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< Abstract >

On the Properties of Regular

Convergence Spaces

In this thesis, we study the regular convergence spaces and the fibrewise
regular convergence spaces and some properties of those spaces. First, we
introduce the notion of regular convergence spaces and investigate some prop-
erties of regular convergence spaces; including the function space C(X,Y).
And we define the fibrewise regular convergence spaces which can be regarded
as a generalization of the regular convergence spaces. And we generalize the

properties of regular convergence spaces as a fibrewise version.
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1. Introduction.

The fibrewise viewpoint is standard in the theory of fibre bundles. How-
ever, it has been recognized only recently that the same viewpoint is also
great value in other theories, such as general topology. I. M. James has been
promoting the fibrewise viewpoint systematically in topology [3 , 4]. Many of
the familiar definitions and theorems of ordinary topology can be generalized,
in a natural way, so that one can develop a theory of topology over a base.
On the other hand, as a convenient category, the category of convergence
spaces was introduced which contains the category of topological spaces as
a bireflective subcategory. So many familiar definitions of topological spaces
were introduced in the convergence spaces. In this point of view, K. C. Min,
S. J. Lee and J. W. Park developed a general fibrewise theory in the category
of convergence spaces, including the fibrewise notion of Hausdorffness [6 , 7.

In this thesis, we study the regular convergence spaces and the fibrewise
regular convergence spaces and some properties of those spaces. In section 2,
we recall some basic definitions and some known results, which we shall need
in later sections. In section 3, we introduce the notion of regular convergence
spaces and investigate some properties of regular convergence spaces. And we
find a condition for which the function space C(X,Y) is regular. In section
4, we define the fibrewise regular convergence spaces which can be regarded
as a generalization of the regular convergence spaces. And we generalize the

results obtained in section 3 as a fibrewise version.
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2. Preliminaries.

In this section, we collect some definitions and well known results, about

the convergence spaces over a base, which we shall need in later.

For any set X, we denote by F(X) the set of all filters on X, and by
P(F(X)) the power set of F(X).

Definition 2.1. {1] Let X be a set. A map c¢: X — P(F(X)) is said to be
a convergence structure if the following properties hold for any point r € X :
(1) € c(x).
(2) F € ¢(z) and F C G, then G € ¢(x).
(3) F,G € c¢(z), then F NG € ¢c(x).
Here i stands for the ultrafilter on X generated by {z}. The pair (X,c¢)

is a convergence space. The filters in ¢(x) are said to converge to x.

If f: X - Y isamap and F € F(X) then f(F) is a filter base. In
general, f(F) is not a filter but the filter generated by f(F) is also denoted

by f(F).
Definition 2.2. [1] Let (X,¢) and (Y,¢’) be convergence spaces and f :
X — Y amap. Then f is said to be continuous at z € X if for any F € ¢(x),

f(F) € d(f(z)). And f is said to be continuous if f is continuous at each

point z € X.

Now we introduce the notions of initial and final convergence structures

and some concepts based on them.



Let {f;: X — Xi| 1 € I} be a family of maps from a set X into a family
of {X;| 7 € I} of convergence spaces. To any point r € X we assign all
those filters F on X for which f;(F) converges to fi(z) for every 1 € I.
The convergence structure on X defined in this way is called the initial
convergence structure induced by the family {f:| i € I}. It is of course the
coarsest of all the convergence structures on X which allow every f; to be
continuous [1].

Based on the notion of the initial convergence structure we define sub-
spaces and products in the obvious way. A subset A of a convergence space
X is turned into a subspace of X if it is endowed with the initial conver-
gence structure induced by the inclusion map. The product I1X; of a family
{X;| i € I} of convergence spaces is the product of the underlying sets of the
family endowed with the initial convergence structure induced by the family
of all the canonical projections.

For a family {X;| i € I} of convergence spaces and a family of maps
{fi: Xi — X| 1€ I} into a set X, we define the final convergence structure
induced by the family {f;| i € I} as follows : A filter 7 on X converges to
z € X ifand only if F D & or F D N_; fi, (Gk), where the filters G; converge

to a preimage under f;, of x for iy € [ and k =1,2,--- ,n [1].

Next we introduce some separation axioms for the convergence spaces.
Definition 2.3. [8] A convergence space X is said to be Tp if x # y, & does

not converge to y or y does not converge to .
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Definition 2.4. [8] A convergence space X is said to be Ty if  # y, = does

not converge to y and ¥ does not converge to .

Definition 2.5. [8] A convergence space X is said to be Hausdorff if a filter

F on X converges to x and y then x = y.
Now we intorduce the notion of a convergence spaces over a base.

Let X and B be convergence spaces and p : X — B be a continuous map.
In this case, X is called a convergence space over a base B and p is called a
projection. For a convergence space X over B with a projection p, the fibre
of b € B, denoted by X}, is the subset p~!(b) of X.

For convergence spaces X and Y over B with projections p and g, respec-
tively, a continuous map f : X — Y with go f = p is called a continuous
map over B.

For convergence spaces X and Y over B, with projections p and g, re-
spectively, let XxgY = {(z,y)| p(z) = q(y)} be endowed with the initial
convergence structure induced by the {m : XxgY — X,m : XxgY — Y}.
Then X x gY’, considered as a convergence space over B with the projection
po 71, is the product of X and Y in the sense of convergence spaces over a
base. This product is called the fibre product of X and Y.

Similarly for a family {X;| i € I} of convergence spaces over B, we obtain
the product IIp X;.

Now we will extend a property of convergence spaces to convergence spaces

over B, in a natural way, satisfying some specific conditions.
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Definition 2.6. [2] A property Pp of convergence spaces over B is said to
be well-behaved if it satisfies the following three conditions :

(Condition 1) If X and Y are homeomorphic convergence spaces over B
and if X has property Pp then so does Y.

(Condition 2) A convergence space X has property P if and only if the
convergence space X over the point * has property P..

(Condition 3) If a convergence space X over B has property Pp then the
convergence space £*X over B’ has property Pp/ for each convergence space
B’ and continuous map £ : B — B, where £*X = B’xgX is the convergence

space over B’ with the projection 7.

Now, we introduce some separation axioms for the convergence spaces over

B.

Definition 2.7. [8] A convergence space X over B is said to be fibrewise Ty
if x # y, where = and y belong to the same fibre, £ does not converge to y

or y does not converge to .

Definition 2.8. [8] A convergence space X over B is said to be fibrewise T3
if z # y, where x and y belong to the same fibre, £ does not converge to y

and y does not converge to z.

Definition 2.9. [8] A convergence space X over B is said to be fibrewise
Hausdorff if a filter F on X converges to z and y, where z and y belong to

the same fibre, then z = y.

Proposition 2.10. [8] The properties fibrewise Ty, fibrewise T1, and fibre-

wise Hausdorff are well-behaved.



3. Regular convergence spaces

In this section, we introduce the notion of regular convergence spaces and

investigate some properties of regular convergence spaces.

Definition 3.1. [1] Let (X,c) be a convergence space. X is said to be
regular if for any filter F converging to z, {F| F € F} converges to x, where

F = {z € X| there exists an ultrafilter /{ containing F' converging to x}.

Let (X, T) be a topological space. By assigning to each point x € X the
set cr(z) of all filters on X which converge to z with respect to the given
topology, we obtain a convergence structure on X. This convergence space

is denoted by (X, c¢7) [1]. Then we can have the following result.

Proposition 3.2. Let (X, T) be a topological space. (X,T) is regular if and

only if (X, cr) is regular.

Proof. Suppose F converges to z in (X, c7). Since (X, T) is regular, for each
U € N, there exists a V € N, such that V C U. Since N, is contained in
FandV €N, Ve {F|F e F}. ThusU € {F| F € F} and hence N; is
contained in {F| F € F}. Therefore {F| F € F} converges to .
Conversely, let € X and U be an open set in (X, 7) containing z. Since
N converges to z in (X,c7) and (X, c7) is regular, {V| V € N} converges
to . Thus A; is contained in {V| V € N,}. This implies that there exists

aV € N, such that z € V C U. Hence (X, T) is regular.



Proposition 3.3. Let X be a regular T} convergence space. Then X is

Hausdorff.

Proof. Suppose F converges to x and y. Then since X is regular, {F| F € F}
converges to x and y. Soz € F and y € F for all F € F, and hence
{F| F € F} is contained in  and y. This means that & converges to x and

y, simultaneously. Since X is a T} space, x = y. Hence X is Hausdorff.

The following example explains that there exists a Hausdorff convergence

space, which is not a regular convergence space.

Example Let A = {l| n € N} in R, let B = {B € P(R)| B is an open
n

interval that does not contain 0 or B = (—z,z) — A} for £ > 0. Then we
note that B is a basis for a topology 7 on R, and the space (R,7T) is a

Hausdorff space. Thus (R, cr) is a Hausdorff convergence space. Consider
1

the subset A = {—l ne N} of R, then A is closed in (R, 7). We note that
n

for any open sets U and V containing A and {0}, respectively, U NV # 0.
Hence (R, T) is not regular. Therefore (R, c7) is not regular, by proposition

3.2 .

Proposition 3.4. Let f : X — Y be an embedding and Y be a regular

convergence space. Then X 1is reqular.

Proof. Let F converge to z in X. Then f(F) converges to f(z) in Y, since

f is continuous. Since Y is regular, {f(F)| F' € F} converges to f(z) in Y.
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Then {f~}(f(F))| F € F} converges to z in X, since f is an embedding.

Note that

F

N

FHSE) C FHAE))

Thus
{f{f(F)| FeFyC{F|FeF}.

Hence {F| F € F} converges to z in X. Therefore X is regular.

By the above proposition, we have the following corollary.

Corollary 3.5. Fvery subspace of a reqular convergence space is reqular.

Proposition 3.6. Let {X;|i € I} be a class of convergence spaces. Then the

product space [[X; is regqular if and only if X; is reqular for alli € I.

Proof. Let {X;|i € I} be a class of regular convergence spaces. Let F con-

verge to x = (z;) in [[X;. Then m;(F) converges to z; in X; for all 7 € I.

Since X; is regular, {m;(F)| F' € F} converges to z; in X; for all < € I. Since

F c [Imi(F), F C[]mi(F) = [[m:(F). Therefore
{H ()| Fe]—"} Cc {F|FeF}.

Thus {F| F € F} converges to z in [[X;. Hence []X; is regular.
Conversely, we note that X; is homeomorphic to a subspace of []X; for

all - € 1. Hence X is regular for all z € I, by corollary 3.5.



Proposition 3.7. Let f : X — Y be an initial surjection. Then if X is

reqular, Y s reqular.

Proof. Let G converge to y in Y. Since f is surjective, f~1(G) is a filter
in X and G = f(f1(G)). Thus f(f~1(G)) converges to y in Y, and hence
f71(G) converges to x for some x € f~1(y) in X, since f is an initial. Since
X is regular, {f~1(G)| G € G} converges to z in X. Moreover, since f
is continuous, {f(f~1(G))| G € G} converges to y in Y. Note that G C
F(Ff~Y(G)). In fact, let p € G, then there exists an ultrafilter & containing G
converging to p. Then f~!(U) contains f~!(G) and converges to g € f~1(p)

in X. Thus ¢ € f~1(G). Hence p = f(q) € f(f1(G)). So we have

{f(f~1G)| GegG} C{G|Geg}
Hence {G| G € G} converges to y in Y. Therefore Y is regular.

Proposition 3.8. Let f: X — Y be a final injection. Then if Y is regular,

X 1is regqular.

Proof. Let F converge to x in X. Then f(F) converges to f(z) in Y. Since Y

is regular, {f(F')| F € F} converges to f(z) in Y. Since f is a final injection,

there exists a filter G on X converging to z such that f(G) C {f(F)| F € F}.

So, for each G € G there exists an F' € F such that f(F) C f(G). Then

F=ffF)C I fEF)CHG)=0G.
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Hence G C {F| F € F}, and so {F| F € F} converges to z in X. Therefore

X is regular.

Let X and Y be convergence spaces and C(X,Y) be the set of all continu-
ous functions from X to Y. Define a filter F converges to f in C(X,Y) if and
only if for any filter A which converges to z in X, F(.A) converges to f(z)
in Y, where F(A) is the filter generated by {F(A)| F € F,A € A}. Then
it is well known that C(X,Y) with this structure is a convergence space and
this structure is called the continuous convergence structure on C(X,Y) [5].
Moreover, it is also known that for any convergence space Z and a function
f:Z— C(X,Y), fis continuous if and only if evo (1x X f): X x Z - Y
is continuous, where ev : X x C(X,Y) — Y is an evaluation map which is
defined by ev(z, f) = f(z), by the cartesian closedness of the category of

convergence spaces [5].

Proposition 3.9. Let K = {f € C(X,Y)| f : constant map}, then K is

homeomorphic to Y .

Proof. Define ¢ : Y — C(X,Y) by ¢(y) = ¢y, where ¢y is the constant map
from X to Y with the value y. Clearly, ¢ is well-defined and injective. Note
that ¢(Y) = K. Let ¢ : Y — K be the corestriction of ¢. Consider the

following diagram
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XxCXy 2 s vy

idxX(ﬁT /
XxY

Note that ev o (idx x@) = ma. Since 7y is continuous, ev o (idx x¢) is
continuous. Thus ¢ is continuous, and hence 1 is continuous. Furthermore,

we note that for some z € X,

evlizyx K

vl K — (g} x K

where j(f) = (z, f) for f € K. Since j and ev are continuous, ¥~ ! is contin-
uous. Thus v is a homeomorphism from Y to K. Hence K is homeomorphic

toY.

By the above proposition, we have the following necessary and sufficient

condition for the regularity of C(X,Y’).

Theorem 3.10. Let X and Y be convergence spaces. Then Y is regular if
and only if C(X,Y) is regular.

Proof. Let F converge to f in C(X,Y). Then for any filter A on X which

converges to z, the filter 7(A) on Y converges to f(z). Since Y is regular,

{F(A)| F € F, A € A} converges to f(z).
We want to show that {F(A)| F € F, A € A} is contained in {F(A)| F €

F,A € A}. 1t is enough to show that for F € F and A € A, F(A) C F(A).

_11_



Let f(z) € F(A). Since f € F, there exists an ultrafilter G on C(X,Y) which
contains F' and converges to f. Then G(&) converges to f(z). Thus let ‘H be
an ultrafilter on Y containing G(&), then F(A) € G(z) C H and H converges
to f(x). Thus f(z) € F(A). So {F(A)| F € F} converges to f(z) and hence
{F| F € F} converges to f. Therefore C(X,Y) is regular.

Conversely, note that Y is homeomorphic to a subspace of C(X,Y) by the

above proposition. Hence the result follows by corollary 3.5.



4. Fibrewise regular convergence spaces

In this section, we define the notion of the fibrewise regular convergence
spaces, which can be regarded as a generalization of the notion of regular

convergence spaces.

Definition 4.1. A convergence space X over B is said to be fibrewise reqular
(or regular over B) if for any filter F on X converging to z € X, with

XyNF #0forall FeF,{X,NF|F € F} converges to z.
Theorem 4.2. The property ”fibrewise reqular” is well-behaved.

Proof. (Condition 1) Let X and Y be convergence spaces over Band f : X —
Y be a homeomorphism. Let Y be fibrewise regular. Suppose F converges
to z € X, such that X, N F # 0 for all F € F. Then f(F) converges to
f(z) € Y,. Since

0# f(XoeNF) = f(Xs) N f(F) =Yy f(F) (1)

and since Y is fibrewise regular, {Y, N f(F)| F € F} converges to f(z). By

(1),
YV Nf(F)| FeF}) C{XynF|FeF}.

Thus {X, N F| F € F} converges to x. Hence X is fibrewise regular.
(Condition 2) It is obvious.
(Condition 3) Let X be fibrewise regular and £ : B’ — B be a continuous
map. Let F converge to (V',z) € (§*X)y = {b'} x X¢(1) such that (£*X)y N

_13_



F # 0 for all F € F. Since 7, is continuous, mp(F) converges to z in X.

Since

0 #m((€" X )y NF) Cm((" X)w) Nma(F) € Xewy Nme(F)  (2)

and since X is fibrewise regular, {X¢) N 7m2(F)| F € F} converges to z.
By (2), {X¢w Nm(F)| F € F} C {m((¢*X)y NF)| F € F}, and hence
{m2((€*X)y NF)| F € F} converges to . But, {m((¢*X)y NF)| F € F} =
ma ({(€°X )y NF| F € F}). Hence m; ({(€*X)y NF| F € F}) converges to
z. And since m((£*X)y NF) =¥, m({(&*X)y NF| F € F}) is the filter
generated by {b'} and thus m;({(£*X)y N F| F € F}) converges to b’. Thus

{(¢* X))y NF| F € F} converges to (V',z). Hence £*X is fibrewise regular.

Remark (3] Let (X,7) be a topological space over B. Then (X, T) is said
to be fibrewise regular (or regular over B) if for any open set U containing

x € Xy, there exists an open set V such that z € X, NV c U.

Proposition 4.3. Let (X, T) be a topological space. Then (X,T) is fibrewise

regular if and only if (X, cr) is fibrewise regular.

Proof. Let F converge to £ € X3 and Xy N F # @ for all F € F. Then
N, C F. So, for U € N, Xy NU # 0. Since (X,T) is fibrewise regular,
for any V € N, there exists a U € N, such that X, N U C V. Hence
V e {X,NF| F € F}. Thus N, C {X,NF| F € F}. Hence {X,NF| F € F}

converges to z. Therefore (X, ¢r) is fibrewise regular.
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Conversely, note that A converges to z € X, and X, NV # 0 for all
V € N;. Since (X,cr) is fibrewise regular, {X, N V|V € N} converges
to z. Thus N, C {X, N V|V € A,.}. This means that for each U € N,
there exists a V € N such that z € X, NV C U. Hence (X, T) is fibrewise

regular.

Proposition 4.4. Let X be a fibrewise Ty convergence space. Then if X is

fibrewise regular, X is fibrewise Hausdorff.

Proof. Let F converge to  and y with z,y € X,. Then for each F € F,
rze€ XpyNF andy € X, NF. Hence {Xbﬁﬁ F € F} is contained in & and y.
Since X is fibrewise regular, {X, N F| F € F} converges to x and y. Thus &
converges to x and y, simultaneously. Since X is fibrewise T7, z = y. Hence

X is fibrewise Hausdorff.

Proposition 4.5. Let X and Y be convergence spaces over B and f: X —

Y be an embedding. Then if Y is fibrewise regular, so is X.

Proof. Let F converge to z in X and X, N F # 0 for all F € F. Then f(F)
converges to f(z) in Y, since f is continuous. Since Y is fibrewise regular

and

0# f(FNXy) Cf(F)NYs,

{f(F)NnYs| F € F} converges to f(z) in Y. Thus {f "} (f(F)NY,)| F € F}

converges to z in X, since f is an embedding. Note that

FNXy CHFENNFTI (M) C FHFF)NY) .
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Thus
(Y fF)NX)| FeFYyC{FNX,| FeF}.

Hence {F N X,| F € F} converges to x in X, and so X is fibrewise regular.

The following corollary is obtained from the above proposition immedi-

ately.

Corollary 4.6. Let X be a fibrewise reqular convergence space. Then a

subspace of X is also fibrewise regular.

Proposition 4.7. Let {X;|i € I} be a family of fibrewise regular conver-

gence spaces. Then [[gX; ts fibrewise regular.

Proof. Let F converge to (z;) € ([15X:), and ([[gX:), N F # 0 for all
F € F. Then for each z € I,

0 ;é i ((HBXi)b ﬂf‘;) C ((HBXl)b) N 71'1(?) - (X,‘)b M 7Ti(F) .

For each i € I, since m;(F) converges to z; and since X; is fibrewise regular,

{(X3)s HHFT){ F € F} converges to z;. Since F' C [[m(F), F CIm(F) =
[Tm:(F) and thus ([, X:), N F € ([1pX), 0 [Tm(F) = [T ((X0): 0 7l(F) ).

Therefore

{H((Xi)bﬂ;m)lFe}‘}g {(HBXi)bﬂﬂ Fef-}.

Thus {([TgX:), N F| F € F} converges to (z;). Hence [[5X; is fibrewise

regular.
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Proposition 4.8. Let X and Y be convergence spaces over B and f : X —
Y be an initial surjection. Then if X is fibrewise regular, Y is fibrewise

regular.

Proof. Let G converge to y in Y and GNY, # 0 for all G € G. Note that
f~1(G) converges to x for some x € f~1(y) in X, since f is initial and

surjective. We know that f~1(G) C f~1(G). Thus
0#f7HGNY) = fHG)NFH (V) C FTHG)N X, -

Since X is fibrewise regular, {f~1(G) N Xp| G € G} converges to z in X.
Moreover, since f is continuous, {f(f~1(G) N X,)| G € G} converges to y in

Y. So we have
GnY, = f(fTHCNYL)) = f(fTHG) N 1Y) C F(FHG) N Xb)

and hence

{f(F7HG)NX)| GeGC{GNY| G €G}.

Therefore {GNY,| G € G} converges toy € Y. In all, Y is fibrewise regular.

Proposition 4.9. Let X and Y be convergence spaces over B and f : X —

Y be a final injection. Then if Y is fibrewise regular, X is fibrewise regular.

Proof. Let F converge to z in X and F N X}, # 0 for all F € F. Then f(F)
converges to f(z) in Y. Note that f(F)NY, # 0 for all F € F. Since Y
is fibrewise regular, {f(F) NY,| F € F} converges to f(z) in Y. Since f
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is a final injection, there exists a filter G on X converging to x such that

f(G) C{f(F)nYy F € F}. So, for each G € G there exists F' € F such

that f(F)NY, C f(G). Thus

FnX,=ffFnXy) CfHf(F)NYs) CFHf(G) =G .

Hence G C {F N X,| F € F}. Since G converges to z, {F N X| F € F}

converges to x in X. Therefore X is fibrewise regular.

Let X and Y be convergence spaces over B and Cp(X,Y) = Upe sC(Xs, Ys)
as a set, where C(X},Y}) is the set of all continuous functions from X, to
Y,. Define a filter F converges to f in Cg(X,Y), where f € C(Xs,Y}) if and
only if

(1) for any filter A4 in X which converges to z € X, (F N AN )
converges to f(z) in Y and

(2) p(F) converges to p(f) in B, where p: Cp(X,Y) — B is defined by
p(g) =bif g € C(Xy,Ys).

Then it is well known that Cg(X,Y) with this structure is a convergence

space and this structure is called the fibrewise continuous convergence struc-

ture on Cp(X,Y) [6].

Proposition 4.10. Let X and Y be convergence spaces over B. IfY is

fibrewise reqular, then Cg(X,Y) is fibrewise regular.

Proof. Suppose F converges to f € C(Xy,Y;) and C(X3,Ys) N F # 0 for all
F € F. Then we have to show that G = {C(X,,Ys) N F| F € F} converges
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to f in Cp(X,Y). Let A converge to z € X, then it is enough to show that
(GN f)(AN &) converges to f(z) in Y. Since F converges to f in Cp(X,Y),
(F N f)(AN &) converges to f(z) € Y,. Hence f(z) € (FU{f})(AU{z})
foral Fe Fand A€ A So Yy, n(FU{f}H(AU{z}) # 0 for all F € F
and A € A. Therefore {Y, N (FU{f})(AU{z})| F € F,A € A} converges
to f(z), since Y is fibrewise regular. We note that (F U {f}) C Fu{f}
and (AU {z}) € AU{z}. Thus {Ya n(FU{fH(AU{z})| F € F,A €
A} is contained in {Y¥; N (FU{f})(AU{z})| F € F,A € A}, and hence
{Yon(Fu{f})(Au{z})| F € F, A € A} converges to f(x). We want to show
that {Y,N(FU{f}(AU{z})| F € F, A € A} is contained in {(C(Xp, Ys) N
F)U{f} F € F}(AN ). It is equivalent to show that ((C(Xp,Ys) N F) U
{fH(AU{z}) CYoN(FU{f})(Au{z}) forall F € F and A € A. In fact, if
g € C(X,,Y,)NF, then g(AU{z}) C Y} and g(AU{z}) € (FU{f})(AU{z}).
So {YaN(FU{fH(AU{z})| F € F, A€ A} C{(C(Xp, Vo) NF)U{f}| F €
F}ANz), and hence {(C(Xs,Ys) NF)U{f} F € F}(AN i) converges to
f(z). But,

{((C(X,Y,) NF)U{f} FeF}={C(Xp,Ys)NF| FeF}n {.

In all, Cp(X,Y) is fibrewise regular.

It is also well known that for a convergence space B, the category of
convergence spaces over B is cartesian closed [6]. So, for any convergence
space Z over B and a function f : Z — Cp(X,Y), f is continuous if and only
ifevo(lx xpf): X xpZ — Y is continuous, where ev : X xgCp(X,Y) =Y

is an evaluation map which is defined by ev(z, f) = f(z).
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Proposition 4.11. Let X and Y be convergence spaces over B and suppose
the projection p : X — B is surjective. Let K = {f € Cp(X,Y)| f :

constant map}. Then K is homeomorphic to Y.

Proof. Define ¢ : Y — Cg(X,Y) by, for y € Y,, o(y) = ¢y, where ¢y is the
constant map from X, to Y, with value y € Y;,. Clearly, ¢ is well-defined and
injective. Note that ¢(Y) = K. Let ¥ : Y — K be the corestriction of ¢.
Consider the following diagram

X xgCs(X,)Y) —m—> Y

idxXBd) ™2
XXBY

Note that T = ev o (idx x p¢), since m2(z,y) = y = ¢y(x) = ev(z,cy). Since
7o is continuous, evo (idx x g¢) is continuous. Hence ¢ is continuous, by the
cartesian closedness of the category of convergence spaces over B. Therefore,
¥ :Y — K is continuous. Pick z, € X, forallb € B andlet A = {zy| b € B}.

Then we know that

e"UIAxBK

v 1K —1 . AxpK Y

where j(f) = (z», f) for f € C(X,,Y,). Since j and ev are continuous, P!

is continuous. In all, K is homeomorphic to Y.

By the above proposition, we have the following proposition which is the

partial converse of the proposition 4.10.

_20-



Proposition 4.12. Let X and Y be convergence spaces over B and suppose
the projection p: X — B 1is surjective. Then if Cg(X,Y) is fibrewise regular,

Y s fibrewise regular.

Proof. By the above proposition and corollary 4.6, the proof follows imme-

diately.
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