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1. Introduction

In this thesis we study the existence of solutions of the second order semi-

linear elliptic boundary value problem of the form

Au(r)+blr) - Vu(r)+ f(u(r)) =0 for €

(D)
u(r) =0 for r € 0N,

In Section 2 we introduce basic notations, definitions of some function
spaces which are Banach spaces. The definitions of partial differential equa-
tions and its order is also mentioned 1n this Section.

In Section 3. Maximum principles are represented, and we show that the
solvability of general second order lincar elliptic boundary value problem
is equivalent to that of boundary value problem for Laplace equation. We
organize theorems on existence and uniqueness of solutions of second order
linear elliptic boundary value problems.

In Section 4 we see that the semi-linear elliptic boundary value problem 1s
converted into an equivalent operator equation, and by using Leray-Shauder
continuation theorem. We have theorem about the solvability of second order
semi-linear elliptic boundary value problems under a Nagumo condition. We
also introduce notions of lower and upper solutions of the problems and get
an existence result by using them.

In Section 3 we discuss existence of solutions of the semi-linear elliptic
boundary value problem of the form (I) by using the result of Section 4 and
the integral inequality which is proved in Section 3. At first we show that
there exists a solution of (I) where f(u) > 0. f is bounded. Then we discuss

the existence of solutions of (I) in case that f is unbounded. We can see that



sce that the problem (I) has positive solutions whenever 0 < f(u) < au +r,
where a and r are suitable constants. NMoreover, if f(0) > 0 and 0 < f(u) <
au + 7 on a sutable finite interval. our problem (I) has positive solutions.

The existence and multiplicity of positive solutions to the equation

Au(z)+ b(z) Vulz)+ Af(z.u(x))=0 for 7€

(II)
u(z) =0 for zr € 0N.

where f(z,u) > 0, a%f(.r, u) > 0. are discussed by Choe and Hernandez
([10]) under suitable assumptions.

We prove in this paper the existence of positive solutions of the problem of
the form (I) without assumption of —({f— > 0. and also give another existence

du

theorem 1n case f(0) = 0.



2. Definitions and Preliminaries

We introduce some notations and definitions that we shall use in this
paper.

R" denotes the Euclidean space. z = (r.1,. - .z,) denotes an arbitrary
point of R*. r, € R', /= 1.2.--- .n, with the norm |z| = (3, zf)%

We say an open connected set a domain.

1 denotes a bounded domain of R™. 992 denotes the boundary of  and
Q0 the closure of Q.

Let k be a non-negative integer. C*(Q) denotes the set of functions which
has all continuous partial derivatives of order < k in Q. C¥(Q) also denotes
the set of functions which has all continuous partial derivatives of order
< k in 2 such that all the derivatives can be extended continuously to the
closure Q. C°(Q), C%(Q) are written by simply C(Q), C(Q), respectively.
We denote C§(Q) the set of functions u in C*¥(Q) such that u and its all

partial derivatives have compact support.

For u € C(Q) we define the supremum norm

llullco = sup |u(z)|.
166

C>(Q) denotes a set of function u which belongs to class C*(Q) for all
k> 1. C(Q) is the set of functions u of class C>=(Q?) such that u and its

all partial derivatives have compact support.

Definition 2.1. Let zo be a point in R™ and f a function defined on a

bounded subset Q of R™ containing zy. If 0 < a < 1, we say that f is Holder



continuous with exponent a (or, a-Holder continuous) at x if the quantity

|flx) = flay)]
sup
€N ‘I - IO}O
I#£1g

1s finite. We call f (uniformly) Holder continuous with exponent o in Q if

the quantity

flz) = fly)]
sup ————m————
r.yeN ‘I - y'a
r#y

is finite. And f 1s called locally Holder continuous with exponent a in Q if

f 1s uniformly Holder continuous with exponent a on compact subsets of Q.

We denote the quantity

HQ(f)_—‘ sup lf(r)-.f(y”
E r,s;éEﬂ loFrylf
Ty

and call 1t Holder constant for f if it is finite.

We define the Holder space C*:2(02) (respectively, Ck'o‘(Q)) as a subspace
of C*(Q2) (respectively, C*()) consisting of functions whose k-th order par-
tial derivatives are uniformly Holder continuous (respectively, locally Holder
continuous) with exponent a in Q. For simplicity we write C%%(Q) = C*(Q),
C%%(Q) = C*(Q).

90 € C*° means that for every r € 92 there exists a neighborhood N of z
such that QNN can be represented in the form x; = h(xy. . Zi—1, Tig1,+ , Tn),
for some 7, where h belongs to class C'?-°.

We define the norms;:

For f € C*(Q), ~
[lle = Il eo + HIC.



For f € C'*(Q).
117 = 1+ Hlosl
where 0f = (2L 2L) In case f is a scalar function we denote 9f =
3
For f € C*2(Q).

A1 = AT + 1A

8°f o’f ... _94
A1, 91, Jdro,0r, Ar,0r,
a° f o' f Lo
812611 a.’rzalz 81‘,"(')1‘2
where 0°f = 9(0f) =
8’ f L T
dr 01, 0r,0r3 ('irn(')zn/

Remark. We note that

(ca(s‘). " 5) (Cl,(,(m “_”fo)_ (cz.n(m |,.;|f_a)

are all Banach spaces.([2])

For p > 1. LP(Q) is the set of function f which is Lebesgue-measurable in

2 such that / |fIPdx < >c. For f € LP(§2), we define
Q

90 = ([ 1sva)”

Then (LP(9Q). ” : HLP) is a Banach space.([8])

Definition 2.2. A function u is twice weakly differentiable over Q if there

exist integrable functions vy, wj for ).k =1.2,--- .n

/_L'kde:—Lu;Ik. '/;wjk;,od:l::/;u;;,,)“d:r
Q Q Q Q
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holds for all ¢ € C&(Q). The integrable functions are vk, wjk. j.k
1,2.--- .n considered as generalized first and second derivatives of u, re-

spectively.

The space of twice weakly differentiable functions in Q is denoted by
W2(Q). In the space W?(Q) we shall write the weak-derivatives as uz,, ur,z,
without distinguishing from the usual concept of first and second derivatives.

We also define the space W2:P(Q) by
WiP(Q) = {ue WQ(Q lu,ur, g, € LP(Q) for all 3,k =1,2.--- ,n}.

W2P(Q2) is a Banach space with the norm defined by ([7})

1
ol = [0 Yt 3 Pt

J.k=1

Definition 2.3. A partial differential equation for a function u = u(z),
r=(x,,--- .1,) € R" defined on a subset of R™, n > 2, 1s a relation of the
form
F(ry, -+ ,Tp,u Uz Up, Uz z, Uz 2y, ) =0 (2.1)
where F is a given function of the independent variables z,,--- ,x, and of
the unknown function u and of its finite number of partial derivatives.
We call u a solution of the equation (2.1) if it has all the partial derivatives
appearing in the equation in some region in R™ and u(zy,--- ,2,) and its

partial derivatives satisfy the relation (2.1) in the region.

Definition 2.4. The order of a partial differential equation is the order of
the highest derivative that occurs. A partial differential equation 1s said to be
linear if it is of the first degree in the unknown function and its derivatives,

with coefficients only depending on the independent variables ry,--- ..



3. The Second Order Linear Elliptic Boundary Value Problems

Definition 3.1. A second order linear partial differential equation for a

function u = u(zy.--- .r,) in a domain Q@ C R" has the form
n n
S an(@un o+ ) ay(2)us, +alz)u = f(z) (3.1)
). k=1 =1
where the coefficients a k. a,. a and f are given functions ofr = (xy, " ,Tn),
7.k=1,--,n

We call the differential equation (3.1) elliptic if for all nonzero§ = (&1, ,&n)

in R", and for all z = (z;,--- ,zn) € Q the inequality holds

n

Y k()€€ > 0.

J.k=1

We introduce differential operators L and P as in (3.1)

n

Lu = Z ajk(-r)uzjzk + z:aj(x)urJ (32d)
)=1

2,k=1
and

Pu = Lu + au. (3.2b)

Theorem 3.2 (Maximum principle). ({1]) Let © be a bounded domain

in R" and assume that the coefficients ajk, a;, a and f are all continuous n

<l

,j.k=1.--- . n, and that the equation
Pu=Lu+4au=f (3.3)

is elliptic. Suppose that a(z) < 0 throughout Q, and let Pu(z) < 0 (re-
spectively, Pu(z) > 0) in §, then every non-constant solution of (3.3) at-

tains its negative minimum (respectively, positive maximum), if it exists,
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on the boundary of Q not in Q. Furthermore. if u achieves its negative
minimun(respectively, positive maximum) at p € 0N, then every outward
directional derivative of u at p Is negative(respectively.positive), unless u is

identically equal to a constant in Q.
Proof. cf. Theorem 8.1 and Theorem 8.6 in [1]. O

Corollary 3.3. ([1]) Let u; and uy be solutions of
Lu+au=f
inQ, withu, = ¢, on Q,1=1,2. Thenifa <0 inQ,

max |t (z) ~ uz(z)| S maxijor ()= o2(z)|

Proof. cf. Corollary 8.2 in [1]. O
Theorem 3.4. ([1]) The solution of the boundary value problem

{Lu+au:f in

u=0 on Of2
is unique, if it exists, when a < 0 in Q.
Proof. By Corollary 3.3. O

Definition 3.5. Let Q be a bounded domain in R™ and a second linear

partial differential equation be defined by (3.3) in

Pu(z) = (Lu + au)(z) = f(x).



We call the differential operator P uniformly elliptic in Q if there exists a

positive number m such that for all £ = (&,.--- .£,) € R™ and for all x €

the mequality
n

Y apl@)E 6 > migf? (3.4)

).k=1
holds.

As an important case of uniformly clliptic operator we take
Au=Uz s, +Usgpzy + - F Uz 1.

We call the differential operator A Laplace operator, and the equation Au =

0 the Laplace equation.

Definition 3.6. Let the equation givenin (3.1) be uniformly elliptic, and let
the coefficients a;x. a;. a be continuous functions in the bounded domain 2
of R™. Then the Dirichlet problem is finding a function u which is continuous
on Q. twice differentiable in Q and satisfies the equation Pu = f in § and
coincides with g on 02 when the right hand side function f of (3.3) and the
boundary condition g are given arbitrarily.

We call such a function u a solution of the Dirichlet problem for given

functions f and g.

Theorem 3.7. ([2].[4]) The following statement A and B are equivalent.

A. For every bounded domain Q in R" with boundary 0Q € C?°, 0 <
a < 1, if P defined in (3.2a,b) is a uniformly elliptic differential operator
whose coefficients are all in C*(Q) and if (f.g) € C*(R2) x C?°(9Q)
is arbitrary, then there exists a function u € C?°(Q1) which solves the

Dirichlet problem Pu = f in Q, u = g on 0S.



10

B. For every bounded domain @ with 00 € C*°. 0 < a < 1, if (f,g) €
C(Q) x C?2(0N) is arbitrarv. there exists a function u € C*(Q) which
solves the Dirichlet problem Au = f in Q. u = g on 02, where A is the

Laplace operator.

Proof. A = B is obvious. For the reverse case, see Lemma 1.1, pp 111 in [4].
O

Definition 3.8. Let Q be a domain in R™ and u € C?*(Q). The function u
is called harmonic in Q if

n
d%u

ax}

Au =

1=1

is satisfied in §2.
Definition 3.9. Let y € Q be fixed. We define the (normalized) fundamen-

tal solution with a pole y of Laplace’s equation by

1

2—n
—_lr - when n > 2,
n(2 — n)wy | vl

Iz —y)=T([r —yl) =

1
— log |z — y| when n = 2,
2r

where w,, denotes the volume of the unit ball in R".

Remark. The function I'(z — y) satisfies the Laplace equation for r # y, but

becomes infinite for r = y.

Lemma 3.10. ([2],[3]) Let Q be a domain for which the divergence theoremn
holds and let v denote the unit outward normal to Q. Then for u, v € C?*(Q)

we obtain Green's first identity:

/L'Aud.r+/ Vu-Vl'dI:/ z'?—lidS
Q Q 50 Ov
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and Green's second identity

Ou Ov
(vAu — ulAv)dr = / <v—— - u—) dS
'/Q an Ov 61/

where dS indicates the (n — 1)-dimensional area element in 9§).

Lemma 3.11. ([2].[3]) Let u € C*(Q) and y be a point of Q, and let v(z) =

I'(|z — y|) be the fundamental solution with pole y of A. Then we have

u(y):/ (ugt—l—v%i) dS+/vAudr
N v v Q

which is called Green’s representation formula.

Definition 3.12. Let h € C'(Q) N C* Q) with Ah = 0 in Q and let for a
point y €

G = Glr.y) = T(z - y) + h(x).
where T is the fundamental solution of the Laplace equation. If G = 0 on

00N, then we call the function G the Green’s function for the domain (or the

Green’s function of the first kind for §2).

Remark. The Green’s function is unique. For to construct the Green's
function G(z,y) for a fixed point y € Q we need to find a solution h €
C'(2) N C* Q) of the Dirichlet problem

Ah(z) =0, z €
{ h(z) = —T(z — y). T € 0N

We note that the solution is unique by the maximum principle. Therefore.

the Green's function is also unique, if 1t exists.
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Lemma 3.13. ([2],(3]) Let G(z.y) = I'(z.y)+ h(z) be the Green’s function
for a domain 0, where I'(r.y) is the fundamental solution with pole y €

and h € C'(Q) N C?() is a harmonic function in Q. Then for u € C*Q)

u(y):/ ua—d5+/ GAudr.
aq UV

Lemma 3.14. ([2],[3]) Let B = B(0.a) = {z : |z| < a}. Then the Green’s
function for B exists and for y € B
aG(Iy) _ 1 a2_|y|2

Ov  naw, |z —y|?

H(z,y)=

and a harmonic function u € C?*(Q) can be expressed by
u(y) :/ H(z.y)u(x)dS. (3.5)
lz]=a
We call (3.5) Poisson’s integral formula.

Theorem 3.15. ([2],[3]) Let B = B(0,a) and f be a continuous function
on 0B. Then the function defined by

2
@ "/ W) _4s, for z€ B
a

navn  Jap Iz —yl"

u(z) =

flr) for € OB
belongs to C*(B) N C°(B) and satisfies Au = 0 in B.
Proof. cf. pp 106 in [3]. O
Theorem 3.16. ([2],[3]) A C°%Q)-function u is harmonic if and only if for
every ball Br(y) = B(y, R) strictlv contained in § it satisfies the mean value

property

1 1
u(y) = W/(;{} udS. or u(y)= T Rn /BR udzr.
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Theorem 3.17(Convergence theorem). ([2].(3]) The limit of a uniformly

convergent sequence of harmonic functions is harmonic.

Definition 3.18. A C% ) function u is called subharmonic (superharmon-
ic) in Q if for every ball B with B C Q and for every function h harmonic in

B satisfying u < h(u > h) on OB. we also have u < h(h > h) in B.

Definition 3.19. Let Q be bounded and p be a bounded function on 02.
A C°(Q) subharmonic function u is called a subfunction relative to o if it
satisfies u < o on 0.

Similarly a C°(Q2) superharmonic function is called a superfunction rela-

tive to  if it satisfies u > o on Jf2.
Theorem 3.20. ([2],[3]) Let S denote the set of all subfunction relative
to ¢. Then the function u(x) = sup,¢g, v(r) is harmonic in (2.

Proof. cf. pp 111 in [3].

Definition 3.21. We call u defined in the above theorem the Perron solution

of the classical Dirichlet problem

Au=0 1in €, u=¢ on O

Remark. ([2]) If the Dirichlet problem is solvable, its solution is identical

with Perron solution.

Definition 3.22. Let £ be a point of Q. Then a C°() function w = wg
is called a barrier(function) at € relative to § if
() w 1s superharmonic in §2

(22) w > 0 in Q\{€} ; w(€) = 0.
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We call w a local barrier at £ € 0N if there is a neighborhood N of € such

that w satisfies the above definition in QN N,

Definition 3.23. A boundary point is called regular (with respect to the

Laplace operator) if there exists a barrier at that point.

Lemma 3.24. ([2],(3]) Let u be the harmonic function defined in Q0 as in
Theorem 3.20. If € is a regular boundary point of Q and ¢ Is continuous at

€, then u(zr) — p(€) asz — €.

Theorem 3.25. ([2],(3]) The classical Dirichlet problem in a bounded do-
main §2

Au=0 in £Q. u=¢ on O

is solvable for arbitrary continuous boundary data ¢ if and only if the bound-

ary points are all regular.

Proof. See pp.115, [3].

Definition 3.26. For an integrable function f on a domain Q@ C R" the

Newtonian potential f is the function w defined on R™ by

w(r) = /QI“(.r—y)f('y)dy

where I'(z — y) is the fundamental solution of Laplace equation defined in

Definition 3.9.

Lemma 3.27. ([2]) Let f be bounded and locally Holder continuous with
exponent 0 < a < 1. and let w be Newtonian potential of f. Then Aw = f
in §.
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Theorem 3.28. ([2]) Let Q be a bounded domain and suppose that each
point of d) is regular (with respect to Laplacian). Then if f is a bounded,

locally Holder continuous function in §2 the Dirichlet problem

Au=f in
{ u=¢ on 0N

is uniquely solvable for any continuous boundary value .
Theorem 3.29. ([2]) Let Q be a bounded domain. For f € C*(Q) the
Dirichlet boundary value problem

Au=f 1nQ, u=0 ondN

has a unique solution u € C%°(Q).

Theorem 3.30. ([1]) Let Q be a bounded domain. Let P = L 4+ a be the
uniformly elliptic differential operator defined in (3.2b) with a < 0 and let the
coefficients belong to C®(Q), 0 < a < 1. Then for f € C*(Q) the Dirichlet

boundary value problem
Pu=Lu+au=f inQ, u=0 ondf

has a unique solution u € C%%(Q).
Proof. cf. Theorem 8.9 in (1]

Theorem 3.31. ([1]) For every bounded domain @ C R" with boundary
N eC? 0<a<]l Let P= L+ a be the uniformly elliptic differential

operator defined by (3.2b) with a < 0 and let the coefficients belong to
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C(Q). Then for cach (f.g) € C°(Q)x C°(IN) there exists a unique solution
u € C*(Q)N C%Q) to the boundary value problem

Pu=f 1 Q
{ (3.6)

u=g on ON.

Proof. See Theorem 8.10 in [1]. a

Theorem 3.32. ([4]) For every bounded domain @ C R™ with boundary
N eC* 0<a<l. Let P= L+ a be the uniformly elliptic differential
operator defined by (3.2b) with a < 0 and let the coefficients belong to C*(Q?).
Then the problem (3.6) has a unique solution in C*°(Q) for all f € C%(Q)
and g € C?2(00Q).

Proof. cf. Theorem 1.3, pp 115, [4]. O
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4. The Second Order Semilinear Elliptic Boundary Value prob-

lems and Differential Inequalities

Definition 4.1. A second order quasilinear partial differential equation for

a function u = u(zy, -+ .r,) Iin a domain Q C R" has the form

. 0%u

P TRAT

st Oz ; 0z

where the coefficients Ajx, H are functions of the independent variables z;

and of the unknown function u and its first derivatives uy,, 1 = 1,2,--- n.
We call the differential operator Z?,k:} Ajka—r—?—;r—; elliptic if for all r €

Q ueR. peR"and for all £ € R", £ #0

Z Ajk(l*uwp)gjék > 0.

J,k=1

Let L denote the elliptic differential operator

n 02

1.)=1

and let a,;, : @ — R! belong to C*(Q), and let there exists M > 0 such

that

n

M7HER < ) ay(2)6E; < Mg

1.g=1
for every £ € R™, z € Q.
In this section we assume that  is a bounded domain with the boundary

N e Cce.
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Lemma 4.2. ([5]) For every f € C°(Q) and v € C*°(Q) there exists a

unique solution u of the Dirichlet problem

{Lu(r) = f(z). €0
(4.2)

u(z) = p(z). =€ IN.

Furthermore, u € C*°() and there exists a constant C(depending on

M, Q, o and max ||aij|]§) such that

Julif < (I

oQ Q
A2
The above estimate in fact holds for arbitrary u € C*°(Q) in the form

Q E19) Q
el < G (lelizs + 2wl 2)
if u = ¢ on Of.

Let p,qg € C'*(99) be nonnegative real valued functions which do not
vanish simultaneously. Let v(zr) = (vi(x). - .vo(z)) denote the unit out-
ward normal vector field to 9. For u : @ — R! define

du(zr)
dv

(Bu)(x) = p(z)u(z) + g(z) (4.3)

d . .
where _l‘d(u_’) denotes the normal derivative of u on 0f2.

Lemma 4.3. ([5]) For every f € C°(Q) and » € C*°(Q) there exists a

unique solution u of the boundaryv value problem

Lu(r)= f(r). 1z €Q
{ (0.)

Bu(z) = p(x). 1 € 00.
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Furthermore u € C*°(Q) and there exists a constant C' (depending only on

M. Q. «a. maxHa,JHS, Hp 20! HVH?;) such that
ol < ¢ (el + 2. (45

Remark. We call the boundary value problem (4.4) Dirichlet problem if g=0,

Neumann problem if p=0. otherwise Robin(mixed boundary value) problem.

Lemma 4.4. ([5]) For f € C2(Q) define T(f) to be the unique solution of

the problem

{ Lu(z)=f(z). = €Q
(4.4a)

Bu(z) =0, =z € I

For o € C*(Q) (if g = 0, i = 2, otherwise 1 = 1) we lct S(p) to be unique

solution of the problem

Lu(z) =0, 1€
{ (4.4b)
Bu(z) =p(z), z € 00N
Then u = T(f) + S(p) solves the problem
Lu(z) =f(z). z €
{ ()
Bu(z) =p(zr). z € 0N

and u = T(f) + S(») € C**(Q). Furthermore
T:C°(Q) — C**(Q)

is a continuous mapping.
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Definition 4.5. Let X and Y be Banach spaces. and let f : X — Y be
a map. We call f compact if for any open unit ball O in X the closure of
f(O) is compact in Y. X is called compactly embedded in Y if X C Y and

the inclusion map1: X — Y, given by i1(z) = z. 1s compact
Lemma 4.6. ([7]) C*°(Q) is compactly embedded in Co(Q).

Proof. We note that C?%(Q2) is compactly embedded in C*(Q) if and only
if the mapping 7 : C*(Q) — C2(Q) defined by i(u) = u is compact if and
only if for every bounded sequence {u,} in C?2(Q). the sequence {i(un)}
has a convergent subsequence in C'*(Q) if and only if for every ball B, i(B)
is compact in C®. Let {u,} be a bounded sequence in C?2(§). Then by
the Mean Value Theorem {u,} is equicontinuous and bounded. and so there

is a convergent subsequence in C?(§2) by Ascoli-Arzela Theorem. a

Remark. Tt follows from Lemma 4.6 that T may be thought of as a compact

linear map of C*(2) into itself.
Lemma 4.7. ([8]) For any p > 1. C*(Q) is dense in LP(Q).
Proof. We note that CS°(Q) € C°(Q2) and is dense in LP(Q). O

Remark. It follows from Lemma 4.7 that T has a unique bounded continuous

extension (which we again denote by T') to LP(Q2).

Lemma 4.8. [9] There exists a constant = such that for every u € C(Q)
ullypor <Al Lufl,, if Bu=0.

where 4 depends only on Q and p.
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Remark. We note that C%(Q) ¢ W2P(Q) We can show T is a continuous

operator from C°(Q) into W22(Q) for p > 1. To show that, let a sequence

{um} converge to u in C*(€2). By Lemma 4.8

|Tum - TU” < V’HL(TUm - T“)H/,p

W?.p

= fum = uf,, =0

Therefore. Tup, converges to Tu in WP(Q).

Remark. Since C*(Q) is dense in C(Q) and T is continuous on Co(Q). we
can extend T to C(Q) continuously. For let u € C(Q), then there cxists a
sequence {um,} in C(Q) so that u,, — u in C(Q). Then {un,} is a Cauchy

sequence in C(§2) with this inequality
| T — Tutf| pap< Y| L(Tum = Tul)Hm
= tm =il

< 1917

—
We note that {Tu,,} is a Cauchy sequence in W»?(Q2). Since W2P(Q) is a

Banach space, we can define Tu by

Tu = lim Tun.

m—oC

To show that T is well-defined on C (), we choose another Cauchy sequence

{im} in C(Q) so that U, converges to u in C(Q). By the inequality
X L.
|Tim = Tum |z, < 219U [fim = wm{] o
T, — Tum converges to 0 in W2P(Q). We again denote the extension by T

T:C(Q) — W>P(Q).
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Lemma 4.9. ([7]) If Q be an open bounded domain with 9Q € C**, then

W2P(Q) — C1(Q) is a continuously embedded for sufficiently large p.

Remark. We may view
T:(CQ). | llze) — CH2(Q)

as a bounded linear map.

Lemma 4.10. ([7]) IfQ is a bounded domain with 9Q € C**®, then Cclo(Q) —
CY(Q) is compactly embedded.

Remark. We may view
T:(CQ).| - Jier) — CHR) (4.5)

as a compact linear operator.
Definition 4.11. Assume that f : Q@ x R™ x R*™ — R™ belong to C*®
and let f = (f'.f%.--- . f™). Let L' denote the elliptic differential operator

7 n 02 ‘
L' = Z (1) 1 =12, ,m

et Oz,0zy

where at, - Q@ — R is a-Holder continuous, and for each 1 let there exist

7k
M, > 0 such that for everv € € R". 7 € Q

M7HEP <) ali ()6, & < MEP
).k

Let B' be the boundarv operator defined in (4.3) by for v : Q- R

dv(z)

(B'o)(e) = p'()ele) + q'(a)
vV

, =12 .m.
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Then for u = (u'.u?.--- .u™) and for boundary value p = (¢'.--- ,¢™)

L'u' =f'(r.u,0u), €N
(4.6)
B'u' =p. 1 € 0Q
is called the coupled svstem of second order quasilinear elliptic boundary
value problems. We write the systemn (4.6)
Lu(r) = f(z.u(x),0u(x)) 1z €
Bu(r) = p(z) 1 € 00
where Lu = (L'u!, L?u?.--- .L™u™), Bu = (B'u',B*u*.--- ,B™u™).
If f is a real-valued function, we call (4.6) the boundary value problem
for quasilinear second order clliptic equations.
In the case if ¢ = 0 and p = 1, we call (4.6) Dirichlet Boundary Val-
ue Problem, if p = 0 and ¢ = 1, we call (4.6) Neumann Boundary Value

Problem, and the other case is Robin(Mixed) Boundary Value Problem.

Definition 4.12. Let f: Q x R™ x R*™ — R™ belong to class C*. For
we Ch (@), 0 <7< 1. u:Q — R™, define the Nemytskii operator F(u)
by F(u)(z) = f(z.u(z), du(z)).
Remark. F: (C7(@). | 7) — (C7(@). ]| [l co) is  continuous map-
ping. For u € C'7(Q),
|F(u)(z) — F(u)(y)l = | f(z.u(x). du(z)) = fy,uly). Ouly))]|
< Ho(f) [(z.u(x),0u(z)) — (y, uly), Ou(y))|*
< Holf) (Jx ~ yl + |u(z) = u(y)| + 18u(z) — du(y)])"
< Hal(f)(lz — yl + H-(w)|z = y|” + H,(Bu)lz — yI")°

= H(,(f)(’.r - yll-r + H-(u) + Hf(au))II —yl°".
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Thus F(u) € C°T(R). aud the mapping F is well-defined.
If um, un € CV7(Q). then
Flu () — Flun)(2)] = [f7. um(r). Oum(2)) = f(z.un(z), dun())]
< Ho(f) (lum(z) = wn(z)] + [Oum(z) — Qun(2)])" -
This implies that F 1s continuous.
Remark. Ifu, v e C(Q), Jlu—r|rr < IQ\% lu— L’Hco . where || denotes the

Lebesgue measure of €. Thus 7 : (C(Q). H : Hco) — (C(ﬁ), |- llzr) given

by i(u) = u is continuous. Hence it follows from the above Remark that
ToF:CY{Q) — CYQ) (4.7)

is thought as a continuous compact operator.

Theorem 4.13. Let f : @xR™xR"™ — R™ belong to classC%, 0 <7 <1

and let f = (f'.f%.---.f™). Let us assume we have the coupled system for
u=(u'.u? - u™). We denote by
T =(T",T*---.T™), S=(S".5. - .5™). o= (el 0% ™)

where T'. S* are the operators defined in Lemma 4.2 with respect to L', B
for eachi = 1.2.--- .m. Then the coupled system of boundary value problem

(4.6) is equivalent to the system of operator equation

u=(T o F)(u)+S5(¢)
where T o F : C'(Q) — C'(Q) is a compact operator.
Proof. From (4.6), using what we have showed we can derive

u= (T o F)u)+ S(s).
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where T o F : C1(Q2) — CY(Q).

Ifu=(ToF)u)+S8(y) then u € CHQ). sou € C(Q). Hence F(u) €
Co7(Q). Thus 7 o F(u) € C*"7(Q). and therefore u € C2°7(Q) and so
u € C%2(Q). Consequently we have that « € C2°(Q) and is a solution of

the problem (4.6). O

Let L be the scalar differential operator defined by (4.1) and let B be the

boundary operator defined by (4.2).

Definition 4.14. A function f: @ x R™ x R"™ — R™ is said to satisfv a
Nagumo condition when:

There exists a continuous function ¢ : [0,00) x [0,00) — [0, 00) such that

|f(z.w.p)| < gllul.]p)X + [p]*). z€Q (4.8)

g(ul,lp])

Bl = 0 uniformly in |u| if m > 1, and ¢ is independent

where limp .
of pifm=1.
In case n = 1 for every bounded u-set U there exists a continuous function

v :[0.00) — [0,0c) such that
[flz,u.p)l Swllpl), z€Q, uwel (4.9)

where ¥ 1s nondecreasing and lim,_ o ﬁ = +oc if m > 1, ¥ is to satisfy

J7 s = 4 ifm=1.

Lemma 4.15. ([3]) Let f satisfy a Nagumo condition. Then for every con-
stant P > 0 there exists a constant Q such that if u : @ — R™ is a solution
of

Lu= f(r.u,0u) z€ (4.11a)
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which belong to C*(Q) and |u(r)] < P. © € Q. then |Qu(z)] < Q. 2 € Q.

The constant () depends on P and the bounding functions g. respectively 1.

Lemma 4.16. ([1]) Let E be a real Banach space and let O be a bounded
open neighborhood of 0 € E. Let N : O — E be a compact continuous
operator such that for all A € (0.1) and u € 00. u # ANu. Then the

equation u = Nu has a solution u € O.

Theorem 4.17. ([5]) Let there exist a bounded open convex neighborhood
Sof0€ R™ andlet f: Q x & x R"™ — R™ belong to class C®. For every

u € 0% let there exist an outer normal vector n(u) such that
n(u)- f(r.,u.p)>0. 2€Q (4.10)

for all p = (p*?) such that Z;l:l p/nl(u) =0. 1 <:<m. Let f satisfy a
Nagumo condition and assume that p : Q@ — T belong to class C*®. Then

the boundary value problem

Lu(r) = f(r.u(z),0u(zr)). 1€
{ (4.11)

wr) = plr). e N
has a solution u: Q — T. and u € C?7(Q) for some 7 € (0,1).

Proof. We note that the problem (4.11) is equivalent to the operator equation
u= (7T o F)(u)+ S8(¢), where S() € C2°(Q) and T o F: C1(Q) — C(N)

is compact continuous. We let E denote the real Banach space C'(Q) with

the norm

|||l = max |u{r)] + max [Qu(z)|.
9] 1€Q
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Let P > 0 be chosen such that if u : Q@ — ¥ is a solution (4.11a), then |u| <
P. Since f satisfies a Nagumo condition. we may determine the constant @
of Lemma 4.15 in terms of P determined above.

Define the bounded open set O C E as follows
O={u€Elu: Q- |oulr)<Q+1, z€0}

and let N : O — E be defined by Nu = (T o F)(u) + S(p). The proof of
the theorem will be complete by Lemma 4.16. once we show that for every
u € 00 and A € (0.1). u # ANu. To show this, we assume that there exist
A€ (0.1) and v € 9O such that

u= M7 oF(u)+S8(p)).

Then u is a solution of the problem
Lu(z) = AMf(z,u(x).0u(z)), z€
{ u(z) = Ap(z), z € 0.

Since u : © — I it follows that |u(z)| < P, x € Q and hence by Lemma 4.15
we obtain |Ju(z)| < Q, z € 9. Thus it must be the case that there exists
ro € Q such that u(zy) € L. On the other hand since A € (0,1) and T is
convex open Ap(z) € £, = € 09, and hence ¢ € Q. Let u(zo) = up and
define r(z) = n(ug) - (u(x) — up). Since n(ug) 1s an outer normal to ¥ at ug

it follows that
r(zg) =0, r(z)<0forzeQ, r(z)<0forze

Thus r(z) assume its maximum at z, which is an interior point of Q. Thus

Or(zy) ~ 0. 1<i<n. Then n(u)- <8u(ro)

oz, o, > =0, 1 <i<n. It therefore
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follows from (4.10) that n(ugy) - f(z.u(r).dutr}) > 0. Computing (Lr)(xo)

we find
(Lr)(zo) = n(ug) - (Lu)(zg) = An(ug) - f(ro.ug.Ou(xg)) > 0.
hence there exists an open ball B centered at zg. B C Q. such that
(Lr)(z) = An(ug) - f(z.u(x).Ou(r)) > 0. z € B,

which by Maximum principle implies that r(z) =0, z € B. Hence u(z) €
0T, z € B. By means of a continuation argument we can obtain that u(zr) €

0Y, r € Q, contradiction to u(r) € ¥ for z € 9. a

Corollary 4.18. ([5]) Theorem 4.12 remains true if > in (4.10) replaced by
>.

Proof. For 0 < e < 1.let f(z.u.p) = f(z.u.p)+ eh(|p|)u, where h(|P]) =1
1
for 0 < |p| <1, h(]p|) = — if |p| > 1. Then the modified problem

Ip|
{ Lu= fo(z.u.p) 1§

u=p(xr) on 0N

has a solution u, : @ — T by Theorem 4.17. and |u.(z)] < P, z € Q for
some constant P > 0. Furthermore by Lemma 4.15 we obtain a constant
Q(independent of €) such that |Ju(r)| < Q. z € Q. Let F, be the Nemytskii
operators defined by f,. Then
|F(u)(2)] < | flauc(x). Qun)] + eh(Quc(x)) |u (@)
< Hol ) (e + Juco)] + 10uc ()] + elu0)])

< Ho(f')(sup!r‘\ + P+ Q) + €P.
Q
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for all z € Q and for 0 < € < 1, and hence {F,(u,)}, 0 < ¢ < 1, is a

bounded set in C(R2). Consequently 7 (F,(u.)) is precompact in C1(Q). We

hence obtain a subsequence {u.,} such that lim u, = u is a solution of
u=ToF(u)+ S8(yp). That is, u is a solution of (4.11). a

Corollary 4.19. ([5]) Let £ be a closed convex subset of R™ and assume
that for every u € OX and every outer normal n(u) to £ at u it 1s true that
n(u)- f(r.u,p) > 0 for all z € Q and all (p*?) such that Z;l:l pnt(u) =
0. 1 <i<rm, and let f satisfy the Nagumo condition. Let ¢ : Q@ — &. Then

(4.13) has a solution u : Q@ — <.

Proof. Let ¢ denote a continuous retraction of R™ onto ¥ and define f :

Qx R™ x R"™ — R™ by

f(z,u,p) = f(z,q(u),p)

Let &, = {u]|dist (L.u) < €}. Then T, is a bounded convex set with int¥, #
o. Since f satisfies the conditions in Corollary 4.18. the problem (4.11) with
f replaced by f and £ by £, has a solution u, : 2 — .. Again using
the Nagumo condition and a limiting argument as in the proof of Corollary
4.18 we obta:n a solution of (4.11), u : @ — £, as a limit of the collection

{uc}, 0 <e< 1. O

Theorem 4.20. ([5]) Let f : @ x £ x R"™ — R™ belong to class C*°
and satisfy a Nagumo condition, let the condition (4.10) (> replaced by
>) be valid, and let the boundary operator B be given by (4.3) ;Bu(z) =

plrju(r) + q(r)%. x € JN. Assume that

2 €C" () (i=1.0r2) o(z)€p)Z, red (4.12)
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Then the boundary value problem

Lu(r)= f(r.u(z).O0u(zx)). z € Q
{ (4.13)

Bu(z)= g(z). r € 09
has a solution.

Proof. We first assume ¥ 1s a bounded open convex neighborhood of 0 € R".
Following the same method as in the proof of Theorem 4.17, we obtain that

there exist A € (0,1) and u : Q@ — T is a solution of the problem
Lu(z) = Af(z.u(x),0u(z)), z € Q
{Bu(r) = Ap(x), 7 € 00

and u(xg) € 0T for some r¢ € Q.
Let r(z) = n(up) - (u(r) — uy) where ug = u(zg). Then r(zo) =0, r(z) <

0. r € Q. Thus r(z) assumes its maximum at ro € Q. If 2o € Q, then

ar(zg)
ar,

= 0. 1 <1 < n, a contradiction is obtained the same way as before.

Thus zo € 092. Since r(z) takes its maximum at a boundary point zo € 09,

dr(zg)

5> >0, and hence n(ug) - dLjO) > 0.

d

We now consider cases.

If ¢(xo) = 0. then p(rg)u(ze) = Ag(re) € Ap(zo). Since p(z9) # 0,
we conclude that ug = u(zg) € A C T. because A < 1, contradicting that
up € 0X. Thus ¢q(x¢) # 0 and hence
du(xg)

dv

0 < n(uy)- (q(.ro) ) =n(ug) - (Ap(xo) — p(xo)ug).

Since Ap(xg) € Ap(1¢)S C plry)T it follows that n(wug)-(Ap(xo)—p(xo)ug) <
0 unless p(xy) = 0. Thus if p(zg) > 0. the proof is complete. Otherwise we

replace p(z) by p(r) + €. 0 < ¢ < 1. apply what has just been proved to
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obtain a solution u, of the perturbed problem. A limiting argument then
will vield a solution of the original problem.

In case of £ is a bounded closed convex set we can obtain the same result
by using similar manner with Corollary 4.19. O
Theorem 4.21. ([3]) Let a,, : R" —- R and f : R" x T x R"™ — R™ be
periodic with respect to z of period w. where & is a bounded open convex
neighborhood of 0 € R™ such that (4.10) holds (> replaced by >). Let f
satisfy a Nagumo condition. Then (Lu)(z) = f(x.u(x),du(r)), r € Q has a

periodic solution u : R™ — ¥ with period w.

Proof. We modify our problem as
(Lu)(x) — u = f(z,u(x),0u(z)) —u (4.14)
and define the Nemytskii operator F' by

(F(u))(z) = f(z,u(x).0u(zx)) — u(x).

Then the problem (4.14) is equivalent to an operator equation u = (7 o F')(u),
where 7 : C9(R") — CL(R") is a compact linear operator(here C*R")
denotes the set of functions u : R™ — R™ which are k— times continuously

differentiable and are periodic with period w). Again we let
0= {u € C'l(R")]u R" — ¥, |(9u(r)| < Q + 1}

where Q) is a constant determined by the Nagumo condition on f(r,u,p)—u.
In order to be able to employ Lemma 4.16, we now need to show that the

equation

u=AM7oF)u), 0<A<1
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has no solution u € d0. We argue indirectly and assume there exists A €

(0.1) and u € 90 such that v = M7 o F)(u). As before it must be the

case there exists 7o € R™ such that u(zg) = uo € 9T and consequently
Ju(z .
n(ug) - ( 0( 0)> =0. 1 <:<nthus n(ug) - f(xg,ug.u(xy)) > 0.
‘I.l

On the other hand u satisfies the equation
Lu(z) —u(z) = Mf(z.u(z).0u(z)) — Au(x)

or
Lu(z) = Af(z,u(z).0u(z)) + (1 — XNu(zr).
Letting again r(z) = n(ug) - (u(z) — ug). we find
Lr(zy) = n(ug) - Lu(zo)

= n(ug): Af(zo,ug. Ou(xo))+ (1 — A)n(ug) - uo

> 0.
That is, Lr(xo) > 0 and r assumes its maximum at zo. Using a Maximum
principle and continuation argument we conclude that 7(z) must be constant,

that is, r(r) = 0, which is a contradiction. Thus the theorem follows from

Lemma 4.16. O

Remark. ([5]) As in the case of Dirichlet and Mixed boundary conditions,
we can obtain a similar result to Theorem 4.21 in case T is a closed bounded
convex set with empty interior. Furthermore the requirement that 0 € ¥

may be removed by a change of variable argument.

Corollary 4.22. ([5]) Let u and f be scalars and let there exist constant a

and 3 such that a < 0 < 3 and

flz,a.0) <0< f(r.3.0). r € Q. (4.15)
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Let f satisfv a Nagumo condition. Then
(a) If 7 Q — [a. 3]. the boundary value problem

Lu(z) = f(x,u(x).0u(x)), z €
{ u(r) = p(z). 7 € 0N

has a solution u : Q@ — [a. 3].

(b) If p(r)a < p(x) < p(x)3, € IN, the boundary value problem
{ Lu(z) = f(z.u(r).du(x)), » € Q2

Bu(zx) = p(r), £ € 00

has a solution u : Q — [a, 3].
(c) Ifa,, and f. 1 <1,5 <n, are w-periodic with respect to r and defined

on all of R™ and if (4.15) holds for x € R",
Lu(z) = f(z.u(z),du(x)), v € Q
has an w-periodic solution u : R" — [a. 3].

Proof. The condition (4.15) is the same as the condition (4.10) in the case

of scalar equation. Hence (a). (b), (¢) are valid. 0
We now consider the scalar differential equation
Lu(z) = f(r.u(zx),Vu(zr)), € (4.16)

subject to the constraints

u(z) = p(z), T € 0N (4.17a)
du(z) -
plrju(z) + q(x) dV' =p(r), = € IN (4.17b)

or in the case a,, and f are periodic w and defined on R", the periodicity

constraint

u(z +w) =u(z), r € R". (4.17¢)
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Definition 4.23. A function a : Q@ — R. a € C(Q) is called a lower
solution of (4.16) and (4.17k). k is either a. b. c. if for every r € Q there

exists a neighborhood U of » such that

aly) = max ar(y) (4.18)

(where s may depend on x) where a, € C?(U N Q) and satisfies

(Las)(y) = fly.ar(y).Varly). €UNQ (4.19)
and further
ar(r) < o(z). €092 in case k =a (4.20a)
plz)ar(z) + q(;r,)da(;(l) < H(z) w€0N 1< <s, incasek=>b
1 (4.20b)
a(r +w)=alz). z € R" incasek = c. (4.20¢)

An upper solution 3 : Q@ — R is defined similarly replacing max by min

in (4.18) and reversely the inequalities in (4.19), (4.20a) and (4.20b).

Remark. Lower and upper solutions are sometimes called quasi-sub and

quasi-super solution. respectively.

Remark. If a and a are two lower solutions of the same problem, then a(y) =
max{a(y),a(y)} is also a lower solution of this problem. And if 3 and 3 are

two upper solutions. then 3(y) = min{3(y). 3(y)} 1s an upper solution also.

Theorem 4.24. Assume there exist a. 3 € C(Q) (in the case of the periodic
problem, @ = R") which are respectively. lower and upper solutions of (4.16),

(4.17Tk).k = a, b. ¢. Let a(x) < 3(x). ¢ € Q. Assume that f satisfies a
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Nagurno condition. Then the problem (4.16), (4.17k) has a solution u such
that a(r) < u(r) < 3(z). r e
Proof. We consider the problem (4.16). (4.17b). The other problems may be

treated similarly. Then we define f(r.u.p) as follows

flz. 3(z).p)+u—38(z) if >3

flz.u,p) =< f(z.u.p). if a(r) <u<P(x) (4.21)

flz.a(r).p)+u—a(z), if u<a(r)
and consider the problem

Lu(zr) = f(z.u.Vu), ref

(4.22)
du(z) plx), x € 0.
dv

plz)u(z) + g(z)

Choose a constant 3 > 0 so large so that
f(z, ~3,0) < f(x.;fi.O), €N

and that |p(z)] < p(z)3. It follows from Corollary 4.22 (b) that (4.22) has a
solution u such that [u(z)] < 3. We show that a(z) < u(z) < 3(z), = € Q.
and thus conclude that u is a solution of the original problem. Let us show
that u(z) < 3(z) for € Q, that a(z) < u(z), z € Q will follow similarly.
Let 2(r) = u(z)—5(z) and assume that there exists z € Q such that z(z) > 0.
Then there exists a smallest positive constant € such that u(z) < 8(z) + e.
and hence a point ry € Q such that u(zg) = B(zo) + €. If zg € 09, then
there exists a neighborhood U of z¢ such that

Hz)= min 3.(z), z€UnN Q
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where 3, € C*(U ﬂﬁ) forr=1.---.s. Let 3(z¢) = Bi(z0) for some i. Then
u(z) < Bi(z)+€ €U NN and u(xrg) = 3i(z¢) + €. Thus

du(zy) S d3i(zo)
dv- —  dv

and therefore

du(zg)
dv

d3;(xo)
dv

p(zo) = plao)u(zo) + q(zo)

> plzojulzo) + g(zo)

dﬁ,’(xo)
dv

= plx9)3i(z0) + p(xo)e + g(x0)

2 ¢(xo) + p(xo)e.
a contradiction if p(z¢) # 0. Thus z¢ € 2, and as above we find a neighbor-
hood U of 2y and 7 such that u(zr) < 3;(z) + €, z € U, u(zg) = Bi(xo) + €.
Thus it follows that

au(l'u) 631‘(.1'0)
= <
Oz, Oz; ' L=y

IA
3

Computing (Lu)(z). we obtain
(Lu)(zg ' = f(zg.3:(z0), VBi(z0)) + €
> (L3i)(z0) + e
Thus L(u — 3;)(xrg) > € > 0. and hence there exists a neighborhood V of

such that L(u — .3,) > 0. and then by the maximum principle we obtain that

(u — 3;)(z) =constant in V", which is contradicting to L(u — 3,)(z¢) > €. O

Remark. In case f is independent of Vu the above argument can be extended
to the case where p(r) may vanish on 09Q. If p(z¢) = 0, then g(x¢) > 0 and

hence

du(rg) d3;(xg)

™ > q(zg) 7 > (o)

»(x0) = q(20)



that 1s. d"(jl‘” — @10 O the other hand
v dv

Lll(.l'()) = f(.l'o. ;3,(1‘()), ) + € 2 Ldl(l'[)) + €,
and hence there exists a neighborhood U of r( such that
Liu— 3(zx)) >0, z€lUNQ,

by the maximum principles we get a contradiction.



5. Existence of a Classical Solution on Some Elliptic Boundary

Value Problems

In this section we shall deal with the differential equation of the form
Au+bz) Vu+ f(u)=0 inQ

where u is a real-valued function and b is a vector field in R™.

Remark. We obtain an obvious result as a corollary of Theorem 4.24 as
follows: Let f(0) > 0. If there exists 3 € [0,00) such that f(3) €0, then

the Dirichlet boundary value problem

Au+blz) Vu+ f(u)y=0 in Q
(5.1)
u=0 on JdN

has a solution u : @ — [0.3] such that 0 < u < 3, where b(z) =

(by(z),ba(z). - .ba(7)) is of class C*(Q), 0 < a < 1.

Remark. We denote for two real-valued function u, v defined in Q u < v
when u(z) < v(r) for all » € Q. we write u < v when u < v and there exists
at least one point r € Q such that u(r) < v(z). We say a function u 1s

positive when v > 0. where 0 denotes a zero function.

Theorem 5.1. Let f : [0.5c) — [0. >c) belong to class C* and be bounded,
and let b€ C°(1). Then the problem (5.1) has a positive solution u : Q—

(0. 20).

Proof. Since a = 0 is a lower solution of (5.1) it suffices to find a upper

solution 3 of the problem with 3 > 0. Let M = SupuE{O,x){f(“)}' Then
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0 < M < oc. We consider the linear boundary value problem

(5.1a)

Au+br) - Vu+M=0 1
{ =0 on JN.

The problem (5.1a) has a solution .3 € C?(Q2) by Theorem 3.30. Then 3 is

a upper solution of the problem (5.1). since
AF+blr) VI+ f(3)<AI+bz) V3+M=0 1nf,

and 5 = 0 on J92. Furthermore. 3(z) > 0 for all z € Q. For if there exists a
point zg €  such that 3(x¢) < 0, then since A3(z)+b(z) - Vi3(z) = -M <0
for all z € 2, 3 cannot have its minimum in by Maximum principle. Hence

since 3 = 0 on 89, 8 > 0 throughout Q. Consequently, we have a solution

u € [0, 3] of the problem (5.1) by Theorem 4.24. O

Now we give a existence theorem of one of our problems under suitable

conditions in case that f is unbounded.

Theorem 5.2. Let f : [0,00) — [0,0c) belong to class C* with f(0) > 0.
Assume that b € C°(Q2) and b(z)-z > 0 for z € Q. Let

N™® = min{|z]* : z € Q}, N™ = max{|z|* |z € Q},

and assume there exists r > 0 such that r? — N™it > (72 - Nmax > () 5nd
f(u) < 2n for all u € [0.r* — N™"]. Then the problem (5.1) has a positive

solution.

Proof. Let v(r) = v(zy.29.- - ,2n) = 1% — (23 + 22 + -~ + 22). Then
v(z) € (0,72 — N™in) for all € Q, and hence f(v(z)) < 2n. Thus v(z) > 0
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for r € 9N and
Av(r) +b(z) -Ve(z)+ fle(r)) = =2n—2b(z) - r + f(v(x))
< =2n 4+ f(v(1))

<0 ref

That 1s, v 1s a upper solution of the problem (5.1), and v = 0 1s a lower
solution of the problem. We note that + = 0 if and only if |z]|? = r? for
all z € Q, which is impossible since Q is a domain, thus v > 0. Then by
Theorem 4.24 we obtain a solution u € [0.v] of our problem. Since f(0) > 0,

our solution u 1s positive. O

Theorem 5.3. Let b € C°. Assume that f : [0,00) — [0,00) satisfies a

Nagumo condition and is differentiable. f(0) > 0 and satisfies

0% max f(u)<c O0<ey <l
u€[0,00)

where 7 is the constant in Lemma 4.8 for p sufficiently large so that Lemma

4.9 holds. Then the problem

Au+b(zr) Vu+ f(u)y=0 inQ

(5.2)
u=0 ond

has a positive solution.

Proof. We note that ug = 0 is a lower solution of (5.2). Consider a linear

equation

(5.3.0)

Au+br) - Vu+ f(0)=0 inQ
{ u=0 on 0.

Then the problem (5.3.0) has a unique solution u; € C*%(Q) and then u,

o

is a lower solution of (5.2). since f 1s a strictly increasing function. Since
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Auy+b(r) Vu; = —f(0) < 0in Q and vy = 0 on 992, by Maximum principle

wy > 0in Q. Actually. v > 0. otherwise f(0) = 0.

For each m = 0.1.2.- - . define u,4, as the solution of the problem
Au+br) Vu+ flun)=0 1inQ
(5.3.m)
u=10 on JdN.
Then u,4 1s a lower solution of (5.2).
To show ug < uy < uy < -+~ cassume ug < Uy < v < Um—y < Uy

We shall show that u,, < um41. Since ums; —um = 0on 02 and f is strictly

increasing, we have

A(um-H - um) + b(I) : v(um+l - um)
= flum-1) = flum)
<0, & Id] &

and hence um41 — U, > 0 throughout Q, by Maximum principle. Moreover

if Umy1 = um in Q. then

0 = A?lm.+.1 + b(l’) . Vum+1 + f(um)
= Aum +b(z) Vum + f(um)

= f(um) — f(um—1) 1in
contradiction to f is strictly increasing. Therefore, um4i(z) > um(z) for

some z € 0, and consequently. we obtain a strictly increasing sequence
ug < uyp <ug < -0 .

We define T(u,,) by the solution of the problem (5.3.m). Then we have
seen that T is compact and continuous and T(um ) = Um41. By Lemma 4.8,

< HAUm+1 + b(z) - vum+l||L,

< 7||f(“m)“1,p~

Hum+1 ‘ w2.»p
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Thus

Wwarp <5

Flum) = flum-ill,,

< (MIHum - Um—l{i[‘p-

Um41 — U m]

By the definition,
Hum+1 o umHLP < Hum‘H - “m‘zwz.p

<y

Um — Um -1 HLP'
This implies

lemsr = wml s < exflum = wm=r],

< ...

< (ey)" fur = o],

(M|
= (e3) [‘UIHLP'
and so

lun = umllp < fun =un-allpy + funer = wnallyy -+ flumses =]l

< (e Muall, + @)l o+ ]

()" = ()"
= ——I_T’HUIHLP-

Then Hun — umH” — 0 as n.m — oc, since 0 < ¢y < 1. Thus {u,,} forms

a Cauchy sequence in LP(Q?). Furthermore, since

Hun - um”Hrzp < 7‘|f(un—l) — flum— )HLP

<y

[tm—1 = | -

{um} is also a Cauchy sequence in W2P(Q). Since W2?(Q) is continuously
embedded in C'*(Q) by Lemma 4.9. {u,,} is a Cauchy sequence in C1*(9),
and so there exists u € C1*(Q) such that lmy,—s um = v in C12(Q). Since

T 1s compact and continuous,

T= lim Tu,, = llm umye; = u.

m—oC m-—oc



and hence v = Tu and v € C?°(Q). Therefore u is a classical solution of

Au+br) Vu+ f(u)=0 1§
{ u=0 onJdN.

O

Corollary 5.4. Assume the constant 5 satisfies the hypotheses of Theorem
5.3 Let f(u) = au+r, wherer >0 and 0 < o < ¢ with 0 < ¢y < 1. Then

for all functions g : [0,00) — (0, 00) such that
0<g(u)<au-+r for all .

the problem

Au+b(z) - Vu+g(u)=0 1 Q
{ (5.4)

u=0 ondfN

has a positive solution.

Proof. By Theorem 5.3 there exists a solution @ > 0 of the problem (5.2)
with f(u) = au + r and then 4 is a upper solution of the problem (5.4).

Since ug = 0 is a lower sol*tion of our problem. we have a solution u € [0, 4]

of the problem (5.4). d

Remark. We denote H} () the completion of Cl(Q), that is, the class of

Cauchy sequences of functions u in Cg(Q) with norm defined by: if u =

{ur.ug, - bov=Avrvg, } are Cauchy sequences in Hg (9).
o= oll = 1 = enl
n—oc

Then H1(Q) is a Hilbert space.
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Corollary 5.5. Let Ay = inf,cpiin, { /g NulPde [ [ uide} (Ao ds well-
defined and \g > 0. See ref.[3]. pp 125). Assume that the constants c,

~ and « satisfy the hypotheses of Corollary 5.4. and that
V. b(r) >m forall z €.

where m > 0 is a positive constant. Further we assume 0 < a < Ao+ 3. Let

0 < f(u) < au with f(0) = 0. Then the boundary value problem

Au+blr) - YVu+ f(uy=0 1inQ
{ (5.5)

u=0 ondfd
has no non-trivial positive solution.

Proof. Suppose that u is a positive solution of the problem (5.5). Then

/(Au)udxr + /(b(r) -Vu)udz +/ uf(u)dr = 0.
JQ Q

Q

Since by Green’s first identity

/(Au)udr = —/ N ul‘dr,
2 Q

and by integration by parts

/(b(.r) -Vu)udr = — = / (V- b(I))u2dr
Q

we obtain

) m .
0< ﬁ/ IVulde — - urdr + / au’dr.
Q 2 Ja Q



We note that

- ]Vu]QdI < —/\0/ wide.
Q

J €2

Thus we obtain

0 < 7)\0/ uldr — m uldr +/ auldr
0 2 Jg Q

m 4
Ao+ — —« / uldr <0.
( 2 ) Q

Since Ao + 5 — a > 0. we obtain

/ uldr = 0.
Q

Therefore u(z) = 0 for € 2, since u is continuous in Q, which leads to a

or

contradiction. O

Theorem 5.6. ([5]) Let ¢ be a solution of
{ Lu= f(z,u), €

(5.6)
Bu =¢. € 0%,

where f belongs to class C®, and assume that 9f is continuous. Further
g ’ ou

assume there exists an upper solution 3 of (5.6) with 3(z) > u(z) for r €
Q and B(8 — 1) # 0 on 0Q0. Let the linear variational equation Lz =
fu(z,0(z))z have no nontrivial solution z such that z(z) > 0 for z € Q
and that Bz = M Bz — ¢), ¢ € 00, wherc A > 0 1s a constant. Then
the boundary value problem (5.6) has another solution u # U such that

u(z) <u(z) < B(x), r €N

Proof. Consider the sequence of problems

Lu= f(z,u), z€Q

_ 5.6.
Bu= L(B3)z)+ " Lo(z) z€0Q (5.6m)

m
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for m = 1,2,---. Since 3 is an upper solution of (5.6),

B3 = “(B3)x)+ T;:—lB,a(I)

and also
Bi = o(x) < 4lz) + —(BS - )

1 -1
:—BB+m

m

~

N

on 9Q. Hence 3 is an upper solution and u is a lower solution of (5.6.m)
for each m = 1,2,---. But for m = 2,3.---, neither 3 nor @ is a solution
of (5.6.m), since B3 — ¢ # 0 on 0Q. Applying Theorem 4.24 we obtain
a solution u; of (5.6.1) such that 4(z) < ui(z) < B(z), ¢ € Q. Since u;
is an upper solution of (5.6.2) we obtain a solution uy of (5.6.2) such that
a(z) <uqz(z) <ulz), € Q. and uy # u;. Thus by induction we obtain
for every m = 2,3,--- . a solution um of (5.6.m) such that @ # um # Um—1,
and @(z) < um(z) < um—1(2). The sequence {u,} is bounded in cQ)
and hence by the Nagumo condition (which 1s trivially satisfied because f
is gradient independent) we have that {u,,} has a convergent subsequence.
Since it is a decreasing sequence. it converges to a solution u of (5.6). In

terms of the equivalent operator equations we obtain

um = (T 0 F)(um) + %5(33) LY T

m
If it is the case that u = @, we may use the Frechet differentiability of T o F
to write

Um = (TOF)(U‘H'(TOF)I(zl)(llm——l1)4}—_1_5(33)_{_”" -1

m mn

S()+ollum—ullcr)
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where (T o F)I(ll) 1s the Frechet derivative of T o F at u and

5 o([lum — ul|c)
1m

m=x |lum = ullcr

=0.

But (T o F)(u) = u — S() and hence

, 1
Um —u = (T o F)'(u) (um — u) + E(S(B’B =) +o(llum —ullcr).
Um — U

W and obtain
Um — U||Ct

Since u,, — u we may let y,, =

0(||“m —““Cl)

H“m - u||(;'l

ym = (T o F) (w)ym + (mllum —ullcr)” S(BB - ) +

We note that if K € C! is a compact operator, then A is also compact. Thus
(T o F)l(u) is a compact linear operator and ||ymllct =1, m = 1,2,---, it

follows that we may find a sequence of integers my such that

im ym, =y € CYQ), Bm (millum, —uller)” = A >0,
k—oc k—oc
exist, and

y=(To F),(u)y + AS(BS — ¢)
therefore, y is a solution of the boundary value problem

Lz = f,(z,u(z))z, €
{Bzz (B3 — ), z€0dN

and ||y|lc = 1, y(z) > 0, ¢ € Q. which is a contradiction to our assumption.

Therefore @ # u and a(r) < u(z) < 3(z), = € Q. O
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Lemma 5.7. ([10]) There exists a positive constant u such that the bound-

ary value problem

Ap—z-Ve+pup=0 inQ
2 =0 ondN

has a positive solution.

Proof. Let T be the inverse operator of —A + r -V subject to zero Dirichlet
boundary condition. The maximum principle implies that T is a positive
operator. T is also compact. Hence by the Krein-Rutman Theorem ([1})

there exists a positive eigenfunction ¢ and a positive eigenvalue u satisfying

Ap—12-Vo+pur=0 1nQ
{ ¢ =0" on 0.

O

Theorem 5.8. Let u be the constant defined i‘n Lemma 5.7 and let ¢ be a
constant satisfying the hypotheses of Theorem 5.3. Let f : [0,00) — [0, 00),
f(0) = 0. Assume that f'(0) > p + n. limsupu_‘ooLuul < c¢. Then the

boundary value problem

Au+z-Vu+ f(u)=0 mQ
(5.8)
u=0 ondN
has a positive solution.
Proof. We note that up = 0 1s a solution of (5.8). Since limsup,, _. @ < c.

there exists a real number r sufficiently large so that f(u) < cu 4 r for all

u. Let @, = {z € R" : dist(z.Q) < €}. then Q C Q.. Taking e sufficiently
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small so that f(u(z)) < cu(r)+r for r € Q, and applying Theorem 5.3 the

problem
{Au+r-Vu+cu+r:0‘ r €,

u=0, zx€0dIN,
has a positive solution 3. and then 4 1s an upper solution of (5.8) such that
B3 # 0 on 2, since 3 > 0 in Q, by the maximum principle. We consider a

boundary value problem for the linear variational equation
Au+z-Vu+ f(0)u=0 in
(5.8.a)

u=2M\ on JN

where A 1s a nonnegative constant. Suppose that (5.8.a) has a nontrivial

positive solution u and let ¢ be the positive solution (by Lemma 5.7) of the

problem
Ap—x-No+ pp = in
(5.8.b)
2 =0 on 09.
Compute
/ (pAu+pz-Vu+ f(0)pu)dz =0 (5.8.¢)
Q
and
/ (UAp —uzx Vo + pup)dr = 0. (5.8.d)
Q

Since ¢ = 0 on 9N by Green's identity,

d,
/(a,oAu-—uA@)d:c :—/ u =P dz.
Q s dv

Integration by parts yields

/,91:~Vud1':—/uz-v,adr—n/\pudr.
Y] Q Q



50

Subtracting (5.8.d) from (5.8.c) we obtain

/ udide(f'(O)—p—n)/;udx.
o

o dv Q

Since %f < 0 on 092,

(f'(0) — pu— rl)/Q pudr < 0.

But ¢(z) > 0, u(z) > 0 for z € @ by the maximum principle and f'(0) —
g —n > 0 and hence
(f'(0) —u — n)/ wudzr > 0,
Q
which leads to a contradiction. Therefore the problem (5.8.a) does not have

any nontrivial positive solution, and hence by Theorem 5.6 our problem (5.8)

has a solution u such that u # 0. 0 < u(z) < 3(z), z € Q. a

Lemma 5.9. Let p be an even natural number, p > 2. Then there is a

constant A > 0 which depends only on ) and p such that

/u”_QDVu|2dI > /\/ uPdz,
Q Q

for all u € C(Q).

Proof. Let p = 2q. Since €2 is a bounded domain it can be enclosed in a cube

F'={zeR":|z;] <a fori=1.2---,n}. We continue u as identically
zero outside 2. Then for any ¢ = (2,.25.--- .2,) €T
I, 0
ul(z) = — (ui(t.x9. - .2,))dt
—a 511

T Ou
= L
= U .
q[a (911
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and by Schwartz inequality

Iy 0
q/ w28 gt <gq
—a 01‘1

o 011 2 1
2(g—1) . 3
/ u (8‘r1> dt} (r1 4 a)?.

—a

Then . G 2
up:u2q<q (I’+0)/_a llz(q-l)(é);ll) d
p ) a _y au 2
< v P el
2a(=) /;au <01‘,> dt
Thus

a . a . a 2
/ uPdr, < 4a2(§)2/ u”_z(a“ ) dry,
—a —a T

and then integrating over z,,--- ,z, from —a to a we find

/upd:r:/u”dx
Q r
:/ / uPdz, - dz,
<4(12( / / uP~ 2 dxl - dr,
_ 2.2 p—2 2
_ap/nu (arl>d:r

§a2p2/ uP7?|Vu|*dz.
Q

/up—2|Vu|2dz > /\/ uPdz,
Q Q

where A = 0—21? > 0. a

Therefore

Lemma 5.10. Let p be an even natural number sufficiently large so that
Lemma 4.9 holds. Let ~ be the constant defined in Lemma 4.8, and assume

V-bz) >m >0 forall z € Q Assume that 0 < ¢y < 1 and 0 < ¢ <
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AMp—1)+ %, where X is the constant defined in Lemma 5.9. Forr > 0 let

u be a positive solution of the problem

Au+b(z) - Vu+cu+r=0 1nQ
{ (5.10)

u=0 onJdf.

Then there exists a constant § depending only on Q and p such that

leflco < ré.

Proof. Let u be a positive solution of (5.10). Then
/ (up_lAu +uP " b(z) Vu+ cu? +ruP7 ) dz = 0.
Q
By Green’s identity and direct computation,
/ uP ' Audr = / uA(uP)dr
Q Q
= / u [(p —1)(p—2)uP}|Vu|* + (p - 1)u”_2Au] dr
Q
=(p—1)p-— ‘2)/ uP 7 Vul®dz + (p — 1)/ uP ' Audr,
Q Q
thus

/ WP ' Audr = —(p — 1)/ uP "% Vu|dz.
Q Q

By integration by parts.

/up_lb(x)-Vud:r:~(p—1)/ up_lb(l‘)-VudI—/ uP (V- b(z))dz
Q Q Q

IN

—(p—l)/ up"lb(:r)~Vudr—m/ uPdz,
Q Q

and hence

m
/ uP7'b(r)  Vudr < —— [ uPdr.
Q P Ja



Then by Lemma 5.9 we obtain

0<-Mp- 1)/ uPdr — T—/ u”d1+(~/upd.r+r/ uP~ldr,
Q2 P Ja Ja Q

and then by Holder inequality

(/\(p—1)+—rr—l—c)/updrgr/u”_'d‘r
p Q Q

p-t

/ﬂ(u"—‘)ﬁ*df} ' [/wa]
zr[/; u”d:r]l_%|§2117,

(z\(p—l)—}-m—c) uPdzr ’ Sr‘Qlé,
p Q
Bk

Mp—1)+ % 2
By Lemma 4.9 there exists a constant C3 such that

<r

~

or

or HuHu < rC,. where Cy =

“ullcl S Czllu“v‘/Z,p?
and by Lemma 4.8
lull e, < VAU + 2 Vul|,

< yflew +rll -

Therefore

u

o < Corfleutr]l,
< Crrelull,, +CafQl v

< (cCiCoy)r + (Cov|Q| 7 )r

AN

ér,

where & = 2max{cC,Co~. Cy~ Q|;}.

1
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Theorem 5.11. Assume that the hypotheses of Lemma 5.10 are satisfied
and let f :[0,00) — [0.2c) with f(0) > 0. IfO< f(u)<cu+rforO<u<
6. where 6 is the constant defined in Lemimna 5.10, then the boundary value

problem

Au+blz) Vu+ f(uy=0 1nQ
{ 1)

u=0 ondQ

has a solution.

Proof. Let @ be a positive solution of (5.10). Then 0 < a(x) < or, and u 1s

an upper solution of (3.11), since
Aﬁ+b(.r)~Vt§.+f(ﬁ)SA&+b(r)-V&+cﬂ+r:0.

We note that ug = 0 is a lower solution of (5.11). Hence there exists a

solution u of (5.11) such that 0 < u(r) < u(zr). r € Q. O
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<Abstract >

SECOND ORDER SEMI-LINEAR ELLIPTIC BOUNDARY
VALUE PROBLEMS AND DIFFERENTIAL INEQUALITIES

In this paper we introduce established theorems about existence of solu-
tions of second order linear and semi-linear elliptic boundary value problems
and then use them to derive the existence of positive solutions of the follow-
ing second order semi-linear elliptic boundary value problems defined in a

bounded domain 2 in which the boundary is differentiable;

Au(z) +b(r) - Vulz)+ f(u(z)) =0. z€Q

u(z) = 0. r € 0N.

To discuss the existence of the solutions. we use the upper solution- lower

solution method and integral inequality.
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