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<Abstract>

Rank-sum preservers of Boolean matrices

In this thesis, we construct the sets of Boolean matrix pairs. These sets are naturally
occurred at the extreme cases for the Boolean rank inequalities relative to the sum of
Boolean matrices. These sets were constructed with the Boolean matrix pairs which are
related with the ranks of the sums and difference of two Boolean matrices or compared
between their Boolean ranks and their real ranks.

That is, we construct the following 6 sets ;
S1(B) = {(X,Y) € Miu(B)? | rp(X +Y) = rp(X) + rp(Y)};

8:(B) ={(X,Y) € Mpmu(B)? [ rp(X +Y) =1};

S3(B) = {(X,Y) € Mumn(B)* | r5(X +Y) =rp(X)};
Su(B) = {(X,Y) € Mpuun(B)? | rp(X +Y) = rp(X) —rp(Y)|};
S5(B) = {(X,Y) € Mun(B)” | ra(X +Y) = |p(X) — p(Y)I};
Se(B) = {(X,Y) € Muu(B)? | rp(X +Y) = p(X) + p(Y)};

For these 6 sets, we consider the linear operators that preserve them. We char-
acterize those linear operators as T(X) = PXQ or T(X) = PX'Q with appropriate
invertible Boolean matrices P and ). We also obtain the equivalent conditions for

these linear operators and prove their equivalence.



1 Introduction

A semiring S consists of a set S and two binary operations, addition and multipli-

cation, such that:

e S is an s monoid under addition (identity denoted by 0);

e S is a semigroup under multiplication (identity, if any, denoted by 1);

multiplication is distributive over addition on both sides;

e s0=0s=0forall s S.

A semiring is called antinegative if the zero element is the only element with an
additive inverse. For example, the set of nonnegative integers is an antinegative semiring

with usual addition and multiplication.

Definition 1.1. A semiring S is called Boolean if S is equivalent to a set of subsets of a
given set N, the sum of two subsets is their union, and the product is their intersection.

The zero element is the empty set and the identity element is the whole set V.

It is straightforward to see that a Boolean semiring is commutative and antinegative.
If B consists of only the empty subset and N then it is called a binary Boolean algebra

(or {0, 1}-semiring) and is denoted by B.

A semiring S is called chain if the set S is totally ordered under set inclusion with
universal lower and upper bounds and the operations are defined by a + b = max{a, b}

and a - b = min{a, b}.



It is straightforward to see that any chain semiring S is a Boolean semiring on the
set of appropriate subsets of S. Consider the set NV of all elements in S, and choose all

those subsets that consist of all elements strictly lower than a given element.

Let M, ,(B) denote the set of m x n matrices with entries from the binary Boolean
algebra B. Matrix theory over semirings is an object of intensive study during the last
decades, see for example [5, 6] and references therein. In particular, many authors
have investigated various rank functions for matrices over Boolean algebra and their
properties, see [1, 9, 10, 13]. Among the rank functions that have the most interesting
applications is the well-known notion of the factor rank.

Let M., ,(B) be the set of m x n Boolean matrices. Throughout we assume that
m < n. The matrix I, is the n x n identity matrix, J,, , is the m x n matrix of all
ones, Oy, 5, is the m X n zero matrix. We omit the subscripts when the order is obvious
from the context and we write I, J, and O, respectively. The matrix E; ;, called a cell,
denotes the matrix with exactly 1, that being a 1 in the (7, j) entry. Let R; denote the

matrix whose it®

row is all ones and is zero elsewhere, and C; denote the matrix whose
7% column is all ones and is zero elsewhere. We let |A| denote the number of nonzero

entries in the matrix A.

Definition 1.2. The matrix A € M,, »(B) is said to be of Boolean rank k (rg(A) = k)
if there exist matrices B € M, 1(B) and C € My, ,,(B) such that A = BC and k is the
smallest positive integer such that such a factorization exists. By definition the only

matrix with Boolean rank equal to 0 is the zero matrix, O.

If B is considered as a subsemiring of a real field R then there is a real rank function

p(A) for any Boolean matrix A € M, ,(B).



Example 1.3. Let

1 0 0 1
1 1 0 0
A= S M474(B).
01 10
0011

Then rp(A) = 4 from Example 2.3.1 [4]. But p(A) = 3.

The example 1.3 shows that the Boolean rank and real rank of A are not equal.
However, the inequality rg(A) > p(A) always holds.

The behavior of the function p with respect to matrix multiplication and addition
is given by the following inequalities:

The rank-sum inequalities:

| p(A) — p(B) |< p(A + B) < p(A) + p(B);

Sylvester’s laws:

p(A) + p(B) —n < p(AB) < min{p(A), p(B)}

and the Frobenius inequality:

p(AB) + p(BC) < p(ABC) + p(B),

where A, B, C' are real matrices (see [7]).
Arithmetic properties of Boolean rank is restricted by the following list of inequal-

ities established from [3] because Boolean algebra is antinegative semiring .

1. rg(A+ B) < rp(A) +rp(B);



2. rg(AB) < min{rg(A),rg(B)}.

TB(A) if B=0O

3.1B(A+B) >4 rp(B) if A=0 ;

1 if A#Oand B£O0

0 if re(A)+re(B)<n
4. rg(AB) >

1 if rp(A)+rp(B)>n

If B is considered as a subsemiring of R, the positive real numbers, we have:

5. (A + B) = [p(A) — p(B)];

0 if p(A)+p(B) <n,
6. rg(AB) > :
p(A) +p(B) —n if p(A)+p(B)>n

7. p(AB) + p(BC) < rp(ABC) + rp(B).

As was proved in [3] the inequalities 1 ~ 7 are sharp and the best possible.

The natural question is to characterize the equality cases in the above inequalities.
Even over fields this is an open problem, see [2] for more details. The structure of matrix
varieties which arise as extremal cases in these inequalities is far from being understood
over fields, as well as over Boolean algebra. A usual way to generate elements of such
a variety is to find a tuple of matrices which belongs to it and to act on this tuple by
various linear operators that preserve this variety. The linear operators that preserve
cases of equalities in various matrix inequalities over fields were obtained in [7, 8].
For the details on linear operators preserving matrix invariants one can see [12] and
references therein. The aim of the present thesis is to characterize linear operators that

preserve the sets of matrix pairs which satisfies the Boolean rank equalities. Among



those sets, we consider the sums of two Boolean matrices and their Boolean ranks.
These rank equalities come from the extreme cases of the inequalities of Boolean ranks.
In section 2, we present the concrete sets of matrix pairs which come from the the
extreme cases of the inequalities of Boolean ranks.

In section 3 to 8, we characterize the linear operators that preserve the sets of matrix

pairs which come from the the extreme cases of the inequalities of Boolean ranks.



2 Preliminaries

Let B be the binary Boolean algebra. Consider following notation in order to denote

sets of Boolean matrices that arise as extremal cases in the inequalities listed above:
S1(B) = {(X,Y) € Mimn(B)? | rp(X +Y) = rp(X) +r5(Y)};

$:(B) = {(X,Y) € Muu(B)? [ rp(X +Y) =1};

S3(B) = {(X,Y) € Muu(B)? | r5(X +Y) = rp(X)};
Su(B) = {(X,Y) € Myuu(B)? | rp(X +Y) = [rp(X) —rp(Y)|};
S5(B) = {(X,Y) € Mun(B)® | ra(X +Y) = p(X) — p(Y)|};
S6(B) = {(X,Y) € Mumn(B)? | ra(X +Y) = p(X) + p(Y)};

Definition 2.1. We say an operator, T', preserves a set P if X € P implies that
T(X) € P, or, if P is a set of ordered pairs [triples], that (X,Y) € P [(X,Y, Z)] € P]

implies (T(X),T(Y)) € P [(T(X),T(Y),T(Z)) € P].

Definition 2.2. An operator T' strongly preserves the set P if X € P if and only if
T(X) € P, or, if P is a set of ordered pairs [triples|, that (X,Y) € P [(X,Y,Z) € P] if

and only if (T(X),T(Y)) € P [(T(X),T(Y),T(Z)) € P].

Definition 2.3. An operator T : My, ,(B) — My, »(B) is called a (P, Q)-operator if
there exist permutation matrices P and @ of appropriate orders such that T'(X) =
PXQ for all X € My, (B), or, if m =n, T(X) = PX'Q for all X € M,,, ,(B), where

X! denotes the transpose of X.

Definition 2.4. A mapping 7' : M, ,(B) — My, ,(B) is called a Boolean linear

operator if T(Omn) = Omp and T(X +Y) =T(X)+T(Y) for all X,Y € M, »(B).



Definition 2.5. A matrix A € M, ,(B) is called monomial if it has exactly one

nonzero element in each row and column.
Definition 2.6. A line of a matrix A is a row or a column of the matrix A.

Definition 2.7. We say that the matrix A dominates the matrix B if b; ; # 0 implies

that a; ; # 0, and we write A > B or B < A.

Definition 2.8. If A and B are Boolean matrices and A > B we let A\B denote the

matrix C' where
@ BAROE =1
CZ»] b
1 ifb;; =0
Definition 2.9. The matrix X oY denotes the Hadamard or Schur product, i.e., the

(i,7) entry of X oY is z; jy; ;.

Lemma 2.10. Let A = (a;;) € My, n(B) where m,n > 2. Let (I,k) be any fized
pair of integers such that 2 < k < n, 2 <[ < m. Assume that Boolean rank of each
I x k-submatriz of A is 1. Then the Boolean rank of each (I+1) X k-submatriz (if any)

is 1 and the Boolean rank of each | x (k + 1)-submatriz (if any) is 1.

Proof. Let us consider any [ x (k + 1)-submatrix of the matrix A. Applying a permu-
tation of rows and columns, if necessary, it is possible to assume that this submatrix
has the form A’ = (a;;), where 1 <i <[, 1 < j < k+ 1. Let us denote A; = (a;;),
where 1 <i<1,1<j <k, Ay = (a;;), where 1 <1i <[, 2<j<k+1. By conditions,
there are four vectors s = (s1,...,5) € B, t = (t1,...,t;) € B¥, u= (u1,...,u) € B,
v = (v1,...,v;) € B¥ such that A; =s't and Ay = u'v.

Consider the matrix A” = st (t1,t2,...,t5, u1vg). Let us check that A’ = A”. The
first & columns of these two matrices are equal by definitions of vectors s and t. Consider

the last column.



We have

y 0 if S; — 0
a@k_ﬂ = S; U1V =

UVE if S; — 1

i) If 5 =0, a; 11 = w1vg = sitg41 = 0.
i) If s, =1, a; g+1 = UiVE = U V.
( For all i, j, Sitj = UVj—1 and S; = 1, then tj = UiVj—1.
That iS, tj = U1Vj—-1 , tj = UVj—-1, """ , tj = UpVj—1.- i.e. UVj—1 = U;V5—-1 (v 1)
Thus ujvg = wvg).
Thus a;{k“ = A Je+1-
ie.,, A" = A". Thus rg(A’) = 1. Similar considerations with an (I 4+ 1) X k-matrix

conclude the proof. [

The following two corollaries are straightforward.

Corollary 2.11. Let A = (a;;) € Muyn(B) where m,n > 2. Let rg(A’) =1 for any

2 x 2-submatriz A" of A. Then rg(A) = 1.
Proof. By Lemma 2.10. ]

Corollary 2.12. Let A = (a;;) € My, n(B) where m,n > 2. Let rg(A) > 1. Then

there exists a 2 X 2-submatriz of A of Boolean rank 2.

Proof. By Corollary 2.11. ]
The following theorem implies the characterizations of the surjective linear operator

on My, »(B).

Theorem 2.13. Let T : My, n(B) — My, n(B) be a Boolean linear operator. Then the

following are equivalent:

1. T 1is bijective.



2. T 1is surjective.

3. There exists a permutation o on {(i,7) | i = 1,2,--- ,m;5 = 1,2,--- ,n} such

that T(E; j) = Eg(; 5

Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now show that 2)
implies 3).

We assume that T is surjective. Then, for any pair (4, j), there exists some X such
that T(X) = E; ;. Clearly X # O by the linearity of 7. Thus there is a pair of indices
(r, s) such that X = E, s+ X' where (r, s) entry of X' is zero and T'(E, 5) # O. Indeed,
if T(E,s) = O for all pairs (r,s), then T'(X) = O by linearity of T. Thus we have a

contradiction. But T'(X) = F; j # O. Hence
T(Ers) <T(Ers) + T(X\ (Ers)) = T(X) = Eij.

That is, T'(Eys) < E;j and T'(E,s) = E; j. Since the set {(i,j) | i =1,2,--- ,m;j =
1,2,--- ,n} is a finite set, T is injective since it is surjective.
Therefore there is some permutation o on {(¢,5) | i = 1,2,--- ,m;j =1,2,--- ,n}

such that T'(E; ;) = Eyq [ |

i)
Henceforth we will always assume that m,n > 2.
Lemma 2.14. Let T : My, n(B) — My, n(B) be a Boolean operator which maps lines

to lines and is defined by T(E; ;) = Eq(; j), where o is a permutation on the set {(i,j) |

1=1,2,---,m;j=1,2,--- ,n}. Then T is a (P,Q)-operator.

Proof. Since no combination of a rows and b columns can dominate J where a+b =m
unless b = 0 (or if m = n, if @ = 0) we have that either the image of each row is a row
and the image of each column is a column, or m = n and the image of each row is a

column and the image of each column is a row. Thus, there are permutation matrices



P and @ such that T(R;) < PR;Q and T(C;) < PC;Q or, if m = n, T(R;) < P(R;)'Q
and T(C;) < P(C;)'Q. Since each cell lies in the intersection of a row and a column
and T" maps nonzero cells to nonzero (weighted) cells, it follows that T'(E; ;) = PE; ;Q,

or, if m= n, T(E,LJ) = PE]'J'Q = P(EZ’J)tQ |

Lemma 2.15. If T'(X) = X o A for all X € My, ,(B) and rg(A) =1 then there exist

diagonal matrices D and E such that T(X) = DXE for all X € My, n(B).

Proof. Ifrp(A) = 1 then there exist vectors d= [dy,da, - ,dp]and € = [e1,ea, -+ , €]
such that A = d‘é or a;j = diej. Let D = diag{di,ds, - ,dp,} and E = diag{e1,e2, - ,en}.
Now the (i,j) entry of T'(X) is x;;a;; and the (i,j) entry of DXE is d;x;je; =

diejxi,j = Q4 jTq,5- Thus the lemma follows. |

10



3 Linear preservers of Si(B).

Recall that

S1(B) = {(X,Y) € Muu(B)? | r5(X +Y) =rp(X) +r5(Y)};

We begin with some general observations on Boolean linear operators of special

types that preserve S;(B).

Lemma 3.1. Let o be a permutation of the set {(i,7) |1 <i<m,1 <j<mn}, and

T : Mpyn(B) = My n(B) be defined by T(E; ;) = EsGjy,i=1- mj=1,---,n.

If T preserves S1(B), then T is a (P, Q)-operator.

Proof. Consider the action of T on rows and columns of a matrix. Suppose that the
image of two cells are in the same line, but the cells are not, say F, F then rg(E+F) = 2.
Ifrg(T(E+F)) =1, then (E,F) € S1(B) but (T'(E), T(F)) ¢ S1(B). Then T does not
preserve S1(B) which is a contradiction. Thus 7" maps lines to lines. By Lemma 2.14

T is a (P, Q)-operator. |

Theorem 3.2. Let T : My, (B) — My, (B) be a surjective Boolean linear operator.

Then T preserves Sy (B) if and only if T is a (P, Q)-operator.

Proof. 1t is easy to see that multiplication with invertible matrices preserves Boolean
rank, since permutation matrices are the only invertible Boolean matrices [9]. Hence
(P, Q)-operator preserve the Boolean rank. For arbitrary (X,Y") € S1(B),

rg(T(X)+TY))=rg(T(X+Y))=rg(P(X+Y)Q)=rg(X +Y)

=rp(X) +rp(Y) =rp(PXQ) +rp(PYQ) =rp(T(X)) +rp(T(Y)).

Thus (T(X),T(Y)) € S1(B) and T preserves S;(B).

Conversely, if T' is surjective then by Theorem 2.13 we have that T is defined by a
permutation o on the set {(i,j) |1 <i<m,1 <j<n}. ie T(E;;) = Eqj)-

11



By Lemma 3.1 we have that T is a (P, Q)-operator since T preserves Si(B). |

Over a binary Boolean algebra the assumption of surjectivity from the previous

theorem can be replaced with the assumption that 7' is a strong preserver.

Theorem 3.3. Let T : My, n(B) — My, n(B) be a Boolean linear operator that strongly

preserves S1(B). Then T is a (P, Q)-operator.

Proof. 1t is proved in [4] that for a binary Boolean algebra there is a power of 7" which
is idempotent. Thus only finite set of different matrices can be obtained by considering
the powers of the matrix A. Hence, there are integers s and ¢ such that for all p, ¢ > s,
p = g(modt) it holds that AP = A9, Thus A% = A?!, Hence for a certain power of
any Boolean linear operator on binary Boolean algebra is idempotent. In both cases
we denote L = T¢ and L? = L. One can easily check that L strongly preserves Si(B).

If X € My, n(B) and (X, X) € S§1(B) then rg(X + X) = rp(X) +rp(X). Therefore
rg(X)=0and X = O.

Thus, if A # O then we have that (A, A) ¢ Si(B). Then (L(A), L(A)) ¢ S1(B).

That is, rp(L(A)) + rp(L(A)) # rg(L(A)). i.e.L(A) # O.

We examine the action of L on rows and columns. Suppose that L(R;) is not
dominated by R;. Then there is some (r,s) such that E, < L(R;) while E, s £ R;.
Then we have that (R;, Ers) € S1(B) and there exists a matrix X = (x;;) € My, n(B)

with z, s = 0 such that L(R;) = E, s+ X . Now,

12



L(Ri+ Eps) = L(Ri) + L(Ers)
= L(L(R:)) + L(Eys)
= L((Ers + X)) + L(Ey)
= L(X)+ L(Eyps) + L(Ep)

= LX)+ L(E,;)

Now, (RiaEr,s) € 81(8) but,

L(R;) + L(Eys) = L(R; + Eys) = L(R;)

and hence, (L(R;), L(E,)) ¢ S1(B), a contradiction.

We have established that L(R;) < R; for all 4. Similarly, L(C;) < Cj; for all j. By
considering that E;; is dominated by both R; and C; we have that L(E;;) < E; ;.
Since B is a binary Boolean algebra, we have that 7" also maps a cell to a cell, or
|T(E; ;)| =1 for all ¢, 7, and T'(J) has all nonzero entries.

So T induces a permutation o, on the set of subscripts {1,2,--- ,m} x{1,2,--- ,n}.
That is, T(E; ;) = Eg(i,j)- Since T induces a permutation o, on the set of subscripts
{1,2,-+-- ;m} x{1,2,--- ,n} and T preserve S;(B).

By Lemma 3.1 we have that T is a (P, ())-operator. |

13



4 Linear preservers of Sy(B).

Recall that

S2(B) = {(X,Y) € Mpn(B)? | rp(X +Y) =1};

Theorem 4.1. Let T : My, n(B) — My n(B) be a surjective Boolean linear operator.

Then T preserves Sa(B) if and only if T is a (P, Q)-operator.

Proof. Let T be a (P, Q)-operator. For (X,Y) € S2(B), Since
1=rp(X+Y)=rg(P(X+Y)Q)=rg(T(X +Y)) =rp(T(X)+T(Y)).

Hence (T'(X),T(Y)) € S2(B). That is, T preserves Sa(B).
Conversely, assume that 7" preserves Sa(B). Hence if T is surjective and B is a binary

Boolean algebra then by Theorem 2.13 we have that T'(E; ;) = Eq It is easy to

7’7]) .
see that the cells E; j and E, ¢ are in the same line if and only if rg(E; ; + E, ) = 1 if

and only if (E; j, E, ) € Sa(B). Since T preserves Sa(B), if (E; j, By s) € S2(B), then
(T(Ei7j)v T(Er,s)) S (B)

That is,
TB(T(EM) +T(Es)) = 1.

Therefore T'(E; j) and T'(E, ;) are in the same line. Thus lines are mapped to lines,

and we have that T is a (P, Q)-operator by Lemma 2.14. [ ]

We have another characterization of the linear operators that preserve Sa(B).

Theorem 4.2. Let T : My, n(B) — Moy, n(B) be a Boolean linear operator that pre-

serves So(B). Then these are equivalent :

14



1. T is surjective

2. T strongly preserves Sa(B)

3. T is a (P,Q)-operator.

Proof.  3) implies 1) : For any A € M, ,(B), take P'AQ" € M, »(B). Then
T(PtAQ!) = P(PLAQYHQ = A.

3) implies 2) : For any (X,Y) € S2(B). Since

1) implies 3) : From Theorem 4.1, we have done.

2) implies 1) : Suppose that 7" strongly preserves S3(B). In order to prove this
it suffices to check that for each pair of indices (¢, ) there exist Y € M,, (B) such
that T(Y) = E; ;. Assume that this is not the case. Then T'(J) < J. That is there
exists a Boolean matrix N such that n, s = 0 for some (r,s) and T(N) > T'(J). Hence
T(\Bs) = T().

One has that (J\E, s, J\E,s) ¢ S2(B) since rank(J\E,s) # 1. While (J,J) €
S2(B), since rp(J) = 1. Hence, (T(J\Ey ), T(J\Eys)) ¢ S2(B) while (T'(J),T(J)) €
S2(B), a contradiction with 7'(J) = T'(J\E, ). Thus there is no such a matrix N with
a zero entry such that T'(N) > T'(J). It follows that the image of a cell dominates only

one cell. Thus T is surjective on M, ,(B). [ |

15



5 Linear preservers of S3(B).

Recall that

S3(B) = {(X,Y) € Mypn(B)? | rg(X +Y) =rp(X)};

Theorem 5.1. Let T : My, n(B) — My n(B) be a surjective Boolean linear operator.

Then T preserves Ss(B) if and only if T is a (P, Q)-operator.

Proof. One can easily see that (P, Q)-operators preserve the set S3(B) :
For (X,Y) € S3(B), we have rp(X +Y) = r(X). Using T on both sides,

rp(P(X +Y)Q) = rg(PXQ). Then
rp(T(X +Y)) = rp(T(X)).

That is,

re(T(X)+T(Y)) =rp(T(X)).

Conversely, let T preserve S3(B). If T is surjective and B is a binary Boolean
algebra then by Theorem 2.13 we have that T(E; j) = F,(; ;. It is easy to see that the
cells E; ; and E, ; are in the same line if and only if rg(E; ; + E,.s) = rp(E; ;) if and
only if (E; j, E, ) € S3(B). Since T preserves S3(B) and (E; 5, B, s) € S3(B), we have

(T(Ei,j)gT(Er,s)) € 83(8) That is,
re(T(Ei ;) + T(Ers)) = rp(T(Ei;)).

Therefore T'(E; j) and T'(E, ) are in the same line. Thus lines are mapped to lines,

and we have that T is a (P, Q)-operator by Lemma 2.14. |
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6 Linear preservers of Sy(B).

Recall that

S1(B) = {(X,Y) € Mpu(B)? [ rp(X +Y) = [rp(X) = rp(Y)|};

Lemma 6.1. Let Ey, Es, E3, and E4 be distinct cells. Assume that rg(Ey + Eq) = 2
and rg(Fy + FEo+ Es+ E4) = 1. Then the nonzero entries of E1 + FEo+ E3+ Ey lie in
the intersection of two rows and two columns (i.e., the nonzero entries lie in a 2 X 2

submatriz).

Proof. Let rg(E1 + E5) = 2. Then the matrix Ey + Es + E3 + E4 can not have all
nonzero entries in one row or column. The only rank one matrix with four nonzero
entries are not lying in one line, have those four nonzero entries in a 2 X 2 submatrix.

Theorem 6.2. Let T : My, n(B) — My, n(B) be a surjective Boolean linear operator.
Then T preserves S4(B) if and only if T(X) = PXQ for all X € M., ,(B), or m =n
and T(X) = PX'Q for all X € My, n(B) where P, Q are permutational matrices of

appropriate Sizes.

Proof. Let T(X) = PXQ for all X € My, ,,(B). For (X,Y) € S4(B),
we have rg(X +Y) = |rg(X) —rp(Y)|. Multiplying P and @ on both side, rg(P(X +

Y)Q) = |rg(PXQ) — rp(PYQ)|. Then
ra(T(X +Y)) = [rp(T(X)) —rp(T(Y))].

That is,

ra(T(X) +T(Y)) = |rp(T(X)) —ra(T(Y))|
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Hence (T(X),T(Y)) € S4(B) and T preserves Sy(B).

Conversely let T' preserves S4(B). By Theorem 2.13 we have that T'(E; ;) = Eq(; j)
for some permutation o of the set {(i,7) | 1 <i <m,1 < j <n}. Let us check that T
transforms lines to lines.

If m = n = 2, by multiplying with permutational matrices on the left and on the
right, one may assume that T(Ey 1) = Eq,;1. Thus if 7' does not transform lines to the
lines then without loss of generality we may assume that T'(E12) = Ea2 (the other
case with T'(E 1) = Ea2 can be considered analogously). Without loss of generality
one may assume that T'(Fs 1) = Eo1 and T'(E32) = E12 (the case T(E3;) = E12 and
T(E32) = E2; can be considered in a similar way).

Consider the pair of matrices (A, B) € Sy, where A = E1 9+ FEs1,B =FE11+FE12+
Es1+FE22. Thenrp(T(A)) = 1,rg(T(B)) = 1,rg(T(A+B)) = 1. Therefore rp(T(A+
B)) # |rp(T'(A) — rg(T(B))|, which contradicts with the assumption (T'(A),T(B)) €
S4(B). Hence T maps lines to lines.

Assume now that m 4+ n > 5. Suppose that there is some row, say R;, such that
T(R;) is not dominated by some row or column. Then there are two cells in R; whose
images are not in any line, that is, for some k, 1, rg(T(E;r + Ei;1)) = 2.

ie, T(Ejx+ Eiy) = Ers + Ep 4 for some p # r and ¢ # s. Now given any j # i,
(Bix + Eiy + Ej, Ej;) € Sa(B), so that (T'(E;, + Eiy + Ej1), T(E;;)) € S4(B). By
Lemma 6.1, T(E;, + Eiy + Ejp) + T(Ej)) = Ers + Epg+ Er g+ Eps

Since o is a permutation, we must have that m < 2. Since for any j # i, T" has the
same image. Similarly, n < 2. This contradicts to the assumption m +n > 5, thus the
image of a row is dominated by a row or a column. By Lemma 2.14 it follows that T’

is a (P, Q)-operator .
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7 Linear preservers of S;(B).

In the followings, we consider B={0,1} as a subsemiring of real field R. Then any
Boolean matrix is considered as a matrix over real field. Therefore we can have real

rank of any Boolean matrix.

S5(B) = {(X,Y) € Mpu(B)? | rp(X +Y) = [p(X) = p(Y)[};

Theorem 7.1. Let T : My, »(B) — My, (B) be a surjective Boolean linear operator.
Then T preserves Ss(B) if and only if T(X) = PXQ for all X € M., ,(B), orm =n

and T(X) = PX'Q for all X € My, n(B) where P, Q are permutational matrices of

appropriate Sizes.

Proof. Let T(X) = PXQ for all X € M, »,(B). For (X,Y) € S5(B),
we have rpg(X +Y) = [p(X) — p(Y)|. Multiplying P and @ on both sides, we have

rB(P(X +Y)Q) = [p(PXQ) — p(PYQ)|. Then

re(T(X +Y)) = |p(T(X)) = p(T(Y))]-
That is,
rp(T(X) +T(Y)) = |p(T(X)) = p(T(Y))]-
Hence (T(X),T(Y)) € S5(B) and T preserves S5(5).
Conversely let T' preserves S5(B). By Theorem 2.13 we have that T'(E; ;) = E,(; j
for some permutation o of the set {(i,7) | 1 <7 <m,1 < j <n}. Let us check that T

transforms lines to lines.

If m = n = 2, by multiplying with permutation matrices on the left and on the

right, one may assume that T(Ey ;) = Eq 1. Thus if 7' does not transform lines to the
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lines then without loss of generality we may assume that T'(E;2) = Ea2 (the other
case with T'(E21) = Ea2 can be considered analogously). Without loss of generality
one may assume that T(Eq1) = Eg; and T'(E22) = Ej2 (the case T(Eq1) = Eq
and T'(E32) = E2 can be considered in a similar way). Consider the pair of matrices
(A,B) € S5(B), where A= FEj 2+ E21,B=E1+ Ei12+ E21+ E29. Then p(T(A)) =
1 p(T(B)) = Lrs(T(A + B)) = 1. Therefore rp(T(A + B)) # [p(T(4) — p(T(B))],
which contradicts with the assumption (7(A),T(B)) € S5(B). Hence T maps lines to
lines.

Assume now that m-+n > 5. Suppose that there is some row, say R;, such that T'(R;)
is not dominated by some row or column. Then there are two cells in R; whose images
are not in any line, that is, for some k., rg(T(E;, + E;;)) = 2, i.e., T(E;j, + E;) =
E, s+ E, 4 for some p # r and q # s. Now given any j # i, (E;, +Ei1+E;k, Ej1) € Ss,

so that (T(E;x + Ei; + Ej1), T(Ej;)) € S5(B). By Lemma 6.1,

T(Eix+Ei+Ejx) +T(Ej1) = Ers + Epg+ Erg+ Eps

Since ¢ is a permutation, we must have that m < 2. Since for any j # i, T has the
same image. Similarly, n < 2. This contradicts to the assumption m + n > 5, thus the
image of a row is dominated by a row or a column. By Lemma 2.14 it follows that T’

is a (P, Q)-operator.
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8 Linear preservers of Sg(B).

Recall that

Ss(B) = {(X,Y) € Muu(B)* | r5(X +Y) = p(X) + p(Y)};

Theorem 8.1. Let T' : My, n(B) — My n(B) be a surjective Boolean linear operator.
Then T preserves Sg(B) if and only if T(X) = PXQ for all X € My, ,(B), orm=n
and T(X) = PX'Q for all X € My, ,(B) where P, Q are permutation matrices of

appropriate Sizes.

Proof. Let T'(X) = PXQ for all X € My, »(B). For (X,Y) € Ss(B),
we have rg(X +Y) = [p(X) + p(Y)|. Multiplying P and @ on both sides, we have

rB(P(X +Y)Q) = |p(PXQ) + p(PYQ)|. Then
ra(T(X +Y)) = |p(T(X)) + p(T(Y))]

That is,
ra(T(X) +T(Y)) = |p(T(X)) + p(T(Y))|.
Hence (T(X),T(Y)) € Sg(B) and T' preserves Ss(5).

Conversely let T' preserves Sg(B). By Theorem 2.13 we have that T(E; ;) = E, ;)
for some permutation o of the set {(i,5) | 1 <i <m,1 < j <n}. Let us check that T'
transforms lines to lines.

Suppose that there is some row, say R;, such that T'(R;) is not dominated by
some row or column. Then there are two cells E,.s and E,, with p # r and ¢ # s
whose images are in one line. That is, for some k,I, rg(T(E,s + Epq)) = 1. ie.
T(E, s, Epg) = Eip + Eij. Now (E,5,Epq) € S¢(B) but (T'(E, ), T(Epg)) ¢ Se(B),

which contradicts with the assumption that T" preserves Sg(B). Thus 7' maps lines to

lines. [ ]
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