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<Abstract>

Riemannian foliation admitting a transversal

conformal Killing field

In this paper, we study the transversal conformal Killing field on a Rie-

mannian foliation. In particular, we study the foliations on a compact Rie-

mannian manifold with a transversal conformal Killing field. Namely, let

(M, gM ,F) be a compact Riemannian manifold with a transversal Einstein

foliation F and a bundle-like metric gM . If M admits a transversal confor-

mal Killing field which is not Killing, then F is transversally isometric to

the action of a discrete subgroup of O(q) acting on the q-sphere of constant

curvature.



1 Introduction

Let (M, gM) be a compact Riemannian manifold of dimension n ≥ 2 and gM

a Riemannian metric. It is well-known ([10]) that if the scalar curvature r of

M is positive constant, then M admits a conformal transformation, which is not

isometric. Furthermore, if a Riemannian manifold of constant scalar curvature

r admits an infinitesimal conformal transformation X with θ(X)gM = 2φgM ,

where θ(X) the Lie derivative and φ a function, then φ satisfies the equation

∆φ = ncφ, where c = r/n(n − 1). The existence of such a function might give

some informations about the topological structure of the Riemannian manifold.

In fact, the following theorems are well-known in M.Obata([11]).

Theorem 1.1 A compact Einstein manifold of constant scalar curvature r ad-

mits a non-constant function φ such that ∆φ = ncφ if and only if the manifold

is isometric with a sphere Sn(
√
c) with radius 1√

c
in the (n+ 1)-dimensional Eu-

clidean space.

Theorem 1.2 Let M be a compact Einstein manifold of dimension n ≥ 2 with

positive constant scalar curvature r. If M admits a conformal Killing field X

with a non-Killing field, then M is isometric with a sphere Sn.

In this paper, we study the properties of a foliated Riemannian manifold M with

constant transversal scalar curvature σ∇ admitting a transversal conformal Killing

field. Moreover, we prove corresponding theorem to Theorem 1.2 for foliation.

The corresponding theorem to Theorem 1.1 for foliation was given by J. Lee

and K. Richardson([8]). This paper is organized by the following. In Chapter

2, we review the known fact on the foliated Riemannian manifold. In Chapter
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3, we study the basic Laplacian. In Chapter 4, we investigate the properties of

the transversal conformal Killing field. In Chapter 5, we study the Riemannian

foliation admitting a transversal conformal Killing field. In fact, we prove the

corresponding theorem to theorem 1.2 for foliation.
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2 Riemannian foliation

Let M be a smooth manifold of dimension p+ q.

Definition 2.1 A codimension q foliation F on M is given by an open cover

U = (Ui)i∈I and for each i, a diffeomorphism ϕi : Rp+q → Ui such that, on

Ui ∩ Uj 6= ∅, the coordinate change ϕ−1
j ◦ ϕi : ϕ−1

i (Ui ∩ Uj) → ϕ−1
j (Ui ∩ Uj) has

the form

ϕ−1
j ◦ ϕi(x, y) = (ϕij(x, y), γij(y)). (2.1)

From Definition 2.1, the manifold M is decomposed into connected submanifolds

of dimension p. Each of these submanifolds is called a leaf of F . Coordinate

patches (Ui, ϕi) are said to be distinguished for the foliation F . The tangent

bundle L of F is the subbundle of TM , consisting of all vectors tangent to the

leaves of F . The normal bundle Q of F on M is the quotient bundle Q = TM/L.

Equivalently, Q appears in the exact sequence of vector bundles

0 → L→ TM
π→ Q→ 0. (2.2)

If (x1, . . . , xp; y1, . . . , yq) are local coordinates in a distinguished chart U , then

the bundle Q|U is framed by the vector fields π ∂
∂y1
, . . . , π ∂

∂yq
. For a vector field

Y ∈ ΓTM , we denote also Y = πY ∈ ΓQ.

Definition 2.2 A vector field Y on U is projectable, if Y =
∑

i ai
∂

∂xi
+

∑
α bα

∂
∂yα

with ∂bα

∂xi
= 0 for all α = 1, . . . , q and i = 1, . . . , p.

Definition 2.2 means that the functions bα = bα(y) are independent of x. Then

Y =
∑

α bα
∂̄

∂yα
with bα independent of x. This property is preserved under the
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change of distinguished charts. Note that every projectable vector field preserves

the leaves in sense of [Y, Z] ∈ ΓL for any Z ∈ ΓL.

Let V (F) be the space of all projectable vector fields on M , i.e.,

V (F) = {Y ∈ TM |[Y, Z] ∈ ΓL, ∀Z ∈ ΓL}. (2.3)

An element of V (F) is called an infinitesimal automorphism of F . Now we put

V̄ (F) = {Ȳ = π(Y ) ∈ ΓQ|Y ∈ V (F)}. (2.4)

The transversal geometry of a foliation is the geometry infinitesimally modeled

by Q, while the tangential geometry is infinitesimally modeled by L. A key fact

of the transversal geometry is the existence of the Bott connection in Q defined

by
◦
∇Xs = π([X, Ys]), ∀X ∈ ΓL, (2.5)

where Ys ∈ TM is any vector field projecting to s under π : TM → Q. It is a

partial connection along L. The right hand side in (2.5) is independent of the

choice of Ys. Namely, the difference of two such choices is a vector field X ′ ∈ ΓL

and [X,X ′] ∈ ΓL, which implies π([X,X ′]) = 0.

Definition 2.3 A Riemannian metric gQ on the normal bundle Q of a foliation

F is holonomy invariant if

θ(X)gQ = 0, ∀X ∈ ΓL, (2.6)

where θ(X) is the transversal Lie derivative, which is defined by θ(X)s =

π[X, Ys].
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Here θ(X)gQ is defined by

(θ(X)gQ)(s, t) = XgQ(s, t)− gQ(θ(X)s, t)− gQ(s, θ(X)t) ∀s, t ∈ ΓQ.

Definition 2.4 A Riemannian foliation is a foliation F with a holonomy invari-

ant transversal metric gQ. A metric gM is a bundle-like if the induced metric gQ

in Q is holonomy invariant.

The study of a Riemannian foliation was initiated by Reinhart in 1959([14]). A

simple example of a Riemannian foliation is given by a nonsingular Killing vector

field X on (M, gM), because θ(X)gM = 0.

Definition 2.5 An adapted connection in Q is a connection restricting along L

to the partial Bott connection
◦
∇.

To show that such connections exist, consider a Riemannian metric gM on

M . Then TM splits orthogonally as TM = L ⊕ L⊥. This means that there

is a bundle map σ : Q → L⊥ splitting the exact sequence (2.2), i.e., satisfying

π ◦ σ = identity. This metric gM on TM is then a direct sum

gM = gL ⊕ gL⊥ .

With gQ = σ∗gL⊥ , the splitting map σ : (Q, gQ) → (L⊥, gL⊥) is a metric iso-

morphism. Let ∇M be the Levi-Civita connection associated to the Riemannian

metric gM . Then the adapted connection ∇ in Q is given by([5,15])

∇Xs =


◦
∇Xs = π([X, Ys]) ∀X ∈ ΓL,

π(∇M
X Ys) ∀X ∈ ΓL⊥,

(2.7)
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where s ∈ ΓQ and Ys ∈ ΓL⊥ corresponding to s under the canonical isomorphism

Q ∼= L⊥. For any connection ∇ in Q, there is a torsion T∇ defined by

T∇(Y, Z) = ∇Y π(Z)−∇Zπ(Y )− π([Y, Z]) (2.8)

for any Y, Z ∈ ΓTM . Then we have the following proposition ([15]).

Proposition 2.6 For any metric gM on M and the adapted connection ∇ in Q

defined by (2.7) the torsion is free, i.e., T∇ = 0.

Proof. For any vector fields X ∈ ΓL, Y ∈ ΓTM , we have

T∇(X, Y ) = ∇Xπ(Y )− π([X, Y ]) = 0.

For any vector fields Z,Z ′ ∈ ΓL⊥, we have

T∇(Z,Z ′) = π(∇M
Z Z

′)− π(∇M
Z′Z)− π([Z,Z ′]) = π(T∇M (Z,Z ′)) = 0,

where T∇M is the (vanishing) torsion of ∇M . Finally the bilinearity and skew

symmetry of T∇ imply the desired result. 2

The curvature R∇ of ∇ is defined by

R∇(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] ∀X, Y ∈ TM. (2.9)

From the adapted connection ∇ in Q defined by (2.7), its curvature R∇ coincides

with
◦
R for X, Y ∈ ΓL, hence R∇(X, Y ) = 0 for X,Y ∈ ΓL. And we have the

following proposition ([4,5,15]).

Proposition 2.7 Let (M, gM ,F) be a (p+ q)-dimensional Riemannian manifold

with a foliation F of codimension q and bundle-like metric gM with respect to
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F . Let ∇ be the connection defined by (2.7) in Q with curvature R∇. Then for

X ∈ ΓL the following holds:

i(X)R∇ = θ(X)R∇ = 0. (2.10)

By Proposition 2.7, we can define the (transversal) Ricci curvature ρ∇ : ΓQ→ ΓQ

and the (transversal) scalar curvature σ∇ of F by

ρ∇(s) =
∑

a

R∇(s, Ea)Ea, σ∇ =
∑

a

gQ(ρ∇(Ea), Ea), (2.11)

where {Ea}a=1,··· ,q is a local orthonormal basic frame of Q.

Definition 2.8 The foliation F is said to be (transversally) Einsteinian if the

model space N is Einsteinian, that is,

ρ∇ =
1

q
σ∇ · id (2.12)

with constant transversal scalar curvature σ∇.

Definition 2.9 The mean curvature vector κ] of F is defined by

κ] = π
( p∑

i=1

∇M
Ei
Ei

)
, (2.13)

where {Ei} is a local orthonormal basis of L. The foliation F is said to be minimal

if κ] = 0.

For the later use, we recall the divergence theorem on a foliated Riemannian

manifold ([19]).
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Theorem 2.10 Let (M, gM ,F) be a closed, oriented, connected Riemannian man-

ifold with a transversally orientable foliation F and a bundle-like metric gM with

respect to F . Then ∫
M

div∇(X) =

∫
M

gQ(X, κ]) (2.14)

for all X ∈ ΓQ, where div∇(X) denotes the transversal divergence of X with

respect to the connection ∇ defined by (2.7).

Proof. Let {Ei} and {Ea} be orthonormal basis of L and Q, respectively. Then

for any X ∈ ΓQ,

div(X) =
∑

i

gM(∇M
Ei
X,Ei) +

∑
a

gM(∇M
Ea
X,Ea)

=
∑

i

−gM(X, π(∇M
Ei
Ei)) +

∑
a

gM(π(∇M
Ea
X), Ea)

= −gQ(X, κ]) +
∑

a

gQ(∇EaX,Ea)

= −gQ(X, κ]) + div∇(X).

By Green’s Theorem on an ordinary manifold M , we have

0 =

∫
M

div(X) =

∫
M

div∇(X)−
∫

M

gQ(X, κ]). 2

Corollary 2.11 If F is minimal, then we have that for any X ∈ ΓQ,∫
M

div∇(X) = 0. (2.15)
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3 The basic Laplacian

Let (M, gM ,F) be a compact Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM .

Definition 3.1 Let F be an arbitrary foliation on a manifold M . A differential

form ω ∈ Ωr(M) is basic if

i(X)ω = 0, θ(X)ω = 0, ∀X ∈ ΓL. (3.1)

In a distinguished chart (x1, . . . , xp; y1, . . . , yq) of F , a basic 1-form w is expressed

by

ω =
∑

a1<···<ar

ωa1···ardya1 ∧ · · · ∧ dyar ,

where the functions ωa1···ar are independent of x, i.e. ∂
∂xi
ωa1···ar = 0. Let Ωr

B(F)

be the set of all basic r-forms on M . The foliation F is said to be isoparametric

if κ ∈ Ω1
B(F), where κ is a gQ-dual 1-form κ]. Then we have the well-known

theorem([9,15]).

Theorem 3.2 Let F be an isoparametric Riemannian foliation on M . Then the

mean curvature form κ is closed, i.e., dκ = 0.

We now define the star operator ∗̄ : Ωr
B(F) → Ωq−r

B (F) naturally associated

to gQ. The relationships between ∗̄ and ∗ are characterized by

∗̄φ = (−1)p(q−r) ∗ (φ ∧ χF), (3.2)

∗φ = ∗̄φ ∧ χF (3.3)

for φ ∈ Ωr
B(F), where χF is the characteristic form of F and ∗ is the Hodge

star operator([15]). Then the inner product < , >B on Ωr
B(F) is defined by
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< φ, ψ >B= φ∧ ∗̄ψ ∧ χF for any φ, ψ ∈ Ωr
B and the global inner product is given

by

� φ, ψ �B=

∫
M

< φ, ψ >B . (3.4)

With respect to this scalar product, the adjoint δB : Ωr
B(F) → Ωr−1

B (F) of dB is

given by

δBφ = (−1)q(r+1)+1∗̄(dB − κ∧)∗̄φ. (3.5)

Then the basic Laplacian is given by

∆B = dBδB + δBdB. (3.6)

Lemma 3.3 ([1,2]) On the Riemannian foliation F , we have

dBφ =
∑

a

Ea ∧∇Eaφ, δBφ =
∑

a

−i(Ea)∇Eaφ+ i(κ])φ, (3.7)

when {Ea} is a local orthonormal basic frame on Q and {Ea} its gQ-dual 1-form.

Definition 3.4 For any vector field Y ∈ V (F), we define an operator AY : ΓQ→

ΓQ as

AY s = θ(Y )s−∇Y s. (3.8)

Remark. Let Ys ∈ ΓTM with π(Ys) = s. Then it is trivial that

AY s = −∇Ysπ(Y ). (3.9)

So AY depends only on s = π(Y ) and is a linear operator. Moreover, AY extends

in an obvious way to tensors of any type on Q (see [6] for details). Namely, we

can define the following.
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Definition 3.5 For any basic 1-form φ ∈ Ω1
B(F), the operator AY is given by

(AY φ)(X) = −φ(AYX) ∀X ∈ ΓQ. (3.10)

Now, we introduce the operator ∇∗
tr∇tr : Ω∗

B(F) → Ω∗
B(F) as

∇∗
tr∇trφ = −

∑
a

∇2
Ea,Ea

φ+∇κ]φ, (3.11)

where ∇2
X,Y = ∇X∇Y −∇∇M

X Y for any X, Y ∈ TM . Then we have the following.

Proposition 3.6 ([2]) On the Riemannian foliation F on a compact manifold

M , the operator ∇∗
tr∇tr satisfies

� ∇∗
tr∇trφ1, φ2 �B=� ∇φ1,∇φ2 �B (3.12)

for all φ1, φ2 ∈ Ω∗
B(F), where < ∇φ1,∇φ2 >B=

∑
a < ∇Eaφ1,∇Eaφ2 >B.

By the straight calculation, we have the following theorem.

Theorem 3.7 On the Riemannian foliation F , we have

∆Bφ = ∇∗
tr∇trφ+ Aκ]φ+ F (φ) (3.13)

for φ ∈ Ωr
B(F), where F (φ) =

∑
a,bE

a ∧ i(Eb)R
∇(Eb, Ea)φ. In particular, if φ is

a basic 1-form, then F (φ)] = ρ∇(φ]).

Proof. Fix x ∈M and let {Ea} be an orthonormal basis for Q with (∇Ea)x = 0.

Then from (3.7) we have

dBδBφ =
∑
a,b

(Ea ∧∇Ea)(−i(Eb)∇Eb
φ+ i(κ])φ)

= −
∑
a,b

Ea ∧∇Ea{i(Eb)∇Eb
φ}+

∑
a

Ea ∧∇Eai(κ
])φ

= −
∑
a,b

Ea ∧ i(Eb)∇Ea∇Eb
φ+ dBi(κ

])φ
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and

δBdBφ = −
∑
a,b

i(Eb)∇Eb
{Ea ∧∇Eaφ}+ i(κ])dBφ

= −
∑
a,b

(i(Eb)E
a)∇Eb

∇Eaφ+ i(κ])dBφ

+
∑
a,b

Ea ∧ i(Eb)∇Eb
∇Eaφ

= −
∑

a

∇Ea∇Eaφ+
∑
a,b

Ea ∧ i(Eb)∇Eb
∇Eaφ+ i(κ])dBφ.

Summing up the above two equations, we have

∆Bφ = dBδBφ+ δBdBφ

= dBi(κ
])φ+ i(κ])dBφ−

∑
a

∇Ea∇Eaφ

+
∑
a,b

Ea ∧ i(Eb)R
∇(Eb, Ea)φ

= θ(κ])φ−
∑

a

∇Ea∇Eaφ+
∑
a,b

Ea ∧ i(Eb)R
∇(Eb, Ea)φ

= −
∑

a

∇Ea∇Eaφ+ F (φ) + Aκ]φ+∇κ]φ

= −
∑

a

∇2
Ea,Ea

φ+∇κ]φ+ F (φ) + Aκ]φ

= ∇∗
tr∇trφ+ F (φ) + Aκ]φ.

The proof is completed. On the other hand, let φ be a basic 1-form and φ] its

gQ-dual vector field. Then

gQ(F (φ), Ec) =
∑
a,b

gQ(Ea ∧ i(Eb)R
∇(Eb, Ea)φ,E

c)

=
∑

b

i(Eb)R
∇(Eb, Ec)φ =

∑
b

gQ(R∇(Eb, Ec)φ
], Eb)

=
∑

b

gQ(R∇(φ], Eb)Eb, Ec) = gQ(ρ∇(φ]), Ec).
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This yields that for any basic 1-form φ, F (φ)] = ρ∇(φ]). 2

From (3.10) and Theorem 3.7, we have the following corollary.

Corollary 3.8 On the Riemannian foliation, we have that for any X ∈ ΓQ

∆BX = ∇∗
tr∇trX + ρ∇(X)− At

κ]X. (3.14)

Lemma 3.9 Let F be a Riemannian foliation. For any vector fields Y, Z ∈ V (F)

and s ∈ ΓQ, we have

(θ(Y )∇)(Z, s) = R∇(Y, Z)s− (∇ZAY )s, (3.15)

where (θ(Y )∇)(Z, s) = θ(Y )∇Zs−∇θ(Y )Zs−∇Zθ(Y )s and

(∇ZAY )s = −∇Z∇Ysπ(Y ) +∇∇Zsπ(Y ).

Proof. By a direct calculation, we have that for any Y, Z ∈ V (F)

(θ(Y )∇)(Z, s)− [∇Y ,∇Z ]s = (θ(Y )−∇Y )∇Zs−∇Z(θ(Y )−∇Y )s−∇[Y,Z]s. 2
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4 Transversal conformal Killing field

Let F be a Riemannian foliation. For any vector field Y ∈ V (F) and X,X ′ ∈

ΓQ, we have

(θ(Y )gQ)(X,X ′) = gQ(∇X Ȳ , X
′) + gQ(X,∇X′Ȳ ). (4.1)

Definition 4.1 If a vector field Y ∈ V (F) satisfies θ(Y )gQ = 0, then Ȳ is called

a transversal Killing field of F .

Definition 4.2 If a vector field Y ∈ V (F) satisfies θ(Y )gQ = 2fgQ, where f is a

basic function on M , then Ȳ is called a transversal conformal Killing field of F .

Note that if Y is a transversal conformal Killing field of F , i.e., θ(Y )gQ = 2fgQ,

then

f =
1

q
div∇(Ȳ ) = −1

q
δT Ȳ , where δTφ = −

∑
a

i(Ea)∇Eaφ. (4.2)

Lemma 4.3 Let (M, gM ,F) be a Riemannian manifold with a foliation F of

codimension q and a bundle-like metric gM . If Ȳ ∈ V̄ (F) is the transversal

conformal Killing field, i.e., θ(Y )gQ = 2fgQ, then we have

gQ((θ(Y )∇)(Ea, Eb), Ec) = δc
bfa + δc

afb − δb
afc, (4.3)

(θ(Y )R∇)(Ea, Eb)Ec = (∇aθ(Y )∇)(Eb, Ec)− (∇bθ(Y )∇)(Ea, Ec), (4.4)

gQ((θ(Y )R∇)(Ea, Eb)Ec, Ed) = δd
b∇afc − δc

b∇afd − δd
a∇bfc + δc

a∇bfd, (4.5)

(θ(Y )Ric∇)(Ea, Eb) = −(q − 2)∇afb + δb
a(∆Bf − κ](f)), (4.6)

where ∇a = ∇Ea , Ric
∇(Ea, Eb) = gQ(ρ∇(Ea), Eb) and fa = ∇af .

14



Proof. Fix x ∈M . Let {Ea} be a local orthonormal basic frame of Q such that

(∇Ea)(x) = 0. From (4.1), we have

∇Ea(θ(Y )gQ)(Eb, Ec) = gQ(∇Ea∇Eb
Ȳ , Ec) + gQ(∇Ea∇EcȲ , Eb). (4.7)

Now we prove the equation (4.3). From (4.7) and the 1-st Bianchi identity, we

have

∇a(θ(Y )gQ)(Eb, Ec) +∇b(θ(Y )gQ)(Ea, Ec)−∇c(θ(Y )gQ)(Ea, Eb)

=gQ(R∇(Ea, Ec)Ȳ , Eb) + gQ(R∇(Eb, Ec)Ȳ , Ea) + gQ(R∇(Ea, Eb)Ȳ , Ec)

+ 2gQ(∇b∇aȲ , Ec)

=2{gQ(R∇(Ȳ , Ea)Eb, Ec) + gQ(∇a∇bȲ , Ec)}.

On the other hand, a direct calculation with (3.9) gives

gQ((∇aAY )Eb, Ec) =gQ(∇aAYEb, Ec)− gQ(AY (∇aEb), Ec)

=− gQ(∇a∇bȲ , Ec).

From the above two equations and (3.15), we have

1

2
{∇a(θ(Y )gQ)(Eb, Ec) +∇b(θ(Y )gQ)(Ea, Ec)−∇c(θ(Y )gQ)(Ea, Eb)} (4.8)

=gQ((θ(Y )∇)(Ea, Eb), Ec).

Since Ȳ is a transversal conformal Killing field, i.e., θ(Y )gQ = 2fgQ, we have

∇a{(θ(Y )gQ)(Eb, Ec)} = 2faδ
c
b . From (4.8), (4.3) is proved.
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From (4.3), we have

(∇aθ(Y )∇)(Eb, Ec)− (∇bθ(Y )∇)(Ea, Ec)

=∇a(θ(Y )∇)(Eb, Ec)− (θ(Y )∇)(∇aEb, Ec)− (θ(Y )∇)(Eb,∇aEc)

−∇b(θ(Y )∇)(Ea, Ec) + (θ(Y )∇)(∇bEa, Ec) + (θ(Y )∇)(Ea,∇bEc)

=(−∇a∇θ(Y )Eb
Ec +∇θ(Y )Eb

∇aEc +∇[Ea,θ(Y )Eb]Ec)

+ (−∇θ(Y )Ea∇bEc +∇b∇θ(Y )EaEc +∇[θ(Y )Ea,Eb]Ec)

+ (−∇a∇bθ(Y )Ec +∇b∇aθ(Y )Ec +∇∇aEb
θ(Y )Ec −∇∇bEaθ(Y )Ec)

+ (θ(Y )(∇a∇bEc)− θ(Y )(∇b∇aEc)− θ(Y )(∇∇aEb
Ec) + θ(Y )(∇∇bEaEc))

=−R∇(Ea, θ(Y )Eb)Ec −R∇(θ(Y )Ea, Eb)Ec −R∇(Ea, Eb)θ(Y )Ec

+ θ(Y )R∇(Ea, Eb)Ec

=(θ(Y )R∇)(Ea, Eb)Ec,

which proves (4.4). The equation (4.5) is trivial from (4.3) and (4.4). Now we

prove the equation (4.6). Since

θ(Y )gQ(R∇(Ec, Ea)Eb, Ec) = ∇Y gQ(R∇(Ec, Ea)Eb, Ec)

and

gQ(∇R∇(Ec,Ea)Eb
Ȳ , Ec) =gQ(∇dȲ , Ec)gQ(R∇(Ec, Ea)Eb, Ed)

=gQ(R∇(∇dȲ , Ea)Eb, Ed)

=− gQ(R∇(θ(Y )Ed, Ea)Eb, Ed),

The proof is completed from (4.5). 2

From equation (4.6), we have the following lemma.
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Lemma 4.4 Under the same assumption as in Lemma 4.3, if Ȳ ∈ V̄ (F) is the

transversal conformal Killing field, i.e., θ(Y )gQ = 2fgQ, then

θ(Y )σ∇ = 2(q − 1)(∆Bf − κ](f))− 2fσ∇. (4.9)

Proof. Equation (4.6) implies that

θ(Y )σ∇ =
∑

a

θ(Y )Ric∇(Ea, Ea)

=
∑

a

(θ(Y )Ric∇)(Ea, Ea) + 2
∑

a

Ric∇(θ(Y )Ea, Ea)

=2(q − 1)(∆Bf − κ](f)) + 2
∑

a

Ric∇(θ(Y )Ea, Ea).

On the other hand, we have

2fσ∇ =2f
∑

a

gQRic
∇(Ea, Ea) =

∑
a

(θ(Y )gQ)(ρ∇(Ea), Ea)

=
∑

a

gQ(∇ρ∇(Ea)Ȳ , Ea) + gQ(∇EaȲ , ρ
∇(Ea)).

Since gQ(∇ρ∇(Ea)Ȳ , Ea) = gQ(ρ∇(Ea), Ec)gQ(∇cȲ , Ea) = gQ(∇EcȲ , ρ
∇(Ec)).

(4.9) is proved. 2

Now we define the tensors G∇ and Z∇ respectively by

G∇(X) = ρ∇(X)− σ∇

q
X, (4.10)

Z∇(X, Y )Z = R∇(X, Y )Z − σ∇

q(q − 1)
(gQ(Y, Z)X − gQ(X,Z)Y ) (4.11)

for any fields X, Y, Z ∈ ΓQ. We can easily verify the following lemma.

Lemma 4.5 Under the same assumption as in Lemma 4.3, the following hold.

TrG∇ = 0,
∑

a

Z∇(X,Ea)Ea = G∇(X) ∀X ∈ ΓQ, (4.12)

|G∇|2 = |ρ∇|2 − σ∇

q
, |Z∇|2 = |R∇|2 − 2(σ∇)2

q(q − 1)
. (4.13)
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Proof. From (4.10) and (4.11), (4.12) is trivial. From (4.11), we have

|G∇|2 =
∑

a

gQ(G∇(Ea), G
∇(Ea))

=
∑

a

gQ(ρ∇(Ea)−
σ∇

q
Ea, ρ

∇(Ea)−
σ∇

q
Ea)

=|ρ∇|2 − (σ∇)2

q
.

and from (4.12), we get

|Z∇|2 =
∑
a,b,c

gQ(Z∇(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

=|R∇|2 − 2σ∇

q(q − 1)

∑
a,b,c

{gQ(R∇(Ea, Ec)Ec, Ea)− gQ(R∇(Ec, Eb)Ec, Eb)}

+
2σ∇

q2(q − 1)2

∑
a,b

(δa
aδ

b
b − δb

aδ
b
a)

=|R∇|2 − 2(σ∇)2

q(q − 1)
. 2

Lemma 4.6 On the Riemannian foliation F , we have

δTG
∇ = −q − 2

2q
dBσ

∇. (4.14)

If σ∇ is a constant scalar curvature, then δTG
∇ = 0.

Proof. Since Y (σ∇) = 2
∑

a gQ((∇Eaρ
∇)(Y ), Ea) for any Y ∈ ΓQ, we have

δTG
∇ =−

∑
a

(∇EaG
∇)(Ea) = −

∑
a

∇EaG
∇(Ea)

=−
∑

a

∇Eaρ
∇(Ea) +

1

q

∑
a

(∇Eaσ
∇)Ea

=− 1

2
dBσ

∇ +
1

q
dBσ

∇ = −q − 2

2q
dBσ

∇. 2
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Lemma 4.7 Under the same assumption as in Lemma 4.3, if Ȳ ∈ V̄ (F) is the

transversal conformal Killing field, i.e., θ(Y )gQ = 2fgQ, then

(θ(Y )G∇)(Ea, Eb) = −(q − 2){∇afb +
1

q
(∆Bf − κ](f))δb

a}, (4.15)

gQ((θ(Y )Z∇)(Ea, Eb)Ec, Ed) =δd
b∇afc − δc

b∇afd − δd
a∇bfc + δc

a∇bfd (4.16)

− 2

q
(∆Bf − κ](f))(δd

aδ
c
b − δd

b δ
c
a).

Proof. First, (4.15) is trivial from (4.6) and (4.9). On the other hand, since

(θ(Y )Z∇)(Ea, Eb)Ec

=θ(Y )Z∇(Ea, Eb)Ec − Z∇(θ(Y )Ea, Eb)Ec − Z∇(Ea, θ(Y )Eb)Ec

− Z∇(Ea, Eb)θ(Y )Ec

=(θ(Y )R∇)(Ea, Eb)Ec −
1

q(q − 1)
(θ(Y )σ∇)(δc

bEa − δc
aEb)

− 2fσ∇

q(q − 1)
(δc

bEa − δc
aEb),

(4.16) is proved from (4.5) and (4.9).

19



5 Riemannian foliation admitting a transversal

conformal Killing field

Let (M, gM ,F) be a closed, connected Riemannian manifold with a foliation

F of codimension q and a bundle-like metric gM .

Lemma 5.1 ([7]) For any basic function f on M , it holds that∫
M

∆Bf = 0. (5.1)

Proposition 5.2 If f is a basic function on M such that ∆Bf = λf , then

∆BdBf = λdBf. (5.2)

Proof. ∆BdBf = dB∆Bf = dBλf = λdBf . 2

Proposition 5.3 If M has a constant transversal scalar curvature σ∇(6= 0) and

admits a transversal conformal Killing field Ȳ with θ(Y )gQ = 2fgQ, f 6= 0, then

∆Bf =
σ∇

q − 1
f + κ](f) (5.3)

and consequently ∫
M

f = −q − 1

σ∇

∫
M

κ](f). (5.4)

Proof. Since σ∇ is a constant, Lemma 4.4 implies that

2(q − 1)(∆Bf − κ](f))− 2fσ∇ = 0,

which proves (5.3). On the other hand, (5.4) is followed from

0 =

∫
M

∆Bf =
σ∇

q − 1

∫
M

f +

∫
M

κ](f). 2
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Proposition 5.4 Under the same assumption as in proposition 5.3, the following

holds. ∫
M

|∇f |2 =
σ∇

q − 1

∫
M

f 2 +
1

2

∫
M

κ](f)f. (5.5)

Proof. By a direct calculation, we have

1

2
∆Bf

2 = (∆Bf)f − |∇f |2 =
σ∇

q − 1
f 2 + κ](f)f − |∇f |2.

By Lemma 5.1, we have

0 =

∫
M

1

2
∆Bf

2 =
σ∇

q − 1

∫
M

f 2 +

∫
M

κ](f)f −
∫

M

|∇f |2. 2

Theorem 5.5 ([7]) On the Riemannian foliation F on M , we have∫
M

{gQ(∆BX,X)− 2gQ(ρ∇(X), X)− 1

2
|θ(X)gQ +

2

q
(δTX)|2 +

q − 2

q
(δTX)2

+ gQ(Aκ]X,X)− div∇(AXX)− div∇(div∇(X)X)} = 0 (5.6)

for X ∈ ΓQ.

Lemma 5.6 On the Riemannian foliation F on M , if X ∈ V̄ (F) satisfies

gQ(X, κ]) = 0, then ∫
M

{gQ(Aκ]X,X) + div∇(AXX)} = 0. (5.7)

Proof. The divergence theorem with (3.9) implies∫
M

gQ(Aκ]X,X) +

∫
M

div∇(AXX)

=

∫
M

gQ(Aκ]X,X) +

∫
M

gQ(AXX, κ
])

=−
∫

M

gQ(∇Xκ
], X)−

∫
M

gQ(∇XX, κ
])

=−
∫

M

XgQ(X, κ]) = 0. 2
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Corollary 5.7 On the Riemannian foliation F on M , if X ∈ V̄ (F) satisfies

gQ(X, κ]) = 0, then∫
M

{gQ(∆BX,X)− 2Ric∇(X,X)+
q − 2

q
gQ(dBδTX,X) (5.8)

+2gQ(Aκ]X,X)− 1

2
|θ(X)gQ +

2

q
(δTX)|2} = 0.

In particular, if X = dBf for some basic function f with κ](f) = 0, then∫
M

{gQ(∆BdBf, dBf)− 2Ric∇(dBf, dBf)+
q − 2

q
gQ(dB∆Bf, dBf) (5.9)

+2gQ(Aκ]dBf, dBf)− 2|∇∇f +
1

q
(∆Bf)|2} = 0.

Proof. For the proof of (5.9), it is sufficient to prove that θ(dBf)gQ = 2∇∇f .

From (4.1)

(θ(dBf)gQ)(Ea, Eb) = gQ(∇adBf, Eb) + gQ(∇bdBf, Ea). (5.10)

Since

gQ(∇adBf, Eb) =
∑

c

gQ(∇a(∇cf)Ec, Eb)

=
∑

c

(∇a∇cf)gQ(Ec, Eb) = ∇a∇bf,

from (5.10), we have θ(dBf)gQ = 2∇∇f . 2

Corollary 5.8 On the Riemannian foliation F on M , if a basic function f sat-

isfies ∆Bf = λf(λ = constant) with κ](f) = 0, then∫
M

{q − 1

q
λ|dBf |2 −Ric∇(dBf, dBf) + gQ(Aκ]dBf, dBf)− |∇∇f +

λ

q
fgQ|2} = 0.

Proof. Let X = dBf . From (5.2) and (5.9), it is trivial. 2
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Corollary 5.9 For any transversal conformal Killing field Ȳ such that θ(Y )gQ =

2fgQ with κ](f) = 0, we have∫
M

{Ric∇(dBf, dBf)−1

q
σ∇|dBf |2−gQ(Aκ]dBf, dBf)+|∇∇f+

σ∇

q(q − 1)
fgQ|2} = 0.

Proof. From (5.3) and corollary 5.8, it is trivial. 2

Proposition 5.10 Let (M, gM ,F) be a closed Riemannian manifold with a fo-

liation F of codimension q ≥ 3 and a bundle-like metric gM . Assume that M

has constant transversal scalar curvature σ∇ and admits a transversal conformal

Killing field Ȳ such that θ(Y )g = 2fg(f 6= 0). Then we have∫
M

G∇(dBf, dBf) =

∫
M

[
1

q − 2
(2f 2|G∇|2 +

1

2
fθ(Y )|G∇|2) + gQ(G∇(fdBf), κ])]

(5.11)

Proof. To prove this integral formula, we first compute θ(Y )|G∇|2. Since

gQ(G∇(θ(Y )Ea, Eb), G
∇(Ea, Eb))

=gQ(θ(Y )Ea, Ec)gQ(G∇(Ec, Eb), G
∇(Ea, Eb))

=(−2fgQ(Ea, Ec)− gQ(Ea, θ(Y )Ec))gQ(G∇(Ec, Eb), G
∇(Ea, Eb))

=− 2fgQ(G∇(Ea, Eb), G
∇(Ea, Eb))− gQ(G∇(Ec, Ea), G

∇(θ(Y )Ec, Eb)),

we have
∑

a,b gQ(G∇(θ(Y )Ea, Eb), G
∇(Ea, Eb)) = −f |G∇|2.

Similarly
∑

a,b gQ(G∇(Ea, θ(Y )Eb), G
∇(Ea, Eb)) = −f |G∇|2.

Then we have

θ(Y )|G∇|2 =
∑
a,b

θ(Y )gQ(G∇(Ea, Eb), G
∇(Ea, Eb))

=
∑
a,b

∇Y gQ(G∇(Ea, Eb), G
∇(Ea, Eb))
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=2
∑
a,b

gQ(∇YG
∇(Ea, Eb), G

∇(Ea, Eb))

=2
∑
a,b

gQ(θ(Y )G∇(Ea, Eb), G
∇(Ea, Eb))

=2
∑
a,b

gQ((θ(Y )G∇)(Ea, Eb), G
∇(Ea, Eb))

+ 2
∑
a,b

gQ(G∇(θ(Y )Ea, Eb), G
∇(Ea, Eb))

+ 2
∑
a,b

gQ(G∇(Ea, θ(Y )Eb), G
∇(Ea, Eb))

=− 2(q − 2)gQ(∇∇f,G∇)− 4f |G∇|2,

which implies

gQ(G∇,∇∇f) = − 2

q − 2
f |G∇|2 − 1

2(q − 2)
θ(Y )|G∇|2. (5.12)

On the other hand,

−δT{G∇(fdBf)} =
∑

a

gQ(∇a(G
∇(fdBf)), Ea)

=
∑
a,b

gQ(∇a(fEb(f)G∇(Eb)), Ea)

=
∑
a,b

gQ(G∇(∇afEa), Eb(f)Eb)

+ f
∑
a,b

gQ(∇a∇bf,G
∇(Eb)Ea)

=G∇(dBf, dBf) + fgQ(∇∇f,G∇). (5.13)

Thus, from (5.12) and (5.13),

−δT{G∇(fdBf)} = G∇(dBf, dBf)− 1

q − 2
(2f 2|G∇|2 +

1

2
fθ(Y )|G∇|2).

Since −
∫

M
δT{G∇(fdBf)} =

∫
M
gQ(G∇(fdBf), κ]), we have (5.11). 2
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Proposition 5.11 Under the same assumptions as in Proposition 5.10, we have∫
M

G∇(dBf, dBf) =

∫
M

[
1

2
f 2|Z∇|2 +

1

8
fθ(Y )|Z∇|2 + gQ(G∇(fdBf), κ])]. (5.14)

Proof. To prove this integral formula, we first compute θ(Y )|Z∇|2. From defini-

tion and 2-nd equation of (4.12), we have∑
a,b,c

gQ((θ(Y )Z∇)(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

=
∑

a,b,c,d

gQ((θ(Y )Z∇)(Ea, Eb)Ec, Ed)gQ(Z∇(Ea, Eb)Ec, Ed)

=− 4
∑
a,b,c

∇afcgQ(Z∇(Ea, Eb)Eb, Ec)

=− 4
∑
a,c

∇afcgQ(G∇(Ea), Ec) = −4gQ(∇∇f,G∇)

and

gQ(Z∇(θ(Y )Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

=gQ(Z∇(Ed, Eb)Ec, Z
∇(Ea, Eb)Ec)gQ(θ(Y )Ea, Ed)

={−2fgQ(Ea, Ed)− gQ(Ea, θ(Y )Ed)}gQ(Z∇(Ed, Eb)Ec, Z
∇(Ea, Eb)Ec)

=− 2fgQ(Z∇(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)− gQ(Z∇(θ(Y )Ed, Eb)Ec, Z

∇(Ea, Eb)Ec).

Therefore
∑

a,b,c gQ(Z∇(θ(Y )Ea, Eb)Ec, Z
∇(Ea, Eb)Ec) = −f |Z∇|2. Then we have

θ(Y )|Z∇|2 =
∑
a,b,c

θ(Y )gQ(Z∇(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

=
∑
a,b,c

(θ(Y )gQ)(Z∇(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

+ 2
∑
a,b,c

gQ(θ(Y )Z∇(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)
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=2
∑
a,b,c

fgQ(Z∇(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

+ 2
∑
a,b,c

gQ((θ(Y )Z∇)(Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

+ 2
∑
a,b,c

gQ(Z∇(θ(Y )Ea, Eb)Ec, Z
∇(Ea, Eb)Ec)

+ 2
∑
a,b,c

gQ(Z∇(Ea, θ(Y )Eb)Ec, Z
∇(Ea, Eb)Ec)

+ 2
∑
a,b,c

gQ(Z∇(Ea, Eb)θ(Y )Ec, Z
∇(Ea, Eb)Ec)

=− 8gQ(∇∇f,G∇)− 4f |Z∇|2,

which implies

gQ(G∇,∇∇f) = −1

2
f |Z∇|2 − 1

8
θ(Y )|Z∇|2. (5.15)

Thus, from (5.13),

−δT{G∇(fdBf)} = G∇(dBf, dBf)− 1

2
f 2|Z∇|2 − 1

8
fθ(Y )|Z∇|2.

Hence we have (5.14). 2

Theorem 5.12 ([8]) (Generalized Lichnerowicz-Obata theorem). Let (M,F) be

a codimension-q Riemannian foliation on a closed, connected Riemannian mani-

fold. Suppose that there exists a positive constant a such that the transversal Ricci

curvature satisfies ρ∇(X) ≥ a(q − 1)X for every X ∈ NF . Then the smallest

nonzero eigenvalue λB of the basic Laplacian satisfies

λB ≥ aq.

The equality holds if and only if:

(1) (M,F) is transversally isometric to the action of a discrete subgroup of
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O(q) acting on the q-sphere of constant curvature a. Thus, there are at least two

closed leaves (the poles).

(2) If we choose the metric on M so that the mean curvature form is basic,

then the mean curvature of the foliation is zero (the foliation is minimal).

Theorem 5.13 Let (M, gM ,F) be a closed Riemannian manifold with a folia-

tion F and a bundle-like metric gM . If F is transversally Einsteinian, then the

followings are equivalent:

(1) F is transversally isometric to the action of a discrete subgroup of O(q)

acting on the q-sphere of constant curvature c.

(2) F admits a non-constant basic function f with κ](f) = 0 such that

∆Bf = cfq.

Proof. It is trivial from the generalized Obata theorem. 2

Theorem 5.14 Under the same assumption as theorem 5.13, if M admits a

transversal conformal Killing field Ȳ ∈ ΓQ such that θ(Y )gQ = 2fgQ(f 6= 0) with

κ](f) = 0, then F is transversally isometric to the action of a discrete subgroup

of O(q) acting on the q-sphere of constant curvature c.

Proof. Let Ȳ be a transversal conformal Killing field such that θ(Y )gQ = 2fgQ.

From (5.3), we have

∆Bf =
σ∇

(q − 1)
f.

If we put c = σ∇

q(q−1)
, then this equation satisfies theorem 5.13 (2). The proof is

completed. 2
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<국문 초록>

횡단적 공형 Killing장을 갖는 엽층적 리만다양체

  본 논문에서는 엽층적 리만다양체상에서의 횡단적 공형 Killing장

에 대해 다루었다. 특히, 횡단적 공형 Killing장을 갖는 컴팩트 리만

다양체상에서 엽층구조들을 다루었다. 즉, 횡단적 Einstein 엽층구조 

ℱ와 bundle-like 거리함수 gM을 갖는 컴팩트 리만다양체 

(M,gM,ℱ)가 횡단적 Killing장이 아닌, 횡단적 공형 Killing장을 가

질 때 엽층 ℱ는 횡단적으로 q차원의 구와 동형이 된다.
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