |A|=r}.

Proof. Since || z|, = (@121, azzz, )% = wolayzy P+ wrlagea P4 <
rt||z]|2, ||A]] < r. Thus A is a bounded linear operator with |A|| = r. Thus
a(A)C{AeC:|A| <}

(1) Suppose that Az = Az for z = (z) € IZ(C). Then (a1z1, 0222, ) =
(Azo,Az1,-- ), that is, AzTn = ans1Zass for all m = 0,1,2,--. If 2o = 0,
then z = 0 in I2(C). Let A € 0,(A). Then there exists a nonzero element

z = (z,) in 1%(C) such that Az = Az. From the above fact, zo # 0. Thus
IMlizllw = |Az]jw < rl|z||w and so || < 7. We have o,(A) C{A € C:|A| <
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2 a .
r}. Let |A] < r. Choose z = (1, ;’\l-, 01\02’ 01();203’.“)' Since
2 Ao i
lzlle = wo + wi|—[" + ws| "+
a aa
A A2 -
Su(l+|—P+]|—P+-)=u)_ an<oo
ag a)az neo0
and
n+41
P A2
T B I L A 2:' '2 <1,
nTee Gn L o n—o00 |arp 41| 7|
re2(Cland Az = A(1, A, A ) = (a2 a2 ) = (A, 20, A
T € w and Ar = 4 ‘a1t ogaz’ — 01017020,1027 - ‘o agan’

)= Az. Thus A € 0,(A) and 0,(A) = {A € C: |A| < r}.

(2) Since {A € C: Al <r} =0,(A4) Ca(A) S {AeC: [N <r}and o(A)
is closed, a(A) = {A e C: |A\| <r}.

(3) By (2), 90(A) = {N € C : |A] = r}. Since 0o(T) C 04p(T) and
0,(T) C 0ap(T) for any operator T, oap(A) = {A: || <1}

(4) For any « = (zn), y = (yn) € 11,(C),

< xv‘4y > = <('T07‘T17"')~, (a]ylsa2y21"') >

= woToa 1Y) + w1 T102yz + -

uo__ o wy_ _
= wy—aq oY1 +wr—azT1yY2 + -
wi wo
Wy ___ wy ___
:<(O’—al~r01_a'2x1~"')’(yﬂvylﬁst"')>-
w wo
Thus
Wy wq
* — —_—
A*(zo, 21, ) = (0, —@yzo, —@zTy, -+ ).
w1 wo

Suppose that A*z = Ar for z € I2(C) and A # 0. Then (0, %‘lla_lxg, %ZLCTQII,
)= (Azg,Azy, -+ ) andsox =0. Thus 0 # A ¢ 0,(A*) . If A =0, then
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A*z =0and so z = 0. Hence A = 0 ¢ o,(A"). Therefore o,(A*) = ¢. Also
Geam(A) = ,(A*)* = 4.

(5) It comes from 0,(A) = deom(A) — 0p(A) = ¢ and 0.(4) = 0(4) —
(Geom(A) U ap(4)) = {A € C: A =1}, 0

From this theorem we obtain Theorem 3.10.

Corollary 3.15. Let («,) be a monotone increasing sequence in a real field
R such that ay > 0 and r = supa, < co. Let A : I*(C) — I>(C) be the
operator defined by A(z¢,z1,--+) = (ayz1,02x2,---). Then the followings
hold.
(1) 0p(A) = {A e C: Al <r}, o(A) = {A e C: M <r} and
oup(A) = {A € C: A < 7).
(2) ocom(A) =0,(A)=¢ and o, (A) = {A € C: |\ =r}.

Corollary 3.16. Let S; be a left shift operator on I*(C). Then 0,(S;) =
{AeC: A <1}, o(S) ={A: A <1} =0up(St); Teom(S) = a,(S1) = ¢
and o.(S1) = 00(S)).

Lemma 3.17. Suppose that 0 < |ag| < |a;| < -+ such that r = sup |a,| <
oc. Define the operator S : I*(C) — I*(C) by S(xg,z1,-+) = (0, apg, a1 21,

-+ ). Then its adjoint S* is given by S*(zg,z1, -+ ) = (@gz1, 0122, - ).
Proof. Note that

<z,Sy>=<(x9,21, -+ ), (0,00y0,01y1, -+ ) >

= I100Yo + T200Yyy + -

= <(-a_o$1,aT$2,"-), (yO’yl,"')>’
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for any z = (z,) and y = (y») in [*(C). Since this holds for every y = (yy,)

in 12(C), S‘(.’Eo,xl,"’):(a_ﬂxlaa—lxm"')- 0

Theorem 3.18. Suppose that 0 < |ag| < |a;| < --- such that r = sup |ay,|
< 00. Define the operator S : I*(C) — [*(C) by S(zo.z1, ) = (0, apzq,
a1z1,---). Then the followings hold,

(1) 0p(S) = 6.

(2) o(S)={AeC: A <r}.

(3) 0up(S) = (A€ C: A =1},

(4) deom(S)={A e C:|M\ <)

(5) o-(S)={reC:|A|<r}and o (S)={Ae€C:|\=r).

(6) For [Al < r, R(S — A) is closed and dim R(S — )1 = 1.

Proof. Note that ||Sz||? = ||(0, apzo, ay 1, )2 = |ao)?|zo|? + |ay 1|z |? +

< ¥ lzol® 4l + o) = r?z)* and ||Sz|* = [5(0,1,0,-- )] =
10,0,@1,0,--)|I* = far|*[|z[|*. Then [S(0.1,0,---)|| = |a1]. So ||Sex| =
lak|for k =0,1,2,-- -, where eg = (0,+-+,0,1,0,---) € {*(C). Thus ||Seg]| <
|Ser]l < -+ < r. Hence ||S|| = r.

(1) Suppose that Sr = Az for z = (z,) € I}(C) and A # 0. Then
(0, apzo, 12y, -+ ) = (Azg, Azy,- -+ ), that is, Azg = 0 and Azp4q = anz, for
alln =0,1,2,---. We haver =0 and so A ¢ 0,(S). Also ker S = (0) and so
A=0¢ 0,(5). Hence 0,(S) = ¢.

(2) Let |\l < 7 and put = = (1,2, 2= ---). Then [[[? = 1+ |22 +

Qg ' Qrp(xy
2 .
la;\al >+ =377 a, < oo since
/\n+1 2 2
. |Gn+1 N v ownrad ) [Al 5 1
1 | n | — Lo " n | — - .
R e R S T e A

Qo Qn—)
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Since 5*(yn) = (@oy1,a1y2, ),
Thus A € 0,(5*) and z € ker(S* — )). Therefore {A € C: |A| < r} C
0(5*) C o(5*) = o(S)* € {A € C: |\ < r}. Since 0(S) is closed, o(S) =
{AeC: M <}

(3) Since 9o(S) = {A € C : [A| = r} and 9o(S) C 04,(S) C o(S),
{A e C: M =r} Cop(S) C{AeC: |\ <r}) Let |\ < r. Since

) = Az

lag] < |ay| < -+ and r = lim|a,|, there exists N € N such that |\| <
|- Since |[Sz|? = [|(0,- - ,0,anzn, anprznt1, )l 2 JanP(lza]? +
lzng1l® + ) = lan?|lz]|?, for any @ = (0,--- ,0,2n5,2Nn41,--+) € I¥(C),
(S = XNz|| > ||Sz|| = [Milz]] > (Jan] = IAD]|z]]. Thus S — X is bounded below
and so A € 0,,(S). Hence 4,(S)={A € C: |\ =1r}.

(4) For each = = (), y = (ya) € I*(C),

<z, S'y>=<Sr,y>=<(0,a0z0, 0171, -+ ), (Yo, Y1, ) >

= aoToYy +a1T1Y2 + -0 = Tl + T1a1y2 + -

= <A(zo,z1,-+), (Aoy1, @Yz, ) > .

Thus $*(yo,y1, -+ ) = (@y1,a1y2,--- ) for all y = (yn) € *(C) and so S* is
a weighted left shift operator on {*(C). From Theorem 3.14, 0,(5*) = {\ €
C: A < r}. Hence 0,(5*)* = {A € C: [\ < r} and 0com(S) = 0,(S*)* =
{AeC: Al <r}.

(5) Note that 0+(S) = 0com(S) ~ 0,(S) = {A € C : |A| < r}. Also
7e(5) = a(5) = (0p(S) Uoeom(S)) = {A € C: [A| = 1},

(6) For |[A] < 1, R(S — A) is closed by Theorem 2.6, and dim R(S — A\)+ =

dimker(S* — X) = 1 since ker(S* — \) is one-dimensional space. O
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4. Diagonal Operators

Suppose that H is a Hilbert space and that {e;} is a family of vectors that
constitute an orthonormal basis for H. An operator A is called a diagonal
operator if Ae; is a scalar multiple of e;, say Ae; = aje; for each j. The

family {a,} is called the diagonal of A.

Theorem 4.1. ([5]) A family {a;} is the diagonal of a diagonal operator

iff it is bounded. If it is bounded, then the equations Ae; = aje; uniquely

determine an operator A, and ||A|| = sup; |a;|.
Proof. If A is a diagonal operator with Ae; = aje;, then |aj| = |laje;| =
lAe;ll < [l Alllle;I| = [JAll. So {a;} is bounded and sup;|a;| < ||A]l. By

Parseval’s equality,

lAz)> = 11> as6e5ll* =Y la,&1* < (supla,? Y |¢, 2
J j ! j
= (supla;)*I1 Y &5e5l* = (sup|aj ).
7 ] 7

Thus ||Al| < sup; |«;| and so ||A]| = sup; |a;].
Conversely, given a bounded family {«;}, define A by A(zg,z;, ) =

(aozo,0121,--+). Then A3 rje;) = 3272, a;jze; and
o0 o0 o
1A ze)1 = 11D ajzsel* = Y loga;
j=0 7=0 7=0
oo
< (supla)? ) Iz * = (sup o )?|lz]1* < oo.
7 =0 J

Hence ||A|| < oo and A is a diagonal operator since Ae; = aje; for each j.

Clearly the diagonal of A is exactly the sequence {a;}. O
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Lemma 4.2. ([5]) If {an} is a sequence of complex scalars such that

>on |anén|? < co whenever >on |€2]? < oo, then {a,} is bounded.

Proof. 1f {an} is not bounded, then |a,| takes arbitrarily large values. With-

out loss of generality, we can assume that |a,| > n. If &, = a]—" (n =
1,2, ), then 3, 16:]2 < ¥, 55 <oobut 3, |anén|*(= oo) diverges. This
contradicts to the hypothesis. Hence {«,} is a bounded sequence. d

The set of all bounded sequences {«,} of complex numbers is an algebra
(pointwise operations), with unit (|a,| = 1 for all n), a conjugation ({a,} —
{a%}) and a norm (||{an}|| = sup,, |an|). A bounded sequence {a,,} is said to
be invertible if it has an inverse in this algebra, i.e., if there exists a bounded
sequence {fnp} such that a, 8, = 1 for all n. {a,} is said to be bounded away

from zero if there exists a positive number é such that |a,| > ¢ for all n.

Lemma 4.3. ([5]) {an} is invertible if and only if {a,} Is bounded away

from zero.

Proof. If {a,} is invertible, then there exists a bounded sequence {b,} such

> 1 __ —§>0.

that anb, = 1 for all n. Thus |a,| = Iblnl 2 SapaTon

Conversely, suppose that there exists § > 0 such that |a,| > é for all n.
Then a, # 0 for all n and so there exists {QL} such that -&l——an = 1 for all

n. Hence {a,} is invertible. O

If H is a Hilbert space with an orthonormal basis {e, }, then the correspon-
dence {ap} — A where A is the operator on H such that Ae, = a,e, for all
n is an isomorphism (an embedding) of the sequence algebra into the algebra
of operators on H. The correspondence preserves not only the familiar alge-

braic operations but also conjugation, i.e., if {a,} — A, then {a}} — A*.
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The correspondence preserves the norm also, i.e., |[{an}]| = sup, |a.| = ||A]]

where Ae,, = ane, for all n.

Theorem 4.4. A diagonal operator A with diagonal {an} is an invertible

operator if and only if the sequence {a,} is an invertible sequence.

Proof. If {a,} is invertible, there exists a bounded sequence {#,} such that
anfBn = 1 for all n. Let B be the diagonal operator with diagonal {3,}, i.e.,
Bey = Buen for all n. Then AB(Y; §5e5) = A, €,85¢;) = 210, §585a5¢5 =
2_;€je; and similarly BA(YZ; €e5) = >;&¢e;- Thus B is an inverse of A
and so A is an invertible operator.

Conversely, if A is invertible, then A=} (anen) = e, 50 that A e, = en
for all n. Since ||A7 en|| < ||A7|, the sequence {7~} is bounded, and hence

the sequence {a,} is invertible. O
We note that a diagonal operator A is a normal operator.

Theorem 4.5. Define A : ?(C) — [*(C) by A(zo,z1, ) = (@gz0, 0121,
---). Suppose that {|ay|} is bounded with suplay,| = r < oco. Then the
followings hold.

(1) o(A) is closure of {an}.

(2) 0p(A) = 0com(A) = {a,} and 04,(A) is the closure of {ay,}.

(3) 0r(A) =¢ and o.(A) = {an} — {an}.

Proof. Note that ||A|| = 7.

(1) By Theorem 4.4, we note that A — A is invertible if and only if {a, — A}
is invertible since |a, — A| < |an| + |A] < 0o and {an — A} is the diagonal
of A — A. By Lemma 4.3, we know that {a, — A} is invertible if and only

if {@, — A} is bounded away from zero. Then {«, — A} is bounded away
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from 0 if and only if |a, — A| = 0 as n — oo if and only if 0 is not a limit
point of {a, — A} if and only if ) is not a limit point of {a,} if and only
if A ¢ {a}. Consequently, A — X is not invertible if and only if A € {ay}.
Hence o(A) = {A € C: A — X # invertible} = {an}.

(2) Let {e;} be an orthonormal basis for [*(C) such that Ae; = aje; for
all j. Then q; is an eigenvalue of A and so {an} C 0,(A4). Conversely, if
Az = Az for some nonzero z, then ((ag — N)zg, (a1 — A)zy,---) = (0,0,---).
Since z # 0, at least one of z; is not zero, and so at least one of aj; — A is
zero. Thus 0,(A4) = {an}. Since A is normal, by Lemma 2.5, 0com(A) =
0,(A) = {a,}. Now, since 6,(A) = ocom(4) — 0p(A), o,(A) = 4. Since
op(A) C 04p(A) C 0(A), {an} C 04p(4) C {an}. Since gq,(A) is closed,
dap(A) = {an} = o(A).

(3) Since o.(A) = o(A) — (0,(A) U 0com(A)) and 0p(A4) = 0com(A),
a.(A) = {an} - {an}). O

Lemma 4.6. Let (a,) be a bounded sequence of complex field C. Define
T : I2(C) - I*(C) by T(zo,z1,22, -+ ) = (aozo,ayzy, ¥372, 2252 ... ). Then

T and T* are compact linear operators.

Proof. Let M be a positive number such that |a,| < M for all n. Define the
operator T, : I2(C) — [*(C) by

Q2T Q3T3 AnTy

2 73 ' n

Tn(xO,zlny,I:;,' vt ) = (aoxﬂ,alz]a

Then T, is a bounded linear operator of finite rank and so T, is compact.
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For any ¢ > 0, there exists an N € N such that N_+l <e. Thusifn > N,
> akzk 2 |zk
T =Tzl = 3 | <y GRS T
k=n+1 k=n+1 k=n+1
M? & M
< 2 < 201112 201112
<o o Il < Gl < 2lal

k=n+1
for all z = (z,) € I*(C). Thus |T —T,|| — 0 as n — oo and so T' is compact.

By [4], T* is compact. O
From Theorem 4.5, we have the following result.

Corollary 4.7. Let (a,,) be a bounded sequence of complex field C. Define

T: l2(C) — lz(C) by T(CIZ(),;L'l,J?2,' . ) = ((101130,011121, 22252, .O_l_aaia’... ) Then

op(T) = {00,%?- :n = 1,2,---}, o(T) = {0} Uoy(T), and 04,(T) =
o(T), 0.(T)=¢, 0com(T) = 0,(T) and o(T) = {0}.

Proof. Let A € 0,(T). Then there exists a non-zero elements r = (z,) in

I?(C) such that Tz = Az. Thus (g7, ayzy, SLE2, 2382 .. ) = (Azg, Ay, Ao,
Azz,---), that is, agzg = Azg, #2522 = Az, foralln =1,2,---. So A = Zm

for some m € Nor A = ag. Therefore we have ,(T) C {ap, %> : n =
2,---}. Let A = %= or ag. If €,, = (0,---,0,1,0,---), then z € I?(C)
and Te, = Aem. So A € 0,(T) and {ag, %2 :n =1,2,---} C 0,(T). Thus
op(T) = {@, %2 : n = 1,2,---}. Since T is compact, o(T) — {0} = 0,(T)
and 0 € o(T). We have o(T) = {0} U 0,(T). Since 80(T) C 0,,(T) C
o(T), op(T) C 04p(T) and 04,(T) is a closed subset of C, 0,,(T) = o(T).
We know that T’(zg,xl,zg,n-) (@oz0, @121, Bz, ). Thus
op(T) = (@5, % @ n ) = a0, i n = 1,2} = (D).
Hence o.om(T) = 0,(T), or( ) Tcom(T)—0p(T) = ¢ and 0(T) = o(T) ~
(65(T) U oeom(T)) = {0}. 0
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Theorem 4.8. Suppose {|an|} is bounded and sup; |a;| = r < oo, and let
w = (wo,wr, ) = (1, qq27 --) (g > 1). Let D be a diagonal operator
such that D : I2(C) — [2(C) defined by D(zg,z1,---) = (oo, a2y, ).
Then we have the followings.

(1) (D) = {an] = ap(D).

(2) 9p(D) = {an} = ocom(D).

(3) (D) = 0com(D) — 0p(D) = ¢ and 0.(D) = {an} — {an}.

Proof. Since

| Dz|)% = ZwJIaJIJI —Z ajz ;|

o0
< supIaJI Z 251" = r*[lz]l3, < oo,

ID|| < r = sup;|a,|. Note that ||e;|ln = f IV €illw = 1 for e; =
(0,---,0,1,0,---) € I2(C). Thus
1D( fe M = I1D(0,+++,0,7/¢%,0, )l = (0, .0, V/g", 0, ) [
= (;|ai\/e7|2>’/2 = o,
Hence || D|| = supy |, =1 | Dz||w = sup; jai| = 7.

(1) By Theorem 4.4, D — X is invertible if and only if {a, — A} is invertible.
That is, {a, — A} is invertible if and only if {a, — A} is bounded away
from zero if and only if |a, — A| - 0 as n — oo if and only if X is not a
limit point of {a,} if and only if A ¢ {an}. So {an} = o(D). For any

z = (zn), y = (yn) € I3(C),
< Dz,y > =< (apxo,a1Z1, - ), (Yo,y1," ") >

1
= apZoYo + Eaﬂlgl—‘*‘ e

=< (‘TOsxl,"')’(%y()’ayla"') >=< SIJ,D*y >
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where D* is a diagonal operator with diagonal {a,}. Thus
DD*z = D(agzg, @121, - ) = (xo@gZg, 11Ty, )

= (|ao|2I0, |01|2I1, ) = (@gagzo, 01121, - ) = D* Dz,

Hence DD* = D*D, i.e., D is a normal operator, and so 0,,(D) = 0(D) =
o

(2) Suppose that {1;}32, is an orthonormal basis for I2(C). Then v =
(0,0,--- 0, \/q—’;,O,---) and Dy = (0, - - - ,O’Qk\/ﬁ’o,...) = ax(0,--- ,0,
V@,0,--) = axpe. Thus ag = A is an eigenvalue of D. Also if Dz =
Az (z # 0), then ((ag — A)zo,{ay — A)zy,---) = (0,0,---). Since z # 0, at
least one z; # 0. So at least one a;— A = 0. Then A = a, for some «; € {a,}.
Thus Dz = Az (z # 0) if and only if A = a for some ay € {a,}. Therefore
we have 0,(D) = {an} = 0com(D), and 0,(D) = 0com(D) — 0p(D) = ¢.

Also 6.(D) = o(D) — (0p(D) U ocom(D)) = {an} — {a,}. O

Corollary 4.9. Define A : I*(C) — [?(C) is defined by A(zg,z1, -+) =
(apzo,0nzy,---). Suppose that {|a,|} is bounded with sup; |a;| = r < oo.
Then we have the followings.

(1) o(A) is closure of {a,}.

(2) 0p(A) =0com(A) = {an} and 0,,(A) is the closure of {a,}.



28

5. Weighted Operator Shift on the [ (H) Space

Let H be a Hilbet space and let I?(H) be the set of all sequences (z,)2,
in H such that 37 ||za||> < co. Then we show that [?(H) becomes a
Hilbert space. Suppose that (A,) is a uniformly bounded sequence for all
An € B(H). The unilateral shift operator associated with (A, ) is an operator
T:1*(H) — I?(H) defined by T(z¢,z1,---) = (0, Agzxg, A 21, - ). We write
T = (An) for this operator T. Then

(1) the norm of T is given by ||T|| = sup,, ||4.]], and

(2) the adjoint operator of T is given by T* : I2(H) — I2(H), T*(x,
Ty, ) = (Alzy, Alzg, - ).

For (1), note that

IT|| = sup || Tz|| = sup ||(0, Aozo, Ayz1,---)|

zl=1 lzl=1
oc X o0 %
= sup (3 4,210} < sup (sup l4al 3 o, )
llz|[=1 j=0 flzlf=1 n j=0

o
X
= sup || 4.]| - S4B (O llz;1*)? = sup || Aqll,
n T 1 n

j=0
that is, || T|| < sup, ||An]| < co. Forall z with ||z]| =1,z = (0,---,0,2,0,--)
€ I*(H), and ||Axz|| = ||(0,--- ,0, A¢z,0,---)|| < ||Tz|| for any k. Thus for
any k, ||Aell = supyg =y [[Axz < supyzj=1 ITz]| = [|T|| and so sup, [|Ak| <
IT||. Therefore ||T|| = sup,, || 4|l

For (2), we know that

<Tx,y > =<(0,A40z0,A1z1, - ), (Yo, Y1, ) >
=< xg,ASyl > +<£L‘1,A;y2 >+

=< (zﬂ’xl"")v(AsylvA;y21"') >,
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for each z = (z,,), y = (yn) € I*(H). Since this holds for any r = (z,) €
lz(H)v T‘(y()v Y1, ) = (Aayl’A:y27 T )1 for all Y= (yn) € l2(H) O

Theorem 5.1. Let w = (wo, w1, -+ ) where w; > 0 and let I2(H) be the set
of all sequences z = (zo, 1, ) of vectors in H such that 3 72, w;jl|z;||* <
oo. Define an inner product of vectors = (z,) and y = (yn) by < z, y >=

E,O'Zo w; < xzj, y; > . Then [2(H) becomes a Hilbert space.

Proof. Clearly I2(H) is a normed space. Let (z,) be any Cauchy sequence
in the space [2(H) where 2z, = (a'g"),a(ln),agn),-w). Then for any ¢ > 0,

there exists an N € N such that
o0
1
2n = zmllw = (3 willal™ — af™|?)3 <, (5.1)
=0

for all m,n > N. It follows that for every 7 = 0,1,2,--- , we have ”(ag»") -

ag"”)\/uTj” < g, for all m,n > N. That is, for all m,n > N,||Cr§-") -
1
2. For each 3, («

B; = limpy oo agm).

(m) )

7 m=

Using this limits, we define z = (8o, 01,02, ) and

ag-m)H < ew o 1s a Cauchy sequence in H. Let

J
show that z € I2(H) and ||z, — 2|l — 0 as n — oco. From (5.1), we have for
alln,m > N,
k
S willag™ —af™ )7 <&, (k=0,1,2,3,--).
=0
Letting m — oo, we obtain for n > N,
k
(D willal” Bl <&, (k=0,1,2,3,-).
J=0
Letting £ — oo, then for n > N,

oo
7 1
1w = 2w = O wjllal™ = 811 <e.

=0
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This implies that z, — zand z,—z = (ai-")—ﬁj) € I2(H). Since z, € I’ (H),
we have z = (2 — z,) + 2, € I3(H). Therefore I2(H) is a Banach space.

It suffices to show that the norm satisfies the parallelogram law: for any

$=(10,$1,“')a yz(y()vyl’"')elfu(H)’

(o o} oo
Iz + vl + llz = yll2 =D wyllz; +y1F + D wille; — sl
7=0 j=0

[ o] o0
=2 wjlla,l + 2wyl
j=0 j=0
=20z} +2|lyl%

Hence [2 (H) is a Hilbert space. O

Lemma 5.2. Let ¢ > 0 be given and w = (1, i, q%, -++). Define an operator
T: I?D(H) — I?D(H) by T(xg,z1,---) = (0, Agxo, A121,--- ), where (A,) is a

uniformly bounded sequence in B(H). Then

(1) IIT|l = z sup; | Ael| and
(2) T*(yo. w1, ) = (A5y1, Atyz,-+) for y = (ya) € I5,(H).

Proof. (1) Note that

ITz|2, = 1|0, Aozo, Ayzy,---)||%

1 1
= ;(“/‘10%0”2 + EllAmliz +-0)

1 1
< 'q‘(CzHJEOH2 + 502“1‘1“2 +-00)

1
= =c’||zl3,

where ¢ = sup,, ||An||. Thus

1 1 1
Tl = sup [ITellw < sup (“=cllzll) = —=e = —=sup|| 4l

zlw=1 Tl|w=1
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For each z € H with ||z|| = 1, let z = (0,--- ,0,¢%z,0,---). Then ||z|2 =
Flatzl? = Zgkllz)? = 1 and |T2|2 = [|(0,---,0, Ak(¢2),0,--)|% =
FrrllAegE o) = ekl Aez)? = LAwz|?, ie, |T2llw = Tl Ak
Thus ||T|| = supyyy., =1 ITYllw = supj.y, =1 \/La“AkZ” 2 ﬁsupul—,n:l |Axz]| =
L)l Acll. Hence Lz sup, ||4al < |T].

(2) For all = (zn), y = (ya) € I3,(H),

< Tx,y > =< (O,Ao.’l’[),A]Il,"‘),(yo,yl,"') >
) 1 1
= ; < zo, Agy1 > —+—q—2 <z,Aly >+

1 .
= - (Iow‘rlax?a"'))(A0y13ATy2"") > .

C=]

Since this holds for any = = (z,) € (H), T*(yo,v1, ") = %(Aa‘yl, ATy,

) forally:(yanl)El?A}(H) a

Proposition 5.3. Let ¢ > 0 be given and w = (1, %, ql,, ). Let {Un}22,
be a sequence of unitary operators on H. Then T = (A,) on I}(H) is

unitarily equivalent to the weighted shift operator with the weight sequence

{Unt14nUn}3s0.

Proof. Let Uz = (Upzg,Uyzy,---) for all z = (z,) € I2(H). Then

[e ]

1
HU‘ZIIUJ = ”(UOmOvL]l‘rla"')Hw: ZF”UnfL'nllz

n=0

=1
> =laall? = llz]|w-
n=0 q
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Since for all ¢ = (z,), y = (ya) € I3 (H),
< Uz, y > =< (Vozo,Urz1,--+), (Yo,41," ") >

1
= < Upzo,y0 > +E <Uizy,y1 > +---

1

=< anU[;yO > +E < 11aU1*y1 >+

=< (xo’xla"')7 (UgyOaU;yla) >,
we have U*(yo,y1, ) = (Ugyo,Usy1,---) and U*Uy = U*(Uoyo, Ury1,- -+ )
= (UgUoyo, Uy Ury1,--+) = (Y0,%1,--- ) =y, for all y € I2(H). Then U is a
unitary operator on {2 (H). Hence

U*TUz =U*TU(z0,21, - ) = U*T(Upzo,Uyz1,--*)
:U*(OononoyAlUﬂl,“')

= (OaLr;AOIIOx()a U;AIUIII" o ,U:H.]AnUnxn,' te )a
for all z € 12 (H). O

Corollary 5.4. Suppose that {U,}32, is a sequence of unitary operators on
H. Then T = (A,) : I*(H) — I*(H) the unilateral shift operator associated
with (A,) is unitarily equivalent to the weighted shift operator with the

weight sequence {U}, 1 A Upn}5%,.

Proposition 5.5. Let ¢ > 0 be given and w = (1, %, q—l,-, -+-). Suppose that
T = (An) : I2(H) — 12 (H) is the unilateral shift operator associated with
(An) and that A, is invertible for each n. Then T is unitarily equivalent
to a weighted shift operator T with a weight sequence {B,}5, of positive

operators.

Proof. For eachn, let A, = W,|A,| be the polar decomposition of A,,. Since
A, is invertible, W, is unitary. From Proposition 5.3, T is unitarily equiv-

alent to the weighted shift operator with weight Uy, ,W,|A,|U,. Choose
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Up=1,Up=W,_1Up_y forn>1andset B, =U;, Wy|An|U, for n > 0.
We claim that B,, is a positive operator for n > 0.

Case 1. n = 0. Foreachz € H, < Byz, = > = < UfWy|A4Ay|Upz, = > =
< (W(]U())*W0|A()|L70I, > =< U(;W(;WolAOIUQIZ, x> =< |A0|$,$ >

> 0.

Case 2. n > 0. For eachy € H, < Bny, y > = < U {Wy|An|Uny, v >
= < (WalUn)* WalAn|Uny, y > = < UsW2Wo|An|Uny, y > = < Uz|A|Us

An|(Uny), (Uny) > 2 0.
Hence T is unitarily equivalent to a weighted shift operator T = (B,) with

Yy, y > =<

{B,}22, sequence of positive operators. O

Corollary 5.6. Suppose that T = (A,) : I?(H) — [?(H) is the unilateral
shift operator associated with (A,) and that A, is invertible for each n.
Then T is unitarily equivalent to an operator weighted shift T with weight
sequence {B, }32, of positive operators.

L...). Let T = (Ay)

Proposition 5.7. Let ¢ > 0 be given and w = (1, %, 7
i9

on I2(H). Then T is unitarily equivalent to T = €T

Proof. Define the unitary opetator U on I2(H) by U(zo,z1,---) = (zo,

e0ry, e?z, ... )- Then

”U‘r”w = ||(l‘01ei0$l’e2i0$'25' . )llur
L 1 i 1
= (”IOH2 + E||e 9I1H2 + q—2”e2 0;1;2”2 + .. );

= [lzllw(< oo)
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and

<U‘t7y> :<(x0,eiozlae2iol‘27”')3 (y(ﬁyl,y?,"'))
= 1 -6 1 —2i8
_<$0,yo>+a<x1,e y1>+p<x2,e Yy > 4 -

=< ("503:515172»'”)’ (y(),e—wyl’e_zwaa”') >,

for all z = (zn), ¥ = (ya) € IZ(H). Therefore U*(yo,y1,y2, ") =
(yo,e_‘9y1,e_2‘9yz, . ) and U'Uy — U*(yo,ewyl,cz""yz, .. ) — (yo,e-ieeie

y1,e 2020y, L) = (y0,¥1,y2,---) for all y = (y,) € I3(H). So U is a

unitary operator on /2 (H) and
U*TUz = U*e’*TU(zg,21,--)
= U‘eioT(xo, ewz] , €2i9$2, )
= "eio(O, A().’L’(),A]Ciel'] , A262i0~172a )
=U*(0,e" Aoz, e*® Ay zy,- )
= (0,e™%¢" Agzo, e M0e? A2y - )

= (Os A()CL'(),A]I],‘ ; ) = TSE,
for all z = (z,) € I3(H). Hence U*TU = T. O

Corollary 5.8. Let T = (A,) : I*(H) — I*(H) be the unilateral shift
operator associated with (A,). Then T is unitarily equivalent to T = €'T.

11

Proposition 5.9. Let ¢ > 0 be given and w = (1, e

-+). Suppose that‘
{An}32, is a sequence of uniformly bounded operators on H such that S is .
a diagonal operator on I2(H) defined by S(z¢,2,, -+ ) = (Aozo, Arzy,---).
Then S is a compact operator if and only if A, is a compact operator and

limp_.c0 || An]| = 0.
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Proof. Suppose A, is a compact operator and ||A,|| — 0 as n — oo. Let
Sa(zo,z1, ) = (Aozo, A121, - Ap_1Zn—1,0,---). Then S, is a compact
operator for each n, since S, is finite rank. Since ||4,p|| — 0 as n — oo, for
each € > 0, there exists N € N such that ||A,|| < € for any n > N. Thus for
alln > N,

IS = Sall = sup |I(S ~ Sn)z|w

r||lw=1

= sup ||(0""aO,Artzn’An+lxn+1v'")”w
fzllw=1

1 1
= sup (llAnzal? + |lAnt1Znsa|l> +---)2

Hellw=1 gt

1 1
S sup (q—n|lAn||2||75n||2 + [Ansrl*ensa® + -+ )7

lzllw=1

qn+l

1
lznsall® + )3

1
< sup (52q—n”xn”2+52

n+1
Iz llo=1 gt

< g2 sup ||z|lw = e?.
”I”w—_‘l

That is, ||S — Sa|| — 0 as n — oco. Hence S is a compact operator since Sy,
1s compact.

Conversely, suppose that S is a compact operator. For each : > 0 let
{zg) o o be a sequence in H such that 2D =0 weakly as n — oo and

yﬁ,‘) =(0,- - ,o,zﬂ*),o, -+-) where 2 is the i-th coordinate. Note that

<Yy > =< (0, ,0,2,0, ), (Yo v, vy ) >
1 : 1
= E <$£:),yi >— (—1; <0,y >=<0,y; >,

for each y = (y,,) € I2(H). Thus < yfli), y > — <0, y > and then yf,i) -0
weakly as n — o0o. Since S is a compact operator, {Syg,i)} has a conver-

gent subsequence {Syg,i)} with ||y,(,l,)|| = 1 such that ||5y$ri) =1l — 0 as
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m — oo. Then |[(0,---,0, Ay 0, )=l — 0 as m — oo and so
ﬁllA iTm || — ||l|| as m — oo. That is, ||A; \/_|| converges as m — 0o
with ”%” 1. Thus A; is a compact operator. Since {4;}%, is a se-
quence of compact operators on H, a sequence {—\/%}?20 of unit vectors can

be chosen such that ||4;]| = ||A,-—\/'L__||. In fact, | A; fill < || Al with || fi|| = 1.
ql

Suppose that there is no z such that ||A4;|| = ||4:z], i.e.,
Aiz| < []A:]- (5.2)

For all z, there exists a sequence of unit vectors f;, such that |[4;f; || >

|Ai]| — L. Since A, is a compact operator, {A; fn, } converges with || fa, || = 1
and limk_.ooA‘fnk = Ai(limg oo fn,) = Aifi with || fi]| = 1. If ||Aifa, ] >
Aill = =5 then [[Aifi]] = [ limk—co Aifar |l 2 Al = limg—oo - = [14i]]-

This is a contradlction to (56.2). Let g, = (0,---,0, fn,0,---). Since | <
gny > | =gz < faryn > 1 < Fllfalllyall = Z=llyall = 0 as n — oo,
gn — 0 weakly. Thus ||Sgallw =< Sgn, Sgn >i=< gn,S*Sgn >%— 0.
Therefore ||Sgn|lw — 0. That is, Sg,, — 0 strongly. Also

1Sgnllw = < Sgn, Sgn >?

1

=<S(07 107fn10,"')15(0v"' 705fn,07"')>5

D=

=<(0’... ’O’Anfn,o’...)’(o’... ,O’Anfn’(),...) >

1 1
—— < Anfn,Anfn >7 =
/q™
fn

= [|4n "

1
Anfn
Tz I Anfall

| =llAn]l — 0 as n — oco. a -

Corollary 5.10. Suppose that {A,}52, is a sequence of uniformly bounded
operators on H and S is a diagonal operator defined on I%(H) such that
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S(zo,z1, ) = (Aoxo, A11,--+). Then S is a compact operator if and only

if A, Is a compact operator and lim,_. ||4.]| = 0.

Corollary 5.11. Let T = (A,) : I*(H) — [*(H) be the unilateral shift
operator associated with (A,). Then T is a compact operator if and only if

A, is a compact operator and lim,_. ||4,] = 0.

Proof. The operator (T*T)% is a diagonal operator and T is compact if and

only if (T*T)* is compact. O

Lemma 5.12. Suppose that S is an operator defined in Corollary 5.10.
Then the followings hold.

(1) [IS]I = sup; | 4;]l-

(2) 0p(S) = Urop(Ax).

(3) o(S) = Uka(As).

(4) 5* = (43).

(5) If for all n, A,, is normal, then ocom(S) = 0,(S) = Urop(Ax) and

o.(S)=¢.

Proof. (1) Note that
IS]| = Sup, |Sz|| = Sup (Aozo, Arz1,- - )|
z||=1
= sup ( Z 1 4nzal®)? < sup (ZsupnA P llzall?)?
zll=1 Ty lzll=1 ;= 7
1
= supll Aj|l - sup (Z llznl?)? = sup || 4;]].
llzll=1 n=0 J

For any z with I|xH = 1?‘2 = (09 te 3071:»0)" ) ) € IZ(H), ||.4k13|| = ”(03 t aoa
Aiz,0,---)|| < ||Sz||. Thus supy,=; [[Axz|| < supj, = ISzl = [IS|, i.e., for

all k, [[Ak|| < ||S||. Therefore supy [|Ak|l < [|S]| and so ||S|| = sup; ||4;]|-
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(2) If Sz = Az for some nonzero z € I*(H), then (Aoxo, 417y, --) =
(Azo,Azy,---), ie., ((Ag — A)xo,(A1 — A)z1,---) = (0,0,---). Since z # 0,
Zg, 1, - are not all zero. That is, there exist at least one nonzero z;, say .
Thus zx # 0 and (Ax — A)zx = 0. Therefore A € o,(Ax) for some k and so
we have 0,(S5) C Urop(Ax). Conversely, let A € Uxo,(Ak). Then there exists
a nonzero zx € H such that Axzy = Az . Let z = (0,---,0,2,0,---) €
I*(H). Then Sz = S(0,---,0,z4,0,---) = (0, - , 0, Agzk,0,---)=(0,---,
0,Azk,0,---) = A(0,---,0,24,0,---) = Az. Thus XA € 0,(S) and we have
Ukop(Ax) C 0p(S). Hence 0,(S) = Uko,(Ax).

(3) We show that S — A is not invertible iff Ax — A is not invertible for
some k. If Ay — X is invertible for all k, then (A; — A)"1(A; — M)z; = z; for
all 2 and for all = (z,) € I*(H). Thus 2 = ((Ao — A)"}(A4o — N)zo,(A; —
A)HA1=N)z1, ) = V(S=X)z, where V(yo,y1,- -+ ) = ((Ao—A) "'y, (A1 —
A)~'y1,--+). This means S — X is invertible. Hence o(S) C Ura(Ayg).
Conversely, suppose that A ¢ o(S), i.e., S — X is invertible. So there exists
(S — A)7! such that (S — A)"1(S =) = I. For each z = (z,) € I*(H),
(S=X"HS =Nz =(S—N)"1((4o — Mzo, (A1 — N)z1,--+) = (20,21, - ).
Then (S — A) must be the form (S —A)"(zo,z1, -+ ) = (Ao — A) "'z, (A4; -
A)~'zq,---). This means that (A, — )) is invertible for all n > 0. Thus
A ¢ Ura(Ax). Then Uro(Ax) C o(S). Hence Ura(Ax) C a(S) = o(S).

(4) Note that for all ¢ = (z.), y = (ya) € I*(H),

< Sz,y > =< (Aoxo,A1z1, ), (Yo,¥1, "+ ) >
=< Ao.’Eo,yo >+ < A](L‘l,y] >4
=< (1:0,1:1"")a(AayO’A;ylv"') > .

Thus S*y = (AayﬂaA;yl’“‘) for all y= (yanl"") € IQ(H)
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(5) Since S*(zo, 1, -+ ) = (Ajxg, Alz1,---) for any = = (z,) € I*(H),
S*Sz = §*(Apxg, A171, -+ ) = (A§ Aoz, ATA121,--+) and
SS*z = S(Agzo, Ajz1, -+ ) = (Ao ApTo, A1 AjT1, 7).

Thus if for all n, A, is normal, then S is normal. We know that if an

operator A is normal, then g.om(A4) = o0p(A). Thus if for all n, A, is

normal, then ocom(S) = 0,(S) = Ukop(Ak), 04p(S) = 0(S) = Uro(Ax) and
Ur(S):Ucom(s)—ap(s):UP(S)—UP(S):d)- O
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< Abstract >

Spectra of Weighted Shift Operators

In this thesis, we deal with various spectra of shift operators on the space

1?(C),1%(C) and I%(H). Here w = (w;), w; > 0 and H denotes a Hilbert

space.

(1)

(2)

(4)

The main results are as follows.

Let w = (1, é, ql—z, ++) (g > 0). Then the spectrum of left shift operator
is the closed disk with radius /g and center 0. Also we calculate the
approximate point spectrum, the point spectrum, the residual spectrum,
the continuous spectrum and the compression spectrum of the left shift
operator and the right shift operator, respectively.

Let w = (w;) be a bounded sequence of positive numbers. Then the
spectrum of right (left) shift operator on [2(C) is the closed disk with
radius 1 and center 0. Also we calculate several spectra of these operators.
T = (A,) is uniformly equivalent to e*®T on [2(H) whenever w =
(133 ) (a>0)

Let w = (1, %, ;—2,---) (¢ > 0) and let S be a diagonal operator with

diagonal {A,} where {A,} is uniformly bounded sequence of a bounded

operator A,. Then S is compact iff 4,, is compact and lim, — o I|A]| = 0.
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& Atel =

BA AF7HA QESAL STV A e dBE B =Y 2 wE
of BYHNAA FED AelA AP AL A=YH 4E oA god Fde
25U 2 PAHE =PI AAY FEY AT 29 AFN ALY 249D
2£Y 25YAE FAE SYU BB, =2 YA RN FA2 $EB BRL
$H,BUHEF EAFY 244 22UAE A9 vhe e BYYT DY S gus
FG B A2 FA2 VR AL Ve 2EF $78 72 $42 2493
A2 2FYSAE ZAS ok S Beha YHULh 43) F M e N,
Aol e =4S & UL $71 YR, YN 2202 oWl SAE DL A9
o) mhg g FYUT FARTE BUYoT AT AQAFAD Aol AFHT D
FRYAT BAE YUt BOE, A A9 /=3 gl AeshF UBFe)
Az 2-FudEAAE BAHE =Y
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