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<Abstract>

Rank-sum preservers of Boolean matrices

In this thesis, we construct the sets of Boolean matrix pairs. These sets are naturally

occurred at the extreme cases for the Boolean rank inequalities relative to the sum of

Boolean matrices. These sets were constructed with the Boolean matrix pairs which are

related with the ranks of the sums and difference of two Boolean matrices or compared

between their Boolean ranks and their real ranks.

That is, we construct the following 6 sets ;

S1(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = rB(X) + rB(Y )};

S2(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = 1};

S3(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = rB(X)};

S4(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = |rB(X)− rB(Y )|};

S5(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = |ρ(X)− ρ(Y )|};

S6(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = ρ(X) + ρ(Y )};

For these 6 sets, we consider the linear operators that preserve them. We char-

acterize those linear operators as T (X) = PXQ or T (X) = PXtQ with appropriate

invertible Boolean matrices P and Q. We also obtain the equivalent conditions for

these linear operators and prove their equivalence.



1 Introduction

A semiring S consists of a set S and two binary operations, addition and multipli-

cation, such that:

• S is an s monoid under addition (identity denoted by 0);

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

A semiring is called antinegative if the zero element is the only element with an

additive inverse. For example, the set of nonnegative integers is an antinegative semiring

with usual addition and multiplication.

Definition 1.1. A semiring S is called Boolean if S is equivalent to a set of subsets of a

given set N , the sum of two subsets is their union, and the product is their intersection.

The zero element is the empty set and the identity element is the whole set N .

It is straightforward to see that a Boolean semiring is commutative and antinegative.

If B consists of only the empty subset and N then it is called a binary Boolean algebra

(or {0, 1}-semiring) and is denoted by B.

A semiring S is called chain if the set S is totally ordered under set inclusion with

universal lower and upper bounds and the operations are defined by a + b = max{a, b}

and a · b = min{a, b}.
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It is straightforward to see that any chain semiring S is a Boolean semiring on the

set of appropriate subsets of S. Consider the set N of all elements in S, and choose all

those subsets that consist of all elements strictly lower than a given element.

Let Mm,n(B) denote the set of m×n matrices with entries from the binary Boolean

algebra B. Matrix theory over semirings is an object of intensive study during the last

decades, see for example [5, 6] and references therein. In particular, many authors

have investigated various rank functions for matrices over Boolean algebra and their

properties, see [1, 9, 10, 13]. Among the rank functions that have the most interesting

applications is the well-known notion of the factor rank.

Let Mm,n(B) be the set of m × n Boolean matrices. Throughout we assume that

m ≤ n. The matrix In is the n × n identity matrix, Jm,n is the m × n matrix of all

ones, Om,n is the m×n zero matrix. We omit the subscripts when the order is obvious

from the context and we write I, J , and O, respectively. The matrix Ei,j , called a cell,

denotes the matrix with exactly 1, that being a 1 in the (i, j) entry. Let Ri denote the

matrix whose ith row is all ones and is zero elsewhere, and Cj denote the matrix whose

jth column is all ones and is zero elsewhere. We let |A| denote the number of nonzero

entries in the matrix A.

Definition 1.2. The matrix A ∈Mm,n(B) is said to be of Boolean rank k (rB(A) = k)

if there exist matrices B ∈Mm,k(B) and C ∈Mk,n(B) such that A = BC and k is the

smallest positive integer such that such a factorization exists. By definition the only

matrix with Boolean rank equal to 0 is the zero matrix, O.

If B is considered as a subsemiring of a real field R then there is a real rank function

ρ(A) for any Boolean matrix A ∈Mm,n(B).
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Example 1.3. Let

A =



1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1


∈M4,4(B).

Then rB(A) = 4 from Example 2.3.1 [4]. But ρ(A) = 3.

The example 1.3 shows that the Boolean rank and real rank of A are not equal.

However, the inequality rB(A) ≥ ρ(A) always holds.

The behavior of the function ρ with respect to matrix multiplication and addition

is given by the following inequalities:

The rank-sum inequalities:

| ρ(A)− ρ(B) |≤ ρ(A + B) ≤ ρ(A) + ρ(B);

Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)}

and the Frobenius inequality:

ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρ(B),

where A,B, C are real matrices (see [7]).

Arithmetic properties of Boolean rank is restricted by the following list of inequal-

ities established from [3] because Boolean algebra is antinegative semiring .

1. rB(A + B) ≤ rB(A) + rB(B);

3



2. rB(AB) ≤ min{rB(A), rB(B)}.

3. rB(A + B) ≥



rB(A) if B = O

rB(B) if A = O

1 if A 6= O and B 6= O

;

4. rB(AB) ≥


0 if rB(A) + rB(B) ≤ n

1 if rB(A) + rB(B) > n

.

If B is considered as a subsemiring of <+, the positive real numbers, we have:

5. rB(A + B) ≥ |ρ(A)− ρ(B)|;

6. rB(AB) ≥


0 if ρ(A) + ρ(B) ≤ n,

ρ(A) + ρ(B)− n if ρ(A) + ρ(B) > n

;

7. ρ(AB) + ρ(BC) ≤ rB(ABC) + rB(B).

As was proved in [3] the inequalities 1 ∼ 7 are sharp and the best possible.

The natural question is to characterize the equality cases in the above inequalities.

Even over fields this is an open problem, see [2] for more details. The structure of matrix

varieties which arise as extremal cases in these inequalities is far from being understood

over fields, as well as over Boolean algebra. A usual way to generate elements of such

a variety is to find a tuple of matrices which belongs to it and to act on this tuple by

various linear operators that preserve this variety. The linear operators that preserve

cases of equalities in various matrix inequalities over fields were obtained in [7, 8].

For the details on linear operators preserving matrix invariants one can see [12] and

references therein. The aim of the present thesis is to characterize linear operators that

preserve the sets of matrix pairs which satisfies the Boolean rank equalities. Among
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those sets, we consider the sums of two Boolean matrices and their Boolean ranks.

These rank equalities come from the extreme cases of the inequalities of Boolean ranks.

In section 2, we present the concrete sets of matrix pairs which come from the the

extreme cases of the inequalities of Boolean ranks.

In section 3 to 8, we characterize the linear operators that preserve the sets of matrix

pairs which come from the the extreme cases of the inequalities of Boolean ranks.
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2 Preliminaries

Let B be the binary Boolean algebra. Consider following notation in order to denote

sets of Boolean matrices that arise as extremal cases in the inequalities listed above:

S1(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = rB(X) + rB(Y )};

S2(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = 1};

S3(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = rB(X)};

S4(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = |rB(X)− rB(Y )|};

S5(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = |ρ(X)− ρ(Y )|};

S6(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = ρ(X) + ρ(Y )};

Definition 2.1. We say an operator, T , preserves a set P if X ∈ P implies that

T (X) ∈ P, or, if P is a set of ordered pairs [triples], that (X, Y ) ∈ P [(X, Y, Z)] ∈ P]

implies (T (X), T (Y )) ∈ P [(T (X), T (Y ), T (Z)) ∈ P].

Definition 2.2. An operator T strongly preserves the set P if X ∈ P if and only if

T (X) ∈ P, or, if P is a set of ordered pairs [triples], that (X, Y ) ∈ P [(X, Y, Z) ∈ P] if

and only if (T (X), T (Y )) ∈ P [(T (X), T (Y ), T (Z)) ∈ P].

Definition 2.3. An operator T : Mm,n(B) →Mm,n(B) is called a (P,Q)-operator if

there exist permutation matrices P and Q of appropriate orders such that T (X) =

PXQ for all X ∈ Mm,n(B), or, if m = n, T (X) = PXtQ for all X ∈ Mm,n(B), where

Xt denotes the transpose of X.

Definition 2.4. A mapping T : Mm,n(B) → Mm,n(B) is called a Boolean linear

operator if T (Om,n) = Om,n and T (X + Y ) = T (X) + T (Y ) for all X, Y ∈Mm,n(B).
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Definition 2.5. A matrix A ∈ Mm,n(B) is called monomial if it has exactly one

nonzero element in each row and column.

Definition 2.6. A line of a matrix A is a row or a column of the matrix A.

Definition 2.7. We say that the matrix A dominates the matrix B if bi,j 6= 0 implies

that ai,j 6= 0, and we write A ≥ B or B ≤ A.

Definition 2.8. If A and B are Boolean matrices and A ≥ B we let A\B denote the

matrix C where

ci,j =


0 if bi,j = 1

1 if bi,j = 0
.

Definition 2.9. The matrix X ◦ Y denotes the Hadamard or Schur product , i.e., the

(i, j) entry of X ◦ Y is xi,jyi,j .

Lemma 2.10. Let A = (ai,j) ∈ Mm,n(B) where m, n ≥ 2. Let (l, k) be any fixed

pair of integers such that 2 ≤ k ≤ n, 2 ≤ l ≤ m. Assume that Boolean rank of each

l× k-submatrix of A is 1. Then the Boolean rank of each (l +1)× k-submatrix (if any)

is 1 and the Boolean rank of each l × (k + 1)-submatrix (if any) is 1.

Proof. Let us consider any l× (k + 1)-submatrix of the matrix A. Applying a permu-

tation of rows and columns, if necessary, it is possible to assume that this submatrix

has the form A′ = (ai,j), where 1 ≤ i ≤ l, 1 ≤ j ≤ k + 1. Let us denote A1 = (ai,j),

where 1 ≤ i ≤ l, 1 ≤ j ≤ k, A2 = (ai,j), where 1 ≤ i ≤ l, 2 ≤ j ≤ k + 1. By conditions,

there are four vectors s = (s1, . . . , sl) ∈ Bl, t = (t1, . . . , tk) ∈ Bk, u = (u1, . . . , ul) ∈ Bl,

v = (v1, . . . , vk) ∈ Bk such that A1 = st t and A2 = ut v.

Consider the matrix A′′ = st (t1, t2, . . . , tk, u1vk). Let us check that A′ = A′′. The

first k columns of these two matrices are equal by definitions of vectors s and t. Consider

the last column.
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We have

a′′i,k+1 = siu1vk =


0 if si = 0

u1vk if si = 1
.

i) If si = 0 , ai,k+1 = u1vk = sitk+1 = 0.

ii) If si = 1 , ai,k+1 = uivk = u1vk.

( For all i, j, sitj = uivj−1 and si = 1, then tj = uivj−1.

That is, tj = u1vj−1 , tj = u2vj−1 , · · · , tj = unvj−1. i.e. u1vj−1 = uivj−1 (∀ i)

Thus u1vk = uivk).

Thus a′′i,k+1 = ai,k+1.

i.e., A′ = A′′. Thus rB(A′) = 1. Similar considerations with an (l + 1) × k-matrix

conclude the proof.

The following two corollaries are straightforward.

Corollary 2.11. Let A = (ai,j) ∈ Mm,n(B) where m, n ≥ 2. Let rB(A′) = 1 for any

2× 2-submatrix A′ of A. Then rB(A) = 1.

Proof. By Lemma 2.10.

Corollary 2.12. Let A = (ai,j) ∈ Mm,n(B) where m,n ≥ 2. Let rB(A) > 1. Then

there exists a 2× 2-submatrix of A of Boolean rank 2.

Proof. By Corollary 2.11.

The following theorem implies the characterizations of the surjective linear operator

on Mm,n(B).

Theorem 2.13. Let T : Mm,n(B) →Mm,n(B) be a Boolean linear operator. Then the

following are equivalent:

1. T is bijective.
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2. T is surjective.

3. There exists a permutation σ on {(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n} such

that T (Ei,j) = Eσ(i,j).

Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now show that 2)

implies 3).

We assume that T is surjective. Then, for any pair (i, j), there exists some X such

that T (X) = Ei,j . Clearly X 6= O by the linearity of T . Thus there is a pair of indices

(r, s) such that X = Er,s +X ′ where (r, s) entry of X ′ is zero and T (Er,s) 6= O. Indeed,

if T (Er,s) = O for all pairs (r,s), then T (X) = O by linearity of T. Thus we have a

contradiction. But T (X) = Ei,j 6= O. Hence

T (Er,s) ≤ T (Er,s) + T (X \ (Er,s)) = T (X) = Ei,j .

That is, T (Er,s) ≤ Ei,j and T (Er,s) = Ei,j . Since the set {(i, j) | i = 1, 2, · · · ,m; j =

1, 2, · · · , n} is a finite set, T is injective since it is surjective.

Therefore there is some permutation σ on {(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n}

such that T (Ei,j) = Eσ(i,j).

Henceforth we will always assume that m,n ≥ 2.

Lemma 2.14. Let T : Mm,n(B) →Mm,n(B) be a Boolean operator which maps lines

to lines and is defined by T (Ei,j) = Eσ(i,j), where σ is a permutation on the set {(i, j) |

i = 1, 2, · · · ,m; j = 1, 2, · · · , n}. Then T is a (P,Q)-operator.

Proof. Since no combination of a rows and b columns can dominate J where a+b = m

unless b = 0 (or if m = n, if a = 0) we have that either the image of each row is a row

and the image of each column is a column, or m = n and the image of each row is a

column and the image of each column is a row. Thus, there are permutation matrices
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P and Q such that T (Ri) ≤ PRiQ and T (Cj) ≤ PCjQ or, if m = n, T (Ri) ≤ P (Ri)tQ

and T (Cj) ≤ P (Cj)tQ. Since each cell lies in the intersection of a row and a column

and T maps nonzero cells to nonzero (weighted) cells, it follows that T (Ei,j) = PEi,jQ,

or, if m = n, T (Ei,j) = PEj,iQ = P (Ei,j)tQ.

Lemma 2.15. If T (X) = X ◦A for all X ∈Mm,n(B) and rB(A) = 1 then there exist

diagonal matrices D and E such that T (X) = DXE for all X ∈Mm,n(B).

Proof. If rB(A) = 1 then there exist vectors ~d = [d1, d2, · · · , dm] and ~e = [e1, e2, · · · , en]

such that A = ~dt~e or ai,j = diej . Let D = diag{d1, d2, · · · , dm} and E = diag{e1, e2, · · · , en}.

Now the (i, j) entry of T (X) is xi,jai,j and the (i, j) entry of DXE is dixi,jej =

diejxi,j = ai,jxi,j . Thus the lemma follows.

10



3 Linear preservers of S1(B).

Recall that

S1(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = rB(X) + rB(Y )};

We begin with some general observations on Boolean linear operators of special

types that preserve S1(B).

Lemma 3.1. Let σ be a permutation of the set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and

T : Mm,n(B) →Mm,n(B) be defined by T (Ei,j) = Eσ(i,j) , i = 1, · · · ,m; j = 1, · · · , n .

If T preserves S1(B), then T is a (P,Q)-operator.

Proof. Consider the action of T on rows and columns of a matrix. Suppose that the

image of two cells are in the same line, but the cells are not, say E,F then rB(E+F ) = 2.

If rB(T (E +F )) = 1, then (E,F ) ∈ S1(B) but (T (E), T (F )) /∈ S1(B). Then T does not

preserve S1(B) which is a contradiction. Thus T maps lines to lines. By Lemma 2.14

T is a (P,Q)-operator.

Theorem 3.2. Let T : Mm,n(B) →Mm,n(B) be a surjective Boolean linear operator.

Then T preserves S1(B) if and only if T is a (P,Q)-operator.

Proof. It is easy to see that multiplication with invertible matrices preserves Boolean

rank, since permutation matrices are the only invertible Boolean matrices [9]. Hence

(P,Q)-operator preserve the Boolean rank. For arbitrary (X, Y ) ∈ S1(B),

rB(T (X) + T (Y )) = rB(T (X + Y )) = rB(P (X + Y )Q) = rB(X + Y )

= rB(X) + rB(Y ) = rB(PXQ) + rB(PY Q) = rB(T (X)) + rB(T (Y )).

Thus (T (X), T (Y )) ∈ S1(B) and T preserves S1(B).

Conversely, if T is surjective then by Theorem 2.13 we have that T is defined by a

permutation σ on the set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. i.e. T (Ei,j) = Eσ(i,j).
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By Lemma 3.1 we have that T is a (P,Q)-operator since T preserves S1(B).

Over a binary Boolean algebra the assumption of surjectivity from the previous

theorem can be replaced with the assumption that T is a strong preserver.

Theorem 3.3. Let T : Mm,n(B) →Mm,n(B) be a Boolean linear operator that strongly

preserves S1(B). Then T is a (P,Q)-operator.

Proof. It is proved in [4] that for a binary Boolean algebra there is a power of T which

is idempotent. Thus only finite set of different matrices can be obtained by considering

the powers of the matrix A. Hence, there are integers s and t such that for all p, q > s,

p ≡ q(mod t) it holds that Ap = Aq. Thus Ast = A2st. Hence for a certain power of

any Boolean linear operator on binary Boolean algebra is idempotent. In both cases

we denote L = T d and L2 = L. One can easily check that L strongly preserves S1(B).

If X ∈Mm,n(B) and (X, X) ∈ S1(B) then rB(X +X) = rB(X)+ rB(X). Therefore

rB(X) = 0 and X = O.

Thus, if A 6= O then we have that (A,A) /∈ S1(B). Then (L(A), L(A)) /∈ S1(B).

That is, rB(L(A)) + rB(L(A)) 6= rB(L(A)). i.e.L(A) 6= O.

We examine the action of L on rows and columns. Suppose that L(Ri) is not

dominated by Ri. Then there is some (r, s) such that Er,s ≤ L(Ri) while Er,s 6≤ Ri.

Then we have that (Ri, Er,s) ∈ S1(B) and there exists a matrix X = (xi,j) ∈Mm,n(B)

with xr,s = 0 such that L(Ri) = Er,s + X . Now,
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L(Ri + Er,s) = L(Ri) + L(Er,s)

= L(L(Ri)) + L(Er,s)

= L((Er,s + X)) + L(Er,s)

= L(X) + L(Er,s) + L(Er,s)

= L(X) + L(Er,s)

= L(X + Er,s)

= L(L(Ri))

= L(Ri).

Now, (Ri, Er,s) ∈ S1(B) but,

L(Ri) + L(Er,s) = L(Ri + Er,s) = L(Ri)

and hence, (L(Ri), L(Er,s)) /∈ S1(B), a contradiction.

We have established that L(Ri) ≤ Ri for all i. Similarly, L(Cj) ≤ Cj for all j. By

considering that Ei,j is dominated by both Ri and Cj we have that L(Ei,j) ≤ Ei,j .

Since B is a binary Boolean algebra, we have that T also maps a cell to a cell, or

|T (Ei,j)| = 1 for all i, j, and T (J) has all nonzero entries.

So T induces a permutation σ, on the set of subscripts {1, 2, · · · ,m}×{1, 2, · · · , n}.

That is, T (Ei,j) = Eσ(i,j). Since T induces a permutation σ, on the set of subscripts

{1, 2, · · · ,m} × {1, 2, · · · , n} and T preserve S1(B).

By Lemma 3.1 we have that T is a (P,Q)-operator.
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4 Linear preservers of S2(B).

Recall that

S2(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = 1};

Theorem 4.1. Let T : Mm,n(B) →Mm,n(B) be a surjective Boolean linear operator.

Then T preserves S2(B) if and only if T is a (P,Q)-operator.

Proof. Let T be a (P,Q)-operator. For (X, Y ) ∈ S2(B), Since

1 = rB(X + Y ) = rB(P (X + Y )Q) = rB(T (X + Y )) = rB(T (X) + T (Y )).

Hence (T (X), T (Y )) ∈ S2(B). That is, T preserves S2(B).

Conversely, assume that T preserves S2(B). Hence if T is surjective and B is a binary

Boolean algebra then by Theorem 2.13 we have that T (Ei,j) = Eσ(i,j) . It is easy to

see that the cells Ei,j and Er,s are in the same line if and only if rB(Ei,j + Er,s) = 1 if

and only if (Ei,j , Er,s) ∈ S2(B). Since T preserves S2(B), if (Ei,j , Er,s) ∈ S2(B), then

(T (Ei,j), T (Er,s)) ∈ S2(B).

That is,

rB(T (Ei,j) + T (Er,s)) = 1.

Therefore T (Ei,j) and T (Er,s) are in the same line. Thus lines are mapped to lines,

and we have that T is a (P,Q)-operator by Lemma 2.14.

We have another characterization of the linear operators that preserve S2(B).

Theorem 4.2. Let T : Mm,n(B) → Mm,n(B) be a Boolean linear operator that pre-

serves S2(B). Then these are equivalent :

14



1. T is surjective

2. T strongly preserves S2(B)

3. T is a (P,Q)-operator.

Proof. 3) implies 1) : For any A ∈ Mm,n(B), take P tAQt ∈ Mm,n(B). Then

T (P tAQt) = P (P tAQt)Q = A.

3) implies 2) : For any (X, Y ) ∈ S2(B). Since

1 = rB(X + Y ) = rB(P (X + Y )Q) = rB(T (X + Y )) = rB(T (X) + T (Y )).

1) implies 3) : From Theorem 4.1, we have done.

2) implies 1) : Suppose that T strongly preserves S2(B). In order to prove this

it suffices to check that for each pair of indices (i, j) there exist Y ∈ Mm,n(B) such

that T (Y ) = Ei,j . Assume that this is not the case. Then T (J) < J . That is there

exists a Boolean matrix N such that nr,s = 0 for some (r, s) and T (N) ≥ T (J). Hence

T (J\Er,s) = T (J).

One has that (J\Er,s, J\Er,s) /∈ S2(B) since rank(J\Er,s) 6= 1. While (J, J) ∈

S2(B), since rB(J) = 1. Hence, (T (J\Er,s), T (J\Er,s)) /∈ S2(B) while (T (J), T (J)) ∈

S2(B), a contradiction with T (J) = T (J\Er,s). Thus there is no such a matrix N with

a zero entry such that T (N) ≥ T (J). It follows that the image of a cell dominates only

one cell. Thus T is surjective on Mm,n(B).
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5 Linear preservers of S3(B).

Recall that

S3(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = rB(X)};

Theorem 5.1. Let T : Mm,n(B) →Mm,n(B) be a surjective Boolean linear operator.

Then T preserves S3(B) if and only if T is a (P,Q)-operator.

Proof. One can easily see that (P,Q)-operators preserve the set S3(B) :

For (X, Y ) ∈ S3(B), we have rB(X + Y ) = r(X). Using T on both sides,

rB(P (X + Y )Q) = rB(PXQ). Then

rB(T (X + Y )) = rB(T (X)).

That is,

rB(T (X) + T (Y )) = rB(T (X)).

Conversely, let T preserve S3(B). If T is surjective and B is a binary Boolean

algebra then by Theorem 2.13 we have that T (Ei,j) = Eσ(i,j). It is easy to see that the

cells Ei,j and Er,s are in the same line if and only if rB(Ei,j + Er,s) = rB(Ei,j) if and

only if (Ei,j , Er,s) ∈ S3(B). Since T preserves S3(B) and (Ei,j , Er,s) ∈ S3(B), we have

(T (Ei,j), T (Er,s)) ∈ S3(B). That is,

rB(T (Ei,j) + T (Er,s)) = rB(T (Ei,j)).

Therefore T (Ei,j) and T (Er,s) are in the same line. Thus lines are mapped to lines,

and we have that T is a (P,Q)-operator by Lemma 2.14.
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6 Linear preservers of S4(B).

Recall that

S4(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = |rB(X)− rB(Y )|};

Lemma 6.1. Let E1, E2, E3, and E4 be distinct cells. Assume that rB(E1 + E2) = 2

and rB(E1 + E2 + E3 + E4) = 1. Then the nonzero entries of E1 + E2 + E3 + E4 lie in

the intersection of two rows and two columns (i.e., the nonzero entries lie in a 2 × 2

submatrix).

Proof. Let rB(E1 + E2) = 2. Then the matrix E1 + E2 + E3 + E4 can not have all

nonzero entries in one row or column. The only rank one matrix with four nonzero

entries are not lying in one line, have those four nonzero entries in a 2× 2 submatrix.

Theorem 6.2. Let T : Mm,n(B) →Mm,n(B) be a surjective Boolean linear operator.

Then T preserves S4(B) if and only if T (X) = PXQ for all X ∈ Mm,n(B), or m = n

and T (X) = PXtQ for all X ∈ Mm,n(B) where P , Q are permutational matrices of

appropriate sizes.

Proof. Let T (X) = PXQ for all X ∈Mm,n(B). For (X, Y ) ∈ S4(B),

we have rB(X + Y ) = |rB(X)− rB(Y )|. Multiplying P and Q on both side, rB(P (X +

Y )Q) = |rB(PXQ)− rB(PY Q)|. Then

rB(T (X + Y )) = |rB(T (X))− rB(T (Y ))|.

That is,

rB(T (X) + T (Y )) = |rB(T (X))− rB(T (Y ))|.

17



Hence (T (X), T (Y )) ∈ S4(B) and T preserves S4(B).

Conversely let T preserves S4(B). By Theorem 2.13 we have that T (Ei,j) = Eσ(i,j)

for some permutation σ of the set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let us check that T

transforms lines to lines.

If m = n = 2, by multiplying with permutational matrices on the left and on the

right, one may assume that T (E1,1) = E1,1. Thus if T does not transform lines to the

lines then without loss of generality we may assume that T (E1,2) = E2,2 (the other

case with T (E2,1) = E2,2 can be considered analogously). Without loss of generality

one may assume that T (E2,1) = E2,1 and T (E2,2) = E1,2 (the case T (E2,1) = E1,2 and

T (E2,2) = E2,1 can be considered in a similar way).

Consider the pair of matrices (A,B) ∈ S4, where A = E1,2 +E2,1, B = E1,1 +E1,2 +

E2,1+E2,2. Then rB(T (A)) = 1, rB(T (B)) = 1, rB(T (A+B)) = 1. Therefore rB(T (A+

B)) 6= |rB(T (A) − rB(T (B))|, which contradicts with the assumption (T (A), T (B)) ∈

S4(B). Hence T maps lines to lines.

Assume now that m + n ≥ 5. Suppose that there is some row, say Ri, such that

T (Ri) is not dominated by some row or column. Then there are two cells in Ri whose

images are not in any line, that is, for some k, l, rB(T (Ei,k + Ei,l)) = 2.

i.e., T (Ei,k + Ei,l) = Er,s + Ep,q for some p 6= r and q 6= s. Now given any j 6= i,

(Ei,k + Ei,l + Ej,k, Ej,l) ∈ S4(B), so that (T (Ei,k + Ei,l + Ej,k), T (Ej,l)) ∈ S4(B). By

Lemma 6.1, T (Ei,k + Ei,l + Ej,k) + T (Ej,l) = Er,s + Ep,q + Er,q + Ep,s

Since σ is a permutation, we must have that m ≤ 2. Since for any j 6= i, T has the

same image. Similarly, n ≤ 2. This contradicts to the assumption m + n ≥ 5, thus the

image of a row is dominated by a row or a column. By Lemma 2.14 it follows that T

is a (P,Q)-operator .
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7 Linear preservers of S5(B).

In the followings, we consider B={0,1} as a subsemiring of real field R. Then any

Boolean matrix is considered as a matrix over real field. Therefore we can have real

rank of any Boolean matrix.

S5(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = |ρ(X)− ρ(Y )|};

Theorem 7.1. Let T : Mm,n(B) →Mm,n(B) be a surjective Boolean linear operator.

Then T preserves S5(B) if and only if T (X) = PXQ for all X ∈ Mm,n(B), or m = n

and T (X) = PXtQ for all X ∈ Mm,n(B) where P , Q are permutational matrices of

appropriate sizes.

Proof. Let T (X) = PXQ for all X ∈Mm,n(B). For (X, Y ) ∈ S5(B),

we have rB(X + Y ) = |ρ(X) − ρ(Y )|. Multiplying P and Q on both sides, we have

rB(P (X + Y )Q) = |ρ(PXQ)− ρ(PY Q)|. Then

rB(T (X + Y )) = |ρ(T (X))− ρ(T (Y ))|.

That is,

rB(T (X) + T (Y )) = |ρ(T (X))− ρ(T (Y ))|.

Hence (T (X), T (Y )) ∈ S5(B) and T preserves S5(B).

Conversely let T preserves S5(B). By Theorem 2.13 we have that T (Ei,j) = Eσ(i,j)

for some permutation σ of the set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let us check that T

transforms lines to lines.

If m = n = 2, by multiplying with permutation matrices on the left and on the

right, one may assume that T (E1,1) = E1,1. Thus if T does not transform lines to the
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lines then without loss of generality we may assume that T (E1,2) = E2,2 (the other

case with T (E2,1) = E2,2 can be considered analogously). Without loss of generality

one may assume that T (E2,1) = E2,1 and T (E2,2) = E1,2 (the case T (E2,1) = E1,2

and T (E2,2) = E2,1 can be considered in a similar way). Consider the pair of matrices

(A,B) ∈ S5(B), where A = E1,2 + E2,1, B = E1,1 + E1,2 + E2,1 + E2,2. Then ρ(T (A)) =

1, ρ(T (B)) = 1, rB(T (A + B)) = 1. Therefore rB(T (A + B)) 6= |ρ(T (A) − ρ(T (B))|,

which contradicts with the assumption (T (A), T (B)) ∈ S5(B). Hence T maps lines to

lines.

Assume now that m+n ≥ 5. Suppose that there is some row, say Ri, such that T (Ri)

is not dominated by some row or column. Then there are two cells in Ri whose images

are not in any line, that is, for some k, l, rB(T (Ei,k + Ei,l)) = 2, i.e., T (Ei,k + Ei,l) =

Er,s +Ep,q for some p 6= r and q 6= s. Now given any j 6= i, (Ei,k +Ei,l +Ej,k, Ej,l) ∈ S5,

so that (T (Ei,k + Ei,l + Ej,k), T (Ej,l)) ∈ S5(B). By Lemma 6.1,

T (Ei,k + Ei,l + Ej,k) + T (Ej,l) = Er,s + Ep,q + Er,q + Ep,s

Since σ is a permutation, we must have that m ≤ 2. Since for any j 6= i, T has the

same image. Similarly, n ≤ 2. This contradicts to the assumption m + n ≥ 5, thus the

image of a row is dominated by a row or a column. By Lemma 2.14 it follows that T

is a (P,Q)-operator.
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8 Linear preservers of S6(B).

Recall that

S6(B) = {(X, Y ) ∈Mm,n(B)2 | rB(X + Y ) = ρ(X) + ρ(Y )};

Theorem 8.1. Let T : Mm,n(B) →Mm,n(B) be a surjective Boolean linear operator.

Then T preserves S6(B) if and only if T (X) = PXQ for all X ∈ Mm,n(B), or m = n

and T (X) = PXtQ for all X ∈ Mm,n(B) where P , Q are permutation matrices of

appropriate sizes.

Proof. Let T (X) = PXQ for all X ∈Mm,n(B). For (X, Y ) ∈ S6(B),

we have rB(X + Y ) = |ρ(X) + ρ(Y )|. Multiplying P and Q on both sides, we have

rB(P (X + Y )Q) = |ρ(PXQ) + ρ(PY Q)|. Then

rB(T (X + Y )) = |ρ(T (X)) + ρ(T (Y ))|

That is,

rB(T (X) + T (Y )) = |ρ(T (X)) + ρ(T (Y ))|.

Hence (T (X), T (Y )) ∈ S6(B) and T preserves S6(B).

Conversely let T preserves S6(B). By Theorem 2.13 we have that T (Ei,j) = Eσ(i,j)

for some permutation σ of the set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let us check that T

transforms lines to lines.

Suppose that there is some row, say Ri, such that T (Ri) is not dominated by

some row or column. Then there are two cells Er,s and Ep,q with p 6= r and q 6= s

whose images are in one line. That is, for some k, l, rB(T (Er,s + Ep,q)) = 1. i.e.

T (Er,s, Ep,q) = Ei,k + Ei,l. Now (Er,s, Ep,q) ∈ S6(B) but (T (Er,s), T (Ep,q)) /∈ S6(B),

which contradicts with the assumption that T preserves S6(B). Thus T maps lines to

lines.

21



References

[1] D. A. Gregory, N. J. Pullman, Semiring rank: Boolean rank and nonnegative rank

factorization, J. Combin. Inform. System Sci. 8 (1983), 223-233.

[2] G. Marsaglia, P. Styan, Equalities and inequalities for ranks of matrices, Linear

and Multilinear Algebra, 2 (1974), 269-292.

[3] L. B. Beasley, A. E. Guterman, Rank inequalities over semirings, J.Korean Math.

Soc. 42(2) (2005), 223-242.

[4] L. B. Beasley, D. A. gregory and N. J. Pullman, Nonnegative rank-preserving

operators, Linear Algebra Appl. 65 (1985), 207-223.

[5] K. Glazek, A Guide to the Literature on Semirings and their Applications in Math-

ematics and Information Sciences, Kluwer Academic Publishers, (2002).

[6] K. H. Kim, Boolean Matrix Theory and Applications, Pure and Applied Mathe-

matics, V.70, Marcel Dekker, New York, (1982).

[7] L. B. Beasley, A. E. Guterman, C. L. Neal, Linear preservers for Sylvester and

Frobenius bounds on matrix rank, Rocky Mountains J. of Math.,36(2006), 67-80.

[8] L. B. Beasley, S.-G. Lee, S.-Z. Song, Linear operators that preserve pairs of ma-

trices which satisfy extreme rank properties, Linear Algebra Appl., 350(2002),

263-272.

[9] L. B. Beasley, S.-G. Lee, S.-Z. Song, Linear operators that preserve zero-term rank

of Boolean matrices, J. Korean Math. Soc., 36, (1999), 1181-1190.

[10] L. B. Beasley, N. J. Pullman, Semiring rank versus column rank, Linear Algebra

Appl. 101 (1988), 33-48.

22



[11] S.-G Hwang and S.-Z. Song, Spanning column ranks and there preservers of non-

negative matrices, Linear Algebra Appl., 254, (1997), 485-495.

[12] P. Pierce and others, A Survey of Linear Preserver Problems, Linear and Multi-

linear Algebra, 33 (1992), 1-119.

[13] V. L. Watts, Boolean rank of Kronecker products, Linear Algebra Appl., 336,

(2001), 261-264.

23



<국문초록>

부울 행렬의 계수합의 선형보존자

 본 논문에서는 부울 대수 상의 행렬의 짝들로 구성되는 집합들을 구성하였다. 

이 집합들은 두 부울 행렬들의 합의 계수와 관련된 부등식의 극치인 경우들에서 

자연스럽게 나타나는 행렬 짝들의 집합들이다. 이 행렬 짝들의 집합들은 두 부울 

행렬의 계수들의 합과 차 또는 이 부울 행렬을 실수 행렬로 간주할 때 나타나는 

실수 행렬 계수의 합과 차와 관련된 부등식들에서 극치인 경우들로 구성하였다. 

 곧, 다음과 같은 6가지 집합을 구성하였다;

S1 (B ) = (X,Y ) Mm, n (B)
2│γB (X+Y ) = γB (X ) + γB (Y ) ;

S2 (B ) = (X,Y ) Mm, n (B)
2│γB (X+Y ) = 1 ;

S3 (B ) = (X,Y ) Mm, n (B)
2│γB (X+Y ) = γB (X ) ;

S4 (B ) = (X,Y ) Mm, n (B)
2│γB (X+Y ) =│γB (X )− γB (Y )│ ;

S5 (B ) = (X,Y ) Mm, n (B)
2│γB (X+Y ) =│ρ(X )− ρ (Y )│ ;

S6 (B ) = (X,Y ) Mm, n (B)
2│γB (X+Y ) = ρ(X )+ ρ(Y )  ;

 이상의 행렬 짝들의 집합을 선형연산자로 보내어 그 집합의 성질들을 보존하는 

선형연산자를 연구하여 그 형태를 규명하였다. 곧, 이러한 행렬 짝들의  집합을 

보존하는 선형연사자의 형태는 T (X ) = PXQ  또는 T (X ) = PX tQ로 나타남을 보

이고, 이들을 증명하였다. 그리고 이 선형연산자와 동치가 되는 조건들을 찾고, 

이 조건들이  동등함을 증명하였다.
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