A Thesis for the Degree of M. E.

On the Direct Sum of Semirings

Supervised By

Assistant Prof. Hyun, Jinoh

Kim, Sang-taek

Department of Mathematics

Graduate School of Education

Cheju National University

June, 1984

On the Direct Sum of Semirings

이를 敎育學碩士學位 論文으로 提出함

濟州大學校教育大學院數學教育專攻

提出者 金 尚 澤

指導教授 玄 進 五

1984年 6月 日

金尚澤의 碩士學位 論文을 認准함

1984年 6月 日

감사의 글

이 논문이 완성되기까지 연구에 바쁘신 가운데 자상하고 친절하 게 지도를 하여 주신 현진오 교수님께 감사드리며, 아울러 양성호 교수님과 수학교육과의 여러 교수님께 심심한 사의를 표합니다. 그리고 그동안 저에게 사랑과 격려를 주신 주위의 많은 분들께 감사드립니다.

1984년 6월 일

김 상 택

CONTENTS

•

1.	INTRODUCTION	1
2.	DEFINITIONS AND PRELIMINARIES	2
3.	THE DIRECT SUM OF SEMIRINGS	5

REFERENCES

KOREAN ABSTRACT

1. Introduction

Semiring was first introduced by Vandiver in 1934. P.J.Allen defined Q-ideal and maximal homomorphism in a large class of semirings.

In this paper, we shall investigate the direct sum of semirings. This investigation is done by proving the followings.

Firstly, if I_i is a Q_i -ideal of the semiring R_i for $i = 1, 2, \dots, n$, then $\prod_{i=1}^{n} I_i$ is a $\prod_{i=1}^{n} Q_i$ -ideal of $\prod_{i=1}^{n} R_i$.

Secondly, if the semiring R is the internal direct sum of ideals I_1 , I_2 , \cdots , I_n , then R is isomorphic to the external direct sum of I_1 , I_2 , \cdots , I_n .

Thirdly, if $R = \sum_{i=1}^{n} \bigoplus R_i$ is the direct sum of a finite number of semiring R_i , then every ideal I of R is of the form $I = \sum_{i=1}^{n} \bigoplus I_i$ where I_i are ideal of R_i .

Fourthly, if I_i is a Q_i -ideal of R for $i = 1, 2, \dots, n$ and $R = \sum_{i=1}^n \bigoplus I_i$, then $R/I_j \cong \sum_{i=1}^n \bigoplus I_i$ for $j = 1, 2, \dots, n$.

Lastly, if R is the direct sum of the semirings R_i and I_i a Q_i -ideal of R_i for $i=1, 2, \dots, n$ and $I = \sum_{i=1}^{n} \bigoplus I_i$, then $R \neq I \cong \sum_{i=1}^{n} \bigoplus (R_i \neq I_i)$.

2. Definitions and Preliminaries

There are many different definitions of a semiring appearing in the literature. Throughout this paper, a semiring will be defined as follows;

DEFINITION (2-1). A set R together with two associative binary operations called addition and multiplication(denoted by + and \cdot , respectively) will be called a semiring provided;

(i) addition is a commutative operation,

(ii) there exist $0 \in \mathbb{R}$ such that x + 0 = x and x0 = 0x = 0 for each $x \in \mathbb{R}$, and \square

(iii) multiplication distributes over addition both from the left and from the right.

DEFINITION (2-2). A subset I of a semiring R will be called an ideal if a, $b \in I$ and $r \in R$ implies $a+b \in I$, $ra \in I$ and $ar \in I$.

DEFINITION (2-3). A mapping φ from the semiring R into the semiring R' will be called a homomorphism if $(a+b) \varphi = a\varphi + b\varphi$ and $(ab)\varphi = a\varphi b\varphi$ for each a, b \in R. An isomorphism is a one-to-one homomorphism. The semirings R and R' will be called isomorphic (denoted by R \cong R') if there exists an isomorphism from R onto R'.

DEFINITION (2-4). An ideal I in the semiring R will be called a Q-ideal if there exists a subset Q of R satisfying the followings;

- (i) $\{q+I\}_{q \in Q}$ is a partition of R, and
- (ii) if $q_1, q_2 \in Q$ such that $q_1 \neq q_2$, then $(q_1 + I) \cap (q_2 + I) = \phi$.

DEFINITION (2-5). A homomorphism φ from the semiring R onto the semiring R' is said to be maximal if for each $a \in \mathbb{R}^{!}$ there exists $c_a \in \varphi^{-1}$ ({a}) such that $x + \ker(\varphi) \subset c_a + \ker(\varphi)$ for each $x \in \varphi^{-1}(\{a\})$, where $\ker(\varphi) = \{x \in \mathbb{R} \mid x\varphi = 0\}$.

<u>THEOREM (2-6</u>). Let I be a Q-ideal in the semiring R. If $x \in R$, then there exists a unique $q \in Q$ such that $x + I \subset q + I$.

proof. Refer to Lemma 7. in (1). 고 중앙도서관

<u>THEOREM (2-7)</u>. If I is a Q-ideal in the semiring R, then $(\{q+I\}_{q \in Q}, \bigoplus_Q, \odot_Q)$ is a semiring.

<u>**Proof.**</u> Refer to Theorm 8. in [1].

In Theorem (2-7), we can define the binary operations \bigoplus_Q and \odot_Q on $\{q+I\}_{q \in Q}$ as follows;

(i) $(q_1+I) \bigoplus_Q (q_2+I) = q_3+I$ where q_3 is the unique element in Q such that $q_1+q_2+I \subset q_3+I$, and

(ii) $(q_1 + I) \odot_Q (q_2 + I) = q_3 + I$ where q_3 is the unique element in Q such that $q_1q_2 + I \subset q_3 + I$. The elements $q_1 + I$ and $q_2 + I$ in $\{q+I\}_q \in Q$ will be called equal (denoted by $q_1 + I = q_2 + I$) if and only if $q_1 = q_2$.

<u>THEOREM (2-8)</u>. Let f be a homomorphism from the semiring R onto the semiring R^1 . Then

(1) for each ideal I' of R', the subsemiring $f^{-1}\left(\,I^{\,\prime}\right)$ is an ideal of R, and

(2) for each ideal I of R, the subsemiring f(I) is an ideal of R'. <u>Proof.</u> Refer to Proposition (2-2) in [2].

<u>THEOREM (2-9)</u>. If I is a Q-ideal in the semiring R, then I is a zero element in R/I.

<u>Proof</u>. Refer to Proposition 13 in [3].

THEOREM (2-10). If φ is a maximal homomorphism from the sem-

iring R onto the semiring R', then $R/\ker(\varphi) \cong R'$.

<u>Proof</u>, Refer to Theorem 16 in[1].

3. The direct sum of semirings

Let R_1, R_2, \dots, R_n be a finite number of semirings and consider the eir Cartesian product $R = \prod_{i=1}^{n} R_i$ (or $R_1 \times R_2 \times \dots \times R_n$) consisting of all ordered n-tuples (a_1, a_2, \dots, a_n) with $a_i \in R_i$. We can easily convert R into a semiring by performing the semiring operations componentwise; in other words, if (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) are two elements of R, simply define

 $(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$ and $(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$. The semiring so obtained is called the external direct sum of R_1, \dots, R_n .

LEMMA (3-1). Let I_1 be a Q_1 -ideal of the semiring R_1 and I_2 a Q_2 -ideal of the semiring R_2 .

Then $I_1 \times I_2$ is a $Q_1 \times Q_2$ -ideal of the semiring $R_1 \times R_2$.

<u>Proof.</u> It is clear that $I_1 \times I_2$ is an ideal of $R_1 \times R_2$.

(1) If
$$(r_1, r_2) \in \mathbb{R}_1 \times \mathbb{R}_2$$
, then $r_1 \in q_1 + I_1$ and $r_2 \in q_2 + I_2$

for some $q_1 \in Q_1$ and $q_2 \in Q_2$. Thus $r_1 = q_1 + i_1$ and $r_2 = q_2 + i_2$ for some $i_1 \in I_1$ and $i_2 \in I_2$. So, $(r_1, r_2) = (q_1 + i_1, q_2 + i_2)$ $= (q_1, q_2) + (i_1, i_2) \in (q_1, q_2) + (I_1 \times I_2) \subset \bigcup_{q \in Q_1 \times Q_2} (q + (I_1 \times I_2)).$ Hence $\bigcup_{q \in Q_1 \times Q_2} [q + (I_1 \times I_2)] = R_1 \times R_2.$ (2) Suppose that $[(q_1, q_2) + (I_1 \times I_2)] \cap [(q_1', q_2') + (I_1 \times I_2)] \neq \phi$ for some $(q_1, q_2), (q_1', q_2') \in Q_1 \times Q_2$. Then $x = (q_1, q_2) + (i_1, i_2) =$ $(q_1', q_2') + (i_1', i_2')$ for some $i_1, i_1' \in I_1$ and for some $i_2, i_2' \in I_2$. i.e. $x = (q_1 + i_1, q_2 + i_2) = (q_1' + i_1', q_2' + i_2')$. Thus $q_1 + i_1 = q_1' + i_1' \in (q_1 + I_1) \cap (q_1' + I_1)$ and $q_2 + i_2 = q_2' + i_2' \in$ $(q_2 + I_2) \cap (q_2' + I_2)$. So, $(q_1 + I_1) \cap (q_1' + I_1) \neq \phi$ and $(q_2 + I_2) \cap (q_2'$

+ I_2) $\neq \phi$. Thus $q_1 = q_1'$ and $q_2 = q_2'$. i.e. $(q_1, q_2) = (q_1', q_2')$.

Making successive use of the Lemma (3-1) immediately yields the following theorem.

THEOREM (3-2). If
$$I_i$$
 is a Q_i -ideal of the semiring R_i for $i = 1, \dots, n$, then $\prod_{i=1}^{n} I_i$ is a $\prod_{i=1}^{n} Q_i$ -ideal of $\prod_{i=1}^{n} R_i$.

Let us now describe certain binary operation on the set of ideals of the semiring R. Given a finite number of ideals I_1, I_2, \dots, I_n of the semiring R, one defines their sum in the natural way;

$$I_1 + I_2 + \cdots + I_n = \{a_1 + a_2 + \cdots + a_n \mid a_i \in I_i\}.$$

Then $I_1 + I_2 + \cdots + I_n$ is likewise an ideal of R and is the smallest ideal of R which contains every I_i ; phrased in other way, $I_1 + I_2 + \cdots + I_n$ is the ideal generated by $I_1 \cup I_2 \cup \cdots \cup I_n$. **DEFINITION** (3-3). Let I_1, I_2, \dots, I_n be ideals of the semiring R. We call R the internal direct sum of I_1, I_2, \dots, I_n , and write $R = \sum_{i=1}^{n} \bigoplus I_i \text{ (or } I_1 \bigoplus I_2 \bigoplus \dots \bigoplus I_n), \text{ if each element x of R is uniquely}$ expressible in the form $x = a_1 + a_2 + \dots + a_n$ where $a_i \in I_i$.

LEMMA (3-4). Let I_1, I_2, \dots, I_n be ideals of the semiring R. If $R = \sum_{i=1}^{n} \bigoplus I_i$, then $I_i \cap (I_1 + \dots + I_{i-1} + I_{i+1} + \dots + I_n) = \{0\}$ for each $i = 1, 2, \dots, n$.

<u>Proof.</u> For each i, if $x \in I_i \cap (I_1 + \cdots + I_{i-1} + I_{i+1} + \cdots + I_n)$, then $x = a_i$ and $x = a_1 + \cdots + a_{i-1} + a_{i+1} + \cdots + a_n$ where $a_j \in I_j$. Since $x \in \mathbb{R}$, x is uniquely representable as a sum of elements from the ideals I_j . Thus $a_1 = a_2 = \cdots = a_n = 0$, i.e. x = 0.

LEMMA (3-5). Let I_1, I_2, \dots, I_n be ideals of the semiring R. If $R = \sum_{i=1}^{n} \bigoplus I_i$, then $I_i \cap I_j = \{0\}$ for each $i \neq j$. <u>Proof</u>. For each $i \neq j$, $I_j \subset I_1 + \dots + I_{i-1} + I_{i+1} + \dots + I_n$. By Lemmma (3-4), $I_i \cap I_j = \{0\}$.

THEOREM (3-6). If the semiring R is the internal direct sum of ideals I_1, I_2, \dots, I_n , then R is isomorphic to the external direct sum of I_1, I_2, \dots, I_n .

<u>Proof</u> Define the mapping $\varphi : \mathbb{R} \to \prod_{i=1}^{n} I_i$ by $(a_1 + a_2 + \cdots + a_n) \varphi =$

 (a_1, a_2, \dots, a_n) . Since every element of R is uniquely representable as a sum of elements from the ideals I_i , φ is well-defined.

It is clear that φ is an 1-1 and onto mapping.

Let $a_1 + a_2 + \dots + a_n$ and $b_1 + b_2 + \dots + b_n$ are elements in R. Then $(a_1 + a_2 + \dots + a_n)(b_1 + b_2 + \dots + b_n) = a_1b_1 + a_2b_2 + \dots + a_nb_n$ by Lemma (3-5). Thus $((a_1 + a_2 + \dots + a_n)(b_1 + b_2 + \dots + b_n)) \varphi = (a_1b_1 + a_2b_2 + \dots + a_nb_n)\varphi$ $= (a_1b_1, a_2b_2, \dots, a_nb_n) = (a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = ((a_1 + a_2 + \dots + a_n)\varphi)((b_1 + b_2 + \dots + b_n)\varphi)$ and $((a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n)\varphi)$ of $(a_1 + a_2 + \dots + a_n) \varphi$ is a homomorphism. Hence $R \cong \prod_{i=1}^n b_i$.

Because of the isomorphism proved in theorem (3-6) we shall

because of the isomorphism proved in theorem (3-0) we shall

henceforth refer to the semiring R as being a direct sum, not qualifying it with the adjective "internal" or "external", and rely exclusively on the \oplus - notation.

<u>THEOREM (3-7)</u>. Let $R = \sum_{i=1}^{n} \bigoplus R_i$ be the direct sum of a finite number of semirings R_i ($i = 1, 2, \dots, n$). Then every ideal I of R is of the form $I = \sum_{i=1}^{n} \bigoplus I_i$ where I_i an ideal of R_i .

<u>Proof.</u> For fixed i, define the mapping $\Pi_i : \mathbb{R} \to \mathbb{R}_i$ as follows; if $\mathbf{a} = (a_1, a_2, \dots, a_n)$ where $a_i \in \mathbb{R}_i$, then $a\Pi_i = a_i$. Then, for all i, Π_i is a homomorphism from \mathbb{R} onto \mathbb{R}_i . Let I be any ideal of \mathbb{R} and

 $I_{i} = (I)\Pi_{i} \text{ for } i = 1, 2, \cdots, n. \text{ By Theorem}(2-8), \text{ then } I_{i} \text{ is an ideal}$ of R_{i} for $i = 1, 2, \cdots, n.$ We claim that $I = \sum_{i=1}^{n} \bigoplus I_{i}$. It is clear that $I \subset \sum_{i=1}^{n} \bigoplus I_{i}$. If $(b_{1}, b_{2}, \cdots, b_{n}) \in \sum_{i=1}^{n} \bigoplus I_{i}$, then $b_{i} \in I_{i}$ for each i. For each i, there exists $(x_{1}, \cdots, x_{i-1}, b_{i}, x_{i+1}, \cdots, x_{n}) \in I$ such that $(x_{1}, \cdots, x_{i-1}, b_{i}, x_{i+1}, \cdots, x_{n}) \in I$ such that $(x_{1}, \cdots, x_{i-1}, b_{i}, x_{i+1}, \cdots, x_{n}) \in I$ such that $(x_{1}, \cdots, x_{i-1}, b_{i}, x_{i+1}, \cdots, x_{n}) (0, \cdots, 0, 1, 0, \cdots, 0) \in I$ for each i. So, $(b_{1}, b_{2}, \cdots, b_{n}) = (b_{1}, 0, \cdots, 0) + (0, b_{2}, 0, \cdots, 0) + \cdots + (0, \cdots, 0, b_{n})$ $\in I$. Hence $I = \sum_{i=1}^{n} \bigoplus I_{i}$.

THEOREM (3-8). Let I_i be a Q_i-ideal of R for i=1,2, ..., n and

$$R = \sum_{i=1}^{n} \oplus I_i. \text{ Then } R/I_j \cong \sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i \text{ for each } j = 1, 2, ..., n.$$
Proof. For fixed j, define $\varphi_j : R \to \sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i$ by $(a_1 + \cdots + a_n) \varphi_j =$
 $a_1 + \cdots + a_{j-1} + a_{j+1} + \cdots + a_n$. Then it is clear that φ_j is well-defined
and a homomorphism from R onto $\sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i.$ For each $a = a_1 + \cdots + a_{j-1} +$
 $a_{j+1} + \cdots + a_n \in \sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i, \text{ let } c_a = a_1 + \cdots + a_{j-1} + 0 + a_{j+1} + \cdots + a_n \text{ where}$
0 is the zero element in I_j. Then $c_a \oplus \varphi^{-1}(\{a\})$. For any $x \oplus \varphi^{-1}_j(\{a\}), x =$
 $a_1 + \cdots + a_{j-1} + x_j + a_{j+1} + \cdots + a_n$ for some $x_j \in I_j$. Then $x + \ker \varphi_j = c_a$
 $+ (0 + \cdots + 0 + x_j + 0 + \cdots + 0) + \ker \varphi_j \subset c_a + \ker \varphi_j$ since $(0 + \cdots + 0 + x_j + 0 + \cdots + 0) \in \ker \varphi_j$. Hence φ_j is a maximal homomorphism from R onto
 $\sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i$. By Theorem (2-10), $R/\ker \varphi_j \cong \sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i$. Since $\ker \varphi_j \cong I_j$,
 $R/I_j \cong \sum_{\substack{i=1\\i\neq j}}^{n} \oplus I_i$.

THEOREM (3-9). Let R be the direct sum of the semirings R_i for $i = 1, 2, \dots, n$. If I_i is a Q_i -ideal of R_i for $i = 1, 2, \dots, n$ and $I = \sum_{i=1}^{n} \bigoplus I_i$, then $R \swarrow I \cong \sum_{i=1}^{n} \bigoplus (R_i \swarrow I_i)$; in other words, $(\sum_{i=1}^{n} \bigoplus R_i) \swarrow (\sum_{i=1}^{n} \bigoplus I_i) \cong \sum_{i=1}^{n} \bigoplus (R_i \swarrow I_i)$

<u>Proof.</u> By Theorem (2-6), for any element $(a_1, a_2, \dots, a_n) \in \mathbb{R}$, there exists a unique $q_i \in Q_i$ such that $a_i + I_i \subset q_i + I_i$, for i = 1, 2, \dots , n. Define $\varphi : \mathbb{R} \to \sum_{i=1}^n \bigoplus (\mathbb{R}_i \swarrow I_i)$ by $(a_1, a_2, \dots, a_n)\varphi = (q_1 + I_1, q_2 + I_2, \dots, q_n + I_n)$ where q_i is the unique element in Q_i such that $a_i + I_i \subset q_i + I_i$ for $i = 1, 2, \dots, n$.

Clearly,
$$\varphi$$
 is well-defined and onto.

Let $(a_1, \dots, a_n) \varphi = (q_1 + I_1, \dots, q_n + I_n)$ and $(b_1, \dots, b_n) \varphi = (q_1' + I_1, \dots, q_n' + I_n)$. Then $a_i + I_i \subset q_i + I_i$ and $b_i + I_i \subset q_i' + I_i$ for all i. If $(a_1+b_1, \dots, a_n+b_n) \varphi = (q_1''+I_1, \dots, q_n''+I_n)$ and $(q_1+I_1, \dots, q_n + I_n) + (q_1' + I_1, \dots, q_n' + I_n) = (q_1^* + I_1, \dots, q_n^* + I_n)$, then $a_i + b_i + I_i \subset q_i'' + I_i$ and $q_1 + q_i' + I_i \subset q_i^* + I_i$ for all i. Since $a_i + I_i \subset q_i + I_i$ and $b_i + I_i \subset q_i'' + I_i$, $a_i = q_i + j_i$ and $b_i = q_i' + j_i'$ for some j_i , $j_i' \in I_i$. Thus $a_i + b_i + I_i \subset q_i + I_i$, $I_i = q_i + q_i' + I_i = (q_i^* + I_i) \cap q_i^* + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all i. Since $a_i + I_i \cap q_i^* + I_i$ for all $i, q_i^* = q_i^*$ for all i. Thus $(a_1, \dots, a_n) + (b_1, \dots, b_n) \varphi = (a_1, \dots, a_n) \varphi + (b_1, \dots, b_n) \varphi$.

If $(a_1b_1, \dots, a_nb_n) \varphi = (p_1 + I_1, \dots, p_n + I_n)$ and $(q_1 + I_1, \dots, q_n + I_n)$ $(q_1' + I_1, \cdots, q_n' + I_n) = (p_1' + I_1, \cdots, p_n' + I_n)$ where $p_i, p_i' \in Q_i$ for all i, then $a_i b_i + I_i \subset p_i + I_i$, $q_i q_i' + I_i \subset p_i' + I_i$ and $a_i b_i + I_i = (q_i + Q_i) + Q_i = (q_i + Q_i)$ j_i) $(q_i' + j_i') + I_i = q_i q_i' + q_i j_i' + q_i' j_i + j_i j_i' + I_i \subset q_i q_i' + I_i \subset p_i'$ + I_i for all i. By Theorem (2-6), $p_i = p_i'$ for all i. Thus ((a₁,..., a_n) (b_1 , \cdots , b_n)) $\varphi = (a_1$, \cdots , a_n) φ (b_1 , \cdots , b_n) φ . We claim that ker φ $= I (= \sum_{i=1}^{n} \oplus I_{i}).$ If $(x_1, \cdots, x_n) \in \sum_{i=1}^n \oplus I_i$, then $x_i \in I_i$ for all i. Thus $x_i + I_i \subset I_i$ for all i. So, $(x_1, \dots, x_n) \varphi = (I_1, \dots, I_n)$ is the zero element in $\sum_{i=1}^{n} \bigoplus (R_i / I_i). i.e. (x_1, \cdots, x_n) \in \ker \varphi.$ If $(y_1, \dots, y_n) \in \ker \varphi$, then $y_i \in y_i + I_i \subset I_i$ for all i. Thus $(y_1, \dots$, \mathbf{y}_{n}) $\in \sum_{i=1}^{n} \oplus \mathbf{I}_{i}$. Lastly, we claim that φ is maximal. For any $z = (q_1 + I_1, \dots, q_n + I_n)$ $\in \sum_{i=1}^{n} \bigoplus (R_i / I_i)$, let $c_z = (q_1, \cdots, q_n)$. Then $c_z \in \varphi^{-1}(\{z\})$. For any $t = (t_1, \dots, t_n) \in \varphi^{-1} (\{z\}), (t_1, \dots, t_n) \varphi = (q_1 + I_1, \dots, q_n + I_n).$ Then $t_i + I_i \subset q_i + I_i$ for all i. So, for all i, $t_i = q_i + m_i$ for some $m_i \in I_i$. Thus $t + \ker \varphi = (q_1 + m_1, \cdots, q_n + m_n) + \ker \varphi = c_z + (m_1, \cdots, m_n)$..., m_n) + ker $\varphi \subset c_z$ + ker φ for every $t \in \varphi^{-1}(\{z\})$. Hence φ is a maximal homomorphism from R onto $\sum_{i=1}^{n} \bigoplus (R_i \swarrow I_i)$ By Theorem (2-10), $\mathbf{R}/\mathbf{I} \cong \sum_{i=1}^{n} \oplus (\mathbf{R}_{i}/\mathbf{I}_{i}).$

References

- P.J.Allen, A fundamental theorem of homomorphisms for semirings, proc. Amer. Math. Soc. 21, 1969, 412-416.
- [2]. S.H.Yang, On the prime semifields, M. sc. Thesis, 1980, Yonsei University.
- [3]. _____, Quotients of Matrix Semiring, J. of Cheju National University, Vol. 15, 1983.
- [4]. David M. Burton, A first course in rings and ideals, Addison-Wesley Publishing Company, 1970.

(國文抄録)

반환의 직합(直合)에관해서

金尚澤

濟州大學校 教育大學院 數學教育專政 (指導教授 玄 進 元)

이 논문의 중요한 목적은 반환R이 반환 R_i ($i = 1, 2, \dots, n$) 들의 직합(直合)이며, I_i 는 반환 R_i 의 Q_i - 이데알이고, $I = \sum_{i=1}^{n} \oplus I_i$ 일때 R'_i 와 $\sum_{i=1}^{n} \oplus (R_i'_i) \oplus A$ 로 동형임을 증명하였다.