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Scalar Curvatures of Left Invariant

Metrics on a Lie Group

1. Introduction

When studying relationships between curvatu-
re of a complete Riemannian manifold and other
topological or geometric properties, it is use-
ful to have many examples. This paper will give
aboundant good curvature properties of a Lie
group equipped with a Riemannian metric invariant
under left translations. And they give us many
good examples of a Riemannian manifold.

In this paper, we will pay attention to the
scalar curvature of left invariant metrics on

a Lie group.

2. Preliminaries
Some basic concepts of Differential Geometry
will be stated here. The object of section 2 is
to give a rapid outline of some basic concepts
of Riemannian Geometry which will be needed later.
Let M be a Riemannian manifold with a particul
—ar Riemannian metrc g also denoted by < ~.
And let TM and TMp denote its tangent bundle and

tangent space at p. If f:M> N is a smooth map, £,
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will denote its differential of tangent bundles.

Definition. An affine connection at a point

pe M is a function which assigns to each tangent
vector X ETMp and to each vector field Y a new
tangent vector
X YETM
P+— p

called the covariant derivative of Y in the

direction Xp. This is required to be bilinear as
a function of Xp and Y. Furthermore, if f: M > R
is a real-valued function, and if fY denotes the
vector field
(fY)p = f(p)Yp
then |— is required to satisfy the identity
Xpl—-(fY) = (pr)Yp + f(p)xpr— Y.

A global affine connection on M is a function

which assigns to each p M an affine connection

at p, satisfying the following smoothness
condition: if X and Y are smooth vector fields
on M then the vector field X|— Y, defined by
the identity

X|—Y =X !-Y ,
(X | ) plp
must also be smooth.

Definition.Let ¢ be a parametrized curve from

the real numbers to M. A vector field V along

the curve c is a function which assigns to each

t € R a tangent vector
v T
e © Mc(t)
This is required to be smooth in the following
sense: for any smooth function f on M the corres

-pondence



t > th

should define a smooth function on R.

Definition. Let M be a smooth Riemannian

manifold with an affine connection. Any vector

field V along c determines a new vector field g%

along c called the covariant derivative of V.
The operation V = g% is characterized by the

following three axioms:

D DV DW
a) gD = gv * q¢

D df DV ,
b) dt(fV) = dtV + fE? for any smooth function

f on R.

c) If V is induced by a vector field Y on M,
. . _ DV
that is, if Vt- Yc(t) for each t, then dt

is equal to
£Z|— Y (= the covariant derivative

of Y in the direction of the velocity of c¢)

Lemma 2-1. There is one and only one operation Dv
dt

which satisfies three conditions in the definition.

For the proof, see (8).

Definition. A vector field V along c is said

to be a parallel vector field if the covariant

derivative %% is identically zero.

Lemma 2-2. Given a curve ¢ and a tangent vector
Vo at the point ¢(0), there is one and only one

parallel vector field V along ¢ which extends Ve



For the proof, see (8).

Definition. A connection on M is compatible

with the Riemannian metric if parallel translation
preserves inner products.
A connection|— is called symmetric if it
satisfies the identity
(X|-Y) - (Y]-X) = [X , Y]
where [X , Y] denotes the poisson bracket

[X , YIf = X(Yf) - Y(Xf) of two vector fieleds.

Now we will state "Fundamental Theorem of
Riemannian Geometry": a Riemannian manifold
possesses one and only one symmetric connection
which is compatible with its metric.

Note that such a connection is called the
Riemannian connection of a metric, and denoted

by V.

Definition. A Lie group is a group which is
also a manifold with a (®structure such that

(x,y) -+ xy
-1
X + x
£o
are C functions.
For any Lie group G, if a G we define the

left and right translations, La:G +G and Ra:G+ G by

La(b) = ab
R_(b) = ba
A vector field X on G is called left invariant if
La*Xb = Xab for all a,b €gG, where(La*Xb)g

X, (goL ), 8 e € (ab)

Definition. A Lie algebra is a finite dimensional




vector space V, with a bilinear operation satisfying
[x , X]1=0,
((x,Y] ,2] +[[v,2] ,X]1 +([2,X] ,Y] =20

for all X,Y,Z V

The vector space Ge is called the Lie algebra

and denoted by G if it has an operation [, ]
defined by [v,w] = [X,Y](e) where X,Y are the left
invariant vector fields with X(e) = v, Y(e) = w

and [X,Y]is the poisson bracket operation.

3. Scalar curvature

Let G be an n-dimensional Lie group, and let
G be the associated Lie algebra, consisting
of all smooth vector fields on G which are
invariant under left translations. Choosing some
basis el,f-',en for the vector space G , it is
easy to check that there is one and only one

Riemannian metric on G so that these vector fields

el,---,en are everywhere orthonormal. More
generally, given any n n positive definite
symmetric matrix (Bij) of real numbers, there
is one and only one Riemannian metric so that
the inner product <ei’ej> is everywhere equal
to the constant function Bi" Thus each n-
dimensional Lie group possesses (1/2)n(n+1)-
dimensional family of distinct left invariant
metrics.We will see that different metrics on
the same Lie group may exhibit drastically

different curvature properties.

Definition. Given vector fields x,y,z of a

smooth Riemannian manifold M define a new vector



field ny(z) by the identity

Ryy(2) = = x[yl=2) + yl=Gd=2) 4 [x,y1l~z.

Such R is called a Riemann curvature tensor.

The curvature of a Riemannian manifold at a
point can be described most easily by the bi-

quadratic curvature function

= <R
K(x,y) Xy(X), y >
Here x and y ranges over all tangent vectors
at the given point,
If u and v are orthonormal, then the real

number K = K(u,v) is called the sectional curva-

ture of the tangential 2-plane spanned by u and v.

Choosing any orthonormal basis e} ey for

’ ’

the tangent vectors at a point of a Riemannian

manifold, the real number

<

i<j
is called the scalar curvature at the point.

p =112 (ei,ej)

In order to study a Lie group with left in-
variant metric, it is best to choose an orthonor-
mal basis e} "ol for the left invariant vector

?

fields, The Lie algebra structure can then be

described by an nxnxn array of structure cons-

tants o, ., where
—— 1ijk

) ] = 2o
5, €51 = £% 5k
or equivalently
a < > .
ijk = ey, e5] - ek
This array is skew-symmetric in the first two
indices. The curvature function K can then be

expressed as a complicated quadratic function



of the ijk
Lemma 3-1. With the structure constants as

above, the sectional curvature K(ei,ej) is given
by the formula
k(ej.e ) = I %aijk(_aijk"'ajki— % ; 5
B %( a3y Ui ¥ i 500 % Gk
O Q) T Qs akjj)'

jki kij
to be summed over k.

Proof. Let V be the Riemannian coanection
with a Riemannian metric. Recall that V is al-
ways uniquely defined, that ny is bilinear as
a function of x and y, that it satisfies the '

"symmetry" condition

V.Y - Vyx = [x,y] (3.1)
and that the identity
<ny,z + y,sz>= 0 (3.2)

is satisfied whenever y and z are vector fields
such that the Riemannian inner product <y,z> is
a constant function.

If x,y,z are all left invariant vector fields,
then combining (3.1) and (3.2) with the various
identities obtained by permuting the variables,
we can solve to obtain the following formula:

<ny,z>= %(<[x,y] ,z> - <[y,z] ,x>+ <[z,x] ,y>).

In particular, it follows that

1
< = = -
Veiej e = 70 T Yyt g)
. _ 1 _
Since V leJ = E 2( aijk %ki + akij),wehave
<V v e e.>
e; € y 3



1
= — =( Q - Q - Q
E 4( ijk jki * OLl«:ij)( %5ﬂc+ %kl klj)’
<V v e. e.>
e. e i, 7]
R 1
= - a Qa
£ kii kijj , and
<V ., e . ?
[ei’ejfl j
1

= éfaijk(_aijk+ %t Bes5)

Consequently, we have the required formula.
We have defined the scalar curvature at a
point. But it is really well-defined? We will look

whether it is well-defined or not.

Lemma 3-2. Let G be an n-dimensional Lie group
and p is in G. For any two orthonormal bases

ey ...

'E'K(Ei’Ej)’ and therefore the scalar curvature
1<]
at p in G is well-defined.

en} and {El"',EJ , i%K(ei’ej) =

Proof. Let T be a linear map such that
T(ei) = Ei for i=1,2,*'*,n. Then T becomes a uni-
tary operator. Since Gp is an n-dimensional vector
space over R,G_ can be expressed as a direct sum
= @...00G
Gp G1 r
of T-invariant subspaces,which are mutually ortho-
gonal and dim Gi= 1 or 2, for each i=1,2---,r.(See
6.)
Case 1. If e. is in G, and dim G .= 1,then E,
i j j i
is also in G, and E.=ae.. Since E, is orthonormal
2 j i i i
, a =1 and therefore
= <
<R .(x),ei> RxE.(x)’Ei>

Xe

Case 2. If el,e are in G, and dim G.=2, then
k*"1 j j
E

,E . - = -
k’ 1 are also in Gj’ Ek_ ae, + bel, and El— bek



2

2
+ ae where a,b are reals such that a + b™ = 1.

l’
Recall that R is a trilinear map satisfying:
(1) ny(z) + Ryx(z) =0

(2) Ry (2) + R, (x) + R, (y) =0

< > < > =
(3) ny(z),w + ny(w),z 0
(4) <ny(z),w > = <sz(x),y>
Hence <RxEk(x),Ek> + <RXE1(X)’Ef

= R < >
<R_, (x),ek> + Rxe (x),e1
Combining theése two cases, we have:

for every tangent Xx,

<Rxei(x)’ei> = < Rin(x)’Ei>
Note that 2 Ixk(e.,e.) = T KR e.),e.>
 BsCege ) ejei( DN
and 2 £ (E.,E.) = ZZIX<R ED),E. >
RACTLR EjEi( By

Now using methods by which case 1 and case 2

was proved, we obtain

23 <R, p (o) B}

ZZ(RE,E,(Ej)’Ei>
J 1 i

L ¥ <R (e.),e?
e.e.  j i
joi

and therefore 2% «(E.,E.) = 2L k(e
1< i’ 73 i<

PR
j 1 J)

This completes the assertion.

*
Recall that the adjoint L of a linear trans-

formation L between metric vector spaces is
defined by the formula
*

<Lx , y> = <x , Ly>

*
The transformation L is skew-adjoint if L = - L



#
and is self-adjoint if L = L. For any element
x in a Lie algebra ¢ the linear transformation

y | [x,y]

from G to itself is called ad(x).

Theorem 3-1. Let{e1 en}be an orthonormal

basis of 6 , which is a Lie algebra of a Lie
group with dimension n. If the linear transfor-
mations ad(ei) are skew-adjoint, then p20 at

any point in G.

Proof. Since ad(ei) is skew-adjoint,

v
Il

<ad(ei)e.,e >

Il
N
0]
|
j25]
(=8
~
o
St
]

i
= - <[ei,ek] . > ,that is
the statement that ad(ei) is skew-adjoint means
that the array aijk is skew in the last two in-
dices j and k.
Lemma 3-1 reduces to
2
Thus K(ei,ej); 0 whenever i # j. Therefore

P 2 0 , as asserted.

Some Lie groups may possess a metric which

-10-



is invariant not only under left translation
but also under right translation. The basic
facts about such bi-invariant metrics can be

summarized as follows.

Theorem 3-2. Let{e en}be an orthonormal

L
basis of G , which is a Lie algebra of an n-
dimensional Lie group G. A left invariant metric
on G is also right invariant if all ei's belong
to the center of the Lie algebra G

Proof. We can easily see that ad(x) = 0 fof
every x in G , since ad(ei) = 0 whenever e is
in the center of G

If g is sufficiently close to the identity
in G, then g = exp(x) for some uniquely defined
x in G close to zero. We have already known
Ad(g) is a linear isometry. Recall that Ad(g)
means (LgRgml)*, Lg means left translation by
g and Rg right translation by g.

Since a connected Lie group is generated by
any neighborhood of the identity,and since

products of linear isometries are also linear

isometric, we may conclude that Ad(g) is a

-11-



linear isometry for any g in G,
Let y be a left invariant metric on G. Since

Ad(g) is a linear isometry,evidently
—1 . %

(LgRg ) W=y
and therefore
#* % _1
Rg u o= Rg (LgRg ) u
- R HL Ty
8 g g
= Lg* L = . This

completes our assertion.

Theorem 3-3. A connected Lie group G admits
a left invariant metric with p > 0 at every point
in G if G is compact with finite fundamental
group.

Proof. If G is compact, then we can choose
a bi-invariant metric so that each ad(x) is
skew-adjoint.(See 4.) If G also has finite
fundamental group, so that the universal cover-
ing group 0 is compact, note that G must be
equal to its commutator ideal [ G}. For
otherwise there would be a non-trivial Lie alge
-bra homomorphism from G to the commutative

Lie algebra R. This would induce a non-trivial

-12-



homomorphism from G to the additive Lie group
R, contradicting the hypothesis that G is compact.
If ad(u) is skew-adjoint, then
K (u,v)20

for all v, where equality holds if and only if

u is orthogonal to the image [v, G ]. (See 4.)
Since [ey> G 1= G for each ey K(ei,ej) >0 if

i # j. Hence p= 2% «k(e,,e.)>0 and our assertion

i<y 1 ]

is proved.

Theorem 3-4. If the Lie algebra of G is non-
commutative, then G possesses a left invariant
metric of strictly negative scalar curvature.

Proof. First suppose that there exist linealy
independent vectors x,y,2z in the Lie algebra with
[ x,y ]= z. Choose a fixed basis{bl,'--,bn}with
b1 = x, b, =y, b3 = z, For any real number A>0,
consider an auxiliary basis{el,---,en}defined by
e, = Abl, e, = Abz, and e, = fbi for i 2 3.
Define a left invariant metric by requiring that

{el,---,en}ShOUld be orthonormal. Let Gk denote
the Lie algebra G provided with this particular

metric and this particular orthonormal basis.

~-13-



Setting [ei,ej ] = Eaijkek’ the structure cons-
tants a5y are cleary functions of A . Now con
-sider the limit as ) + 0. Inspection shows that
each aijk tends to a well defined limit. Thus

we obtain a limit Lie algebra G, with prescribed

0

metric and prescribed orthonormal basis. Further

-more the bracket product in GO is given by
[el!e2]= - [e2’61]= 93,

with [ei,ej] = 0 otherwise. Note that GO is

nil%otent but not commutative. Applying Lemma 3

-1, we obtain p[ G, ] <0. It follows by continuity

0
that p(GAXO whenever A is sufficiently close to
zero.

On the other hand, suppose x,y and [x,y]
are always linearly dependent. Then there exists
a well-defined linear mapping 1 from G to the
real numbers such that [x,y] = 1(x)y - 1(y)x.
Choosing any positive definite metric, the sec-
tional curvatures are constant:

K==l 1

Thus, in the noncommutative case 1 # 0, every

possible metric has constant negative scalar

“14-



curvature. Our theorem is proved.

If the Lie algebra of G is commutative, we

can easily obtain that p = 0 at any point for

any left invariant metric on G.

Let{el,---,eJ be an orthonormal basis. Then
[ei,ej] = 0 for each pair i,j if the Lie al-
gebra of G is commutative. Hence aijk = 0

and therefore K(ei,ej) =0 if i # j. This

implies p = 0.

-15-
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