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<Abstract>

Riemannian foliation admitting a transversal

conformal Killing field

In this paper, we study the transversal conformal Killing field on a Rie-
mannian foliation. In particular, we study the foliations on a compact Rie-
mannian manifold with a transversal conformal Killing field. Namely, let
(M, grr, F) be a compact Riemannian manifold with a transversal Einstein
foliation F and a bundle-like metric g5;. If M admits a transversal confor-
mal Killing field which is not Killing, then F is transversally isometric to
the action of a discrete subgroup of O(q) acting on the g-sphere of constant

curvature.



1 Introduction

Let (M, ga) be a compact Riemannian manifold of dimension n > 2 and gy,
a Riemannian metric. It is well-known ([10]) that if the scalar curvature r of
M is positive constant, then M admits a conformal transformation, which is not
isometric. Furthermore, if a Riemannian manifold of constant scalar curvature
r admits an infinitesimal conformal transformation X with 0(X)gy = 2égu,
where 0(X) the Lie derivative and ¢ a function, then ¢ satisfies the equation
A¢ = nce, where ¢ = r/n(n — 1). The existence of such a function might give
some informations about the topological structure of the Riemannian manifold.

In fact, the following theorems are well-known in M.Obata([11]).

Theorem 1.1 A compact Einstein manifold of constant scalar curvature r ad-
mits a non-constant function ¢ such that A¢ = nco-if and only if the manifold
is isometric with a sphere S™(v/c) with radius \% in the (n + 1)-dimensional Eu-

clidean space.

Theorem 1.2 Let M be a compact Einstein manifold of dimension n > 2 with
positive constant scalar curvature r. If M admits a conformal Killing field X

with a non-Killing field, then M is isometric with a sphere S™.

In this paper, we study the properties of a foliated Riemannian manifold M with
constant transversal scalar curvature oV admitting a transversal conformal Killing
field. Moreover, we prove corresponding theorem to Theorem 1.2 for foliation.
The corresponding theorem to Theorem 1.1 for foliation was given by J. Lee
and K. Richardson([8]). This paper is organized by the following. In Chapter

2, we review the known fact on the foliated Riemannian manifold. In Chapter



3, we study the basic Laplacian. In Chapter 4, we investigate the properties of
the transversal conformal Killing field. In Chapter 5, we study the Riemannian
foliation admitting a transversal conformal Killing field. In fact, we prove the

corresponding theorem to theorem 1.2 for foliation.



2 Riemannian foliation

Let M be a smooth manifold of dimension p + q.

Definition 2.1 A codimension ¢ foliation F on M is given by an open cover
U = (U))ier and for each i, a difftomorphism ¢; : RP*? — U; such that, on
U; NU; # 0, the coordinate change goj_l o p; (U;NU;) — gpj_l(Ui N Uj) has
the form

o5 opi(m,y) = (wis(, ), Y (V))- (2.1)

From Definition 2.1, the manifold M is decomposed into connected submanifolds
of dimension p. Each of these submanifolds is called a leaf of F. Coordinate
patches (U;, ¢;) are said to be distinguished for the foliation F. The tangent
bundle L of F is the subbundle of 7'M, consisting of all vectors tangent to the
leaves of F. The normal bundle @) of F on M is the quotient bundle () = T'M/L.

Equivalently, () appears in the exact sequence of vector bundles

0—-L—-TMSQ—D0. (2.2)
If (z1,...,2p;%1,...,Y,) are local coordinates in a distinguished chart U, then
the bundle Q|U is framed by the vector fields 778%1, e ,Waiyq. For a vector field

Y € I'TM , we denote also Y = 7Y € T'Q.

Definition 2.2 A vector field Y on U is projectable, if Y =, aia%i +3 . b

* 0ya

With%‘z:Oforalla:1,...,qandi:1,...,p.

Definition 2.2 means that the functions b, = b,(y) are independent of x. Then

Y = Y ba% with b, independent of x. This property is preserved under the



change of distinguished charts. Note that every projectable vector field preserves

the leaves in sense of [Y, Z] € I'L for any Z € I'L.

Let V(F) be the space of all projectable vector fields on M, i.e.,
V(F)={Y eTM|Y,Z] e T'L, VZeTlL}. (2.3)
An element of V (F) is called an infinitesimal automorphism of F. Now we put

V(F)={Y ==(Y) eTQ|Y € V(F)}. (2.4)

The transversal geometry of a foliation is the geometry infinitesimally modeled
by @, while the tangential geometry is infinitesimally modeled by L. A key fact
of the transversal geometry is the existence of the Bott connection in ) defined
by

Vxs = (X, Y)]), vX€TL, (2.5)
where Y, € T'M is any vector field projecting to s under 7 : TM — Q. It is a
partial connection along L. The right hand side in (2.5) is independent of the

choice of Y. Namely, the difference of two such choices is a vector field X’ € I'L
and [X, X'] € T'L, which implies 7([X, X']) = 0.

Definition 2.3 A Riemannian metric gg on the normal bundle ) of a foliation

F is holonomy invariant if
0(X)go =0, VX eTlL, (2.6)

where 6(X) is the transversal Lie derivative, which is defined by 6(X)s =
7| X, Y.



Here 6(X)gq is defined by
(0(X)gQ)(s,1) = Xgq(s,1) = go(0(X)s, 1) — ga(s, 0(X)t) Vs, t € TQ.

Definition 2.4 A Riemannian foliation is a foliation F with a holonomy invari-
ant transversal metric gg. A metric gy is a bundle-like if the induced metric gg

in () is holonomy invariant.

The study of a Riemannian foliation was initiated by Reinhart in 1959([14]). A
simple example of a Riemannian foliation is given by a nonsingular Killing vector

field X on (M, gyr), because 6(X)gn = 0.

Definition 2.5 An adapted connection in @) is a connection restricting along L

to the partial Bott connection V.

To show that such connections exist, consider a Riemannian metric gy, on
M. Then TM splits orthogonally as TM = L @& L*. This means that there
is a bundle map o : Q — L= splitting the exact sequence (2.2), i.e., satisfying

m oo = identity. This metric gp; on T'M is then a direct sum

gm = 9L D gr--

With gg = o*gp1, the splitting map o : (Q,gg) — (L*,g;1) is a metric iso-

morphism. Let VM be the Levi-Civita connection associated to the Riemannian

metric gp. Then the adapted connection V in @ is given by([5,15])
Vxs=mn([X,Y]) VX eTL,

VXs = (27)
m(VYY,) VX eTlL*,



where s € I'Q) and Y, € I'L* corresponding to s under the canonical isomorphism

Q = L*. For any connection V in @, there is a torsion Ty defined by
Tv(Y,Z) =Vyn(Z) = Vzrn(Y) — (Y, Z]) (2.8)
for any Y, Z € I'T'M. Then we have the following proposition ([15]).

Proposition 2.6 For any metric gy on M and the adapted connection V in @)

defined by (2.7) the torsion is free, i.e., Ty = 0.
Proof. For any vector fields X € 'L, Y € I'I'M, we have
Ty (X,Y)=Vxn(Y)—n([X,Y]) =0.
For any vector fields Z, Z' € 'L+, we have
15(2.2') =7(Vy Z') = n(NpZ) — (2, 2') = n(Teu(Z,Z')) = 0,

where Tywm is the (vanishing) torsion of VM. Finally the bilinearity and skew

symmetry of Ty imply the desired result. O

The curvature RY of V is defined by
RY(X,Y)=VxVy —VyVx —Vixy] VX, Y €TM. (2.9)

From the adapted connection V in ) defined by (2.7), its curvature R coincides
with R for X,Y € T'L, hence RV(X,Y) = 0 for X,Y € L. And we have the
following proposition ([4,5,15]).

Proposition 2.7 Let (M, gy, F) be a (p+ q)-dimensional Riemannian manifold

with a foliation F of codimension q and bundle-like metric gy with respect to



F. Let V be the connection defined by (2.7) in Q with curvature RY. Then for
X € T'L the following holds:

i(X)RY = 0(X)RY = 0. (2.10)

By Proposition 2.7, we can define the (transversal) Ricci curvature p¥ : T'Q — I'Q

and the (transversal) scalar curvature oV of F by
pY(s) = Z RY(s,E))Eq, 0V = ZQQ(/OV(Ea)a E,), (2.11)
where {E,}4—1... 4 is a local orthonormal basic frame of Q.

Definition 2.8 The foliation F is said to be (transversally) Einsteinian if the

model space N is Einsteinian, that is,

1
pY = =a -id (2.12)

with constant transversal scalar curvature oV.

Definition 2.9 The mean curvature vector x* of F is defined by

p

K=r(> VIHE), (2.13)

i=1
where { E;} is a local orthonormal basis of L. The foliation F is said to be minimal

if Kt = 0.

For the later use, we recall the divergence theorem on a foliated Riemannian

manifold ([19]).



Theorem 2.10 Let (M, gur, F) be a closed, oriented, connected Riemannian man-
ifold with a transversally orientable foliation F and a bundle-like metric gy with

respect to F. Then
/divv(X):/ go(X, k%) (2.14)
M M

for all X € T'Q, where divg(X) denotes the transversal divergence of X with
respect to the connection V defined by (2.7).

Proof. Let {E;} and {E,} be orthonormal basis of L and @, respectively. Then
for any X € I'Q,

div(X) = ZgM VY X, E) +ZgM (VM X, E,)
= Z —gu(X,7(VEE —i—ZgM (VEX), E,)

)

= 200X+ 9g(VeX, Ey)

= —go(X, k") + divg (X).

By Green’s Theorem on an ordinary manifold M, we have

O:/Mdiv(X):/Mdivv(X)—/MgQ(X,/{ﬁ). O

Corollary 2.11 If F is munimal, then we have that for any X € I'Q,

/ divg(X) = 0. (2.15)



3 The basic Laplacian

Let (M, gy, F) be a compact Riemannian manifold with a foliation F of

codimension ¢ and a bundle-like metric gy;.

Definition 3.1 Let F be an arbitrary foliation on a manifold M. A differential

form w € Q" (M) is basic if

i(X)w=0, 6(X)w=0, VXeTlL. (3.1)

In a distinguished chart (z1,...,2,;91,...,y,) of F, a basic 1-form w is expressed
by

w= Z Wayar@Yay; N -+ N dYa,,

a1<-—-<ar

where the functions wq, «, are independent of z, i.e. 22w, .., = 0. Let Q(F)

be the set of all basic r-forms on M. The foliation F is said to be isoparametric
if kK € QL(F), where s is a gg-dual 1-form x*. Then we have the well-known

theorem([9,15]).

Theorem 3.2 Let F be an isoparametric Riemannian foliation on M. Then the

mean curvature form k is closed, i.e., dk = 0.

We now define the star operator * : Q(F) — Q% "(F) naturally associated

to go. The relationships between * and * are characterized by
%6 = (—1)P) % (p A x£), (3.2)

for ¢ € Q3(F), where xz is the characteristic form of F and x is the Hodge
star operator([15]). Then the inner product < , >p on Q5(F) is defined by

9



< ¢, >p= ¢ A*x A xr for any ¢, € Qf and the global inner product is given
by

< 0 >>B=/ <65, (3.4)
M

With respect to this scalar product, the adjoint dp : Q5 (F) — Q5 H(F) of dp is

given by
opp = (=1)10 V% (dp — kA% (3.5)
Then the basic Laplacian is given by
Ap =dpdp + 0pdp. (3.6)
Lemma 3.3 ([1,2]) On the Riemannian foliation F, we have

dpo = ZEaAan 05 = Z—z IVed+i(s)o,  (37)

when {E,} is a local orthonormal basic frame on @ and {E*} its gg-dual 1-form.

Definition 3.4 For any vector field Y € V(F), we define an operator Ay : I'Q) —
I'Q as
Ays =0(Y)s — Vys. (3.8)

Remark. Let Y; € I'TM with m(Y;) = s. Then it is trivial that

AyS - —VYST(Y). (39)

So Ay depends only on s = 7(Y') and is a linear operator. Moreover, Ay extends
in an obvious way to tensors of any type on @ (see [6] for details). Namely, we

can define the following.

10



Definition 3.5 For any basic 1-form ¢ € QL(F), the operator Ay is given by

(Ayd)(X) = —d(AyX) VX €TQ. (3.10)

Now, we introduce the operator V; .V, : QL (F) — Q5 (F) as
ViViud ==Y Vi 5o+ Vao, (3.11)
where VX, = VxVy — Vyuy for any X, Y € TM. Then we have the following.

Proposition 3.6 ([2]) On the Riemannian foliation F on a compact manifold

M, the operator Vi, V. satisfies
L Vi V1, ¢ >p=< V1, Vo >p (3.12)
for all 1, @2 € Qp(F), where < Vi1,V >p=> < Vg, 01,V >p.
By the straight calculation, we have the following theorem.
Theorem 3.7 On the Riemannian foliation F, we have
Apd = Vi, Vi + At + F(0) (3.13)

for ¢ € Qp(F), where F(¢) =3, , E* A i(Ey)RY (Ey, Eu)é. In particular, if ¢ is
a basic 1-form, then F(¢)* = p¥(¢*).

Proof. Fix x € M and let {E,} be an orthonormal basis for ) with (VE,), = 0.
Then from (3.7) we have

dpdpgp = Z(Ea AV )(—i(Ey) V¢ + i(k)o)

a,b

= Y E AV {i(E) Vel + Y ECAVi,i(kh)o

a,b

= =) E"Ni(E)VE, V¢ + dpi(s)e
a,b

11



and

dpdpd = = i(B)Ve{E*AVe,¢}+i(k")dpd
a,b

= = (i(By)E")VE,VE,¢+i(k)dpo
a,b

+ Z E*A ’é(Eb)VEbVanb

a,b

= = Vg Veé+ Y ENi(E)VEVeé+i(k)dse.
a a,b
Summing up the above two equations, we have

Apd = ddpd+ 0pdpd
= dpi(k")¢ + i(K")dpg — Z Ve VE®

4 Z E*N i(Eb)RV(Eb, E,)¢

a,b

= O(k")p — Z Ve, Ve, ¢+ ZEa Ni(Ey)RY (Ey, B.)¢
a a,b

= =) ViVeé+F(@)+ Au + Vo

= —ZV2G7EG¢+VA¢+F(¢)+AM¢

= vlfrvh"gb + F(¢> + A:‘iﬁgb'

The proof is completed. On the other hand, let ¢ be a basic 1-form and ¢* its

gg-dual vector field. Then

gQ(F(QS)? EC) = ZQQ<E(Z A i(Eb)Rv<Eba Ea)¢7 EC)
a,b

= Z i(Eb)RV(Eb, EC)¢ = Z gQ(Rv(Eba EC)gbﬁv Eb)
b b

=" 9a(RY (¢, By) By, Ex) = go(p” (¢%), E.).

12



This yields that for any basic 1-form ¢, F(¢)* = p¥V(¢#). O
From (3.10) and Theorem 3.7, we have the following corollary.

Corollary 3.8 On the Riemannian foliation, we have that for any X € I'Q
ApX = ViV, X +p¥(X) - AL X. (3.14)

Lemma 3.9 Let F be a Riemannian foliation. For any vector fields Y, Z € V(F)

and s € I'Q, we have
O(Y)V)(Z,s) = RV(Y, Z)s — (V7 Ay)s, (3.15)

where (0(Y)V)(Z,5) = 0(Y)Vzs — Voryzs — Vz0(Y)s and
(Vsz)S = —Vzvysﬂ'(Y) + VstTr(Y).

Proof. By a direct calculation, we have that for any Y, Z € V(F)

(Q(Y)V)(Z, S) — [Vy, VZ]S = (G(Y) - VY)Vz.S - Vz(Q(Y) — Vy)S — V[xz]s. |

13



4 Transversal conformal Killing field

Let F be a Riemannian foliation. For any vector field Y € V(F) and X, X' €
I'Q, we have

(0(Y)g9)(X, X') = go(VxY, X') + go(X, Vx/Y). (4.1)

Definition 4.1 If a vector field Y € V(F) satisfies 6(Y)gg = 0, then Y is called
a transversal Killing field of F.

Definition 4.2 If a vector field Y € V(F) satisfies 0(Y)gg = 2fgq, where f is a

basic function on M, then Y is called a transversal conformal Killing field of F.

Note that if Y is a transversal conformal Killing field of F, i.e., 0(Y)go = 2fg¢,
then
| R 1. - .
f= aalwv(Y) - —5<5TY, where 67¢ = =Y i(E,) Vi, 0. (4.2)

a

Lemma 4.3 Let (M, gy, F) be a Riemannian manifold with a foliation F of
codimension q and a bundle-like metric gy. If Y € V(F) is the transversal

conformal Killing field, i.e., 0(Y)go = 2fgq, then we have

90V )(Ea, By), Ee) = 0 fa + 04 f1 — 00 fes (4.3)
(0(Y)RY)(Ea, By) Ee = (Va0 (Y)V)(Ep, Ee) = (Vi (Y)V)(Ea, Ee), (44)
90((0Y)RY)(Eq, Ey) Ee, Eq) = 6§V o fe — 6V afa — 04V fe + 05V fa,  (4.5)
(O(Y)RicY)(Ea, By) = —(q = 2)Vafs + 0o (Apf — (), (4.6)

where V, = Vg, RicY(E,, Ey) = go(p¥ (E.), Ey) and fo = V.f.

14



Proof. Fix z € M. Let {E,} be a local orthonormal basic frame of @) such that
(VE,)(z) = 0. From (4.1), we have

Ve, (0(Y)90)(Ey, Ee) = 90(VE,VEY, E) + 9o(VE,VEY, Ey). (4.7)

Now we prove the equation (4.3). From (4.7) and the 1-st Bianchi identity, we

have
Va(0(Y)gQ) (Ey, Ec) + Vi(0(Y)gq)(Ea, Ee) — Ve(0(Y)g0)(Ea, Ep)
=9o(RY(Ea, E)Y , Ey) + go(RY (By, Eo)Y, Eo) + go(RY (Ea, B)Y , E.)
+290(Vy V.Y, E,)
=2{90(RY (Y, Eo) By, E) + 9o(V VY, E,)}.

On the other hand, a direct calculation with (3.9) gives

gQ((vaAY>Eb7 Ec) :gQ<VaAYEb7 Ec) . gQ<AY<vaEb)a Ec)
= - gQ<vavbY7 Ec)

From the above two equations and (3.15), we have

LAV )00) By, )+ Vi0(V)ga)(Ee, B — Vel0(V)g0) (o, )} (48)

:gQ((e(Y)v) (Em Eb)> EC)'

Since Y is a transversal conformal Killing field, i.e., 0(Y)go = 2fgq, we have
Vo {(0(Y)g0)(Ey, E.)} = 2f,05. From (4.8), (4.3) is proved.

15



From (4.3), we have

(Vo (Y)V)(Ey, Ec) — (Vo0(Y)V)(Eq, Er)
=V (0(Y)V)(Ey, Ec) — (0(Y)V) (Vo LBy, Ec) — (0(Y)V)(Ep, Vo E)
= Vi(0(Y)V)(Ea, Ec) + (0(Y)V)(VoEa, Ec) + (0(Y)V)(Ea, Vo Ee)
=(=VaVorig,Ee + Vo5, VaEe + Vg, 00v B, Ee)
+ (=Vow) e, VoEe + ViVoy e, Ec + Vipy) g, 8) Ee)
+ (=VoVl(Y)E. + VyVO(Y)E. + Vy,5,0(Y)E. — Vy,5.0(Y)E.)
+ (0(Y)(VaVoE) = 0(Y) (Vo Vo Ee) — 0(Y)(Ve,p,Ee) +0(Y)(Ve,k, Ee))
=~ RY(E,,0Y)E)E, — RN (0(Y)E,, E))E. — RV (E,, E,)0(Y)E.
+0(Y)RY (E,, Ey)E,
=(0(Y)RY)(Ea, Ev) B,

which proves (4.4). The equation (4.5) is trivial from (4.3) and (4.4). Now we

prove the equation (4.6). Since
0(Y)go(RY (Ee, E.)Ey, E.) = Vygq(RY (E., E,)Ey, E.)
and

gQ(VRV(EC,Ea)EbY7 Ec) :gQ<VdY7 Ec)gQ(Rv(Ea Ea)Eln Ed)
:gQ(RV(VdY7 Ea)ElM Ed)

= — 9o(RY(0(Y)E4, Ea) Ey, Ea),
The proof is completed from (4.5). O

From equation (4.6), we have the following lemma.

16



Lemma 4.4 Under the same assumption as in Lemma 4.3, if Y € V(F) is the
transversal conformal Killing field, i.e., (Y )gq = 2fgq, then

0(Y)o¥ =2(q — 1)(Apf — &*(f)) — 2fa". (4.9)

Proof. Equation (4.6) implies that
Z 0(Y)RicY (E,, E,)

_Z Y)RicY)(E,, E.) +2) _ Ric¥ (0(Y)E,, E,)

=2(¢ — 1)(ApS — ¥ (f)) +2)_ Ric*(0(Y)Eq, Ey).
On the other hand, we have

2fo" —2fZgQch (Bas Ea) = > _(0(Y)90)(p" (Ea), Ea)

a

= Z gQ(vpV(Ea)Ya Ea) e gQ(VEaY; pv(Ea)).

Since gQ(VpV(Ea)Yv Ea) - gQ(pv<Ezz)v EC)QQ(VCY, Ea) = gQ(VECY, pV<Ec))
(4.9) is proved. O

Now we define the tensors GV and ZV respectively by

GV(X) = pV(X) — %X, (4.10)

\Y%

q(qg—1)

for any fields X,Y, Z € I'Q. We can easily verify the following lemma.

ZV(X,Y)Z = RY(X,Y)Z —

(9a(Y, 2)X — go(X, 2)Y) (4.11)

Lemma 4.5 Under the same assumption as in Lemma 4.3, the following hold.

TrGY =0, Y ZY(X,E,)E,=GY(X) VX €TQ, (4.12)
v Q(O.V)Q

av? o . |2V =RV - L 4.13

IGY]? = [pV|* - p ZY P =R = (g —1) (4.13)

17



Proof. From (4.10) and (4.11), (4.12) is trivial. From (4.11), we have

GV =) 90(GY (E), GV (E,))
oV oV
= 90(p" (Ea) = —Ea, p¥ (Ea) — —Ey)
q q
:MW2—EiX-
q
and from (4.12), we get

12V =" 9o(Z2¥ (Ea, Ey)Ec, Z¥ (E,, Ey)E.)

a,b,c

=|RY V(Eu, Eo)Ee, Ey) — go(RY (E., By)E., Ey)}

+ L Z(aaag — 606
¢*(q — 1)? <
:’RV’Q . 2(0.V)2 :
q(qg—1)

Lemma 4.6 On the Riemannian foliation F, we have

-2
5rGY = _q2q dpo”. (4.14)

If 0V is a constant scalar curvature, then 67GY = 0.
Proof. Since Y(oV) =23 9o((VE,pV)(Y), E,) for any Y € T'Q, we have

orGY == (Ve,GV)(E) = =) Vi,GY(E)

1
RN yLA e
1 1 2
:——dBUv+—dBUV:—q dBO'v O
2 q q

18



Lemma 4.7 Under the same assumption as in Lemma 4.3, if Y € V(F) is the

transversal conformal Killing field, i.e., (Y )gq = 2fgq, then

(O)GY)(Ea, By) = —(q = 2){Vafy + é(ABf — K(f))da}, (4.15)

9o(OYV)ZVN(E,, Ey)E,, Eg) =00V of. — 6V o fa — 09V fo + 65V fa  (4.16)

- §<A3f — W(f)) (0255 — 3552).

Proof. First, (4.15) is trivial from (4.6) and (4.9). On the other hand, since

(O(Y)ZY)(Ea, By) E.
:Q(Y)ZV(EM Eb)Ec - ZV(Q(Y)ECH Eb)Ec - ZV(E(M G(Y)Eb)Ec
— ZY(Eq, Ey)0(Y)E.

— v n 1 O_V c _gc
=(0(Y)RY)(Ey, Eb) E. q<q_1)(9(Y) N5 Ea — ;)
2](‘0.V c _sc
- q(q _ 1) (6bEa 5aEb)7

(4.16) is proved from (4.5) and (4.9).
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5 Riemannian foliation admitting a transversal

conformal Killing field

Let (M, gar, F) be a closed, connected Riemannian manifold with a foliation

F of codimension ¢ and a bundle-like metric g,,.

Lemma 5.1 ([7]) For any basic function f on M, it holds that
/z@fza
M
Proposition 5.2 If f is a basic function on M such that Agf = \f, then
Apdpf = Mdpf.

Proof. ABdBf = dBABf = dB/\f = )\dBf O

Proposition 5.3 If M has a constant transversal scalar curvature o¥ (# 0) and

admits a transversal conformal Killing field Y with 0(Y)gg = 2fgq, f # 0,

\V4
Apf=-2
-

o f+(f)

| 1=- [ wo.

is a constant, Lemma 4.4 implies that

and consequently

Proof. Since oV

2(q — D)(Apf — K (f)) — 2fo" =
which proves (5.3). On the other hand, (5.4) is followed from

O

0—/ABf— T f+
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Proposition 5.4 Under the same assumption as in proposition 5.3, the following

holds.
[ v -
M

Proof. By a direct calculation, we have

1
+§/M,<Ji(f)f. (5.5)
1 2 2 oV 2 § 2
SAsf = (Apf)f = V] Zﬁf + £ () f = IVII™
By Lemma 5.1, we have

1 Al
= ~Apf?= 2 ! - 2,
’ /M2 of q—1 Mf " MKJ A /M|Vf| -

Theorem 5.5 ([7]) On the Riemannian foliation F on M, we have

1
| {9080 X) 200057 (X). X) = 510(X)g0 + 26720 + L2 6 x
M
+ gQ(A,{uX, X) o dlvv(AxX) = dZvv(dZ"Uv(X)X)} =0 (56)
for X e I'Q.
Lemma 5.6 On the Riemannian foliation F on M, if X € V(F) satisfies
go(X, K*) =0, then
/ {90(Aw X, X) + dive(Ax X)} = 0. (5.7)
M
Proof. The divergence theorem with (3.9) implies
/ gQ(AHuX,X) —|—/ dZUv(AxX)
M M
:/ gQ(AHuX,X)—I— gQ(AXX,Iiﬁ)
M

M

= / gQ(vXﬁﬁaX) gQ(VXXv'%ﬁ)
M

/XgQX/i =0. O
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Corollary 5.7 On the Riemannian foliation F on M, if X € V(F) satisfies
9o(X, k") =0, then

—2
/ {90(ABX, X) — 2RicV(X,X)+ngQ(dB<5TX, X) (5.8)
M
1
+290(Aw X, X) = 510(X)gq + ~ (5TX)| }=0.

In particular, if X = dgf for some basic function f with k*(f) =0, then

/ {90(Apdpf,dpf) — 2Ric¥ (dp f, dBf)""%gQ(dBABfa dpf) (5.9)
M

+290(Awdpf,dpf) —2|VV f 4 = (ABf)| }=0.

Proof. For the proof of (5.9), it is sufficient to prove that 6(dgf)gg = 2VV .
From (4.1)

(0(dp f)9e)(Ea, Eb) = 9o(Vadp f. Eb) + 9o(Vedp f, Ea). (5.10)
Since
o(Vadsf, Ey) ZgQ (Vef)Ee, Ey)
=Y (VaVef)go(Ees By) = VaVsf,
from (5.10), we have 0(dpf)go = 2VVf. O

Corollary 5.8 On the Riemannian foliation F on M, if a basic function f sat-
isfies Apf = Mf(\ = constant) with k*(f) = 0, then

1 , A
| AN af? — Ric” (dnf duf) + g0l Awdnf,daf) = [V9F + = oo’} = 0.
M
Proof. Let X = dgf. From (5.2) and (5.9), it is trivial. O
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Corollary 5.9 For any transversal conformal Killing field Y such that (Y )gg =
2fgq with K*(f) = 0, we have

oV

= )fgc:z\ }=0.

/ (Ric™ (dp, dBf)—ao—V|dBf|2 do(Aedpf, dpf)+|VV f+
Proof. From (5.3) and corollary 5.8, it is trivial. O

Proposition 5.10 Let (M, gy, F) be a closed Riemannian manifold with a fo-
liation F of codimension q > 3 and a bundle-like metric gy;. Assume that M

has constant transversal scalar curvature 0¥ and admits a transversal conformal

Killing field Y such that (Y )g = 2fg(f # 0). Then we have

| @ antdnt) = [ [5G + 5100167 ) + 00(G (Fduf). )
(5.11)

Proof. To prove this integral formula, we first compute 6(Y)|GV|2. Since

9o(GY(0(Y) Eq, By), G (Eq, By))
=9Q(0(Y) Eu, E)9o(GY (B, By), GY (Ea, Ey))
=(=2f90(Ba, B) = 9o(Ea, 0(Y) o)) 9o (G (Ee, By), G (Eq, Ey))
= —2fgo(G (Eu, By), G (Ea, Ey)) — 9o(GY (Ee, Eo), GY (0(Y) Ee, By)),

we have Y-, go(GY (0(Y)Ey, E3), G¥ (E,, Ey)) = — fIGV]*.
Similarly 5, , 90(G¥ (Ea, 00Y) Ey), G (Ey, By)) = — f1GV 2

Then we have

Y)|GY|? = Ze V(E,, Ey),GY (E,, E))

—ZVYQQ EaaEb) GV(EWEI)))
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—9 Z 90(VyGY(E,, E,),GY(E,, E,))

_zng V(Ea, By), GY (Bq, By))

_QZgQ NEa, By), G (Ea, By))
+ 22% (GY(O(Y)En ). GV (Ey. )
42 Zb;gQ(GV(Ea, 0(Y)Ey), G¥ (Eq, Ep))

—2(q = 2)9q(VV,GY) = 4fIGV P,

which implies

1

24— 2)9(Y)yG . (5.12)

2
9o(GY,VV[) = —q_—2f\GV|2 -

On the other hand,
—6r{GY(fdpf)} = Zgwa(GV(def)), E,)
= ZgQ (T E()GY(By)), Ea)
= ZgQ (VafEa), Eo(f)E)
+ begQ VaVif, GY (By)E,)

=GY(dpf,dsf) + fgo(VV f.GY). (5.13)

Thus, from (5.12) and (5.13),

~52{G¥(fdaf)} = G (daf.duf) ~ 525167 + 319
Since — [}, 60{GV (fdgf)} = [,; 9o(GV (fdp[), k"), we have (5.11). DO

()IGY]).
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Proposition 5.11 Under the same assumptions as in Proposition 5.10, we have
1 1
| 6% dns.dnp) = [ [5F1Z7F + GFO0NZT + 0o(GT(fdnf) k). (.10
M M

Proof. To prove this integral formula, we first compute 6(Y)|ZV|?. From defini-

tion and 2-nd equation of (4.12), we have

> " 90((0)ZY)(Ea, By)E., Z (Eq, Ey)Ey)
a,b,c
=" 90((0(Y)ZY)(Ea, By)Ee, Eq)go(Z¥ (Ea, Ey)Ee, Ea)
a,b,c,d
=—4) Vaif.go(2¥(E,, By)Ey, E.)
a,b,c

=~ 43" Vafgo(G7(E,), E.) = ~4gq(VV ,G¥)

a,c

and

9a(Z¥(0(Y)Eq, Ey)E, Z¥ (B, By)E,)

=90(ZY (Eq, EBy)E., Z¥ (Eq, Ey)E.)go(0(Y) Eq, Eq)

={—2f9¢(Ea, Ea) — 90(Ea,0(Y)Ed)}9o(Z¥ (E4, Ey) Ee, Z¥ (Eq, Ey) E.)

= —2f90(ZV(Eq, Ey)Ee, Z¥ (Eq, By E,) — go(Z¥ (0(Y)Ey, Ey)E., ZV (E,, Ey)E.).

Therefore -, 9o(ZV (0(Y)Ea, Ey) Ee, ZYV (Ea, Ey)E.) = —f|ZV[*. Then we have
N ZVP =Y 00V)go(2Y (B, By)E., 27 (E,, By)E)
ab,c
_Z Ea7Eb)EC7Z (EaaEb>Ec)
ab,c
+23 " 9o(0(Y)ZY (Eq, By)Ee, Z¥ (Ey, Ey)E,)
a,b,c
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=2 f90(ZY (Eq, Ey)E., Z¥ (Eq, Ey) E,)

a,b,c

+2> " 9o((0(Y) ZY)(Ea, Ey) Ee, Z¥ (Eq, Ey) E,)

a,b,c

+2) " 9o(Z¥(0(Y)Ea, By)Ee, Z¥ (E,, ) E.)

a,b,c

+2> " 9o(ZY(Ba,0(Y) By Ee, 2¥ (Ea, Ey)EL)

a,b,c

+2) " 9o(ZY(Ea, E)0(Y)Ee, Z¥ (E,, E)E,)

a,b,c

= —8go(VVf,GY) —4f|ZV?

which implies

9a(C7, VY f) = 51751~ )27 (5.15)
Thus, from (5.13),
~50(G(fdn )} = G¥(dnf df) — 51127 — L6027

Hence we have (5.14). O

Theorem 5.12 ([8]) (Generalized Lichnerowicz-Obata theorem). Let (M, F) be
a codimension-q Riemannian foliation on a closed, connected Riemannian mani-
fold. Suppose that there exists a positive constant a such that the transversal Ricci
curvature satisfies p¥ (X) > a(q — 1)X for every X € NF. Then the smallest

nonzero eigenvalue g of the basic Laplacian satisfies
)\B > aq.

The equality holds if and only if:

(1) (M, F) is transversally isometric to the action of a discrete subgroup of
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O(q) acting on the q-sphere of constant curvature a. Thus, there are at least two
closed leaves (the poles).
(2) If we choose the metric on M so that the mean curvature form is basic,

then the mean curvature of the foliation is zero (the foliation is minimal).

Theorem 5.13 Let (M, gy, F) be a closed Riemannian manifold with o folia-
tion F and a bundle-like metric gy . If F is transversally Finsteinian, then the
followings are equivalent:

(1) F is transversally isometric to the action of a discrete subgroup of O(q)

acting on the q-sphere of constant curvature c.

(2) F admits a non-constant basic function f with x*(f) = 0 such that

Apf=cfq.
Proof. It is trivial from the generalized Obata theorem. O

Theorem 5.14 Under the same assumption as theorem 5.13, if M admits a
transversal conformal Killing field Y € TQ such that 0(Y)gg = 2fgo(f # 0) with
k¥ (f) = 0, then F is transversally isometric to the action of a discrete subgroup

of O(q) acting on the q-sphere of constant curvature c.

Proof. Let Y be a transversal conformal Killing field such that 6(Y)gg = 2fgq-

From (5.3), we have

O.V

(¢—1)

If we put ¢ = q(g—:), then this equation satisfies theorem 5.13 (2). The proof is

Apf = [

completed. O

27



References

1]

J. A. Alvarez Lépez, The basic component of the mean curvature of Rieman-

nian foliations, Ann. Global Anal. Geom. 10(1992), 179-194.

S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom.

Phys. 39(2001), 253-264.

S. D. Jung, Transversal infinitesimal automorphisms for non-harmonic
Kabhler foliation, Far East J. Math. Sci. Special Volume, Part I11(2000), 169-
177.

F. W. Kamber and Ph. Tondeur, Foliated bundles and Characteristic classes,
Lecture Notes in Math. 493, Springer-Verlag, Berlin, 1975.

F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. National Sci-
ence Foundation Conference on Harmonic Maps, Tulane, Dec. 1980, Lecture

Notes in Math. 949, Springer-Verlag, New-York, 1982, 87-121.

F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second
variation of the energy for harmonic foliations, Tohoku Math. J. 34(1982),
525-538.

K. R. Lee, Integral formulas and vanishing theorems in a Riemannian folia-

tion, in preprint.

J. Lee and K. Richardson, Lichnerowicz and Obata theorems for foliations,

Pacific J. Math. 206(2002).

P. March, M. Min-Oo and E. A. Ruh, Mean curvature of Riemannian folia-
tions, Canad. Math. Bull. 39(1996), 95-105.

28



[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

M. Obata, Conformal transformations of Compact Riemannian manifolds,

Illinois J. Math. 6(1962), 292-295.

M. Obata, Certain Conditions for a Riemannian manifold to be isometric

with a sphere, J. Math. Soc. Japan 14(1962), 333-340.

J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds,

J. Korean Math. Soc. 25(1988), 83-92.

J. H. Park and S. Yorozu, Transversal conformal fields of foliations, Nihonkai

Math. J. 4(1933), 73-85.

B. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math.
69(1959), 119-132.

Ph. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New-

York, 1988.

Ph. Tondeur, Geometry of foliations, Birkhauser-Verlag, Basel; Boston;
Berlin, 1997.

Ph. Tondeur and G. Toth, On transversal infinitesimal automorphisms for

harmonic foliations, Geometriae Dedicata, 24(1987), 229-236.

K. Yano. Integral Formulas in Riemannian Geometry, Marcel Dekker Inc,

1970.

S. Yorozu and T. Tanemura, Green’s theorem on a foliated Riemannian man-

ifold and its applications, Acta Math. Hungar. 56(1990), 239-245.

29



N
il g

Killing %

3

-
I

o

€]

_Z_O

4 Einstein §&7+%

Wi
i

T

)
(N

F <+ bundle-like

7}

o
=

5% Killing %

(M, gy, 7)7F 894 Killing®o] of

o] o} Bl W},

2]

= g

o]



el 2

=13
=

A

Ao EolshH PE

S}
of

%]

alp
HJ

o

wvict F

o)
=

)

=

_g_,Q.

UA R A =E

AA SHAIR

)

o] T e

A}
2}

g7kt ‘ol AR A

= X
L

ol olTut g

g =

)

S Wi o] 59

=

td

3}l

L=
o

!

B

N

_
o

ol

o
il
oj
wu

o
ol

N
ol

ofn
M

o]

70
NI
ai g

o

T+ %W

w N
<P ol
B mm

el
oy

9=t ALy,

u)r o
s -

5= A

9|

el

A

20054 124



	표제면
	Abstract (English)
	1. Introduction
	2. Riemannian foliation
	3. The basic Laplacian
	4. Transversal conformal Killing field
	5. Riemannian foliation admitting a transversal conformal Killing field
	References
	Abstract (Korean)
	Acknowledgements (Korean)

