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1. INTRODUCTION

We can introduce the properties of the volume of an n-surface
in R?1t 1 by using well-known definition,
In this paper, we begin with defining a volume of an n-surface

in R#t 1 on the definition of a level set, Then we will prove the
properties of the arc length, area and volume of ann-surface in

R”t 1 according to its definition,

For our further discussion, several definitions and notations

will be given first of all,



2. DEFINITION AND NOTATION

Given a function f:U — R, where U is an open subset in R”‘"],

DEFINITION(2.1). Level sets are the sets f '(C) defined
by f—‘(C) = {(xy, Xz, -, X, 4 )€U | f(xs, Xz, x,) = C} for
each real number C, The number C is called the height of the
level set and f_](C) is called the level set at height C,

DEFINITION(2.2). A vector field X on U_R"t! is a funct-
ion which assigns t0 each point of U a vector at that point.
Thus X(p) = (p, X(p)) for some function X:U-»R’“”_

DEFINITION(2.3). A parametrized curve a:I — R” 1!
is said to be an integral curve of the vector field X on the open
set U in R®*1 if a(t) & U and a(t) = X(a(t)) for all te: I,

DEFINITION(2.4). The lenght"E;.H:I — R defined by”c.l”(t,) =
” alt) I along for all t & I is called the speed of a,

DEFINITION(2.5) . A smooth unit normal vector field on an
n-surface S in R?* ! is called an orientation on S.

PROPOSITION(2.8). The length of a connected oriented
plane curve C can be computed from the formular;

£(C) = ¢(a) = _fglt'z(t)l dt, where a,b are the end points of I,

PROPOSITION(2.7). If B:'f—’ R*t! is a reparametrization

of a, then £(a) = ¢(8),



DEFINITION(2.8). A parametrized n-surface in R"+k(k20)
is a smooth map SD:U—-oR"'H’, where U is a connected open set in
R™, which is regular; i,e, which is such that d‘Pp is a nonsing—

ular(has rank n) for each P < U,

DEFINITION(2.9) Let ¢:U »R*** be any smooth map, U
open in R*, ThenE;(i e {1, n}) denote the tangent vector
fields along ¢ defined by Ei(p) =(p,0,+, 1, -, 0), where the 1
is in the (i+1)-th spot,

PROPOSITION(2.10). The components of E, are the entries
in the i-th column of the Jacobian matrix for ¢ at p:

Ei(p) = (¢(p).-§§i(p)) = (¢(p)s93—?;ii(p)), ...... (—‘P—'ﬁ”—(m) ,

where ¢(p) = (#:(p), -, ¢, 4,(P)) for pe U,

PROPOSITION(2,11). The E; are called the coordinate vector

field along ¢,
PROPOSITION(2.12). Suppose that ¢:U —-R?t! isa

parametrized n-surface in R?t ! Let N(p) denote the unique wvec-

tor at ¢(p) such that N( p)_Limage d‘Pp and

E(p:)
E(.Pr)
E(P,)
N(p)

det > 0 for pez U,

Then N is a smooth unit normal vector field along ¢,

_3_



3. VOLUME OF AN N-SURFACE

In the present section, we prove the properties of the volume
of an n-surface in R*1! with its definition,

We begin by defining the volume of an n-surface,

DEFINITION(3.1) The volume of a parametrized n-surface

9:U—R?t 1 is defined by

~ E; — Ei(u, -, ug)
E. E:(u,, -, u,)
V(so) = J,det | i | = [,det : du;, - du,
En En(u,, un)
~ N S~ N{(u,, -, u,) §

where E; - E  are the coordinate vector field along ¢ and N is
the orientation vector field along ¢,

In the next theorem, using the above definition, we obtain
a formular for volume which does not require calculation of the
orientation vector field N,

THEOREM(3.2) Let ¢:U =R+ pe a parametrized n-surface

Then E,
E:

V (¢) = [, det | : = [, V3EUE E;)




PROOF. Using the definition(3.1),

( rEI 517 [/, E: ~
‘ E: E2
det | : = det : i(E?, EE: Eﬁ: Nt)
| En En
L LN LN P

" B, E; E"En 0 )
E: Er -+ E:-Ep 0
= det : : = det(Ej'Ej)

E, E; - E; By 0

. 0 M. JEINATIONAL U
where E‘i is the transpose of E; and i, j & {1,2, -, n}.

The formular for the lenght of a parametrized curve a:I — R?
can be rewritten as follows,

THEOREM(3.3) The length of a parametrized curve a:l — R?
is £(a) = _fllla“ = -fI det [IEJEBJ’ where a is regular and N is
the orientation vector field along a,

PROOF . Since the veloc¢ity f‘ield.c; is the coordinate vector

field E; along the parametrized l-surface a in R? and the vector

EJ(t)/nEz(t)|, N form an orthogonal basis for the vector space

o) | = | Bace) faer (BC) BEaCd] = aer [F113]

RZ
a(t) N(t)



By definition(3,1), when n = 1, the volume of ¢ is the length
of ¢, Moreover, when n = 2, the volume of ¢ is the area of ¢,

Using the above theorem, we obtain a useful theorem,

THEOREM(3. 4) Let C be a connected oriented plane curve
anda be the same curve with opposite orientation,
Then e(c) = &(T)

PROOF. Consider parametrized curve a:I — C oriented by N
and a:1 — C oriented by -N )
Then II det [g'] = _ffdet[_ﬁ')

Using the definition(3.1) and the theorem( 3,2), we have the
following theorem,

THEOREM(3.5) Let E; be the n-ply orthogonal system along ¢.
If a function f:U— R is a smooth function on the open set UCR"

and £:U— R"%! is defined by ¢(u;, -, uy) = (ur, - uy, fus,,u,)),

then the volume of ¥ may be expressed in the integral of

/ N af
1+ 2 (= )* along ¢ on U,
= euy

alcv
ey
A

PROOF. Since E;(p) = (p, ,i;_ﬁi(p)) = (p,0,, 1,0,

for p = (u,,u,,--',un) e U,

af ) Lo

E,'E- - i l+(3u.)‘ if i = J
* £ of

9 Q — . . .

-ﬁli EJ-O if i #Z j
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Hence

det(E;-E;) = [1+(§§,)2] [1+(§£2)']--- [1+(§£n)'1

n
f
= 1+ 35 (&),
i=1 %%
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The purpose of the present paper is to study some properties

of the arc length, area and volume of surface by using definition

of level get,
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