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] Introduction

In this paper we are going to study the following facts:

The preliminary section contains definitions, properties,
and the Riesz representation tneorem,

In section 2, It will be proved that the space of all complex

measures on a ¢ — algebra M can be a Banach space under the

operation defined by

(g+2)(E) = p{E)+ 2(E)
( ap ) (E) = ap(E), where for any scalar a,
E- M and g,4 ire complex measures,

and the norm Jdefined by

oo
e el 0 and [al(B) =sup 3ol e(E) I,
=
where tne supremum 1s -axken over all partitions {E;} of E,
It will be shown, in a special case, that the space of all
complex regular Borel measures on a locally compact Hausdorff
space 1s complete under tne norm defined as above by using the

Riesz Representation theorem,



2. Preliminaries

Definition 2—1 Let X be an arbitrary set, A collection of

subsets of X is said 1o be a c—algebra in X if M has the follow-

ing properties: (i) X=M, (ii) If AeM, then Ac M, wher AS

(o]
1s the complement of A relative to X, (iii) If A= (| A, and if

n=]

A e M for n=1.2, .- . then A=M,

Definition 2—2 Let X be any set and let M be a o—algebra

in X, Call a countable collection

{E;} of members of M 3
oo

partition of E if E; " E; = ¢ whenever t#j, and if E=_y E;,

=1

A complex measure # on M is then a complex function on M
such that

cC
# (E) =X »(E;) (EEM) for every partition {E;} of E,
=1

Definition 2—-3 A set function

|l#] on e—algebra
o

defined by || (E) =sup '21 l#(E.) | (EeM),
1:

supremum is taken over all partitions

where the

{E;} of E, is called the

total variation measure and the term “total variation of u” is

also frequently used to dencte the number | pg| (X).

Proposition 2—1 The total variation

l#] of a complex

measure # on M is a positive measure on M.

Proof Let {E;} be a partition of E in M and let % be real

numbers such that t1.<i# [ (E'.), Then each E‘. has a partition {A:.‘J.} such that

-—2-—



bl (Er) S Z 1e(a;) >4 (=13, ) 11)
Since {A;;} (i,/=12,3- ) is a partition of E,
it follow that
;t,- S X lea )l s el (E) (2)

Taking the supre:n,:zm of the left side of (2), over all admissible
choice of {t;}, we see that
;lul (E;) =1lpxl (B) (3)
since X | p| (E;) =sup T | #(4;) |,
[ r,J
To prove the opposite inequality, let {A;} be any partition
of E, Then for any fixed ,, {A;NE;} is a partition of A;, and

for any fixed ¢, {A;NE;} is a partition of B;., Hence
Z|P<Aj)| = ZIZF(AJ'OE{) |
7 7 t

0 dud Ay MBS (4)
i

= LTIk (4,NE,) |
L)

A

H

Since (4) holds for every partition{A;} of E, we have
|#i(E)§ZI#I(E,-) (5)

By (3) and (5), | ¢ | 1ts countably additive, that is
[ el (E) =§l ¢ (E;;

Thus this proof is complete

Lemma 2~-2 If 2., 22,"**, %, are complex numbers, there
is a subset S of {1,2, «reeee , '} such,that
! n
=S 7=1



Proof Put w=]z; | +eeeeiennn +12 |. The complex plane is
the union of fourclcsed guadrants, bounded by the lines
y=*x,and at least one of these quadrants Q has the property

that the sum of the |Z,

]I for which ZjEQ is at least w4,

For z&Q, we have
Rez = |z| /V/7;
if S is the set of all ; such that ZjeQ, it follows that

1

jEs JES iES W7 6
1l =»
Hence 1L Zla g Z 1%
jEg ;=1

Theorem 2-3 If ¢# is a complex measure on X, then the

total variation of ¢ is a finite measure,
Proof We first show: If EeM and |#| (E)=c, then
E=A B, where A and B&eM . ANB=g, and
l#(A)I>1, Il#] (B) = (1)
Indeed, the definition of |[g| shows that to every t<co
there corresponds a partition {E;} of E such that
Ze(E) >,
Let us take t=6(1+1|#(E)|). Then
I 1 u(E)| >t (2)
for some n; and if we apply Lemma 2-2 with Z].=p(Ej-) and put
A= {J E, (3)
jes’
it follows that AcE and |p@)l>¢t/62|. If B=E-A, then

—4—



P e (B) i =1 p(E)—p(A)| 2>l p(A)|—|&E) ]| >t/ 6

le(E) | =1.
Since | # |(E) = |p¢|(A)+|e]|(B), by proposition 2 — 1,
we have | ¢ | (A) = oo or | # | (B) = oo, and we obtain 1)

by interchanging A and B,

Now assume that | # |(X) = oo, put B, = X, Suppose n =20, and
By is chosenso that | ¢ | (B,) = oo, Then, applying (1) with
B, in place of E, we see that B, is the union of two disjoint

sets Ay +) and B, ., such that | ¢ (A,+;)] > | and | # | (By+1)

= 0o,

Thus we 1nductively obtain disjoint sets A,, A,, A;, -, with
|l # (A,) | >, If C=1UA4,, the countable additivity of g
show that

g (C) = nz__ll #(A))

But this seris can not converge, since 4 (A, ) does not tend to

O as n - o, This contradiction shows | # (X)] <o

Propostion 2—-4  ( Riesz Representation Theorem )

Let X be a locally Hausdorff space and let Co(X) be the class
of all continuous complex functions on X which vanish at infin-—
1ty, Then to each bounded linear functional @ on Co(X), there

corresponds a unique complex reqular Borel measure # such that
m(f)=sxfdu (feCo(X) ) (1)

e



Moreover, if @ and g are related as in (1), then
PO = ] (X

Proof. See Ref (1] Page 139,



3. Main Theorems

Definition 3 — 1 The operation on the space of comulex

measures on the og-algebra M of any set X can be defined as
(A+u4) (E) = 2(E) + u(E)
(ad) (E) = a2(E), for any E nqndﬁny scalar,
and the norm on the space of complex measures can be defined
as [luil = [ul(X) w(B) = sup ¥ |u(E;)I,

where the supremum is taken over all partitons {E;} of E,

Theorem 3 — 1 The collection of all complex measures oOf

a o-algebra M forms a normed vector space under the operat ion

and norm defined as above,

Proof Let 7 be the collection of all complex measures
of a g-algebra M, then this J is a vector space over C.

=1 t=]

D G IE ) = ACTE )+ DB )
= 'ogoll(E,'-) + .OE_olu(E,'-)

= I (A(E) + u(E)

i

=]

o o] o0
L (A+u)(E; ), for each E;=M,E=U E;
{=1 ]
and E.NE.= ¢ if 7%
t
o0

11) (cz)(_f:lE,- ) 4 B )

—F -



c(le(Ei))

}: cl (Ez)

i=1

;;o (ci)(E;), for EecM, ce(C.

=1

I

i1) Take z by the rule
2(E) = 0 for all Ec M
Then (4+2)(E) = A(E) + #E)
A(E)
= 2(E) + a(E)
= (2 + 2)(E),

It

This means z is a identity with respect to the addition,
For 1« (C
(1-2)(E) = 1(2(E)) = A(E) that is .1 = i
iii) -2 is the inverse of A in the sense that
~2(E) + 2(E) = 2(E), that is -2 + 2 = z
iv) Another requirements for vector space are also
satisfied, one by one autonomically,
Second, we must prove J is the normed vector space

i) Jlull = |u|(X) Z 0 for each wuec J
ii) |f=ll = lul(X)=0 iff for any Ec M |«|(E) = 0
iff |Ju|(E) = sup_Ellu(Ei)l = @ for
=
all partitions {E;} of E
iff | (E)| = 0

iff wu(E) = 0.

-8 =



iii) |lau|| = lau] (X)

for any Ec M

o0
lex] (E) = sup Z law(E;)]|

=]

sup £ lal | u(E)l

=1

la| sup & [w(E;)]|

1=

= |a| lul(E), for all partitions of B,

iv) |lutol] = |wto](X)
for any E = M

uko] (B) = sup I 1 Cetv)(E,)]

x
Sup>§k|u(E5) e tlEL )|
< sup'gl(lu(E,')l + [v(E;) 1)
. %
< sup .leu(E,-)[ + supIZIIU(E,-)I
{= =

< |#[(E) + [¢[(E), for all partition {E;}
of E,
Hence we get

Jutey < lui + lvi

Definition3 -2 The collection L = L(X,M, %) of integrable

functions consists orf all complex-valued M ~measurable
functions f defined orn X, such that both the pPositive and
negative parts f ,f of f nave finite integrals with

respect to u,



Lemma 8 - 2 If fne L(X,M,#) and if.oZOISlfnl du< + oo,
1=

Then the series an(x) converges almost evergwhere to a

function f in L(X,M,«). Morecver

o0
‘J}du = 2 ¥ du
i=1J 7"

o0

Proof Let A = {r<= X: & [T, (£)I< + oo}
- n=]
(oo}
B={xe X: ¢ Ifn(x)| = oo}
n=l
lo o]
Define f(x) = E () (%)

we must show #(B) = 0 and f e L(X,M,u«)

o n
ZVf jJde = 1im X lfk | d u
n=j %

nrC k=]
n

=lim § % If)du
noo of k=1

By Mcnctone Canvergence Theorem,

n n
lim L If,|du :Slim b lfkldu
nocod p=| k noco k=1
o0
= § £ If, ldu

n=1

oo oo
= L |f (x)]|du + ZIf ldu<oo
SAn=l " Bn=l "

o0

Hence #(B) = 0 and“‘lfldu éSZ

I fnxA ]du( + o0
n=1

that 1is,
fel (X,M,«) and

[+ o]
1z (% (#)| is an integrable function,
k=1

By Lebesque Dominated Convergence Theorem,

n
ffdu =f1im kaZAdu
n—oo k=1

-10-



"

=1im Z kaA :iu

=00 k:l
n
=1im
Q0
—”EL Sf‘ndu
- If and <
Corol lary 3-3 a < C an ngl kzl | | <oo,
then 3§ =5 ¥ oa
n=1 n=] “nk = k=1 n=] »#
Proof

Let X=N, M to be the o-algebra of all subset

of N and # to be the counting measure on X,

Then [e7e] I |d ooS | 0 0o | <
= a = (o o TN
) T R e R SR L
By Lemma 3-2
oo oo

(0 o] (00]
E) kél Tnk T GE L

Lemm 3—4 Let Zn’s be complex measures on X such

o0
that _21 4, 1is complex measure, Then,
=

(e o}

X a i s

n=1 ”n n

8

IHXJI

Proof Let ln% be complex measures on X, Then we have

the following:

[e0] o0
FaE &l = 1,2 &) (X).

n=1] »n

Forany E= M

| 4l (B) = sup £ [ F 4, (E) |



]

x
< sup z'}=:l nél Hn(Ei)l
o0 o0
=< ngl sup iél 12, (E) I
[o.0]

I
X
e

221 (), for all partitions {E;] of E,
Hence we get

o
| PR S | -

n=1 7 n

11418

NENE

Theorem 83-5 Let X be a set and let Mbe a og-algebra on

X, Then the normed vector space of complex measures is a
complete metric space with the metric d(4,#) = 2 -pgl
Proof Let 7 be the normed vector space Of complex

measures. Choose a Cauchy seguence (ln) in 7,
We can always select a subsequence(lnk) e&r ( Zn) so that

1 s o
”’znk—'lnﬁ-l” < Zm. This can be assured by the fact that

(ln) is a Cauchy sequence in g,

Define 4A(E) by the rule

2(E) = (-1, )(E).
We must prove that 4 1s a complex measure onM.

Let E = Oj E. and Eanj =¢ whenever =,

o0 [e,9] o0 [}
Then I I 1y =3, 00 BISE T 1= 4, ,,,1E)
o0
= Z At = Ay il (E)
[o0]
N A N R

-12-



'Hence by corollary 3-3,

I8
8

[e0] [.o]
kZ::l(an - Aﬂ k+1) (Et) = ‘-gl(znk - 2” k""'l) (Eg')

&

!
Iir8

that is,

18

lai(El.) = A(E).

i
These complete the proof of 1€ J

. Jz=l
Since kél(znk_ Ay b)) = Ay, — 'znj’ by Lemma 3-4,
ha-( xm—znj) ”=i§j('znk— iy k+1)“

SEE
= k};j | nk_zn k-*—l”

o0
- <
and kz_;llllnk Rn k-{-l“ =1,
lude th 1 T |
w a onclude at im AP - =
e can c it Gz b k=j“ nk 2,, /e-l-l| 0

ang so

lim HZ,,]-— (an——l)ll = 0

X0

Denote lnl-l by #.
For € >0, there exist N such thatm, s=N= l2,— 1n||<%
choose k£ so large that

12, = 2,1 << for nzN

Ny = 1 <
Then, for every n=N

I Ay,— p1 S A= A, I + 1 e R >
Hence there exist #& J such that

%ig) Na,—#1 =0

that is, every cauchy sequence in J has a limit in T .



4. A Special Case

Definition 4-1 X 15 2 Hausdorff space if the following holds

If p=X, g&= X, and P#q, then p has a neighborhood ¢ and q

has a neighborhood V such that UNV=¢.

Definition 4— 2 Hausdorff space X is locally compact if every

pomnt of X has a neighborhocd whose closure is compact,

Definition 4—-8 A complex function f on a locally compact Hau-

sdorff space X is said to vanishat infinity if to every & > 0 there
exists a compactset K — Xsuch that | £ (x) | <¢ for all # not in K.,
The class of all continuous f on X which vanishat infinity is

called G (X).

Definition 4—4 Let C,(X) be a vector space over . A linear

functionalon Co(X) is a linear map whose values lie in(,

Definition 4—5 Let X be a Hausdorff space and let B (x) bethe

d-algebra generated by the cpen subsets of X, A Borel measure on
X 1s a measure whose domain is B (x), Suppose that M is a s—alg-
ebra on X such that ‘Q(X):M.
A positive measure # on M is regular if
(a) each compact subset K of X satisfies #(K)<+ oo,

(b) each set E in M satisfies,



B(E)=inf {¢#(F): ECF and F is open}, and
(C) each open subset F of X satisfiesg
# (F)=sup {#(K): KZF ami K is compact},
A regular Borel measure on X is a regular measure whose do-—

main is _B (X),

Lewama 4 -1 The space or all bounded linear functional onCyf X"

forms a Banach space with respect to the norm defined by | @ ||
=sup |@(f)|, ||f]|<€ |, for any bounded linear functional ¢
and r& Co(X), where X is a locally compact Hausdorff space,

Proof Let C: be the space of all bounded linear functional
on Cp (X), that is,

Co(X) = {@: CoiX) > sucn tnat ||@ | < oo},

Clearly Co*(X) 18 a vector space with a usual operation,
Therefore it is sufficient tc prove Co*(x)is complete with respect
to the norm derined as above.
Let (@, ) be a Caucny sequence in Co* (x).
For any I in Co (X)

| @ (1) o _(£)1 <1 ¢, -0, 1 Ifj
and so (¢n (f) ) is a Cauchy sequence in C.
Thus we can have a function on Co (X) defined by

D:Co(X)oC with o(r)=1lim(@, (5)),

n—roo



we must prove the Tollowing conditions ;
) & 1s a linear functicnal
2 D) <o

9 3in 0, =0

Let’s , in the first place, prove 1) holds,

Let f,g=Co (X), a=(

¢ (f+g) = Lim & (f+g)

B = A

= @(f) + 0(g)
and
¢ (af) = %Lmood)n (af)

= lin a @ (f)
n—rc n

- = 30, ()

a ¢(f).
Thus 1) has proved.
Next, let’s prove 2) holds
For every € there is a N such that

"> N = | d)n—¢NI|<e_

Thus |l din It g I|¢N—¢" I+ @yl if 2> N,

So, g IKM  for all »
n =

Fos every f in Cy (X) with neung,

I(Dn (f)lg H(Dn <M, and so



|d)n (£) |<M, that is,

12 1< M<I+oo,
Now, we have the issue if 3) holds or not,
Let e>o be give, since(®,)is a Cauchy sequence there exist N

such that m,n >N |0, -0 | <§,

For every f& G (X) with <1, there exist ne >N such that

19, (£) —o(0)I1<§ .

i 2

Thus, if #»2>N,

I

10, (£)~0 (£)] < | a>,,(f)—¢,_1f(f)| + w,,f (£)-o(D)igie, - ‘P,,f

+5<e,
This implies | ®, (£)-0(f)|<e for every n2N, for f< Co (X) with. nfigi,
Consequently

¢ -0I1<e if 2N,

This proves the lemma completely |

Theorem 4—-2 .Let X be a lccally compact Hausdorff space,
The vector space M(X) of all complex regular Borel measures on X
is a2 Banach space if |l jl=|# ]| 1 X),

Proot We will prove the given problem, By the Riesz Represent —
ation Theorem, with each bounded linear functional ¢ on Co(X),

there corresponds a unique regular Borel measure # such that
o (f) =fodu Tor fe& Cy (X),

L@l = el

-17-



Thus we can define ¥=Cy(X)> M(X) by ¥(d)=p,
where @ (f)=%fdu, f=Co(X), NP lI=1pl .
Can ¥ be a norm which preserves the vector space isomophism?
The answer is affirmative, Let's prove it,Cleary ¥ is 1-1
by Riesz Represemtation Theorem,
Let # be a complex regular Borel measure on X,
that is, #> M (X), When we use Random - Nikodym Theorem,_
we get a measurable function h such that |h(X)|=1 for all
x=X and such that

de=hd|pg|

So, for every f=Co (X) with |fi 1,

b

I

f@o( 1) | [NTdg|

Slfldlul

= | el (X)<teo,

A

Therefore, for every p< M(X),
O (f)=Qfdy for f=Co(X)
is a bounded linear functional on Co(X),
that 1is,
®=Co"(X).
Let & ,0'S Co™(X) and ¥ (0 )=u ,¥(0') =4,

Substituting A=pg+a', we get

ffdl =j._fdu -f—Sfdu'.
since flhd2=2 (E)
=#(E)+# (E)

=fx gdu +jlgd#' .

-18-



So, (0+0') (f)=0(f)+0' (1)

=J’fi,i, I=M(X),

y(o+0')=1 by unigueness.

Therefore,

So, (@+¢') (f)=Y}rda
=ffdu +Ifdu'
=o(f)+0' (1),
Sinc A=pu+ ¢,
v (0+0") =¥ (0)+ (0,
Let a=(C , 0=C*(X), ¥(0)=p.
Then (a®)(f)=a(d(f))
.:ij}du.
Substituting A=apg, we get
j‘fdlz affdu, since
f’ﬁ.‘” = A(F)

I
R
—
-
tu.
r

Therefore

(a@d) () :ffci&, that s,

il

al (D),

We have proved ¥ is a norm which preserves the vector space
isomorphism,

By Lemma 4—l,Co*(X) is a Banach space, and hence M{X) is a

Banach space since ¥ 1s a norm wnich preserves the vector

space 1somorphism from a Banach space Co*(X) onto a nomed linear space,
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