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초  록 

 
 

유방암(breast cancer)은 서양 여성들에게서 가장 흔히 발병하는 악성 
암(malignant tumor)인데, 초기 검출만이 사망률을 줄일 수 있는 가장 효

과적인 방법이다. 
유방암 조직은 주변 조직(tissue)과 비교했을 때, 높은 전기적 도전율

(conductivity)와 유전율(permittivity)을 보이므로, 본 논문에서는 전기 임피

던스 단층촬영법(EIT) 기술을 유방암 검출에 적용하고자 한다. 
EIT에서는, 서로 다른 전기적 특성 분포를 갖는 대상물체 표면에 특

수하게 제작된 여러 개의 전극들을 균등하게 배치하고, 이를 통하여 전

기적 신호(전류)를 주입하여 이에 따른 경계면에 유기되는 전압을 측정

한다. 이 전류와 전압 데이터를 바탕으로 EIT 영상복원 알고리즘을 이용

하여 물체 내부의 전기적 특성 분포를 추정하고 복원한다. 
본 논문에서는, 2-D 원형 구조의 human chest 팬텀과 3-D 

mammography 구조의 breast 팬텀을 고려하여, 영상복원 알고리즘을 개발

하여 적용시켰다. 2-D 원형 구조에서는 FEM 시뮬레이션 데이터와 팬텀 
실험 데이터를 사용하여 제안한 알고리즘의 복원 성능을 평가하였다. 3-
D mammography 구조에서는 유방암 검출을 위한 임상실험의 전단계인 
phantom study로서, 여성의 breast의 외형(shape)과 유사하게 팬텀을 만들고 
팬텀 내부에 식염수를 채워 실험하였다. 

대부분의 다른 EIT 연구팀들은 FEM(유한요소법), BEM(경계요소법) 
등의 수치적 방법(numerical method)을 이용하여 forward solver를 만들어 
사용하지만, 본 논문에서는 해석적 방법(analytical method)을 이용하여 
forward solver를 만들었다. 본 논문에서는 gap 모델을 학습하고, ave-gap 
모델과 CE 모델의 forward solution을 구하는 방법을 제안하였다. 각 수학

적 전극모델에 대한 특성 저항(characteristic resistance)을 계산하여 실험 
데이터와의 비교결과를 통해, gap 모델과 ave-gap 모델보다 완전전극 모

델이 실험 데이터와 거의 유사하게 나타남을 보였다. 
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3-D mammography geometry에서는 Rensselaer 그룹에서 4×4 electrode 
array (32-전극)을 갖는 rectangular box 형태의 팬텀에 사용되던 ave-gap 모

델 알고리즘을 수정하여 새로운 테스트 팬텀, 즉, 6×6 electrode array (64-전
극, 아래쪽 4개의 전극은 사용하지 않음)을 갖는 breast 팬텀에 적용시켰

다. 전극의 x-y 평면에 대한 공간 해상도(spatial resolution)를 학습하기 위

해, 5 mm solder 표적과 10 mm copper 표적을 전극 바로 밑에서 5 mm 떨

어진 곳에 위치시키고 다른 한 개의 10 mm copper 표적은 4개의 전극이 
서로 인접해 있는 gap에서 5 mm 떨어진 곳에 위치시켜 테스트 하였다. 
그리고 10 mm copper 표적을 전극 바로 밑에서 7.5 mm, 10 mm, 12.5 mm, 
15 mm 떨어진 곳에 위치시키면서 z-축(depth)에 따른 공간 해상도를 학습

하였다. 그리고 difference 복원영상들을 통해서 각각 해당 표적의 위치 
정보를 잘 추정하고 있고 있음을 확인하였다. 

ACT4 시스템은 complex 전압을 주입하고 complex 전류를 측정하기 
때문에, 주입전류와 측정전압으로 이루어지는 기존 EIT 문제와 등가적으

로 해결하면서 ACT4의 complex 데이터를 영상복원 알고리즘에 적용시키

기 위해 synthesized voltage 구하는 방법을 제안하였다. 
기존에 사용되던 linearization 방법과 NOSER 알고리즘은 real 알고리

즘이며, 본 논문에서는 이들을 complex data를 위한 complex 알고리즘으

로 제안하였다. 그리고 spectral representation을 이용한 fast inversion 알고

리즘과 선형 칼만 필터도 complex 알고리즘으로 전개하여, phantom study
에서의 영상복원에 적용하였다. 그리고 linearization 방법과 fast inversion 
알고리즘의 복원 영상의 성능비교 측면에서 두 알고리즘은 거의 같은 결

과를 산출하지만, 대상물체 내부의 admittivity 분포를 추정하는 복원 시

간 측면에서는 fast inversion 알고리즘이 linearization 방법보다 추정 시간

이 단축됨을 보였다. 
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I. Introduction

1.1 Electrical Impedance Tomography

Electrical impedance tomography (EIT) is an imaging modality that es-

timates and reconstructs the electrical properties in a body. In many cases the

electrical properties (conductivity and permittivity, resistivity and capacitive

reactivity) carry valuable information on the structural, and especially, func-

tional properties of the targets. In EIT, small electrical currents are injected

through electrodes placed on the surface of the body and the corresponding

voltages are measured through these electrodes. These voltage and current

data are used in reconstruction algorithms that reconstruct and display the

internal electrical properties. The physical relationship between the internal

admittivity (impedivity) distribution and the boundary voltages is governed

by a partial differential equation with appropriate boundary conditions.

Although the spatial resolution of EIT is not comparable to other imag-

ing techniques such as magnetic resonance imaging (MRI), computerized to-

mography (CT) or ultrasonic imaging, EIT has nonetheless some advantages

such as being harmless and low cost, and having better temporal resolution,

which make it possible to track relatively fast impedance changes in the body

(Vauhkonen et al. 1998, Webster 1990). Therefore, if we combine the EIT

technique with other modalities, such as X-ray mammography or ultrasonic

imaging, it might provide new opportunities for improving breast cancer de-

tection.

EIT is divided into two problems, the forward problem and the inverse

problem. The forward problem in electrical impedance imaging is to compute

the voltages on the boundary of the body given the internal admittivity (impe-

1



divity) distribution and applied currents in a partial differential equation. The

inverse problem is to determine the admittivity (impedivity) distribution given

the injected current patterns and their corresponding voltage measurements.

The EIT reconstruction methods can be classified into two categories,

stationary imaging and non-stationary imaging. In stationary imaging, the

internal admittivity distribution of the body is time-invariant within the time

required to acquire a full set of voltage measurement data. Stationary imag-

ing can further be divided in two categories, static imaging and difference

imaging. In static imaging, the reconstruction is based on a single data set of

voltage measurements, and the absolute values of the conductivity and per-

mittivity distributions are determined. In difference imaging, two data sets

are measured, that is, one data set comes from a reference and the other data

set comes from a second measurement. Based on the difference between these

measurements the difference of the admittivity distributions can be estimated.

In non-stationary or time-varying or dynamic imaging, the time-dependence

of the impedivity distribution is taken into account, and it provides an esti-

mate for the impedivity distribution after each current pattern is applied to

the body (Kim et al. 2001, Vauhkonen 1997, Vauhkonen 2004).

1.2 Breast Cancer Detection

Breast cancer is the most commonly diagnosed malignant tumor among

women in the western world (American Cancer Society 2005a, Boring 1994).

Early detection of breast cancer is the most effective method for reducing

breast cancer mortality rate. X-ray mammography is the standard technique

presently used for breast cancer screening in clinical practice (American Cancer

Society 2005a). However, it has significant diagnostic flaws. Breast screening

is an uncomfortable and painful procedure for patients. It involves compres-

sion of breast to keep them still while the mammogram is taken. And its

2



screening procedure causes risk for patients being exposed to ionizing radia-

tion. While mammography is sensitive for detecting breast abnormalities, it

sometimes cannot differentiate between benign and malignant lesions and is

less accurate in patients with dense glandular breasts (Edell and Eisen 1999),

which means that breast screening has rather low specificity. For these rea-

sons, to improve the diagnostic accuracy of breast imaging in distinguishing

benign breast conditions from breast cancers, other imaging approaches have

been studied. The following imaging modalities are cited from the American

Cancer Society (2005b).

Ultrasound (sonography): This is an imaging method in which high-frequency

sound waves are used to look inside a part of the body. Ultrasound has

become a valuable tool to use along with mammograms because it is

widely available, non-invasive, and less expensive than other options.

However, the effectiveness of an ultrasound test depends on the opera-

tors level of skill and experience. Although ultrasound is less sensitive

than MRI (that is, it detects fewer tumors), it has the advantage of being

more available and less expensive.

Magnetic resonance imaging (MRI): MRI uses magnets and radio waves

to produce very detailed, cross-sectional images of the body. MRI is

most often used along with mammograms or breast ultrasound to de-

tect breast cancer, particularly in women with very dense breasts. A

few recent studies have shown that for younger women at very high

risk of breast cancer, MRI screening finds more cancers than standard

mammography alone. The MRI studies found many more abnormalities

that were not cancers, which led to an increased number of unnecessary

biopsy procedures. MRI is also more costly and time-consuming.

Technetium sestamibi scan (scintimammography): In this procedure,

a small amount of a radioactive substance is injected into an arm vein.

A special camera then records where radiation has accumulated in the

3



breasts. The general consensus is that this test is less sensitive than

mammography, especially when the tumor is still small and most likely

to be curable.

Positron emission tomography (PET): PET is another type of nuclear

medicine study. Like the sestamibi test, a tiny amount of radioactive

substance is injected into an arm vein. Unlike most other imaging tests

that are based on changes tumors cause in the body’s structure, PET

scanning depends on changes in tissue metabolism. PET is being used

to detect metastatic disease (cancer spread) and has been successful in

that role. The PET scan is not currently used for primary breast cancer

detection because it does not reliably detect tumors smaller than 1 cm,

but research is being done to improve the accuracy of this test.

Thermography (Thermal imaging): Thermography is a way of measur-

ing and mapping the heat on the surface of the breast with the use of a

special heat-sensing camera. It is based on the idea that the temperature

rises in areas with increased blood flow and metabolism, which could sig-

nify a tumor. Thermography has been around for several decades, and

some scientists are still attempting to improve the technology for use in

breast imaging. However, no study has ever shown that it is an effective

screening tool for early detection of breast cancer.

Digital mammograms: This is similar to standard mammography in that x-

rays are used to produce an image of the breast. The differences being the

way the image is captured electronically, recorded, viewed on a computer

monitor, and stored. Digital images can be transmitted over phone lines

to another location for remote consultation with breast specialists. A

digital mammogram is commonly used in stereotactic imaging to guide

breast biopsy because it is rapid and reliable. Digital mammograms are

not yet widely available in hospitals around the country.

4



Computed tomography laser mammography (CTLM): This is an ex-

perimental imaging test using laser technology to examine different planes

of breast tissue and produce a 3D view of the breast. The technique does

not use radiation and does not require breast compression. This test is

only available in clinical studies and has not yet been approved for gen-

eral use.

Optical imaging: This involves either passing light through the breast or re-

flecting light off of it and then somehow measuring the light that returns.

The technique does not use radiation and does not require breast com-

pression. Optical imaging might be useful at some point for detecting

tumors or the blood vessels supplying them.

For more information, see the following references: American Cancer Society

2005b, Edell and Eisen 1999, Singhal and Thomson 2004.

1.3 Related Work for Breast Cancer Detection with Electrical

Impedance Tomography

Various researches have been conducted on freshly-excised malignant

breast tissues compared to surrounding normal tissues in an in vitro impedance

cell. From these results and comparison with adjacent normal tissues, it was

found that breast tumors have typically higher conductivity and permittivity

(Fricke and Morse 1926, Jossinet 1998, Surowiec et al. 1988). This means that

there are significant differences in electric properties between normal breast

tissues and breast tumors. Therefore, electrical impedance of tissue could be

used as an indicator for breast cancer detection (Zou and Guo 2003). Electri-

cal impedance-based techniques as new imaging modalities for breast cancer

detection have been developed.

EIT is one of these noninvasive impedance imaging techniques. EIT

has been widely investigated by over 20 research groups for its clinical appli-
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cations, for example, gastric function, pulmonary ventilation, perfusion, and

hyperthermia (Boone et al. 1997). Breast cancer detection has also been

studied by few research groups. A review of EIT techniques for breast cancer

detection is presented in Zou and Guo (2003).

Israeli group (T-Scan): T-Scan 2000 (TranScan Medical Inc.) was a com-

mercially available impedance imaging device for breast cancer detection.

T-Scan was approved by the U.S. Food and Drug Administration (FDA)

in 1999 to be used as an adjunct tool to mammography in helping detect

breast cancer (FDA 1999).

T-Scan generates a low-level electric signal that is transmitted into the

body. The resulting electric field is then measured by sensors in a non-

invasive probe placed on the breast. The scanning probe uses 256 sensors

in high-resolution mode and 64 sensors in normal-resolution mode. Mea-

surements are made over several frequencies using proprietary algorithms

to create and display a real-time electrical image of the breast along with

immediate results. The resulting impedance images of the breast tissue

can be used to help determine if the region of interest is a normal tissue

or a cancerous tumor (Imaginis 2000, Mirabel Medical 2002).

Moscow group (Centillion): The Centillion system has been developed by

the Moscow group and commercialized by TCI (Technology Commercial-

ization International Inc.). Small currents (0.5mA, 50kHz) are applied

into the breast tissue through a handheld device (compact array of 256

electrodes) and the resulting voltage measurements are taken within 20

seconds. These data are reconstructed by a modified back projection

method into direct-to-digital tomographic conductivity images of the

breast. Seven tomographic image slices are created within 40 seconds at

depths of 0.4 cm to 4.6 cm to detect and isolate tumors (TCI 2003).

Cherepenin et al. (2001) reported the results of its preliminary clinical

trial on 21 women. Eighty-six percent of examinations were found to

6



fully or partially agree with diagnoses made by X-ray mammography

and biopsy.

Toronto group (Z-Tech): The Z-Tech breast cancer detection system has

been built by the Toronto group. To begin the breast cancer screening

test a participant lies on her back on an examining table. Over 300

combinations of electrodes, one combination at a time, are selected for

impedance measurements throughout each breast. The entire procedure

requires only 3 minutes to complete.

The HEDA (homologous electrical difference analysis) method uses side-

by-side comparison of the impedance of many mirror image (homologous)

breast regions. HEDA results are calculated and reported immediately as

straightforward numerical values. There is no intrinsic delay in reading

an image (Z-Tech 2004).

Dartmouth group (EIS): The Dartmouth group built and tested a 32-

electrode, multi-frequency 2D EIS (electrical impedance spectroscopy)

system. This system produces absolute electrical conductivity and per-

mittivity values using a dual mesh scheme and Newton’s method (Dart-

mouth College 2001).

Osterman et al. (2000) have modified and deployed a 3-D EITS (spec-

troscopic electrical impedance tomography) system to investigate the

feasibility of delivering EITS breast examinations on a routine basis.

Imaging examinations have consisted of the acquisition of multi-channel

(10 kHz to 1 MHz) measurements at ten frequencies on both breasts.

Participants lie prone on an examination table with the breast to be

imaged pendant in the electrode array that is located below the ta-

ble. Thirteen participants were tested. The examination took about 10

minutes per breast including electrode-positioning time. Structural fea-

tures in the results of the EITS images correlated with limited clinical

information available on participants. However, localized near-surface
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electrode artifacts were evident in the reconstructed images.

Rensselaer group (ACT3 and ACT4): The Rensselaer group has also stud-

ied breast cancer detection using the ACT3 (adaptive current tomogra-

phy) system which is a real-time impedance imaging instrument (Cook

et al. 1994, Edic et al. 1995).

Mueller et al. (1999) studied the use of a single 4× 4 rectangular elec-

trode array to collect the voltage measurements and reconstruct 3-D

conductivity images using a linearization algorithm. Phantom studies

were conducted using a rectangular tank filled with a saline solution.

Electrode-sized agar targets (5×7×5.5 mm) were suspended in a phan-

tom at several positions. The conductivity (300 mS/m) of the saline

solution was chosen to approximate that of healthy breast tissue, and

the conductivity (900 mS/m) of the agar was chosen to approximate

that of a breast tumor. They applied normalized eigenfunction current

patterns on 16 electrodes that maximize the voltage signal (Gisser et

al. 1990, Isaacson 1986). Their experimental results showed that even

though the inhomogeneity’s position was well characterized in the plane

of the electrode, the depth resolution was still poor in the reconstruction.

Choi et al. (2004) presented a simplified model of the mammography

geometry which was modeled as a rectangular box with 4× 4 electrode

arrays on the top and bottom planes. A forward model was derived for

the homogeneous conductivity distribution and validated by experiment

using a phantom tank. Their results showed that the predicted voltages

were in a good agreement with the measured voltages.

Kao et al. (2005) reproduced Mueller et al.’s study and designed a new

test phantom with a single 5 × 5 planner electrode array. They used

the combination of the Tikhonov and NOSER-type regularizations in

the reconstruction algorithm. Their experimental results showed that

the combination of two regularizations allows static images of a 2 cm

8



cube target placed 2 cm distant from the electrode array and difference

images of a 1 cm cube target placed 4 cm away from the array.

The improved instrument ACT4 is presently in its final stage of con-

struction. The ACT4 system can support up to 64 electrodes with an

excitation frequency that is selectable from a discrete set in the range

from 300 Hz to 1 MHz for breast cancer detection (Ross 2003, Liu et

al. 2005). The Rensselaer group is preparing an initial clinical trial for

breast cancer detection at Massachusetts General Hospital (MGH) in

late 2005.

1.4 Overview of the Thesis

In this thesis, the 2-D circular and 3-D mammography geometries are

considered, and reconstruction algorithms are applied to both geometries. In

the 2-D circular geometry, we evaluate the reconstruction performances of the

proposed algorithms using FEM simulation data and experimental data. In

the 3-D mammography geometry, we consider phantom studies for the breast

cancer detection. This work was accomplished with the experimental data of

ACT3 and ACT4 systems and was carried out with the help of the Rensselaer

group (Impedance Imaging Lab). The aims of the thesis are:

• to find the analytical forward solution of the mathematical model, espe-

cially, the complete electrode model using Fourier series form.

• to introduce the fast inversion using a spectral representation in the 2-D

and 3-D reconstructions.

• to find the synthesized complex voltages that are combined with the

complex data (applied complex voltages and measured complex currents)

obtained from the ACT4 system.
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• to present a dynamic impedance imaging technique with the aid of the

linearized Kalman filter for the real-time reconstruction of the human

chest.

• to apply reconstruction algorithms presented in this thesis to phantom

studies of the mammography geometry for breast cancer detection.

The main goal of the present work is to apply a 3-D reconstruction

algorithm with the planar electrode geometry to the early detection of breast

cancer.

This thesis consists of five chapters. Beginning with an overview of EIT

and a review of breast cancer detection, the application of EIT to breast cancer

detection is introduced in Chapter 1. In Chapter 2, the forward problem using

an analytical method in EIT is presented, that is, the analytical solutions of

the mathematical models (gap model, ave-gap model and complete electrode

model) in the 2-D circular and 3-D mammography geometries are discussed.

And the characteristic resistance is presented to evaluate the accuracy of the

mathematical models. In Chapter 3, derivation of the Jacobian matrix for the

analytical solution and synthesized voltages for combining with the complex

data is discussed. The reconstruction algorithms are also presented. Exper-

imental studies are discussed in Chapter 4. In Chapter 5, the results of the

thesis are summed up and suggestions for further development are given.
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II. The Forward Problem Using an Analytical

Method in EIT

In EIT, small currents are injected through electrodes placed on the

surface S of a body Ω and the corresponding voltages are measured through

these electrodes. The forward problem in electrical impedance imaging is to

compute the voltages on the boundary S of the body Ω given the internal

admittivity (impedivity) distribution and applied currents.

In this chapter, the 2-D circular and 3-D mammography geometries

are considered. In the 2-D circular geometry, we try to find the analytical

solutions of the electrode mathematical models: gap model, ave-gap model and

complete electrode (CE) model. The Rensselaer group has mainly used the

gap model for the imaging reconstructions. Somersalo et al. (1992) introduced

the solution of the CE model using the coercive bilinear form. In the section

2.2, we try to find the analytical solution of the CE model in another approach.

In the 3-D mammography geometry, we try to find the analytical solutions of

the electrode mathematical models: gap model, ave-gap model. Choi et al.

(2004) presented a simplified mammography geometry model which has 4× 4

electrode arrays on the top and bottom planes (32-electrode) using the ave-

gap model. In the section 2.3, we reproduce Choi et al.’s study and designed

a new test phantom with 6× 6 electrode array on the top and bottom planes

(four electrodes on each array are disconnected in the experimental study for

the 64-electrode system).

2.1 Physical Model in EIT

The physical relationship between the internal admittivity (impedivity)
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distribution and the boundary voltages is governed by a partial differential

equation with appropriate boundary conditions. Mathematically, this can be

formulated as follows: If u(p) is the electric potential and γ(p) is the internal

admittivity distribution in the body Ω, then u(p) satisfies

∇ · γ(p)∇u(p) = 0, for p in Ω (2.1)

with boundary condition

γ(p)
∂u(p)
∂ν

= j(p), for p on S (2.2)

where ν denotes the unit outward normal to the body and j(p) denotes the

current density applied to the surface S of the body. The amount of current

leaving the body must be the same as the amount entering (charge conserva-

tion theorem), which implies

∫

S
j(p)dS = 0 (2.3)

and a choice of the ground or zero potential is made

∫

S
u(p)dS = 0. (2.4)

2.2 2-D Circular Geometry

In this section, we consider the 2-D circular geometry which is a simple

and well-studied geometry in the EIT field, and is depicted in Figure 2.1.

In Figure 2.1, the configuration of the `-th electrode e` will be defined

as

e` =
{

(r0, θ)| θ` − f∆θ

2
≤ θ ≤ θ` +

f∆θ

2

}
(2.5)

where r0 denotes the radius of this geometry, θ` denotes the angle of the center
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(a) (b)

Figure 2.1: Description of the 2-D circular geometry (a) top view and (b) side
view.

position of the `-th electrode and the angular fraction f is defined as

f ≡ θe`

∆θ
(0 ≤ f ≤ 1) (2.6)

where θe`
denotes the angle of the `-th electrode and ∆θ represents the angle of

division into L equal parts, that is, ∆θ ≡ 2π/L (L: the number of electrodes).

And the area |e`| of the `-th electrode can be expressed as

|e`| = w × h = r0f∆θh (2.7)

where w = r0f∆θ is the width of the electrode and h is the height.

2.2.1 Gap model

In practice, we cannot specify current densities, but rather only currents

which are applied through electrodes. Therefore, the boundary condition (2.2)

can be discretized using the gap model (Cheng et al. 1989, Cheney et al. 1990,

Somersalo et al. 1992), in which the current density is assumed to be zero

in the gaps between electrodes and is also assumed to be constant over the
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electrode region as follows:

j(θ) =





I`/|e`|, on e`, ` = 1, 2, . . . , L

0, otherwise
(2.8)

where I` denotes the current sent to the `-th electrode e`, |e`| represents the

area of the `-th electrode and L is the number of electrodes.

If the measured voltages are assumed to have the values of the potential

at the center of each electrode and the admittivity distribution γ is assumed to

be a constant admittivity (γ0) as an initial guess, then the governing equation

(2.1) can be expressed analytically by writing it in polar coordinates as follows

∇2u(r, θ) =
∂u2(r, θ)

∂r2
+

1
r

∂u(r, θ)
∂r

+
1
r2

∂u2(r, θ)
∂θ2

= 0. (2.9)

By using separation of variables technique u(r, θ) = R(r)Θ(θ) and sub-

stituting it into (2.9), we obtain the following equation

RrrΘ +
1
r
RrΘ +

1
r2

RΘθθ = 0 (2.10)

and rewriting (2.10),

r2

R

[
Rrr +

1
r
Rr

]
= −Θθθ

Θ
= ξ (2.11)

then the left-hand side will be a function of r and the right-hand side will be a

function of θ in (2.11), and for this equality to hold, the expression should be

a constant. Therefore, we obtain the following ordinary differential equations

Θθθ + ξΘ = 0 (2.12)

Rrr +
1
r
Rr − 1

r2
ξR = 0. (2.13)
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Here, the solution of (2.12) should be of the form

Θ(θ) = A cos(
√

ξθ) + B sin(
√

ξθ) (2.14)

and u(r, θ) is periodic with period 2π, Θ(θ +2π) = Θ(θ). So, a constant ξ will

be √
ξ = n, ξ = n2, n = 0, 1, 2, . . . . (2.15)

From (2.13) and (2.15),

Rrr +
1
r
Rr − n2

r2
R = 0. (2.16)

Let the solution of (2.16) be of the form

R(r) = rα. (2.17)

Substituting (2.17) into (2.16), we obtain the solution as follows

R(r) =





rn + r−n, n = 1, 2, . . .

A ln r + B, n = 0
. (2.18)

In this solution, r−n and A ln r are not the desired solution, because they are

bounded at the center of the body where r = 0, and B must be zero to satisfy

the ground condition (2.4). So the solution of (2.16) should be

R(r) = rn, n = 1, 2, . . . . (2.19)

Hence, from (2.14) and (2.19), we can obtain the main solution of (2.9)

u(r, θ) =
∞∑

n=1

rn [An cos(nθ) + Bn sin(nθ)] . (2.20)
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This solution (2.20) should satisfy the boundary condition (2.2),

γ0
∂u(r0, θ)

∂r
= γ0

∞∑

n=1

nrn−1
0 [An cos(nθ) + Bn sin(nθ)] = j(θ). (2.21)

Let the Fourier series expansion of j(θ) be written as

j(θ) =
∞∑

n=1

[an cos(nθ) + bn sin(nθ)] (2.22)

where

an =
1
π

∫ 2π

0
cos(nθ)j(θ)dθ (2.23)

bn =
1
π

∫ 2π

0
sin(nθ)j(θ)dθ. (2.24)

Substituting (2.22) into (2.21) and using integral identities, we obtain coeffi-

cients An and Bn in (2.21)

An =
an

γ0nrn−1
0

, Bn =
bn

γ0nrn−1
0

(2.25)

and substituting (2.25) into (2.20), we can obtain the analytical solution as

u(r, θ) =
r0

γ0

∞∑

n=1

(
r

r0

)n 1
n

[an cos(nθ) + bn sin(nθ)] . (2.26)

Now, we try to find the Fourier coefficients an and bn. In (2.8), the

current density can be rewritten as follows

j(θ) =
L∑

l=1

Il

|el|χel
(θ) (2.27)

where

χel
(θ) =





1, when θl − f∆θ
2 ≤ θ ≤ θl + f∆θ

2

0, otherwise
. (2.28)
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Substituting (2.27) into (2.23) and (2.24), we have

an =
1
π

L∑

l=1

Il

|el|
∫ 2π

0
cos(nθ)χel

(θ)dθ

=
1
π

L∑

l=1

Il

|el|
∫ θl+f∆θ/2

θl−f∆θ/2
cos(nθ)dθ

=
2

nπ
sin

(
n

f∆θ

2

) L∑

l=1

Il

|el| cos(nθl) (2.29)

bn =
1
π

L∑

l=1

Il

|el|
∫ 2π

0
sin(nθ)χel

(θ)dθ

=
1
π

L∑

l=1

Il

|el|
∫ θl+f∆θ/2

θl−f∆θ/2
sin(nθ)dθ

=
2

nπ
sin

(
n

f∆θ

2

) L∑

l=1

Il

|el| sin(nθl). (2.30)

Therefore, when the k-th current Ik is injected through the `-th electrode e`,

the k-th voltage Uk(θ`) induced on the `-th electrode e` in the gap model will

be

Uk(θ`) = uk(r0, θ`) =
r0

γ0

∞∑

n=1

1
n

[an,k cos(nθ`) + bn,k sin(nθ`)] (2.31)

where θ` = 2π`/L (` = 1, 2, . . . , L), an,k and bn,k represent the Fourier coeffi-

cients as

an,k =
2

nπ
sin

(
n

f∆θ

2

) L∑

l=1

Il,k

|el| cos (nθl) (2.32)

bn,k =
2

nπ
sin

(
n

f∆θ

2

) L∑

l=1

Il,k

|el| sin (nθl) . (2.33)

2.2.2 Ave-gap model

The ave-gap model has the same boundary condition (2.2) as in the gap
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model and this model predicts the voltage on the electrode as the average of

the potential on that electrode given by the gap model in (2.26), that is,

U(θ`) =
1
|e`|

∫

e`

u(r0, θ`)dS =
1
|e`|

∫ θ`+f∆θ/2

θ`−f∆θ/2
u(r0, θ`)dS. (2.34)

Therefore, when the k-th current Ik is injected through the `-th electrode e`,

the k-th voltage Uk(θ`) induced on that electrode in the ave-gap model will be

Uk(θ`) =
2r2

0h

γ0|e`|
∞∑

n=1

1
n2

sin
(

n
f∆θ

2

)
[an,k cos(nθ`) + bn,k sin(nθ`)] (2.35)

where the Fourier coefficients an,k and bn,k are the same as (2.32) and (2.33),

respectively.

The ave-gap model improves on the gap model, because the voltages in

the gap model have values of the potential at the center of each electrode,

while the voltages in the ave-gap model have average values of the potential

on each electrode. Both the gap and ave-gap model still overestimates the

resistivities because they ignore the shunting effect of the electrodes and also

the surface impedances that arise due to the electro-chemical effect between

the electrodes and the saline/body.

2.2.3 Complete electrode model

The complete electrode (CE) model is the most accurate electrode model

for EIT since it takes into account both the shunting effect of the electrodes

and the surface impedances between the electrodes and tissue (Cheng 1989,

Somersalo et al. 1992, Vauhkonen 1997, Vauhkonen 2004). The CE model uses

the same partial differential equation (2.1) inside the body Ω, but it replaces

the boundary condition (2.2) with

∫

e`

γ
∂u(r, θ)

∂r
dS = I`, ` = 1, 2, . . . , L (2.36)
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γ
∂u(r, θ)

∂r
= 0 on S\

L⋃

`=1

e` (2.37)

u(r, θ) + z` γ
∂u(r, θ)

∂r
= U` on e`, ` = 1, 2, . . . , L (2.38)

where z` is the surface impedance between the `-th electrode and tissue, U` is

the voltage on the `-th electrode. In addition, the following two constraints for

the injected currents and measured voltages are needed to ensure the existence

and uniqueness of the solution, that is, currents I` satisfy

L∑

`=1

I` = 0 (2.39)

in order to satisfy the conservation of charge, and voltages U` satisfy

L∑

`=1

U` = 0 (2.40)

in order to specify the ground or zero potential.

For the solution of the CE model using the analytical method, the pro-

cedure starts with the variational formulation (weak form) of the problem such

as the procedure in the FEM (Vauhkonen 1997, Vauhkonen 2004). For more

information of the variational formulation for the CE model, see Somersalo et

al. (1992). The variational form of the CE model is of form

B((u, U), (v, V )) =
L∑

`=1

I`V` for any (v, V ) ∈ H1(Ω) (2.41)

where B((u,U), (v, V )) is defined as

B((u,U), (v, V )) =
∫

Ω
γ∇u · ∇vdp +

L∑

`=1

1
z`

∫

e`

(u− U`)(v − V`)dS. (2.42)

The k-th solution uk(r, θ) in the analytical technique can be written in
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the form

uk(r, θ) =
∞∑

n=1

un,kϕn(r, θ) ≈
N∑

n=1

un,kϕn(r, θ) (2.43)

where N denotes the max number for coefficients of Fourier series and ϕn(r, θ)

are the basis functions as follows:

ϕn(r, θ) = rn cos(nθ), n = 1, 2, . . . , N/2 (2.44)

ϕn(r, θ) = r(n−N/2) sin{(n−N/2)θ}, n = N/2 + 1, . . . , N. (2.45)

Here, as N increases, values of the basis functions become larger, which causes

the system matrix to be singular. To avoid this singular problem, we need the

radius mapping, 0 ≤ r ≤ r0 7−→ 0 ≤ r̂ ≤ r̂0(= 1), where r̂ = r/r0. Hence, we

can consider the following boundary conditions in the unit circular body Ω̂.

∫

ê`

γ
∂u(r̂, θ)

∂r̂
dŜ = I`, ` = 1, 2, . . . , L (2.46)

γ
∂u(r̂, θ)

∂r̂
= 0 on Ŝ\

L⋃

`=1

ê` (2.47)

u(r̂, θ) + ẑ` γ
∂u(r̂, θ)

∂r̂
= U` on ê`, ` = 1, 2, . . . , L. (2.48)

Here, we obtain the same solution uk(r̂, θ) in the unit circular body Ω̂ as the

solution uk(r, θ) in the circular body Ω whose radius is r0, but the surface

impedance z` will be changed as ẑ` = z`/r0. The basis functions can be

rewritten as

ϕn(r̂, θ) = r̂n cos(nθ), n = 1, 2, . . . , N/2 (2.49)

ϕn(r̂, θ) = r̂(n−N/2) sin{(n−N/2)θ}, n = N/2 + 1, . . . , N. (2.50)
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The k-th voltage Uk on the electrodes is approximated as

Uk =
L−1∑

`=1

β`,kN` (2.51)

where N1 = [1,−1, 0, . . . , 0]T , N2 = [1, 0,−1, 0, . . . , 0]T ∈ RL, etc. This choice

for N` is to make sure that the constraint (2.40) is fulfilled. This voltage Uk

can be written in the matrix form as

Uk = Nβk (2.52)

where N ∈ RL×(L−1) is a sparse matrix such that

N ≡ [N1,N2,N3, . . . ,NL−1] =




1 1 · · · 1

−1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1




. (2.53)

Now, substituting (2.43) and (2.51) into the variational formulation

(2.41) and by choosing v = ϕm and V = Nl, when the k-th current pattern Ik

is applied to the unit circular body, we obtain the k-th system equation that

can be written in the matrix form as

A xk = fk (2.54)

where the solution xk ≡ [uk, βk]
T ∈ CN+L−1, uk = [u1,k, u2,k, . . . , uN,k]

T and

βk = [β1,k, β2,k, . . . , βL−1,k]
T are coefficients to be determined, and the data

vector fk ≡ [0, Ĩk]T , 0 = [0, 0, . . . , 0]T ∈ CN and Ĩk = [I1,k−I2,k, I1,k−I3,k, . . . ,

I1,k − IL,k]T ∈ CL−1. Thus the solution xk can be solved as

xk = A−1fk. (2.55)
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And the system matrix A ∈ C(N+L−1)×(N+L−1) is the block matrix of the form

A ≡

 Q+ B CN

(CN )T N TDN


 (2.56)

where

Qn,m ≡
∫

Ω̂
γ0∇ϕn · ∇ϕmdp̂, n,m = 1, 2, . . . , N (2.57)

Bn,m ≡
L∑

`=1

1
ẑ`

∫

ê`

ϕnϕmdŜ, n, m = 1, 2, . . . , N (2.58)

Cn,l ≡ − 1
ẑl

∫

êl

ϕndŜ, n = 1, 2, . . . , N, l = 1, 2, . . . , L

D`,l ≡




|ê`|
ẑ`

, ` = l

0, ` 6= l
, `, l = 1, 2, . . . , L (2.59)

where |ê`| is the area of the `-th electrode in the unit circular body Ω̂. For

another analytical forward solution, see Somersalo et al. (1992).

2.2.4 Comparison of the characteristic resistance

The relationship between currents I and voltages V is experimentally

determined to be linear. Thus we can write

V = Z(ζ)I (2.60)

where Z(ζ) is called the impedance matrix which is the Neumann-to-Dirichlet

map, that is, it maps currents to voltages. In this section, we only consider

the real part of the impedance matrix, that is, the resistance matrix R(ρ).

The nonzero eigenvalues of R(ρ) are called the characteristic resistances ρk,

and the corresponding eigenvectors are the characteristic currents Tk (Cheng

et al. 1989), that is,

R(ρ)Tk = ρkTk. (2.61)
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We order the characteristic resistances ρk and characteristic currents Tk

by the convention

ρ1 ≥ ρ2 ≥ ρ3 ≥ · · · ≥ ρL−1 ≥ 0. (2.62)

The characteristic currents Tk are orthonormal, that is,

〈Tk, Tτ 〉 =
L∑

`=1

T`,k T`,τ = δk,τ (2.63)

where the bracket 〈·, ·〉 denotes the inner product and δk,τ denotes the Kro-

necker delta, that is, δk,τ = 0 for k 6= τ , δk,τ = 1 for k = τ . Therefore, an

arbitrary current pattern Iτ can be expanded as

Iτ =
L−1∑

k=1

〈Iτ , Tk〉Tk (2.64)

and the resulting voltage pattern Vτ can be found by

Vτ = R(ρ) Iτ = R(ρ)
L−1∑

k=1

〈Iτ , Tk〉Tk =
L−1∑

k=1

〈Iτ , Tk〉 ρkTk. (2.65)

In other words, in order to solve the model for arbitrary applied currents, we

only need to find the characteristic current Tk and resistances ρk.

When the currents Tk are applied to the circular phantom and the corre-

sponding voltages Vk are measured in millivolts, the characteristic resistances

ρexp
k for experimental data can be found by

ρexp
k =

〈Vk, Tk〉
〈Tk, Tk〉 . (2.66)

Figure 2.2 shows the computed characteristic resistances for the different

mathematical models compared with experimental data. As can be expected,

the continuum model and gap model overestimate the resistivity of the tank

because they ignore the shunting effect of the electrodes and also the surface
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Figure 2.2: The product of characteristic resistance times spatial frequency is
plotted versus spatial frequency for spatial frequencies between 1
and 16. Experimental measurements made with a homogeneous
saline phantom of 156.25 Ω-cm resistivity are shown as asterisks.

impedances. And the ave-gap model improves on the gap model because the

voltages in the ave-gap model have average values of the potential on each

electrode, but this model still overestimates the resistivity. The complete

electrode (CE) model is the most accurate electrode model since it takes into

account both the shunting effect of the electrodes and the surface impedances

between the electrodes and the saline.

2.3 3-D Mammography Geometry

In this section, we consider the 3-D mammography geometry to image

the impedance distribution of the breast. Figure 2.3 shows a schematic dia-

gram of the X-ray mammography geometry and the simplified mammography

24



(a) X-ray mammography (b) The simplified model
(American Cancer Society 2005b) for the mammography geometry

Figure 2.3: Schematic diagram of the mammography geometry and its simpli-
fied model (a) In X-ray mammography, the breast is flattened by
two plates and X-ray images are taken. (b) The mammography
geometry is modeled as a rectangular box with electrodes on the
top and bottom planes.

geometry model for the electrical impedance imaging. In the X-ray mam-

mography, the breast is compressed between two radiolucent plates and two

dimensional X-ray images of the breast are taken. In EIT, in order to image

the impedance distribution of the breast, electrodes need to be placed so that

they are in contact with upper and lower flattened surfaces of the breast. This

simplified geometry is modeled as a rectangular box with electrodes on the

top and bottom planes as shown in Figure 2.3(b).

In Figure 2.4, the configuration of the (a, b)-th electrode e(a,b) will be

defined as

e(a,b) =
{

(x, y)| x(a,b) −
lx
2
≤ x ≤ x(a,b) +

lx
2

, y(a,b) −
ly
2
≤ y ≤ y(a,b) +

ly
2

}

(2.67)

where the center point (x(a,b), y(a,b)) of the (a, b)-th electrode e(a,b) will be

x(a,b) = δx2 +(a−1)×δx+
2a− 1

2
× lx, y(a,b) = δy2 +(b−1)×δy+

2b− 1
2

× ly

(2.68)
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Figure 2.4: Description of the top plane with 32 electrodes in the 3-D mam-
mography geometry. The shaded squares represent the electrodes.

where a = 1, 2, . . . , Lx, b = 1, 2, . . . , Ly, Lx and Ly are the number of the

electrodes, δx and δy are length of gaps between electrodes, δx2 and δy2 are

length of gaps between the electrode and edge, lx and ly are length of the

electrode in x-, y-direction, respectively at the top plane. And the bottom

plane has the same description of the electrodes as the top plane.

2.3.1 Gap model

The boundary condition (2.2) can be discretized using the gap model, in

which the current density is assumed to be zero in the gaps between electrodes

and be constant over the electrode region as follows:

j(x, y) =





I(a,b)/|e(a,b)|, on e(a,b), a = 1, 2, . . . , Lx, b = 1, 2, . . . , Ly

0, otherwise
(2.69)
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where I(a,b) denotes the current sent to the (a, b)-th electrode e(a,b), |e(a,b)|
represents the area of the (a, b)-th electrode.

If the measured voltages are assumed to have the values of the potential

at the center of each electrode and the admittivity distribution γ is assumed to

be a constant admittivity (γ0) as an initial guess, then the governing equation

(2.1) can be expressed as follows

∇2u(x, y, z) = 0, 0 ≤ x ≤ h1, 0 ≤ y ≤ h2, −h3 ≤ z ≤ 0 (2.70)

where h1, h2, h3 are the dimensions of the mammography geometry model as

illustrated in Figure 2.3(b). Here, the current is assumed to flow only from

the electrodes on the top plane to the electrodes on the bottom plane and it

is assumed that no current can flow through the side walls of the rectangular

tank. Hence, this replaces the boundary condition (2.2) with

γ0
∂u(x, y, z)

∂x

∣∣∣∣
x=0

= 0, γ0
∂u(x, y, z)

∂x

∣∣∣∣
x=h1

= 0 (2.71)

γ0
∂u(x, y, z)

∂y

∣∣∣∣
y=0

= 0, γ0
∂u(x, y, z)

∂y

∣∣∣∣
y=h2

= 0 (2.72)

γ0
∂u(x, y, z)

∂z

∣∣∣∣
z=0

= jT(x, y) (2.73)

γ0
∂u(x, y, z)

∂(−z)

∣∣∣∣
z=−h3

= jB(x, y) (2.74)

where the superscript T and B denote the top plane and bottom plane, re-

spectively.

By using separation of variables technique u(x, y, z) = X(x)Y (y)Z(z)

and substituting it into (2.70), we obtain the following equation

XxxY Z + XYyyZ + XY Zzz = 0 (2.75)
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and rewriting (2.75),

Xxx

X
= −

(
Yyy

Y
+

Zzz

Z

)
= −ξ1 (2.76)

then the left-hand side will be a function of x, and for this equation to be

true, the expression should be a constant. Therefore, we obtain the following

ordinary differential equation with respect to x

Xxx + ξ1X = 0. (2.77)

Here, the solution of (2.77) should be of the form

X(x) = Ax cos(
√

ξ1x) + Bx sin(
√

ξ1x). (2.78)

After using the boundary condition (2.71), Bx = 0 and a constant ξ1 is

ξ1 =
(

nπ

h1

)2

, n = 0, 1, 2, . . . (2.79)

Hence, the solution of (2.77) is

Xn(x) = Ax cos
(

nπ

h1
x

)
, n = 0, 1, 2, . . . . (2.80)

We can rewrite the right-hand side of (2.76) as follows

Yyy

Y
= ξ1 − Zzz

Z
= −ξ2. (2.81)

Both sides of (2.81) must be a constant. Therefore, we obtain the following

ordinary differential equation with respect to y

Yyy + ξ2Y = 0. (2.82)
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Here, the solution of (2.82) should be of the form

Y (y) = Ay cos(
√

ξ2y) + By sin(
√

ξ2y). (2.83)

After using the boundary condition (2.72), By = 0 and a constant ξ2 is

ξ2 =
(

mπ

h2

)2

, m = 0, 1, 2, . . . (2.84)

Hence, the solution of (2.82) is

Ym(y) = Ay cos
(

mπ

h2
y

)
, m = 0, 1, 2, . . . . (2.85)

Looking at the top and bottom planes, from the right-hand side of (2.81),

Zzz

Z
= ξ1 + ξ2 =

(
nπ

h1

)2

+
(

mπ

h2

)2

= λ2
n,m (2.86)

where

λn,m ≡
√(

nπ

h1

)2

+
(

mπ

h2

)2

, n, m = 0, 1, 2, . . . . (2.87)

Rewriting (2.86), we obtain the following two equations with respect to z

Zzz − λ2
n,mZ = 0, when n 6= 0 or m 6= 0 (2.88)

Zzz = 0, when n = 0 and m = 0. (2.89)

Solving for these equations (2.88) and (2.89),

Zn,m(z) =





Az cosh(λn,mz) + Bz sinh(λn,mz), when n 6= 0 or m 6= 0

Az0 + Bz0z, when n = 0 and m = 0
.

(2.90)

Therefore, the linear combination of all the analytical solutions (2.80),

(2.85) and (2.90) are of the form
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u(x, y, z) = A0,0 + B0,0z

+
∞∑

n 6=0|m6=0

[An,m cosh(λn,mz) + Bn,m sinh(λn,mz)] cos(λnx) cos(λmy) (2.91)

where n 6= 0|m 6= 0 means n 6= 0 or m 6= 0, A0,0 ≡ AxAyAz0, B0,0 ≡ BxByBz0,

An,m ≡ AxAyAz, Bn,m ≡ BxByBz, and

λn,m ≡
√(

nπ

h1

)2

+
(

mπ

h2

)2

, λn ≡ nπ

h1
, λm ≡ mπ

h2
. (2.92)

Next step is to find the coefficients An,m and Bn,m. We need the bound-

ary conditions (2.73) and (2.74) to obtain these coefficients. At the top plane

(z = 0), differentiating (2.91) and substituting it into (2.73), we obtain

γ0
∂u(x, y, z)

∂z

∣∣∣∣
z=0

= γ0B0,0 + γ0

∞∑

n6=0|m6=0

λn,mBn,m cos(λnx) cos(λmy) = jT(x, y)

(2.93)

and taking double integral in both sides of (2.93), we obtain the coefficient

B0,0,

B0,0 =
jT0,0

γ0
, when n = 0 and m = 0 (2.94)

where

jT0,0 =
1

h1h2

∫ h1

0

∫ h2

0
jT(x, y)dxdy. (2.95)

After multiplying both sides of (2.93) by cos(λñx) cos(λm̃y), taking double

integral and using integral identities, we let jTn,m denote the Fourier coefficient

of jT(x, y) as

jTn,m =
4

h1h2

∫ h1

0

∫ h2

0
cos(λnx) cos(λmy)jT(x, y)dxdy (2.96)

then we obtain the following coefficient Bn,m,
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Bn,m =
jTn,m

γ0λn,m
, when n 6= 0 and m 6= 0 (2.97)

Bn,0 =
jTn,0

γ0λn,0
, when n 6= 0 and m = 0 (2.98)

B0,m =
jT0,m

γ0λ0,m
, when n = 0 and m 6= 0 (2.99)

where λn,0 = λn, λ0,m = λm and

jTn,0 =
2

h1h2

∫ h1

0

∫ h2

0
cos(λnx)jT(x, y)dxdy (2.100)

jT0,m =
2

h1h2

∫ h1

0

∫ h2

0
cos(λmy)jT(x, y)dxdy. (2.101)

Substituting (2.94) and (2.97) ∼ (2.99) into (2.93), the current density on the

top plane is obtained as

jT(x, y) = jT0,0 +
∞∑

n6=0|m6=0

jTn,m cos(λnx) cos(λmy). (2.102)

At the bottom plane (z = −h3), differentiating (2.91) and substituting

it into (2.74), we obtain

γ0
∂u(x, y, z)

∂(−z)

∣∣∣∣
z=−h3

= −γ0B0,0

−γ0

∞∑

n 6=0|m6=0

λn,m


−An,m sinh(λn,mh3)

+Bn,m cosh(λn,mh3)


cos(λnx) cos(λmy)

= jB(x, y) (2.103)

and the same expression as (2.102) for the current density on the bottom plane

can be written as follows

jB(x, y) = jB0,0 +
∞∑

n6=0|m6=0

jBn,m cos(λnx) cos(λmy). (2.104)
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Here, (2.103) and (2.104) must be the same. Hence, we obtain the coefficient

An,m,

An,m =
1

γ0λn,m

[
jTn,m

cosh(λn,mh3)
sinh(λn,mh3)

+ jBn,m

1
sinh(λn,mh3)

]
. (2.105)

Therefore, by substituting the coefficients An,m and Bn,m into (2.91)

and rewriting (2.91), we can obtain the main solution in a simpler form as

u(x, y, z) = uT(x, y, z) + uB(x, y, z) + u0,0(x, y, z) (2.106)

where

uT(x, y, z) =
1
γ0

∞∑

n6=0|m6=0

jTn,m cosh{λn,m(h3 + z)}
λn,m sinh(λn,mh3)

cos(λnx) cos(λmy) (2.107)

uB(x, y, z) =
1
γ0

∞∑

n6=0|m6=0

jBn,m cosh(λn,mz)
λn,m sinh(λn,mh3)

cos(λnx) cos(λmy) (2.108)

u0,0(x, y, z) =
jT0,0

γ0
z + A0,0 (2.109)

where A0,0 is arbitrary since it is a ground potential, so we can choose it to

be zero.

Now, we try to find the Fourier coefficient jn,m of the current density

on the top and bottom planes. In (2.69), the current density can be rewritten

as follows

j∗(x, y) =
L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
χe(a,b)

(x, y) (2.110)

where the superscript ∗ = T (top plane) or ∗ = B (bottom plane), |eT(a,b)| =

|eB(a,b)| = |e(a,b)| for all (a, b) and

χe(a,b)
(x, y) =





1, when (x, y) ∈ e(a,b)

0, otherwise
. (2.111)
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Substituting (2.110) into (2.96),

j∗n,m =
4

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
∫ h1

0

∫ h2

0
cos(λnx) cos(λmy)χe(a,b)

(x, y)dxdy

=
4

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
J (a,b)

n,m , when n 6= 0 and m 6= 0 (2.112)

where

J (a,b)
n,m ≡

∫ h1

0

∫ h2

0
cos(λnx) cos(λmy)χe(a,b)

(x, y)dxdy

=
4

λnλm
sin

(
λn

lx
2

)
cos(λnx(a,b)) sin

(
λm

ly
2

)
cos(λmy(a,b)). (2.113)

Substituting (2.110) into (2.100),

j∗n,0 =
2

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
∫ h1

0

∫ h2

0
cos(λnx)χe(a,b)

(x, y)dxdy

=
2

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
J (a,b)

n,0 , when n 6= 0 and m = 0 (2.114)

where

J (a,b)
n,0 ≡

∫ h1

0

∫ h2

0
cos(λnx)χe(a,b)

(x, y)dxdy

=
2ly
λn

sin
(

λn
lx
2

)
cos(λnx(a,b)). (2.115)

Substituting (2.110) into (2.101),

j∗0,m =
2

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
∫ h1

0

∫ h2

0
cos(λmy)χe(a,b)

(x, y)dxdy

=
2

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
J (a,b)

0,m , when n = 0 and m 6= 0 (2.116)
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where

J (a,b)
0,m ≡

∫ h1

0

∫ h2

0
cos(λmy)χe(a,b)

(x, y)dxdy

=
2lx
λm

sin
(

λm
ly
2

)
cos(λmy(a,b)). (2.117)

Substituting (2.110) into (2.95),

j∗0,0 =
1

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
∫ h1

0

∫ h2

0
χe(a,b)

(x, y)dxdy

=
1

h1h2

L∗x∑

a=1

L∗y∑

b=1

I∗(a,b)

|e(a,b)|
J (a,b)

0,0 , when n = 0 and m = 0 (2.118)

where

J (a,b)
0,0 ≡

∫ h1

0

∫ h2

0
χe(a,b)

(x, y)dxdy = lxly = |e(a,b)|. (2.119)

Here, J (a,b)
n,m , J (a,b)

n,0 , J (a,b)
0,m , and J (a,b)

0,0 are independent of the currents, and can

be pre-computed and stored.

Therefore, we can find the voltages on the top and bottom planes from

the potential solution (2.106) in the mammography geometry. The boundary

voltages UT(x, y) on the top plane (z = 0) are

UT(x, y) = u(x, y, 0) = uT(x, y, 0) + uB(x, y, 0) + u0,0(x, y, 0)

=
1
γ0

∞∑

n 6=0|m6=0

cos(λnx) cos(λmy)
λn,m

[
jTn,m

tanh(λn,mh3)
+

jBn,m

sinh(λn,mh3)

]
(2.120)

and the voltages UT(x(a,b), y(a,b)) induced on the (a, b)-th electrode in the gap

model are
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UT(a,b) = UT(x(a,b), y(a,b))

=
1
γ0

∞∑

n6=0|m6=0

cos(λnx(a,b)) cos(λmy(a,b))
λn,m

[
jTn,m

tanh(λn,mh3)
+

jBn,m

sinh(λn,mh3)

]
.

(2.121)

And the boundary voltages UB(x, y) on the bottom plane (z = −h3) are

UB(x, y) = u(x, y,−h3) = uT(x, y,−h3) + uB(x, y,−h3) + u0,0(x, y,−h3)

= −jT0,0

γ0
h3

+
1
γ0

∞∑

n 6=0|m6=0

cos(λnx) cos(λmy)
λn,m

[
jTn,m

sinh(λn,mh3)
+

jBn,m

tanh(λn,mh3)

]

(2.122)

and the voltages UB(x(a,b), y(a,b)) induced on the (a, b)-th electrode are

UB(a,b) = UB(x(a,b), y(a,b))

= −jT0,0

γ0
h3

+
1
γ0

∞∑

n6=0|m6=0

cos(λnx(a,b)) cos(λmy(a,b))
λn,m

[
jTn,m

sinh(λn,mh3)
+

jBn,m

tanh(λn,mh3)

]
.

(2.123)

2.3.2 Ave-gap model

The ave-gap model has the same boundary condition (2.71) ∼ (2.74) and

the same current density (2.69) as in the gap model and this model predicts

the voltage on the electrode as the average of the potential on that electrode

given by the gap model in (2.120) and (2.122), that is,
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UT(x, y) =
1

|eT(a,b)|
∫∫

eT
(a,b)

u(x, y, 0)dS, when z = 0 (2.124)

UB(x, y) =
1

|eB(a,b)|
∫∫

eB
(a,b)

u(x, y,−h3)dS, when z = −h3 (2.125)

Therefore, the voltages UT(x(a,b), y(a,b)) induced on the (a, b)-th electrode at

the top plane are

UT(a,b) = UT(x(a,b), y(a,b))

=
1

γ0|e(a,b)|
∞∑

n 6=0|m6=0

J (a,b)
n,m

λn,m

[
jTn,m

tanh(λn,mh3)
+

jBn,m

sinh(λn,mh3)

]
(2.126)

and the voltages UB(x(a,b), y(a,b)) induced on the (a, b)-th electrode at the

bottom plane are

UB(a,b) = UB(x(a,b), y(a,b))

= −jT0,0

γ0
h3 +

1
γ0|e(a,b)|

∞∑

n 6=0|m6=0

J (a,b)
n,m

λn,m

[
jTn,m

sinh(λn,mh3)
+

jBn,m

tanh(λn,mh3)

]

(2.127)

where J (a,b)
n,m , J (a,b)

n,0 , J (a,b)
0,m , and J (a,b)

0,0 are given in (2.113), (2.115), (2.117),

and (2.119), respectively.

2.4 Canonical Patterns

Since the applied current patterns have influence on the voltage mea-

surement data which contains the information about the unknown admittivity

distribution inside the body, it is necessary to apply specific current patterns

that maximize the voltage signal. It is known that the current patterns that
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maximize the voltage correspond to the eigenfunctions of the Neumann-to-

Dirichlet map (Gisser et al. 1990, Isaacson 1986).

In this thesis, we compute the eigenfunctions that maximize the voltage

signal for a homogeneous medium of the 3-D mammography geometry. The

procedure for computing the canonical current patterns is as follows.

(i) Guess L−1 orthonormal set of the current patterns Ik for which
∑L

`=1 I`,k =

0 and 〈Ik, Iτ 〉 = δk,τ (k, τ = 1, 2, . . . , L− 1).

(ii) Compute the voltages Uk (
∑L

`=1 U`,k = 0) that would result from applying

Ik to the forward solver with a homogeneous admittivity distribution (γ0 = 1).

(iii) Compute the inner product of the applied currents Iτ and the resulting

voltages Ux.

Rτ,x ≡ 〈Iτ , Ux〉 , τ, x = 1, 2, . . . , L− 1. (2.128)

(iv) Compute the eigenfunctions Ck, that is, eigenvectors of R in (2.128).

RCk = ρkCk, ρ1 ≥ ρ2 ≥ · · · ≥ ρL−1 ≥ 0. (2.129)

(v) Compute the new current patterns Inew
k which are orthogonal

Inew
k = IkCk. (2.130)

(vi) If the norm errors between ρk and ρnew
k are less than the tolerance ε, that

is,

‖ρk − ρnew
k ‖ < ε (2.131)

stop, otherwise replace Inew
k with Ik and go to step (ii).

(vii) Finally, scale the new current patterns Inew
k by the maximum amplitude

allowed.

In this procedure, the new current patterns usually converge after 2 ∼ 3
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iterations. These canonical currents maximize the voltage signals for a given

power. When using ACT4, we synthesize the voltages that would give rise to

these currents and apply these voltages instead. When these canonical currents

are normalized, we have the orthonormal set of the canonical currents, Tk. In

the inverse algorithm, we use the orthonormal set of the canonical currents.
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III. The Inverse Problem in EIT

In EIT, given the injected current patterns and their corresponding volt-

age measurements, the inverse problem is to determine the admittivity (im-

pedivity) distribution inside the body. The inverse problem is both ill-posed

and nonlinear with respect to the admittivity distribution. Because of an

ill-posedness, one has to consider the regularization method.

In this chapter, before the discussion of EIT reconstruction algorithms,

computation of the Jacobian matrix in EIT is given. After this, reconstruction

methods that are mainly used in the Rensselaer group, that is, linearization

and NOSER algorithm are reviewed. And other reconstruction algorithms,

that is, fast inversion algorithm and linearized Kalman filtering algorithm are

introduced to find the admittivity (impedivity) distribution inside the body.

3.1 Jacobian Matrix in EIT

In the inverse problem, the admittivity γ is assumed to be piecewise

constant, which can be expressed as

γ(p) =
Ns∑

s=1

γs χs(p) (3.1)

where Ns is the number of the mesh elements, χs(p) denotes the characteristic

function, that is, χs(p) = 1 for p contained in the s-th mesh element Ωs and

χs(p) = 0 otherwise. It will turn out to be more convenient to work with the

impedivity ζ, which is the reciprocal of the admittivity γ. Assumption (3.1)

in terms of the impedivity is
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ζ(p) =
Ns∑

s=1

ζs χs(p). (3.2)

In the inverse algorithm, the Jacobian, the derivative of the voltages

U(ζ) with respect to the impedivity distribution ζ is required. The Jacobian

matrix in EIT can be computed as follows. It is possible to write the k-th

applied current patterns Ik in terms of the orthonormal basis current patterns

Tτ as

Ik =
K∑

τ=1

〈Tτ , Ik〉Tτ , k = 1, 2, . . . , K (3.3)

where K (= L − 1) is the number of the applied current patterns and the

orthonormal basis current patterns Tτ satisfy

〈Tk, Tτ 〉 =
L∑

l=1

Tl,k Tl,τ = δk,τ , k, τ = 1, 2, . . . , K (3.4)

where the bracket 〈·, ·〉 denotes the inner product and δk,τ denotes the Kro-

necker delta, that is, δk,τ = 0 for k 6= τ , δk,τ = 1 for k = τ .

Multiplying both sides of (3.3) by the impedance matrix Z(ζ) which is

the Neumann-to-Dirichlet map, we obtain the following equation

Uk(ζ) = Z(ζ)Ik =
K∑

τ=1

〈Tτ , Z(ζ)Ik〉Tτ =
K∑

τ=1

〈Tτ , Uk(ζ)〉Tτ . (3.5)

Differentiating (3.5) with respect to each ζs, the derivative of the k-th voltages

Uk(ζ) becomes
∂Uk(ζ)

∂ζs
=

K∑

τ=1

〈
Tτ ,

∂Uk(ζ)
∂ζs

〉
Tτ . (3.6)

Here, the Jacobian matrix is denoted Js
`,k ≡ ∂U`,k(ζ)/∂ζs and it can be rewrit-

ten as

Js
`,k ≡

∂U`,k(ζ)
∂ζs

=
K∑

τ=1

Rs
k,τT`,τ (3.7)
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where

Rs
k,τ ≡

〈
Tτ ,

∂Uk(ζ)
∂ζs

〉
(3.8)

and Rs
k,τ can be computed as follows

Rs
k,τ ≡

〈
Tτ ,

∂Uk(ζ)
∂ζs

〉
=

〈
∂Uk(ζ)

∂ζs
, Tτ

〉
≈ 1

ζ2
s

∫

Ωs

∇uk(ζ) · ∇uτ (ζ)dp (3.9)

where Ωs is the s-th mesh element and uk(ζ) is the solution to the problem

(Cheney et al. 1990).

3.1.1 Gap model and ave-gap model

Let ζ0 denote the impedivity distribution in a homogeneous medium.

Given that the k-th current Tk in the orthonormal set of the basis functions

(canonical currents) is applied to the body, it can be shown that the k-th

potential uk is proportional to the k-th potential arising from a constant dis-

tribution of one. This fact is independent of the three models typically used for

calculating the boundary voltages: continuum model, gap model and ave-gap

model. Hence, it is possible to write the forward solution as

uk(ζ0) = ζ0uk(1) (3.10)

where uk(1) represents the forward solution that the impedivity inside the

body is constant and equal to 1. Therefore, Rs
k,τ in (3.9) can be rewritten

simply as

Rs
k,τ =

∫

Ωs

∇uk(1) · ∇uτ (1)dp. (3.11)

Note that the matrix R is independent of the measured voltage data, so it can

be pre-computed and stored for use with other reconstructions in the same

geometry.
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3.1.2 Complete electrode model

Let uk(ζ0) denote the k-th potential in a homogeneous medium, given

that the k-th orthonormal basis current Tk is applied to the body. In the CE

model, the k-th analytical solution uk(ζ0) in (2.43) can be written as

uk(ζ0) =
N∑

n=1

un,k(ζ0)ϕn. (3.12)

Substituting this solution (3.12) into the right-hand side of (3.9), we have

Rs
k,τ =

1
ζ2
0

∫

Ωs

∇uk(ζ0) · ∇uτ (ζ0)dp

=
1
ζ2
0

∫

Ωs

∇
(

N∑

n=1

un,k(ζ0)ϕn

)
· ∇

(
N∑

m=1

um,τ (ζ0)ϕm

)
dp

=
1
ζ2
0

N∑

n=1

N∑

m=1

un,k(ζ0)um,τ (ζ0)
∫

Ωs

∇ϕn · ∇ϕm dp (3.13)

where un,k(ζ0) and um,τ (ζ0) can be obtained from (2.55).

3.2 Linearization

The linearization approach as the 3-D reconstruction algorithm was in-

troduced by Mueller et al. (1999) to determine the conductivity distribution

using a single 4 × 4 rectangular electrode array. This algorithm is based on

the assumption that the spatially varying admittivity γ differs only slightly

from a constant admittivity γ0 by a perturbation η that is small in magnitude

relative to γ0.

When the k-th current pattern is applied to the body, the solution

uk(γ, p) = uk(γ) and the boundary condition to the inhomogeneous forward

problem from (2.1) and (2.2) are

∇ · γ(p)∇uk(γ) = 0, for p in Ω (3.14)
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γ(p)
∂uk(γ)

∂ν
= jk(p), for p on S (3.15)

and when the τ -th current pattern is applied, the solution uτ (γ0, p) = uτ (γ0)

and the boundary condition to the homogeneous forward problem from (2.1)

and (2.2) are

∇ · γ0∇uτ (γ0) = 0, for p in Ω (3.16)

γ0
∂uτ (γ0)

∂ν
= jτ (p), for p on S (3.17)

where p = (r, θ) for the 2-D circular geometry, p = (x, y, z) for the 3-D mam-

mography geometry.

Multiplying (3.14) and (3.16) by uτ (γ0) and uk(γ), respectively and

taking the volume integral, we obtain

∫

Ω
[uτ (γ0)∇ · {γ∇uk(γ)} − uk(γ)∇ · {γ0∇uτ (γ0)}] dp = 0 (3.18)

and an application of the divergence theorem yields

∫

S

[
uτ (γ0)γ

∂uk(γ)
∂ν

− uk(γ)γ0
∂uτ (γ0)

∂ν

]
dS =

∫

Ω
η∇uτ (γ0) · ∇uk(γ)dp (3.19)

where η ≡ γ − γ0.

Let Dk,τ be the term on the left-hand side of (3.19) as

Dk,τ ≡
∫

S
[uτ (γ0)jk − uk(γ)jτ ] dS. (3.20)

Substituting the approximation of the current density (2.27) (for the 2-D circu-

lar geometry) or (2.110) (for the 3-D mammography geometry) into (3.20) and

by applying the orthonormal basis current patterns Tk through the electrodes,

in the ave-gap model, we have
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Dk,τ =
L∑

`=1

[
T`,k

1
|e`|

∫

e`

uτ (γ0)dS − T`,τ
1
|e`|

∫

e`

uk(γ)dS

]

=
L∑

`=1

[T`,k U`,τ (γ0)− T`,τ V`,k(γ)] (3.21)

where U`,τ (γ0) is the τ -th computed voltage on the `-th electrode in the ho-

mogeneous case and V`,k(γ) is the k-th measured voltage on the `-th electrode

in the inhomogeneous case. In the CE model, rewriting (2.38),

uk(γ) = U`,k(γ)− z` γ
∂uk(γ)

∂ν
= U`,k(γ)− z` jk (3.22)

and substituting it into (3.20), we obtain

Dk,τ =
L∑

`=1

∫

e`

[{U`,τ (γ0)− z` jτ} jk − {V`,k(γ)− z` jk} jτ ] dS

=
L∑

`=1

∫

e`

[U`,τ (γ0)jk − V`,k(γ)jτ ] dS

=
L∑

`=1

[T`,k U`,τ (γ0)− T`,τ V`,k(γ)] . (3.23)

On the right-hand side of (3.19), linearizing uk(γ) about γ0, it yields

uk(γ) ≈ uk(γ0) + δuk(γ − γ0) = uk(γ0) + δuk(η) (3.24)

where δuk(η) = O(η). Substituting this linearization (3.24) into the right-hand

side of (3.19), we obtain

Dk,τ =
∫

Ω
η∇uk(γ0) · ∇uτ (γ0)dp + O(η2)

≈
∫

Ω
η∇uk(γ0) · ∇uτ (γ0)dp (3.25)
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where O(η2) is close to zero as η is small (|η|/γ0 ¿ 1). Here, we can guess

that the data matrix D ∈ CK×K is the symmetry matrix.

We can express η as a linear combination of the characteristic functions

from (3.1)

η(p) =
Ns∑

s=1

ηs χs(p) (3.26)

and substituting it into (3.25), we obtain

Dk,τ =
∫

Ω

(
Ns∑

s=1

ηsχs(p)

)
∇uk(γ0) · ∇uτ (γ0)dp

=
Ns∑

s=1

ηs

∫

Ωs

∇uk(γ0) · ∇uτ (γ0)dp

=
Ns∑

s=1

ηsAs
k,τ (3.27)

where

As
k,τ ≡

∫

Ωs

∇uk(γ0) · ∇uτ (γ0)dp

=
1
γ2

0

Rs
k,τ (3.28)

where Rs
k,τ is computed from (3.9) in a homogeneous medium. Reshaping

(3.27) to the vector form, it can be written in a simpler form as

A η = D (3.29)

where A ∈ CKK×Ns , η ∈ CNs and D ∈ CKK .

In EIT, the inverse problem is inherently ill-posed. Since the severe ill-

posedness of the problem is evident in the distribution of the singular value

of the matrix A, it is necessary to regularize the matrix A to make it well-

conditioned. Therefore, we solve the following system
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(ATA+ αG)
η = AT D (3.30)

instead of (3.29), where 0 < α < 1 is a small regularization parameter and

G ∈ CNs×Ns is the regularization matrix. This method is equivalent to solving

the least-squares minimization problem such as

min
η

[‖A η −D‖2
2 + α‖G η‖2

2

]
. (3.31)

Here, we choose the regularization matrix, G = I (the identity matrix) for the

Tikhonov regularization and G = diag(ATA) for the NOSER-type regulariza-

tion. Therefore, solving (3.30), we obtain this solution η as

η =
(ATA+ αG)−1AT D. (3.32)

3.3 Fast Inversion using a Spectral Representation

As we increase the number of electrodes, it takes more time to compute

the admittivity distribution γ in the inverse problem. In this section, in order

to reduce the computation time in the linearization method, we try to modify

the linearization method using the eigenvector and eigenvalue in (3.32).

Rewriting the inversion term in (3.32), we have

(ATA+ αG)−1
=

(
ATA+ αG1/2G1/2

)−1

=
[
G1/2

(
G−1/2ATAG−1/2 + α I

)
G1/2

]−1

= G−1/2
(
G−1/2ATAG−1/2 + α I

)−1
G−1/2

= G−1/2 (P + α I)−1 G−1/2 (3.33)

where I is the Ns × Ns identity matrix, the regularization matrix G is the
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diagonal matrix and

P ≡ G−1/2ATAG−1/2. (3.34)

Let Ψs and ψs be the s-th eigenvector and eigenvalue of the matrix P in (3.34),

respectively. Then we obtain

PΨs = ψsΨs, s = 1, 2, . . . , Ns (3.35)

where Ψs =
[
Ψs

1,Ψ
s
2, . . . ,Ψ

s
Ns

]T and since Ψs is the orthonormal basis fuction,

it satisfies
〈
Ψs, Ψt

〉
= (Ψs)T Ψt = δs,t (3.36)

where the bracket 〈·, ·〉 denotes the inner product and δs,t is the Kronecker

delta. Given any vector φ, it can be expressed as follows:

φ =
Ns∑

s=1

Ψs 〈Ψs, φ〉 =
Ns∑

s=1

Ψs (Ψs)T φ. (3.37)

Now, using the eigenvector Ψs and eigenvalue ψs of the matrix P, the

inversion term in the right-hand side of (3.33), that is, (P + α I)−1 can be

expressed as

(P + α I)−1 =
Ns∑

s=1

1
ψs + α

Ψs (Ψs)T . (3.38)
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We can prove the above equation (3.38) using (3.35) and (3.37),

I = (P + α I)
Ns∑

s=1

1
ψs + α

Ψs (Ψs)T (3.39)

=
Ns∑

s=1

1
ψs + α

(PΨs + α IΨs) (Ψs)T

=
Ns∑

s=1

1
ψs + α

(ψsΨs + αΨs) (Ψs)T

=
Ns∑

s=1

ψs + α

ψs + α
Ψs (Ψs)T

=
Ns∑

s=1

Ψs (Ψs)T

= I

where I is the identity matrix. Substituting (3.38) into (3.33), we obtain

(ATA+ αG)−1
= G−1/2

[
Ns∑

s=1

1
ψs + α

Ψs (Ψs)T

]
G−1/2. (3.40)

Therefore, (3.32) can be modified as follows:

η =
(ATA+ αG)−1AT D

= G−1/2

[
Ns∑

s=1

1
ψs + α

Ψs (Ψs)T

]
G−1/2AT D. (3.41)

Here, A and ATA can be pre-computed off-line, G−1/2, the eigenvector Ψs and

eigenvalue ψs of the matrix P can also be pre-calculated. Note that we don’t

need to compute the inverse matrix in the inverse problem of (3.41), so it is

possible to reduce the computation time with this approach in the real-time

application.
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3.4 NOSER Algorithm

The NOSER algorithm, called Newton’s One Step Error Reconstructor

used by the Impedance Imaging group at Rensselaer Polytechnic Institute, is

a least squares method. This algorithm attempts to solve the inverse prob-

lem in EIT by employing one step of Newton’s method to minimize the sum

of the squared error between experimentally measured voltages and voltages

calculated by a forward solver (Cheney et al. 1990).

3.4.1 Formulation of the NOSER algorithm

Taking the sum of the squared difference between experimentally mea-

sured voltages Vk and voltages Uk(ζ) obtained from a forward solution, the

square error equation can be written as

E(ζ) =
K∑

k=1

‖Vk − Uk(ζ)‖2 =
K∑

k=1

L∑

`=1

[V`,k − U`,k(ζ)]2 (3.42)

where K is the number of applied patterns, L is the number of electrodes and

ζ is the impedivity distribution.

We consider the error equation (3.42) as a function of Ns variables,

ζ1, ζ2, . . . , ζNs from (3.2). To minimize this function, we take the partial deriv-

ative with respect to the s-th variable ζs and set it to zero:

∂E(ζ)
∂ζs

= −2
K∑

k=1

L∑

`=1

[V`,k − U`,k(ζ)]
∂U`,k(ζ)

∂ζs
= 0. (3.43)

If we let Fs(ζ) be the left-hand side of (3.43),

Fs(ζ) ≡ ∂E(ζ)
∂ζs

= −2
K∑

k=1

L∑

`=1

[V`,k − U`,k(ζ)]
∂U`,k(ζ)

∂ζs
(3.44)
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then we can write the following notation

F (ζ) = [F1(ζ), F2(ζ), . . . , Fs(ζ), . . . , FNs(ζ)]T = 0. (3.45)

In the linearized approach, in order to obtain the solution of (3.45), F (ζ)

is approximated with the first order Taylor polynomial at the initial guess ζ0

as

F (ζ) = F (ζ0) + H(ζ0)(ζnew − ζ0) = 0 (3.46)

where H(ζ0) ≡ F ′(ζ0) is called the Hessian matrix. For the new parameter

ζnew, rearranging this equation, then we can obtain the NOSER algorithm as

ζnew = ζ0 − [H(ζ0)]
−1 F (ζ0) (3.47)

and this is one step of Newton’s method.

3.4.2 Determinations of F (ζ0) and Hessian matrix H(ζ0)

Before computing the new parameter ζnew in the NOSER algorithm

(3.47), we have to determine the quantities, F (ζ0) and H(ζ0).

First, using the definition of the Jacobian Js
`,k in (3.7), the component

of F (ζ0) in (3.44) can be calculated as

Fs(ζ0) = −2
K∑

k=1

L∑

`=1

[V`,k − U`,k(ζ0)]
∂U`,k(ζ0)

∂ζs

= −2
K∑

k=1

L∑

`=1

[V`,k − U`,k(ζ0)]Js
`,k (3.48)

and applying the vector inner product notation, this equation can be rewritten

as

Fs(ζ0) = −2
K∑

k=1

〈[Vk − Uk(ζ0)] , Js
k〉 . (3.49)

To find a component of the Hessian matrix H(ζ0), Fs(ζ0) must be dif-
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ferentiated with respect to the t-th variable ζt. Mathematically, this can be

expressed as

Hs,t(ζ0) =
∂

∂ζt

∂E(ζ0)
∂ζs

, s, t = 1, 2, . . . , Ns

= 2
K∑

k=1

L∑

`=1

∂U`,k(ζ0)
∂ζs

∂U`,k(ζ0)
∂ζt

− 2
K∑

k=1

L∑

`=1

[V`,k − U`,k(ζ0)]
∂2U`,k(ζ0)

∂ζs ∂ζt
.

(3.50)

Here, let As,t be the first term of (3.50). Using the vector inner product

identity and the definition of Rs
k,τ in (3.8), the first term of (3.50) can be

manipulated as follows:

As,t ≡ 2
K∑

k=1

L∑

`=1

∂U`,k(ζ0)
∂ζs

∂U`,k(ζ0)
∂ζt

= 2
K∑

k=1

K∑

τ=1

〈
∂Uk(ζ0)

∂ζs
, Tτ

〉〈
∂Uk(ζ0)

∂ζt
, Tτ

〉

= 2
K∑

k=1

K∑

τ=1

Rs
k,τRt

k,τ . (3.51)

The second term of (3.50) is more complicated to compute. However, if the

initial guess ζ0 is close to the true impedivity distribution ζ, then the difference

between the predicted voltages U`,k(ζ0) and measured voltages V`,k will be

small. This fact produces the following approximation

αAs,t δs,t (3.52)

where δs,t is the Kronecker delta and the regularization parameter α is em-

ployed to get around the ill-conditionedness of the Hessian matrix H(ζ0).

Therefore, the Hessian matrix can be rewritten as

Hs,t(ζ0) ≈ As,t + αAs,t δs,t. (3.53)
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3.5 Linearized Kalman Filter

We consider the underlying inverse problem as a state estimation prob-

lem to estimate the time-varying impedivity distribution. Suppose that a

measurement has been made at time tk and that the information it provides

is to be applied in updating the estimate of the state of a system at time tk.

It is also assumed that the problem has been discretized with respect to the

time variable.

3.5.1 Formulation of the time-varying model

In the state estimation problem, we need the so-called time-varying (dy-

namic) model which consists of the state equation (the temporal evolution of

the impedivity distribution) and the observation equation (the relationship

between the impedivity distribution and voltage on the boundary). In gen-

eral, the temporal evolution of the impedivity distribution ζk in the body Ω

is assumed to be of the linear form

ζk+1 = Fk ζk + wk (3.54)

where Fk ∈ CNs×Ns is the state transition matrix at time tk and Ns is the

number of states (impedivity distribution). Usually in EIT, there is no a priori

information on the time evolution of the impedivity distribution so we take

Fk ≡ INs (the identity matrix) for all tk to obtain the so-called random-walk

model. It is assumed that wk is white Gaussian noise with the following known

covariance matrix Γw
k ∈ CNs×Ns ,

Γw
k ≡ E

[
wk wT

k

]
(3.55)

which determines the rate of time evolution in the impedivity distribution.
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Next, consider the observation model. Let Vk ∈ CL, defined as

Vk ≡ [V1,k, V2,k, . . . , VL,k]
T (3.56)

be the actual surface measurement voltages induced by the k-th current pat-

tern. Then the relationship between the impedivity distribution and boundary

voltages can be described by the following nonlinear mapping with measure-

ment error

Vk = Uk(ζk) + vk (3.57)

where the measurement error vk ∈ CL is assumed to be white Gaussian noise.

Linearizing (3.57) about the nominal value (best impedivity value) ζ0 =

1/γ0, we obtain

Vk = Uk(ζ0) + Jk(ζ0) (ζk − ζ0) + H.O.Ts + vk (3.58)

where H.O.Ts represents the higher-order terms which are assumed to be

additional white Gaussian noise, and Jk(ζ0) ∈ CL×Ns is the Jacobian matrix

defined by

Jk(ζ0) ≡ ∂Uk

∂ζ

∣∣∣∣
ζ=ζ0

(3.59)

and this Jacobian matrix Jk(ζ0) is computed in (3.7).

Let us define a pseudo-measurement as

yk ≡ Vk − Uk(ζ0) + Jk(ζ0)ζ0 (3.60)

then we obtain the following linearized measurement equation as

yk = Jk(ζ0)ζk + v̄k (3.61)

where v̄k ∈ CL is assumed to be composed of the measurement and lineariza-
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tion errors with the following known covariance as

Γk ≡ E
[
v̄k v̄T

k

]
. (3.62)

3.5.2 Inverse solver based on the linearized Kalman filter

In the Kalman filtering approach we estimate the state vector ζk on the

basis of all the measurements taken up to the time tk. With the Gaussian

assumptions the required estimate is obtained by minimizing the cost func-

tional which is formulated on the basis of the above state and measurement

equations (3.54) and (3.61), respectively. The cost functional for the linearized

Kalman filter (LKF) is of the form

Ξ(ζk) =
1
2

[
‖ζk − ζ0‖C−1

k
+ ‖yk − Jk(ζ0)ζk‖Γ−1

k

]
(3.63)

where ‖x‖A denotes xT Ax, and Ck ∈ CNs×Ns is the error covariance matrix,

which is defined by

Ck ≡ E
[
(ζk − ζ0) (ζk − ζ0)

T
]
. (3.64)

The two norms on the right-hand side in (3.63) refer to the weighted norms,

having the inverse of the given covariances as weighting matrices.

By minimizing the cost functional (3.63), we can obtain the recursive

linearized Kalman filtering algorithm. The relation of the filter to the EIT

system is illustrated in the block diagram of Figure 3.1. The basic steps of

the computational procedure for the Kalman estimator are as follows: (Gelb

1974, Grewal and Andrews 2001):

• time updating (prediction)

Ck|k−1 = Fk−1 Ck−1|k−1FT
k−1 + Γw

k−1 (3.65)
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Figure 3.1: Block diagram of the time-varying model and Kalman filter.

ζk|k−1 = Fk−1 ζk−1|k−1 (3.66)

• measurement updating (filtering)

Gk = Ck|k−1 JT
k

(
Jk Ck|k−1 JT

k + Γk

)−1
(3.67)

Ck|k = (INs −Gk Jk) Ck|k−1 (3.68)

ζk|k = ζk|k−1 + Gk

(
yk − Jk ζk|k−1

)
. (3.69)

Hence, we can find the estimated state vector ζk|k ∈ CNs for the true

state vector ζk in a recursive minimum mean square error sense. The Kalman

gain matrix Gk ∈ CNs×L in (3.67) does not depend on the state vector, because

the Jacobian matrix only depends on the nominal value ζ0 in (3.59). Therefore,

it is possible to pre-compute the error covariance extrapolation (3.65), Kalman

gain matrix (3.67), and error covariance update (3.68) off-line and store the

Kalman gain matrix for minimizing the on-line computational time.

The most striking feature is that the Kalman filtering technique is an

on-line recursive form in place of the off-line batch form of the NOSER or

modified Newton-Raphson algorithm. Therefore, there is no need to store the

past measurements in order to estimate the present state.
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3.6 Synthesized Voltages and Best Impedivity Approximation

Usually, in the EIT systems, current patterns are applied to the body

and the corresponding voltages are measured through the electrodes. The

reconstruction algorithms are developed on this concept. The ACT4 system

under development at the Rensselaer group generates complex voltage sources

that are injected into the body and the resulting complex current measure-

ments are taken. In order to apply these complex data from the ACT4 system

to the reconstruction algorithms, the means to find the synthesized voltages

is introduced in this section.

3.6.1 Finding synthesized complex voltages

In the complex algorithm, since all of the variables are complex num-

bers, the algorithm is more complicated and it takes some time to estimate

the admittivity (impedivity) distribution. In this section, for simplicity and

effective computation, we try to find the synthesized complex voltages Wk

which are based on the orthonormal set of the real canonical currents Tk from

the applied complex currents Iτ and measured complex voltages Vτ , or from

the applied complex voltages Vτ and measured complex currents Iτ .

For the 2-D circular geometry, we consider the following orthonormal

set of the trigonometric basis functions (canonical currents) (Edic 1994):

T`,k =





ck cos (kθ`) , ` = 1, . . . , L, k = 1, . . . , L/2

sk sin ((k − L/2)θ`) , ` = 1, . . . , L, k = L/2 + 1, . . . , L− 1
(3.70)

where

θ` = 2π`/L (3.71)

ck =





√
2
L , k = 1, 2, . . . , L/2− 1√
1
L , k = L/2

(3.72)
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sk =

√
2
L

, k = L/2 + 1, . . . , L− 1 (3.73)

and for the 3-D mammography geometry, we also consider the orthonormal

set of the canonical currents that were described in section 2.4. A set of these

canonical currents Tk ∈ RL satisfy

〈Tk, Tτ 〉 =
L∑

`=1

T`,k T`,τ = δk,τ , k, τ = 1, 2, . . . , K (3.74)

where δk,τ denotes the Kronecker delta, that is, δk,τ = 0 for k 6= τ , δk,τ = 1

for k = τ , K is the number of applied patterns, and the bracket denotes the

inner product.

An arbitrary complex current vector Iτ ∈ CL can be represented as

a weighted summation of normalized canonical current vectors. Since a set

of these canonical current vectors is orthonormal, it is possible to write the

following identity:

Iτ =
K∑

k=1

〈Iτ , Tk〉Tk. (3.75)

Multiplying both sides of (3.75) by the impedance matrix Z(ζ) which is

the Neumann-to-Dirichlet map, we obtain the following equation:

V`,τ =
K∑

k=1

Pτ,kW`,k, ` = 1, 2, . . . , L (3.76)

where Vτ ≡ Z(ζ)Iτ ∈ CL, Wk ≡ Z(ζ)Tk ∈ CL, and Pτ,k ≡ 〈Iτ , Tk〉 ∈ CK×K ,

and therefore, we can obtain the synthesized complex voltage Wk as follows

W`,k =
K∑

τ=1

Yk,τ V`,τ , ` = 1, 2, . . . , L (3.77)

where Y ≡ P−1 ∈ CK×K . These synthesized voltages should satisfy
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L∑

`=1

W`,k = 0. (3.78)

Now we can use the normalized canonical currents Tk and the synthe-

sized complex voltages Wk in (3.77) instead of the complex currents Iτ and

complex voltages Vτ , respectively, for all imaging reconstructions in the inverse

problem. Hence, we can say that the normalized k-th canonical current Tk is

applied to the body through the electrodes and the resulting complex voltage

Wk is measured, and then an approximation to the impedivity (admittivity)

distribution inside the body is estimated.

3.6.2 Finding the best constant impedivity approximation

The best constant impedivity approximation to the synthesized complex

voltage data can be computed according to the following formula: Let ζ0

denote the impedivity distribution in a homogeneous medium. Given that the

k-th current is applied to the body, it can be shown that the k-th voltage on

the `-th electrode is proportional to the k-th voltage arising from a constant

distribution of one. Hence, it is possible to write the forward solution as

U`,k(ζ0) = ζ0U`,k(1) (3.79)

where U`,k(1) represents the forward voltage that would be calculated on the

`-th electrode and that the impedivity inside the body is constant and equal

to 1.

To find the best fit to the data, we minimize the following error function

E(ζ) = min
ζ0

K∑

k=1

L∑

`=1

[W`,k − ζ0U`,k(1)]2 . (3.80)

Minimizing this error function E(ζ) with respect to ζ0, we have the following

equation
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∂E(ζ)
∂ζ0

= −2

[
K∑

k=1

L∑

`=1

{W`,k − ζ0U`,k(1)}U`,k(1)

]
= 0. (3.81)

Solving this equation for ζ0, the solution ζ0 is given as

ζ0 =
∑K

k=1

∑L
`=1 W`,kU`,k(1)∑K

k=1

∑L
`=1 U`,k(1)U`,k(1)

. (3.82)
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IV. Experimental Studies

In this chapter, the 2-D circular and 3-D mammography geometries are

considered for the experimental studies and the reconstruction algorithms are

also applied to them. In the 2-D circular geometry, we evaluate performances

of the reconstruction algorithms using FEM simulation data and experimental

data. In the 3-D mammography geometry, we consider phantom studies for

the breast cancer detection.

4.1 Experimental Setup

The ACT3 (adaptive current tomography) system in Figure 4.1(a) is

a real-time impedance imaging device that has been used by the Rensselaer

group. The ACT3 system (Cook et al. 1994, Edic et al. 1995) uses a 28.8

kHz current signal to sequentially apply 31 distinct current patterns to the

(a) ACT3 (b) ACT4

Figure 4.1: The ACT3 and ACT4 systems.
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body. It measures both real and quadrature voltages on each electrode using

32 independent voltmeters. It has been used extensively to image ventilation

and perfusion in human subjects.

The improved ACT4 system in Figure 4.1(b) is presently in its final

stage of construction. The ACT4 system can support up to 64 electrodes with

an excitation frequency that is selectable from a discrete set in the range from

300 Hz to 1 MHz for breast cancer detection (Ross 2003, Liu et al. 2005). The

design specifications of both systems are shown in Table 4.1.

Table 4.1: Comparison of ACT3 and ACT4 design specifications (Ross 2003).

Feature ACT3 ACT4
Current Sources 32 64
Voltage Sources – 64
Voltmeters 32 64
µAmmeters – 64
Electrodes 32 64
Operating Frequency 28.8 kHz 300 Hz ∼ 1 MHz
Maximum Image Reconstruction Rate 20 frames/sec 30 frames/sec
System Precision 15 or 16 bits ≥ 16 bits
Minimum distinguishable object 1 ∼ 3 cm 0.3 ∼ 1 cm

4.2 2-D Circular Geometry

In this section, we evaluated the reconstruction performances of the pro-

posed algorithms using FEM simulation data and experimental data. In order

to describe the admittivity distribution inside the body using the simulation

and experimental data, the Joshua tree mesh (Cheney et al. 1990, Edic 1994)

was used in the inverse problem and it was assumed that the admittivity is

constant within each element.

The total number of independent current patterns is limited by the num-

ber of electrodes. Because of the conservation of charge (2.39), there are only

31 independent current patterns for a 32-electrode EIT system (63 indepen-
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dent current patterns for a 64-electrode system). The best current patterns for

a circularly symmetric admittivity distribution are the trigonometric current

patterns in a circular geometry. Therefore, trigonometric current patterns are

applied to the circular chest phantom through 32 electrodes. The trigonomet-

ric current patterns are of the form

I`,k =





cos (kθ`) , ` = 1, . . . , L, k = 1, . . . , L/2

sin ((k − L/2)θ`) , ` = 1, . . . , L, k = L/2 + 1, . . . , L− 1
(4.1)

where θ` = 2π`/L and these patterns make an orthogonal set of current pat-

terns.

4.2.1 Static imaging reconstruction

We considered the static imaging reconstruction which means that the

internal admittivity distribution and the objects inside the body are time-

invariant within the time required to acquire a full set of measurement data.

For the static imaging reconstruction the linearization method was used to

illustrate the reconstruction performances with different mathematical models.

We compared the linearization method with the fast inversion algorithm with

the goal of reducing the computational time. The range of conductivity and

permittivity values in mS/m is given in the scale beneath each set of images.

For the simulation data we computed voltages with the FEM and for the

experimental data we obtained voltages with a chest phantom in a simplified

geometry of the human chest.

4.2.1.1 FEM simulation data

To generate the measured voltages on the electrodes, we computed the

FEM forward solver and obtained complex voltages on the boundary using the

2-D EIDORS MATLAB demo version (Vauhkonen et al. 2001) in a simplified
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Figure 4.2: RMS (root-mean-square) errors for each mathematical model.

geometry of the human chest. For the FEM forward solver, we generated the

forward fine mesh which has 3216 elements and 1737 nodes.

The geometry of the simulation phantom used was as follows: radius

15 cm, width of the electrode 2.54 cm, height 1 cm, and the amplitude of

the currents 0.5 mA. The NOSER-type regularization was used and the reg-

ularization parameter α was set to 0.1. The admittivity (impedivity) of the

background was 640 + i64 mS/m (154.7 − i15.47 Ωcm), the lungs 400 + i40

mS/m (247.5 − i24.75 Ωcm), and the heart 1500 + i150 mS/m (66.0 − i6.60

Ωcm).

To compare forward solutions calculated from each mathematical model

with experimental data, we defined the RMS (root-mean-square) error as

RMSE(k) ≡
√

(Vk − Uk)T (Vk − Uk)
V T

k Vk
(4.2)

where Vk is the measured voltage and Uk is the forward voltage calculated

from each mathematical model. The RMS (root-mean-square) errors for each

mathematical model are shown in Figure 4.2. It can be seen clearly that the
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Figure 4.3: Static images with different mathematical models which are recon-
structed by the linearization method using FEM simulation data:
(a) true image, (b) gap model, (c) ave-gap model and (d) com-
plete electrode model. The range of conductivity and permittivity
values is given in mS/m.

CE model has smaller error than other models. The gap model has bigger

error than the ave-gap model since the gap model has values of the potential

at the center of each electrode, whereas the ave-gap model has average values

of the potential on each electrode.

Figure 4.3 shows static images with different mathematical models which

are reconstructed by the linearization method using FEM simulation data.

The simulation phantom which is a simplified geometry of the human chest is

shown in Figure 4.3(a). Figures 4.3(b), 4.3(c) and 4.3(d) are the reconstructed

images obtained by using the gap model, ave-gap model and CE model, re-

spectively. The reconstructed images of the gap model and the ave-gap model

have ring effect which is the high admittivity region at the boundary of the

phantom. Reason is that both models don’t consider the shunting effect of

the electrodes as well as the surface impedances in the forward solver. On the

other hand, the reconstructed image of the CE model does not have this ring

effect and hence the images of the lungs are closer to the true lungs than other
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models because this model takes into account both the shunting effect and the

surface impedances.

4.2.1.2 Chest phantom experimental data

To obtain the measured voltages on the electrodes, we used a chest

phantom and obtained complex voltages from the ACT3 system. It is worth

mentioning here, that for acquiring complex voltages, the ACT3 system has

an intrinsic limitation, even though not severe, that sometimes it does not

converge to the accurate imaginary values for voltage measurements.

The geometry of the chest phantom used was as follows: radius 15 cm,

width of the electrode 2.54 cm, saline level 2.3 cm, and the amplitude of the

currents 0.5 mA. The admittivity of the saline solution was 640 + i0 mS/m

(154.7−i0 Ωcm), the agar lungs 400+i0 mS/m (250−i0 Ωcm), and agar heart

1512+ i0 mS/m (66.14− i0 Ωcm). Here, the agar does not give a permittivity

value in the admittivity.

Figure 4.4 shows static images with different mathematical models which

are reconstructed by the linearization method using chest phantom experimen-

tal data. The chest phantom used as a simplified geometry of the human chest

is shown in Figure 4.4(a), which has different sizes of the lungs and the heart.

Figures 4.4(b), 4.4(c) and 4.4(d) are the reconstructed images obtained by

using the gap model, ave-gap model and CE model, respectively. The results

obtained by using experimental data are similar to those that were obtained

by using the simulation data.

It should be noted that in the static imaging, the gap model and the

ave-gap model are visually similar as seen in Figure 4.4. However, the ave-

gap model usually has lower RMS errors as compared to the gap model as

shown in Figure 4.2. So, in a way the ave-gap model is better than the gap

model. As mentioned before, the CE model does not have the ring effect

that the gap model and the ave-gap model have. In the CE model, we set
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Figure 4.4: Static images with different mathematical models which are re-
constructed by the linearization method using experimental data:
(a) true image, (b) gap model, (c) ave-gap model and (d) com-
plete electrode model. The range of conductivity and permittivity
values is given in mS/m.

all the electrodes to have the same surface impedances as initial values which

are only real. This causes misleading values at positions near the electrodes,

especially in the imaginary part. Also, the dynamic range of the imaginary

part increases because all the electrodes have different surface impedances in

practice. If we were to find appropriate values of the surface impedances in

the chest phantom, the CE model is expected to produce a better resolution

of the reconstructed images.

4.2.1.3 Comparison between the linearization method and the fast

inversion algorithm

In this subsection, we compare the performances of the linearization

method with the fast inversion algorithm with the goal of reducing the com-

putational time.

Figure 4.5 shows the difference of the estimated admittivity distribu-
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Figure 4.5: The difference of the estimated admittivity distributions between
the linearization method and fast inversion algorithm.

tions between the linearization method and fast inversion algorithm in the

32-electrode chest phantom. As can be expected, both algorithms produce

the same results. Mathematically the two algorithms are the same.

To compare the computational time of both algorithms, we only consider

the elapsed time for computing (3.32) and (3.41). Table 4.2 shows the elapsed

time of the linearization method and fast inversion algorithm in the 32- and 64-

electrode EIT system. It can be seen clearly that the fast inversion algorithm

using a spectral representation produces the same results as obtained by the

linearization method. However, it has a reduced computational burden.

Table 4.2: Elapsed time of the linearization method and fast inversion al-
gorithm in the 32- and 64-electrode EIT system (computer used:
Pentium(R) 4 CPU 2.66GHz, 512MB RAM, Windows XP, MAT-
LAB R13).

Linearization Method Fast Inversion Algorithm
32-electrode system 0.5 sec 0.343 sec
64-electrode system 31.203 sec 23.735 sec
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4.2.1.4 Discussion

For the static image reconstruction the linearization method was used

to illustrate the reconstruction performances of different mathematical models

using FEM simulation data and experimental data.

We also discussed the ring effect in reconstructed images for different

models and recommended the CE model as the most appropriate model based

on the simulation and experimental results. We also compared the lineariza-

tion method against the fast inversion algorithm in view of the computation

burden and showed that the fast inversion algorithm using a spectral repre-

sentation produced the same results as the one obtained by the linearization

method but with the advantage of having reduced computational burden.

4.2.2 Dynamic imaging reconstruction

In the design of the LKF algorithm, it was assumed that the covariance

matrices are diagonal and time-invariant; the covariance matrices of process

and measurement noises were Γw
k = 10−6IL, Γk = 10−4IL, respectively, and

initial value of the error covariance matrix was C0|0 = INs for computing the

Kalman gain matrix off-line. It was possible to use the LKF algorithm without

the regularization parameter in the analytical method, while the regularization

parameter was set to 0.1 only for the NOSER algorithm. The range of resis-

tivity and capacitive reactivity values in Ω-cm is given in the scale beneath

each set of images.

We considered dynamically changing scenarios, that is, it was assumed

that the size of the heart was changing within the data acquisition time (one

classical frame), but the admittivities of the different sizes (big and small)

of the heart were kept the same, and the volume and the admittivity of the

lungs were fixed. It represents the scenario when the person holds his/her

breath during the acquisition of measurement data. For the simulation data we

computed voltages with the FEM and for the experimental data we obtained
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Figure 4.6: Reconstructed images: (a) true change of the heart size, (b) images
by LKF with all current patterns and (c) image by NOSER with all
current patterns. The range of resistivity and capacitive reactivity
values is given in Ω-cm.

voltages with a chest phantom in a simplified geometry of the human chest.

4.2.2.1 FEM simulation data

The geometry of the simulation phantom used was as follows: radius 15

cm, width of the electrode 2.54 cm, height 1 cm, and the amplitude of the

currents 0.5 mA. The admittivity (impedivity) of the background was 640+i64

mS/m (154.7− i15.47 Ωcm), the lungs 400+ i40 mS/m (247.5− i24.75 Ωcm),

and the heart 1500 + i150 mS/m (66.0− i6.60 Ωcm).

We used the following scenario: The big heart was used when the first

16 current patterns were injected and then the size was rapidly changed, and

the small heart was used for the next 15 current patterns.

The simulation phantom with different sizes of the heart is shown in Fig-

ure 4.6(a) as true images. Figures 4.6(b) and 4.6(c) are images reconstructed

by the LKF and NOSER algorithm, respectively when all current patterns in

(4.1) are sequentially injected to the body. In Figure 4.6, it can be seen that

the LKF algorithm gives the temporal resolution when the size of the heart
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Figure 4.7: Norm distinguishability for the each heart according to the current
pattern.

changes, while the NOSER algorithm fails to do so and shows that there is no

change.

We define distinguishability as a measurement of the ability to differ-

entiate between the homogeneous and inhomogeneous admittivities inside the

body (Isaacson 1986). As the spatial frequency in (4.1) increases, it gives

lower norm distinguishability in Figure 4.7. The norm distinguishability in

the mean square sense, was defined by (Cheney and Isaacson 1992, Isaacson

1986)

δI(ζ, ζ0, jk) ≡
√∑L

`=1 |V`,k(ζ, jk)− V`,k(ζ0, jk)|2∑L
`=1 |I`,k|2

(4.3)

where V`,k(ζ, jk) denotes the k-th measured voltage in the inhomogeneous

phantom with a target, and V`,k(ζ0, jk) denotes the k-th measured voltage

when current density jk is applied in the homogeneous phantom with no target.

In Figure 4.7, when we only use the different sizes of the heart in the chest

phantom, it shows the norm distinguishability for each heart according to the

current pattern in (4.1). The low spatial frequencies for trigonometric current
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Figure 4.8: Reconstructed images: (a) true change of the heart size, (b) images
by LKF with 8 current patterns and (c) image by NOSER with 8
current patterns. The range of resistivity and capacitive reactivity
values is given in Ω-cm.

patterns contain more information about the chest phantom and can be seen

with high distinguishability between current patterns 1 and 4 and between

current patterns 16 and 19 in Figure 4.7. Therefore, it is advisable that the

low spatial frequencies in trigonometric current patterns should be used.

Figures 4.8(b) and 4.8(c) are images reconstructed by the LKF and

NOSER algorithm, respectively when only 8 current patterns, that is, cos(θ),

. . . , cos(4θ), sin(θ), . . . , sin(4θ) in (4.1) are repeatedly applied to the body. As

can be expected, the LKF algorithm gives the spatial and temporal resolution

on changing the size of the heart, while the reconstructed images obtained

from the NOSER algorithm are blurred and the temporal information on the

time-variability of the heart is lost.

The LKF and NOSER algorithm of elapsed time for estimating the im-

pedivity distribution are 62 m-sec and 218 m-sec (computer used: Pentium(R)

4 CPU 2.66GHz, 512MB RAM, Windows XP, MATLAB R13), respectively

in one classical frame. The LKF algorithm produces 31 images, while the

NOSER algorithm produces 1 image in one classical frame.
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Figure 4.9: Reconstructed images: (a) true change of the heart size, (b) images
by LKF with all current patterns and (c) image by NOSER with all
current patterns. The range of resistivity and capacitive reactivity
values is given in Ω-cm.

4.2.2.2 Chest phantom experimental data

The geometry of the chest phantom used was as follows: radius 15 cm,

width of the electrode 2.54 cm, saline level 2.3 cm, and the amplitude of the

currents 0.5 mA. The admittivity of the saline solution was 640 + i0 mS/m

(154.7 − i0 Ωcm), the agar lungs 400 + i0 mS/m (250 − i0 Ωcm), and agar

heart 1512 + i0 mS/m (66.14− i0 Ωcm).

In the experiment, the scenario used is as follows: The big heart (length:

10 cm, width: 9.4 cm) was used while the current patterns 1 to 16 were injected

and then the size was rapidly changed, and the small heart (length: 6.1 cm,

width: 5.5 cm) was used while the current patterns 17 to 31 were applied to

the chest phantom.

The chest phantom with different sizes of the heart is shown in Fig-

ure 4.9(a) as true images. Figures 4.9(b) and 4.9(c) are images reconstructed

by the LKF and NOSER algorithm, respectively when all current patterns in

(4.1) are sequentially injected to the chest phantom. Similar to the simulation

results mentioned before, the LKF algorithm gives the temporal resolution
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Figure 4.10: Reconstructed images: (a) true change of the heart size, (b)
images by LKF with 8 current patterns and (c) image by NOSER
with 8 current patterns. The range of resistivity and capacitive
reactivity values is given in Ω-cm.

when the size of the heart changes, whereas the NOSER algorithm fails to

provide any information on temporal changes.

Figures 4.10(b) and 4.10(c) are images reconstructed by the LKF and

NOSER algorithm, respectively when only 8 current patterns, that is, cos(θ),

. . . , cos(4θ), sin(θ), . . . , sin(4θ) in (4.1) are repeatedly applied to the chest

phantom. Here it is also shown that the LKF algorithm outperforms NOSER

algorithm.

4.2.2.3 Discussion

Simulation and phantom experiment were conducted to illustrate the

reconstruction performance in the sense of spatio-temporal resolution. In this

study, we considered dynamically changing scenarios, that is, it was assumed

that the size of the heart was changing within the data acquisition time (one

classical frame), but the admittivities of the different sizes (big and small)

of the heart were kept the same, and the volume and the admittivity of the

lungs were fixed. It represents the scenario when the person holds his/her
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breath during the acquisition of measurement data. For the simulation data we

computed voltages with the FEM and for the experimental data we obtained

voltages with a chest phantom in a simplified geometry of the human chest.

The static imaging technique failed to obtain satisfactory temporal res-

olution for the reconstructed images when rapid changes in the impedivity

distribution happen within the data acquisition time. But the dynamic imag-

ing technique can provide an estimate of the impedivity distribution after each

current pattern was applied to the body. Hence, the temporal resolution can

be enhanced with the aid of the linearized Kalman filter.

4.3 3-D Mammography Geometry

In this section, we evaluated the 3-D reconstruction performances of the

proposed algorithms using experimental data at 10 kHz, which were collected

from a saline-filled phantom using the 64-electrode ACT4 instrument.

4.3.1 3-D test phantom and voxel configuration

The 64-electrode test phantom for the 3-D mammography geometry

is shown in Figure 4.11. It was made of plexiglas and its inner shape was

designed to resemble the shape of the human breast. The planar electrode

arrays are located on the front and back side walls, which correspond to the

top and bottom electrode arrays of the mammography geometry model in

Figure 2.3(b). Each electrode array has 36 electrodes coated with silver on

a printed circuit board (PCB) and the gaps between adjacent electrodes are

filled with epoxy. Four electrodes (the dotted squares in Figure 4.12(a)) on it

are disconnected in the experimental study for the 64-electrode test phantom.

In the electrode array, the size of each electrode is 10×10 mm (lx = ly = 0.01),

the length of the gap between adjacent electrodes is 1 mm (δx = δy = 0.001)

and the length of the gap near the boundary is 2 mm (δx2 = δy2 = 0.002). The
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(a) 3-D test phantom (b) front view

Figure 4.11: The 64-electrode test phantom for the 3-D mammography geom-
etry used in the experiment.

dimension of the mammography geometry model is 69(h1) × 69(h2) × 40(h3)

mm.

In order to describe the admittivity distribution inside the body, the

3-D domain is approximated by a sufficiently large set of Ns voxels, and the

characteristic function χs(p) is chosen over the s-th voxel. It is assumed that

the admittivity is constant within each voxel. The voxel configuration is lim-

ited by the number of independent measurements and the size depth of the

smallest detectable object in the body. The voxel configuration consists of

8 layers with 16 × 16 voxels in each layer and the dimension of each voxel is

5.44×5.44×5 mm. The configuration must model the unbounded domain in a

practical manner. This feature is modeled by including more voxels around the

boundary of the electrode array. The configuration is depicted in Figure 4.12.

4.3.2 Image reconstruction

In order to conduct the experiments, a test phantom in Figure 4.11(a)

was filled with a conductivity 300 mS/m of the saline solution to a depth of
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(a) top view (b) cross-sectional view

Figure 4.12: Voxel configuration used in the inverse problem. The bold lines
represent the edges of the electrode array, the shaded squares
represent the electrodes and the dotted squares denotes the dis-
connected electrodes in the left figure.

(a) electrode array and targets (b) target positions

Figure 4.13: The conductor targets (shaded rectangles) are placed 5 mm dis-
tant from the electrode array in three positions. Position A: 10
mm copper target beneath the electrode, position B: 5 mm sol-
der target beneath the electrode, position C: 10 mm copper target
beneath the gap between the four adjacent electrodes.

10 cm. This conductivity was chosen to approximate that of healthy breast

tissue. Targets used in this experiment are as follows: 4× 5× 4.5 mm target

made of solder, 10× 10× 10 mm target made of plexiglas covered with a thin

oxidized copper foil. Each target was suspended in the phantom at several

spatial positions using a thin insulated rod (Figure 4.13(a)).
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We displayed the reconstructed admittivity distribution as static images

and also plotted difference images, which were obtained by subtracting the

reconstructed admittivity distribution of the homogeneous case from that of

the inhomogeneous case. Since we only seek to reconstruct the admittivity

distribution accurately in the region directly below the electrode array, only

those voxels are included in the image. Since each electrode array has four

electrodes disconnected, those electrodes are not displayed in the images. Each

reconstructed image is displayed in grey-scale.

To study the spatial resolution in the x-y plane of the electrodes, a 5

mm solder target and a 10 mm copper target were placed at a distance of 5

mm from the face of the electrode in position A and position B, respectively,

and a 10 mm copper target was placed at a distance of 5 mm from the gap

between the four adjacent electrodes in position C in Figure 4.13(b). To study

the spatial resolution in the z-axis, a 10 mm copper target was positioned 7.5

mm, 10 mm, 12.5 mm and 15 mm distant from the face of the electrode in

position A. Note that since the 3-D test phantom is symmetrical, it is sufficient

to test the target locations in one half the phantom depth (z-axis), that is,

from layer 1 to layer 4.

4.3.2.1 Distinguishability

For the distinguishability study in the 3-D mammography geometry us-

ing the complex data obtained from the ACT4 system, the norm distinguisha-

bility (4.3) needs to be replaced as follows:

δT (ζ, ζ0, jk) ≡
√∑L

`=1 |W`,k(ζ, jk)−W`,k(ζ0, jk)|2∑L
`=1 |T`,k|2

(4.4)

where W`,k(ζ, jk) denotes the k-th synthesized voltage in the inhomogeneous

phantom with a target, and W`,k(ζ0, jk) denotes the k-th synthesized voltage

in the homogeneous phantom with no target. T`,k represents the normalized
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Figure 4.14: The norm and power distinguishabilities according to the differ-
ent depth between the electrode array face and the target face
in the 3-D mammography geometry using the complex data ob-
tained from the ACT4 system.

k-th canonical current pattern.

Power distinguishability is defined as the measured power change be-

tween the homogeneous and inhomogeneous cases, divided by the power ap-

plied in the homogeneous case (Cheney and Isaacson 1992, Kao et al. 2003),

δP (ζ, ζ0, jk) ≡ |Pk(ζ, jk)− Pk(ζ0, jk)|
|Pk(ζ0, jk)| (4.5)

where the k-th power Pk ≡
∑L

`=1 TkWk.

Figure 4.14 shows the norm and power distinguishabilities according to

different depths between the electrode array face and the target face in the 3-

D mammography geometry using the complex data obtained from the ACT4

system. Figure 4.14(a) shows the distinguishability of the 10 mm copper

and Figure 4.14(b) shows the distinguishability of the 5 mm solder in one

half the phantom depth (z-axis) since the 3-D test phantom is symmetrical.

Distinguishability decreases as the target moves away from the top electrode

array and reaches its lowest value when target is at the middle position between

the two electrode arrays. Furthermore, these experimental data were obtained
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during the last phase of the ACT4 system development, so they may contain

some level of error due to the imprecise calibration. Hence, in Figure 4.14(b),

the power distinguishability reaches closer to the noise level, which means that

this target may not be detected. Therefore, to study the spatial resolution in

the z-axis, we use the 10 mm copper target.

4.3.2.2 Fast inversion algorithm reconstruction

In the design of the fast inversion algorithm, we set the regularization

parameters (α) to be 0.7 and 0.02 for the static images and difference images,

respectively. The conductivity and permittivity distributions were simulta-

neously estimated and reconstructed using the fast inversion algorithm. The

images reconstructed from the experimental data with the 10 mm and 5 mm

targets in 3 positions are displayed in Figure 4.15 ∼ 4.17. Within each layer,

each square denotes the conductivity or permittivity in the corresponding

voxel. The range of conductivity or permittivity values in mS/m is given in

the scale beneath each set of images.

Figure 4.15(a) and (b) are the reconstructed static images of 10 mm

copper target which was placed at a distance of 5 mm from the face of the

electrode in position A, and Figure 4.15(c) and (d) are the reconstructed differ-

ence images. In the reconstructed static images, the inhomogeneity in position

A was estimated, but the static images were sharper than the difference im-

ages. This is due to the discrepancy between the simplified forward model

and the test phantom, and not considering the shunting effect and surface im-

pedances of the electrodes in the forward modeling. These data may contain

some level of error due to the imprecise calibration of the ACT4 instrument.

The data presented were obtained during the last phase of the instrument

development, and the final calibration had not been performed when it was

necessary to present these results. This also causes the faint or blurred images

in the imaginary part (permittivity) of the admittivities. Figure 4.16 shows
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the reconstructed difference images of 5 mm solder target which was placed

at a distance of 5 mm from the face of the electrode in position B. Figure 4.17

shows the reconstructed difference images of 10 mm copper target which was

placed at a distance of 5 mm from the gap between the four adjacent elec-

trodes in position C. The inhomogeneity’s positions in the difference images

were well characterized by the reconstruction from experimental data. The re-

constructed images are better when the inhomogeneities are directly beneath

the electrodes. In the reconstructions, the image became fainter, but was still

less pronounced in the lower and/or upper voxel layers. It is conjectured that

this phenomenon is due in part to the smoothing effect of the regularization.

Figure 4.18 shows the difference images reconstructed from the experi-

mental data with the 10 mm copper target at the different depths in the z-axis.

As can be expected, when the copper target was moved at a distance of 7.5

mm from the face of the electrode in position A, it became more prominent in

the third layer and less prominent in the second and fourth layers. When the

copper target was moved at a distance of 10 mm, it became more prominent in

the third and fourth layers. When the copper target was moved at a distance

of 12.5 mm, it became more prominent in the fourth layer and less prominent

in the third and fifth layers. And also when the copper target was moved at a

distance of 15 mm, it became more prominent in the fourth and fifth layers.
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(a) conductivity (b) permittivity (c) conductivity (d) permittivity

Figure 4.15: Reconstructed images of the 10 mm copper target. The copper
target was placed 5 mm distant from the face of the electrode in
position A. The range of conductivity and permittivity values is
given in mS/m. (a) real part of the estimated admittivities in the
static images, (b) imaginary part of the estimated admittivities
in the static images, (c) real part of the estimated admittivities
in the difference images and (d) imaginary part of the estimated
admittivities in the difference images.
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Figure 4.16: Reconstructed difference images of the 5 mm solder target. The
solder target was placed 5 mm distant from the electrode in po-
sition B. The range of conductivity and permittivity values is
given in mS/m. (a) real part of the estimated admittivities and
(b) imaginary part of the estimated admittivities.
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Figure 4.17: Reconstructed difference images of the 10 mm copper target. The
copper target was placed 5 mm distant from the gap between the
four adjacent electrodes in position C. The range of conductivity
and permittivity values is given in mS/m. (a) real part of the
estimated admittivities and (b) imaginary part of the estimated
admittivities.
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Figure 4.18: Reconstructed difference images of the 10 mm copper target
according to the different depths in the z-axis. The copper target
was positioned 7.5 mm, 10 mm, 12.5 mm and 15 mm distant from
the face of the electrode in position A. The range of conductivity
values is given in mS/m.
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4.3.2.3 NOSER algorithm reconstruction

In the design of the NOSER algorithm, we set the regularization para-

meters (α) to be 0.07 for the difference images. The resistivity and capacitive

reactivity distributions were simultaneously estimated and reconstructed using

the NOSER algorithm. The images reconstructed from the experimental data

with the 10 mm and 5 mm targets in 3 positions are displayed in Figure 4.19

∼ 4.21. Within each layer, each square denotes the resistivity or capacitive

reactivity in the corresponding voxel. The range of resistivity and capacitive

reactivity values in Ω-cm is given in the scale beneath each set of images.

Figure 4.19 shows the reconstructed difference images of 10 mm copper

target which was placed at a distance of 5 mm from the face of the electrode

in position A. Figure 4.20 shows the reconstructed difference images of 5 mm

solder target which was placed at a distance of 5 mm from the face of the

electrode in position B. Figure 4.21 shows the reconstructed difference images

of 10 mm copper target which was placed at a distance of 5 mm from the

gap between the four adjacent electrodes in position C. The inhomogeneity’s

positions in the difference images were well characterized by the reconstruc-

tion from experimental data. The reconstructed images are better when the

inhomogeneities are directly beneath the electrodes.

Figure 4.22 shows the difference images reconstructed from the exper-

imental data with the 10 mm copper target at the different depths in the

z-axis. As can be expected, when the copper target was moved at a distance

of 7.5 mm from the face of the electrode in position A, it became more promi-

nent in the third layer and less prominent in the second and fourth layers.

When the copper target was moved at a distance of 10 mm, it became more

prominent in the third and fourth layers. When the copper target was moved

at a distance of 12.5 mm, it became more prominent in the fourth layer and

less prominent in the third and fifth layers. And when the copper target was

moved at a distance of 15 mm, it became more prominent in the fourth and

fifth layers. In the reconstructions, the image became faint, but was still less
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prominent in the lower and/or upper voxel layers.
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−252.50 150.93 −21.08 14.40

(a) resistivity (b) capacitive reactivity

Figure 4.19: Reconstructed difference images of the 10 mm copper target.
The copper target was placed 5 mm distant from the face of the
electrode in position A. The range of resistivity and capacitive
reactivity values is given in Ω-cm. (a) real part of the estimated
impedivities and (b) imaginary part of the estimated impedivities.
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Figure 4.20: Reconstructed difference images of the 5 mm solder target. The
solder target was placed 5 mm distant from the electrode in po-
sition B. The range of resistivity and capacitive reactivity values
is given in Ω-cm. (a) real part of the estimated impedivities and
(b) imaginary part of the estimated impedivities.
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Figure 4.21: Reconstructed difference images of the 10 mm copper target. The
copper target was placed 5 mm distant from the gap between the
four adjacent electrodes in position C. The range of resistivity and
capacitive reactivity values is given in Ω-cm. (a) real part of the
estimated impedivities and (b) imaginary part of the estimated
impedivities.
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Figure 4.22: Reconstructed difference images of the 10 mm copper target
according to the different depths in the z-axis. The copper target
was positioned 7.5 mm, 10 mm, 12.5 mm and 15 mm distant from
the face of the electrode in position A. The range of resistivity
values is given in Ω-cm.
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4.3.2.4 Linearized Kalman filter (LKF) reconstruction

In the design of the LKF algorithm, it was assumed that the covariance

matrices are diagonal; the covariance matrices of process and measurement

noises were Γw
k = 10−6IL, Γk = 5 × 10−2IL, respectively, and initial value of

the error covariance matrix was C0|0 = INs for computing the Kalman gain

matrix off-line. It was available to perform the LKF algorithm without the

regularization parameter in the analytical method.

The resistivity and capacitive reactivity distributions were simultane-

ously estimated and reconstructed using the LKF algorithm. The images re-

constructed from the experimental data with the 10 mm and 5 mm targets in

3 positions are displayed in Figure 4.23 ∼ 4.25. Within each layer, each square

denotes the resistivity or capacitive reactivity in the corresponding voxel. The

range of resistivity and capacitive reactivity values in Ω-cm is given in the

scale beneath each set of images.

Figure 4.23 shows the reconstructed difference images of 10 mm copper

target which was placed at a distance of 5 mm from the face of the electrode

in position A. Figure 4.24 shows the reconstructed difference images of 5 mm

solder target which was placed at a distance of 5 mm from the face of the

electrode in position B. Figure 4.25 shows the reconstructed difference images

of 10 mm copper target which was placed at a distance of 5 mm from the

gap between the four adjacent electrodes in position C. The inhomogeneity’s

positions in the difference images were well characterized by the reconstruc-

tion from experimental data. The reconstructed images are better when the

inhomogeneities are directly beneath the electrodes.

Figure 4.26 shows the difference images reconstructed from the exper-

imental data with the 10 mm copper target at the different depths in the

z-axis. As can be expected, when the copper target was moved at a distance

of 7.5 mm from the face of the electrode in position A, it became more promi-

nent in the third layer and less prominent in the second and fourth layers.

When the copper target was moved at a distance of 10 mm, it became more
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prominent in the third and fourth layers. When the copper target was moved

at a distance of 12.5 mm, it became more prominent in the fourth layer and

less prominent in the third and fifth layers. And when the copper target was

moved at a distance of 15 mm, it became more prominent in the fourth and

fifth layers. In the reconstructions, the image became faint, but was still less

prominent in the lower and/or upper voxel layers.
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Figure 4.23: Reconstructed difference images of the 10 mm copper target.
The copper target was placed 5 mm distant from the face of the
electrode in position A. The range of resistivity and capacitive
reactivity values is given in Ω-cm. (a) real part of the estimated
impedivities and (b) imaginary part of the estimated impedivities.
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Figure 4.24: Reconstructed difference images of the 5 mm solder target. The
solder target was placed 5 mm distant from the electrode in po-
sition B. The range of resistivity and capacitive reactivity values
is given in Ω-cm. (a) real part of the estimated impedivities and
(b) imaginary part of the estimated impedivities.
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Figure 4.25: Reconstructed difference images of the 10 mm copper target. The
copper target was placed 5 mm distant from the gap between the
four adjacent electrodes in position C. The range of resistivity and
capacitive reactivity values is given in Ω-cm. (a) real part of the
estimated impedivities and (b) imaginary part of the estimated
impedivities.
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Figure 4.26: Reconstructed difference images of the 10 mm copper target
according to the different depths in the z-axis. The copper target
was positioned 7.5 mm, 10 mm, 12.5 mm and 15 mm distant from
the face of the electrode in position A. The range of resistivity
values is given in Ω-cm.
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4.3.3 Discussion

Breast phantom studies were conducted to illustrate the 3-D reconstruc-

tion performances using experimental data collected from a saline-filled phan-

tom using the 64-electrode ACT4 instrument. The conductivity of the saline

solution was chosen to approximate that of healthy breast tissue. Three tar-

gets as tumors were suspended in the phantom at several spatial position using

a thin insulated rod in order to study the spatial resolution in the x-y plane

of the electrodes and z-axis.

In this study, the conductivity and permittivity or resistivity and capac-

itive reactivity distributions were simultaneously estimated and reconstructed

using the 3-D reconstruction algorithms. In the reconstructed static images,

the inhomogeneities were estimated, but the static images were sharper than

the difference images. This is due to the discrepancy between the simplified

forward model and the test phantom, and not considering the shunting effect

and surface impedance of the electrodes in the forward modeling. And the

data may contain some level of error due to the imprecise calibration of the

ACT4 instrument. The data presented were obtained during the last phase

of the instrument development, and the final calibration had not been per-

formed when it was necessary to present these results. This causes the faint

or blurred images in imaginary part of the admittivities or impedivities. As a

result, the static images corresponding to experimental data resulted in poor

target distinguishability. The difference images showed much better resolu-

tion since most of the electrode effects are subtracted away. In this study, the

reconstructed results demonstrated that in the x-y plane of the electrodes and

at the different depths in the z-axis, the inhomogeneity’s positions are well

characterized in the reconstruction.
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V. Conclusions

In this work, the 2-D circular and 3-D mammography geometries are

considered. The forward problem in both geometries was solved by the an-

alytical method based on the separation of variables and Fourier series, and

the analytical solutions of the different mathematical models were formulated.

The result of the characteristic resistance study showed that the forward so-

lution of the CE model was very close to the experimental data.

The ACT4 system was operated as a voltage source for this work, that

is, the voltage patterns are applied to the body and the corresponding current

patterns are measured. To apply the experimental data from the ACT4 sys-

tem to the reconstruction, we need to modify the reconstruction algorithm.

Therefore, for simplicity and effective computation, and to use the ACT4 ex-

perimental data, we found synthesized complex voltage patterns based on the

normalized canonical currents from the applied complex voltages and mea-

sured complex currents. These synthesized complex voltages were applied to

reconstruction algorithms for estimating the admittivity distribution from the

experimental data of both geometries.

For the dynamic applications, the inverse problem was treated as a

state estimation problem. The nonlinear measurement equation was linearized

about the best homogeneous impedivity value as an initial guess, and the state

(impedivity distribution) was estimated with the aid of the Kalman estimator.

In particular, the Kalman gain matrix was pre-computed off-line and stored

to minimize the on-line computational time. In this way, a dynamic complex

impedance imaging technique was developed with the aid of the linearized

Kalman filter (LKF) for real-time reconstruction of the human chest.

In the phantom study of the 2-D circular geometry, to illustrate the

reconstruction performances in the sense of spatio-temporal resolution, we
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considered dynamically changing scenarios, that is, it was assumed that the

size of the heart was changing within the data acquisition time (one classical

frame), but the admittivities of the different sizes (big and small) of the heart

were kept the same, and the volume and the admittivity of the lungs were

fixed. It represents the scenario when the person holds his/her breath during

the acquisition of measurement data. For the simulation data we computed

voltages with the FEM and for the experimental data we obtained voltages

with a chest phantom in a simplified geometry of the human chest. The static

imaging technique failed to obtain satisfactory temporal resolution for the re-

constructed images when rapid changes in the impedivity distribution happen

within the data acquisition time. But the dynamic imaging technique can

provide an estimate of the impedivity distribution after each current pattern

was applied to the body. Hence, the temporal resolution can be enhanced with

the aid of the linearized Kalman filter.

In the phantom study of the 3-D mammography geometry, we eval-

uated the 3-D reconstruction performances of the proposed algorithms using

experimental data collected from a saline-filled phantom using the 64-electrode

ACT4 instrument. The conductivity of the saline solution was chosen to ap-

proximate that of healthy breast tissue. Three targets as tumors were sus-

pended in the phantom at several spatial positions using a thin insulated rod

in order to study the spatial resolution in the x-y plane of the electrodes and

z-axis.

In this study, the conductivity and permittivity or resistivity and capac-

itive reactivity distributions were simultaneously estimated and reconstructed

using the reconstruction algorithms. In the reconstructed static images, the

inhomogeneities were estimated, but the static images were sharper than the

difference images. This is due to the discrepancy between the simplified for-

ward model and the test phantom, and not considering the shunting effect

and surface impedance of the electrodes in the forward modeling. And the

data may contain some level of error due to the imprecise calibration of the
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ACT4 instrument. The data presented were obtained during the last phase

of the instrument development, and the final calibration had not been per-

formed when it was necessary to present these results. This causes the faint

or blurred images in imaginary part of the admittivities or impedivities. As a

result, the static images corresponding to experimental data resulted in poor

target distinguishability. The difference images showed better resolution since

most of the electrode effects are subtracted away. The reconstructed results

demonstrate that in the x-y plane of the electrodes and according the different

depths in the z-axis, the inhomogeneity’s positions are well characterized in

the reconstruction.

In the 3-D mammography geometry, in order to improve the static im-

ages in the reconstruction we try to find the forward solution of the CE model

which takes into account the shunting effect and surface impedance. Since

the 2-D forward solution of the CE model was already done, the 3-D forward

solution will be solved soon. We are also considering modifying the boundary

conditions of the mammography geometry.

This work is a fundamental study for breast cancer detection as the

application of EIT. The main goal of the present work is to apply a 3-D recon-

struction algorithm with the planar electrode geometry to the early detection

of breast cancer.
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Summary

Breast cancer is the most commonly diagnosed malignant tumor among

women in the western world. Early detection of breast cancer is the most

effective method for reducing breast cancer mortality rate.

It has been reported that breast tumors have typically higher conductiv-

ity and permittivity, that is, there are significant differences in electric prop-

erties between normal breast tissues and breast tumors. Therefore, electrical

impedance of tissue could be used as an indicator for breast cancer detection.

Electrical impedance tomography (EIT) is an imaging modality that

estimates the electrical properties in a body. In EIT, small electrical currents

are injected through electrodes placed on the surface of the body and the

corresponding voltages are measured through these electrodes. These voltage

and current data are used in reconstruction algorithms to reconstruct and

display the internal electrical properties.

In this thesis, the 2-D circular and 3-D mammography geometries are

considered, and reconstruction algorithms are applied to both geometries. The

forward problem in both geometries was solved by the analytical method based

on the separation of variables and Fourier series, and the analytical solutions

of the different mathematical models were formulated.

To apply the experimental data from the ACT4 system to the recon-

struction, we found synthesized complex voltage patterns based on the nor-

malized canonical currents, which are combined with the applied complex

voltages and measured complex currents.

In the phantom study of the 2-D circular geometry, to illustrate the re-

construction performance in the sense of spatio-temporal resolution, we con-

sidered dynamically changing scenarios, that is, it was assumed that the size of

the heart was changing within the data acquisition time (one classical frame),
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but the admittivities of the different sizes (big and small) of the heart were

kept the same, and the volume and the admittivity of the lungs were fixed.

It represents the scenario when the person holds his/her breath during the

acquisition of measurement data. For the simulation data we computed volt-

ages with the FEM and for the experimental data we obtained voltages with

a chest phantom in a simplified geometry of the human chest.

In the phantom study of the 3-D mammography geometry, the 3-D

reconstruction performance is illustrated using experimental data collected

from a saline-filled phantom using the 64-electrode ACT4 instrument. The

conductivity of the saline solution was chosen to approximate that of healthy

breast tissue. Three targets as tumors were suspended in the phantom at

several spatial positions using a thin insulated rod in order to study the spatial

resolution in the x-y plane of the electrodes and z-axis.

In this study, the admittivity or impedivity distributions were simul-

taneously estimated and reconstructed using the reconstruction algorithms.

In the reconstructed static images, the inhomogeneities were estimated. The

static images corresponding to experimental data resulted in poor target dis-

tinguishability. The difference images showed better resolution since most of

the electrode effects are subtracted away. The reconstructed results demon-

strate that in the x-y plane of the electrodes and according the different depths

in the z-axis, the inhomogeneity’s positions are well characterized in the re-

construction.
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