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 <Abstract>

On the Class , 2-isometries, 

Quasi-isometries and Posiquasi-isometries 

  In this thesis we shall study some algebraic and spectral properties of  

several classes of operators: -operators, 2-isometries, quasi-isometries, 

and two new operators that are defined below as -operators and 

posiquasi-isometries; The class of posiquasi-isometries is an extension of 

the class of quasi-isometries and includes all invertible operators. And 

we investigate the relationship between these and other operators, i.e., 

hyponormal, paranormal operators, and so on.

  Moreover, we give necessary and sufficient conditions for a unilateral 

weighted shift to be a -operator, -operator, 2-isometry, quasi-isometry, 

and posiquasi-isometry respectively. In particular we show that if an operator 

∈  on a Hilbert space  is either 2-isometry or quasi-isometriy, 

then the Weyl’s theorem holds for  and for every ∈ , its Weyl 

spectrum satisfies the spectral mapping theorem for  , where   

denotes the set of analytic functions on an open neighborhood of  . 

Furthermore, we show that the Weyl’s theorem holds for . 

  Also we give necessary and sufficient conditions for an operator to be 

a posiquasi-isometry and show that every quasinilpotent posiquasi-isometry 

is zero, any power of a posiquasi-isometry is also a posiquasi-isometry, 

and the set of all posiquasi-isometries is not closed in the operator norm 

topology on  .
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 1. Introduction

  Recently paranormal operators have been much investigated ([39],[11],  

[25]). and S. Prasanna ([34]) showed that the Weyl’s theorem holds for 

every paranormal operator. Let  be a complex Hilbert space and let 

  be the set of all bounded linear operators on . In particular, it is 

well known ([3]) that an operator ∈ on a complex Hilbert space 

is paranormal if and only if  

≤      

for all  . Also *-paranormal operators have been studied ([5],[6], 

[24]). It is well known ([5]) that  is *-paranormal if and only if 

≤        

for all  . Evidently, hyponormal operators are both paranormal and 

*-paranormal, but paranormality is independent of *-paranormality ([6]).

  Put     .  If   is positive, i.e., ≤,  is called 

an operator of class   introduced by B. P. Duggal, et al. ([15]). Clearly 

every paranormal operator is of class . 

  In particular if  is zero, i.e.,         , then  is said 

to be a , and a  if     . These con­ 

cepts are introduced by S. M. Patel ([31],[32]). The two classes of 2- 

isometries and quasi-isometries are extensions of the class of isometries 

but they are independent. 

  In this thesis we shall study some algebraic properties of operators of 

class  , 2-isometries and quasi-isometries. Also we introduce two new 

classes of operators defined as follows:  is called an operator of class 

 if ≤        and  if there exists a po­ 
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sitive operator ∈  called the interrupter, such that    

Clearly every *-paranormal operators is of class . And the class of 

posiquasi-isometries is an extension of the class of quasi-isometries. The 

diagram below summarizes the proper inclusion relationship among these 

classes that will be required later in this thesis.

`

[Fig. 1-1]
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This thesis is organized as follows:

  In Chapter 2, we shall give the preliminary definitions and basic proper­

 ties of a bounded linear operator needed throughout the thesis.

  In Chapter 3, we shall study several properties about the class  and 

explore a new class . Its new concept is motivated by class . Also 

we give examples and counterexamples in order to put this class  in 

its due place and show that classes of  and  are independent as 

giving an example. If  is the weighted shift with non-zero weights (see 

Example 3.23), then we give necessary and sufficient conditions for  to 
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be -operator, -operator, paranormal, and *-paranormal respectively. 

 
  In Chapter 4, we investigate some algebraic and spectral properties of 

2-isometries. In particular, we show that the Weyl’s theorem holds for 

2-isometries and also show that for every ∈ , the Weyl spec­ 

trum,  , satisfies spectral mapping theorem for , where   

denotes the set of analytic functions on an open neighborhood of  . 

Furthermore, we show that the Weyl’s theorem holds for . And we 

prove that if  is a 2-isometry, then     is a unique maximal 

invariant subspace such that       is an isometry. Also we 

give an example that a non isometric unilateral weighted shift is a 

2-isometry.

  In Chapter 5, we shall study some properties of quasi-isometries. In    

particular we show that if ∈  is a quasi-isometry and  is an isol­ 

ated point of  , then     , where  is the Riesz spectral 

projection  with respect to  (see (2.2)) and  is closed. Also 

we prove that the Weyl’s theorem holds for quasi-isometries and the Weyl 

spectrum,  , satisfies spectral mapping theorem for . Furthermore, 

we show that the Weyl’s theorem holds for  for every ∈   . 

  In Chapter 6, we define a new class of posiquasi-isometries which is 

an extension of the class of quasi-isometries and includes all invertible 

operators. Its concept is motivated by posinormal operators which are 

introduced by Rhaly, Jr. ([36]). Here we investigate many algebraic and 

spectral properties of posiquasi-isometries and also we give necessary 

and sufficient conditions for an operator to be a posiquasi-isometry. The 

main results are as follows:

  (a)  is a posiquasi-isometriy if and only if   ≤     for 

some ≥  if and only if   .
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  (b) If  and  are commuting posiquasi-isometries, then the product 

  is a posiquasi-isometry. Thus any power of a posiquasi-isometry is 

a posiquasi-isometry. 

  (c) Every invertible operator is a posiquasi-isometry with the unique in­  

terrupter. And if  is invertible with interrupter , then  is invertible and 

  is a positive operator. 

  (d) Let  be a unilateral weighted shift  with non-zero weights . 

Then  is a posiquasi-isometriy if and only if  sup ≥   ∞.  

  (e) Every quasinilplotent posiquasi-isometriy  is zero.

  (f) Let  be the set of all posiquasi-isometries on . Then  

is not closed in the operator norm topology on  .

  (g) Let  is a posiquasi-isometriy with interrupter . Then

 ∈ ╲  if and only if ∈ .
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 2. Preliminaries and Basic Results

  Let  be a complex Hilbert space and let   be the set of all boun­

ded linear operators on . An operator ∈  is said to be ­ 

if    ;  if      ;  if∥∥∥∥ for all 

 ∈  ;  if∥∥≤  ( i.e., ∥∥≤∥∥ for all ∈ ; 

equivalently,   ≤  ). We denote the kernel of  and the range of  

by  and  respectively.  

Theorem 2.1. ([17, p80]) For any ∈ , the following properties hold.

  (a)    ⊥.

  (b)    ⊥.

  (c)    ⊥.

  (d)     ⊥.

Theorem 2.2. ([9, p36]) For any  ∈ , the following statements 

are equivalent.

  (a)  is left invertible.

  (b)  is closed and  .

  (c) inf∥∥∥∥ .

  (d)  is bounded below, i.e.,∥∥≥∥∥ for some    and all    

     ∈.

  We write   {∈ℂ   is not invertible} for the spectrum of  ; 

  for the boundary of   ;      for the resolvent of  

;     ∈ ℂ     for the set of eigenvalues of  ; 

     for the isolated points of   that are eigenvalues of finite     

multiplicity.
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  A complex number ∈ℂ is said to be an   of  if 

there exists a sequence   with ∥∥ such that    → . 

Let   {∈ℂ   is an approximate eigenvalue of T }. Then   

is called the    of . Also we denote   by 

 .  

  

  A point ∈ℂ is called a   of  if eigenspace corres­ 

ponding to  reduces . Equivalently, 

∈ℂ is a normal eigenvalue if and only if ⊆. (2.1). 

Also if ∈ℂ is a normal eigenvalue, then     is normal.

Theorem 2.3. ([10, p353]) For any ∈ , the following statements 

are equivalent.

  (a) ∉ .

  (b)   is closed and   .

  (c)  is bounded below, i.e., ∥   ∥≥ ∥∥ for some       

        and all ∈.

  (d)   .

 A closed linear subspace  of  is invariant under the operator  if 

  ⊆ . A closed linear subspace  reduces the operator  if both 

 and ⊥ are invariant under the operator  where ⊥ is orthogonal 

complement of . We write Lat  for the collection of all invariant 

subspace for     denotes the restriction of  to , which is invar­ 

iant subspace for  If  reduces the operator , then  can decomposed  

into the direct sum :     ⊕   ⊥.
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  An operator  ∈   is called a   if  . If  is 

any projection on , then   and  are complementary subspaces 

of , i.e.,      and   ∩  . Also    is a 

projection and furthermore,       ,        . An 

operator ∈  is called an   if     and in 

addition . If  is an orthogonal projection on , then  and 

 are orthogonal complements in  ([12]).

Theorem 2.4. ([12, p164]) Let  ∈Lat() and  be an orthogonal pro­ 

jection of  onto  . Then

  (a)  is invariant under the operator  if and only if .

  (b)  reduces the operator  if and only if  .

Theorem 2.5. ([18, p10]) Let ∈  and  be an isolated point in . 

Consider the Riesz spectral projection  with respect to , given by 



 


,                    (2.2)

where   is an open disk of center  which contains no other points of 

. Then 

  (a) The operator  is a projection, i.e.,    and  .

  (b) Put , and  . Then ⊕, the space  and   

     are invariant under the operator  and 

    ,        ╲ .

  The  (resp., ) of , denoted by  , (resp.,  ) is the 

smallest non-negative integer  such that    
 (resp., 

    ). If no such  exists, then   ∞ (resp.,   ∞). 

If   ∞ and  ∞, then      ([13]). This notion encom­ 
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passes injectivity: an operator  is injective if and only if    .

  An operator ∈  is said to be  if  is closed 

and either  or   are finite dimensional. If  is semi-Fredholm,  

The  of , denoted by ind  , is defined by 

ind    . 

If  is semi-Fredholm and ind  is finite, then  is called . It 

is well known ([20, Theorem 2.6]) that 

if ∈  is Fredholm of finite accent then ind ≤  :     (2.3) 

indeed, either if  has finite decent, then ind   , or if  does not 

have finite decent, then ind  

  

  An operator ∈  is  if  is closed and  is 

finite dimensional and  if  is closed and   is 

finite dimensional. The essential spectrum of , denoted by  , is 

defined by 

 {∈ℂ   is not Fredholm}

and the left essential spectrum of , denoted by   , is defined by

  {∈ℂ   ∞ or   is not closed}

and the right essential spectrum of , denoted by  , is defined by

   {∈ℂ   ∞ or   is not closed}

Clearly 

 ∈  is semi-Fredholm if and only if ∉  ∩ . (2.4)    

   

  An operator ∈  is said to be  if it is Fredholm of index zero 

and  if it is Fredholm of finite ascent and descent. The Weyl spec­ 

trum,  , and Browder spectrum,  , are defined by
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{∈ℂ   is not Wely},

    {∈ℂ   is not Browder}.

Then by [21]

                  ⊆  ⊆     ∪    (2.5)         

where we write    for the accumulation point of  . We say 

that the Weyl’s theorem hold for  if  ╲   or equivalently,  

╲   .

  It is well known ([30]) that the mapping  →  is upper semi­con­ 

tinuous, but not continuous at . However if →   with   

for all ∈ , then

lim  

It is known that   satisfies the one-way spectral mapping theorem 

for analytic function: If  is analytic on an open neighborhood of  , 

denoted by ∈ , then

 ⊆                         (2.6)

Theorem 2.6. ([10], p362) For any ∈ , ind  is constant on 

the components of ℂ╲   ∩ . If  is an isolated point of 

 and ∉  ∩ , then ind   .                      

Theorem 2.7. ([10]) For any ∈ , the following properties hold.

  (a)   ∪    .

  (b)   ∩ ⊆  .

  (c)  ⊆  .

  (d)  ⊆  ⊆  .
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Theorem 2.8. For any ∈ , the following properties hold.

  (a) If  is closed, then   is closed ([10, p173]).

  (b) If ∈  and  is not an isolated point of  , then   

     is not closed ([35]).

  An operator ∈  is called , denoted by  ≥ , if  

≥  for all ∈.  is  if    .  is  if 

     ≥  or equivalently, ∥∥≥∥ ∥ for all ∈.  

is  if      ≤         for all ∈ or equivalently ([3]),  

≤       for all  .

 is  if   ≤      for all ∈. Also an    

operator   is *‑ if    ≤       for all ∈ or equi­ 

valently ([5]), 

≤        for all  .

  An operator ∈  is called  if its norm ∥∥ and its spec‐ 

tral radius of   sup     ∈   are equal. It is well known  

that  ≤∥∥and   lim
→∞

∥ ∥


. Clearly if ∥ ∥∥∥, 

then  is normaloid. ∈  is said to be  if   for some 

∈ and  if ∥ ∥

→  as →∞. Evidently, if  is 

quasnilpotent, then    . 

  
  These operators are related by proper inclusion as follows:

         Normal ⊊ Hyponormal 

      ⊊ Paranormal (or *-Paranormal) ⊊ Normaloid.

  An operator ∈  is called  if isolated points of   are 

eigenvalues of , i.e., iso ⊆   where we write iso  for the 
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isolated points of   and  if  has closed range for each 

∈ iso. Clearly if  is reguloid, then  is isoloid. It is well known 

([39]) that 

            if  is paranormal, then  is isoloid and reguloid.       (2.7)

Theorem 2.9. ([7]) Let ∈  be positive, i.e., ≥. Then

  (a)  is self-adjoint.

  (b)  ≥  for any operator .

  (c)     ≤        for all  ∈ .

  (d)   if and only if    .

Theorem 2.10. (The Spectral Mapping Theorem) If ∈  and  is 

analytic on a neighborhood of  , then      . 
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 3. Class  and Class   of operators

 3.1 Class  of operators

Definition 3.1. An operator  is of class , shortened to  if 

≤     .  Equivalently,  is an operator of class   if 

∥∥≤ 


∥ ∥∥∥  for every ∈.

Remark 3.2. Every paranormal operator is clearly of class . Since   

 ≤         if and only if   
 ∈  for any  , 

 is paranormal if and only if  ∈   for all    

Theorem 3.3. ([16]) Let  be an operator of class . 

  (a) The restriction of  to an invariant subspace is again of class .

  (b) If  is invertible, then 


 is of class .

Theorem 3.4. ([16]) For any ∈ , the following properties hold.

  (a) If ∥∥≤  , then ∈.

  (b) If  , then ∈  if and only if ∥∥≤  .

Theorem 3.5. Let  be an operator of class . 

  (a) If  is unitarily equivalent to , then  is of class .

  (b) If  commutes with an isometry , then the product   is of class . 

  (c)  ⊗ and  ⊗ are both of class .

Proof. (a) Let     where  is unitary. Then 
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  

       

      ≥ 

Hence  is of class .

  (b) Let . We must show that   ≥ . By hypo­

thesis, we have     ,    ,     . Thus

    

           

    ≥ 

      

Hence  is of class .

  (c) Since  is of class ,    ⊗ ≥  and we have

  ⊗  ⊗⊗⊗⊗

  ⊗ ⊗ ⊗⊗⊗

   ⊗ ⊗⊗

    ⊗ ≥ 

Hence ⊗ is of class  and similarly  ⊗ is of class .

Example 3.6. Let    
 

 be an operator on a two-dimensional Hilbert

space ℂ
. Then ∥∥   ,   and    . So by Theorem 3.4(b),

    
 

∈ if and only if    ≤  .          (3.1)

Thus  is not normaloid for all ≠ since∥∥≠ , so that  is not 

paranormal for all ≠.    
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  The above example shows that an operator of class  need not to be  

normaloid and hence paranormal. Thus the following classes are related 

by proper inclusion :  

Unitary ⊊ Hyponormal ⊊ Paranormal ⊊ Class .  

Theorem 3.7. Let  be a unilateral weighted shift with weights 
∞ .  

Then  is of class   if and only if  for all ≥ ,

  
   

   
   ≥ .

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

        
 

  
  

for all ≥, so that this implies the result. 

  Isolated points of the spectrum of a paranormal operator are eigenvalues, 

but an operator of class  need not to be isoloid.

Example 3.8. Let  be a weighted shift with weights  
∞

. 

Then  is a compact operator,   ,   ∅ and ∥∥

([12, p170]). Thus  is an operator of class   since 

  
   

   
   ≥  

for all  ≥ , as easily checked. But  is not isoloid.

Remark 3.9. In the Example 3.6 if  , then  ∈, but if  , 

then  is not an operator of class  from (3.1). Hence a multiple of a 

-operator may not be of class .

Theorem 3.10. ([16]) Let  be an operator of class .

  (a) If   is a contraction, then so is .

  (b) If   is an isometry, then  is paranormal.
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Proof.  (a) Observe that   is of class  if and only if     ≤

   Thus   ≤  implies   ≤ . So  is a contraction 

whenever   is.

  (b) Take any  in  and note that   is of class   if and only if

∥∥≤∥ ∥∥∥ ∥ ∥∥∥

Hence∥ ∥∥∥implies∥∥≤∥ ∥∥∥ for every ∈.

 3.2 Class   of operators 

 

Definition 3.11. An operator  is of class , shortened to   

if ≤       . Equivalently,  is an operator of class  if  

            ∥ ∥≤ 


∥ ∥∥∥  for every ∈.

Remark 3.12. Clearly every *-paranormal operator is an operator of class 

. Since  ≤        if and only if 
 ∈ for 

any  , 

 is *-paranormal if and only if  ∈   for all    

Theorem 3.13. For any ∈ , the following properties hold.

  (a) If ∥∥≤ , then ∈ .

  (b) If  , then ∈  if and only if ∥∥≤ .

  (c) If ∈ ,  ≠ and    ≤     , then  ∈.     

     In particular, if  ∈  is a contraction, then  ∈ whenever    

        ≤ .

  (d) A contraction ∈  is *-paranormal if and only if 

≤         for all ∈  
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Proof. (a) ∥∥≤    if and only if∥  ∥≤ if and only if  

 ≤ . Hence ∥∥≤  implies ≤    .

  (b) If  , then  ≤         if and only if  ≤ . 

Hence  ∈  if and only if ∥∥≤   .

  (c) If  ∈ , then  ≤     , so for each scalar ,

      ≤          

and hence for each scalar ,

       
        

≤                  

            

Suppose ≠. If    ≤  , then    ≥  since    ≤ .  

Also       ≤  since   ≤∥ ∥


 if and only if ∥ ∥≤ 

if and only if   is a contraction. Thus           ≤ . 

Hence      ≤        , so that  ∈  . 

  In particular, let  ∈  be a contraction. then in the case of  ≠,  

 ∈ whenever    ≤  since   . And in the case 

of  , we have ∥∥≤  by (b). Also   ∥∥≤   and

∥∥≤  for    ≤ . Therefore  ∈  for    ≤  by (a). 

  (d) If  ∈  is a contraction, then  ∈   for ∈    or equi­ 

valently,  ≤        for ∈ , i.e., 

 ≤  


   



 

Let   . Then   ≤        for all  ≥ . Hence a 

contraction ∈  is *-paranormal if and only if 

 ≤           for all ∈  
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Corollary 3.14. If    , then  ∈  if and only if  ∈ 

Proof. It follows from Theorem 3.4(b) and Theorem 3.13(b).

Remark 3.15. An operator of class  need not to be normaloid and 

hence not to be *-paranormal. For example, by Corollary 3.14, 

     
 

∈    if and only if  ∈ if and only if    ≤ 

since  . And also  is not normaloid for all ≠ and hence not 

*-paranormal (see Example 3.6).

  The above remark shows that the following classes are related by pro­ 

per inclusion : 

Unitary ⊊ Hyponormal ⊊ *-Paranormal ⊊ Class . 

And a multiple of a -operator may not be of class  (see Remark 

3.9). 

Theorem 3.16. Let  be an operator of class . 

  (a) If ⊆ is an invariant subspace for , then   is of class .

  (b) If  is unitarily equivalent to , then  is of class .

  (c) If  commutes with a unitary operator , then the product   is    

     of class . 

  (d)  ⊗ and  ⊗ are both of class .

Proof. (a) Let  be the orthogonal projection of  onto  and let  

  denote the restriction of  to . Then for every ∈,

∥∥∥ ∥≤∥ ∥

≤∥ ∥

∥∥  ∥ ∥


∥∥

Hence    is of class .

  (b) Let     where  is unitary. Then 

   
      
        ≥ 
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Hence  is of class  .

  (c) Let . We must show that    ≥ . By hypothe­ 

sis, we have     ,    ,  . Thus

  

        

   

    ≥ 

      

Hence  is of class .

  (d) Since  is of class ,     ⊗ ≥  and we have

  ⊗  ⊗⊗⊗⊗

  ⊗ ⊗⊗ ⊗⊗

   ⊗ ⊗⊗

   ⊗ ≥ 

Hence ⊗ is of class  and similarly  ⊗ is of class .

Theorem 3.17. Let  be a unilateral weighted shift with weights 
∞

. 

Then  is of class  if and only if  for all  ≥ ,

  
   

   
≥ .

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

           
   

  
 

 for all  ≥  and           
   

. This 

implies the result. 
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Example 3.18. Let   be a weighted shift with weights 
∞ .

Then since  
≤,  

≤    


   for ≥ . 

Thus  is a -operator by Theorem 3.17, but  is not isoloid (see 

Example 3.8). This means that an operator of class  need not to be 

isoloid.

  The following results are well known ([24],[25]): Let  be a unilateral 

weighted shift with non-zero weights 
∞ . Then 

  (a)  is paranormal if and only if    ≤    for all  ≥ . 

  (b)   is *-paranormal if and only if   
≤       for all  ≥ . 

  The following example shows that classes of -operators and 

-operators are independent.

Example 3.19. Let  be a unilateral weighted shift with weights 
∞  

        ⋯ . Then

  (a)  is a -operator since   
 ≤     

 
 for all 

 ≥ , as easily checked. In fact  is *-paranormal since  
≤  

       for all ≥ . 

  (b) By Theorem 3.7,  is not a -operator since   
   

    


  , so that  is not paranormal.    

  (c)     since    ⋯       ⋯. So   

∈ whenever  ≤  by Theorem 3.13(c).

Theorem 3.20. Let  be an operator of class .

  (a) If   is a contraction, then so is .

  (b) If   is an isometry, then  is *-paranormal.
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Proof. (a)  is of class  if and only if    ≤      if and only 

if    ≤   since   is a contraction. Thus    ≤ , which means 

that  is a contraction.

  (b) Take any  in  and note that  is of class  if and only if

∥ ∥≤∥ ∥

∥∥

 ∥ ∥∥∥ ∥ ∥∥∥

Hence ∥ ∥∥∥ implies ∥ ∥≤∥ ∥∥∥ for all ∈.

Therefore  is *-paranormal.

Corollary 3.21. Let   be an isometry. Then  ∈  if and only if  is

a contraction.  

Proof. Since    ,  ∈  if and only if    ≤   if and only 

if  is a contraction.

  Note that there exists a non-zero operator  ∉  that   is an 

isometry.

Example 3.22. Let  be a unilateral weighted shift with weights    

       ⋯ . Then

  (a)      ⋯        ⋯, i.e.,   is an isometry, but 

 is not of class  since  is not a contraction (∥∥ ).  

  (b)    lim      . In fact,        if  is even and    

  if  is odd. So  is not normaloid since  ∥∥≠   and 

hence  is not *-paranormal.         

Example 3.23. Let  be a unilateral weighted shift with non-zero weights

            




  




⋯   




⋯  
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  (a)  ∈   if and only if    ≤ 


.

  (b)  ∈   if and only if    ≤ 


.

  (c)   is *-paranormal if and only if    ≤  


.

  (d)   is paranormal if and only if    ≤ 





. 

  (e) If  


 ≤


, then   is of class ∩, but not *-para­ 

normal.    

Proof. (a) For  ≥ ,    
≤   

   
   since 

  
 





    

   
.

When   ,    
 ≤   

   
   for    ≤ 


.

  (b) For  ≥ ,    
 ≤   

   
   since 

  
 





   

   
.  

When   ,    
≤   

   
  for    ≤ 


.

  (c)   is *-paranormal if and only if   
 ≤        for all

 ≥ .  Now for ≥ ,   
 ≤        since

   
 


 




       . 

When   ,   
 ≤        for    ≤  


.

  (d) This is clear from the following the fact that   is paranormal if 

and only if    ≤     for all  ≥ , i.e.,    is increasing. 

 
  (e) It follows from the above part (a), (b), and (c).
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 4. 2-isometric operators

Definition 4.1. An operator  ∈  is defined to be a  if 

          .                    (4.1)

Equivalently,  is a 2-isometry if 

∥∥ ∥ ∥∥∥ for every  ∈ . 

Clearly every isometry is a 2-isometry since     And every 

2-isometry is a -operator.

Remark 4.2. For any 2-isometry , the following properties hold.

  (a)  is left invertible since      . And hence   is    

       closed and   (see Theorem 2.2).    

  (b) ∥∥≥  since     ≥  ([2, Proposition 1.5]).  

  (c)  is invertible if and only if  is unitary ([2]).

   

Theorem 4.3. For any 2-isometry , the following properties hold.

  (a)  is not compact if  is infinite dimensional.

  (b) If  is invertible, then 


 is also a 2-isometry.

  (c) If  is normal, then   is also a 2-isometry.

  (d) If   is an isometry, then  is also an isometry.

Proof. (a) If  is a 2-isometry, then  ≥ . In general  is not compact 

on an infinite dimensional Hilbert space. Thus   is not compact. 

Hence  is not compact.

  (b) The hypothesis that  is an invertible 2-isometry yield  is unitary 

by Remark 4.2(c). So   is unitary and hence   is a 2-isometry.

  (c) If  is normal, then    , so      From (4.1), 

we obtain           , which implies   is a 2-isometry.
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  (d) If   is an isometry, then     and hence     

from (4.1), so     . This implies  is an isometry.

  We denote  to be an open unit disk, i.e.,  ∈ℂ     and  

also write  for the topological boundary of .

Theorem 4.4. If both  and   are 2-isometries, then ⊆ .

Proof. By Remark 4.2(a),  is closed and both  and   are injective, 

so  is invertible and hence  is unitary by Remark 4.2.(c). This implies 

⊆ .

Corollary 4.5. Let  be a 2-isometry. Then the following statements are 

equivalent. 

  (a)  is invertible.

  (b)  is unitary. 

  (c)  is normal.

  (d)  has it's spectrum on the unit circle.

Proof. (a) implies (b) by Remark 4.2(c). Clearly (b) implies (c). Using Theorem  

4.3(c) and Theorem 4.4, (c) implies (d). (d) implies (a) since ∉.  

 
Theorem 4.6. For any 2-isometry , the following properties hold.

  (a) If  is unitarily equivalent to , then  is a 2-isometry.

  (b) If ⊆ is an invariant subspace for , then   is a 2-isometry.

Proof. (a) Let     where  is unitary. Then 

           

       

.

Hence  is a 2-isometry. 

  (b) If  ∈, then 

∥ ∥ ∥∥ ∥ ∥∥∥ ∥ ∥∥∥. 
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So   is a 2-isometry.

Theorem 4.7. Let  be a 2-isometry. If  commutes with an isometry 

, then the product  is a 2-isometry.

Proof. Let . We must show that    . 

By hypothesis, we have      , ,    . Thus

 

           

     

      

Hence   is a 2-isometry.

Theorem 4.8. Let  be a 2-isometry. Then 

 is a 2-isometry if and only if      or   is an isometry.

Proof. If  is a 2-isometry, then               for any 

∈ℂ. So we have for any ∈ℂ,

                      , 

which implies the result. 

Corollary 4.9. If  and  are 2-isometries. Then   ≤ .

Proof. Note   is a 2-isometry ([32, Theorem 2.1]), and so  ≤∥ ∥. 

Let  be a 2-isometry. If ∣∣≠, then ∥ ∥ by Theorem 4.8, 

which implies    .

Remark 4.10. According to [2], If  is a 2-isometry, then  ⊆ . 

And either   ⊆  if  is invertible or     if  is not inverti­ 

ble. Thus if  is an isometry, then either  ⊆  or    . In 

particular if  is unitary, then  ⊆ . 
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  Recall that an operator ∈  is isoloid if isolated points of   

are eigenvalues of  and reguloid if  has closed range for each 

isolated points of  . 

 

Theorem 4.11. If  is a 2-isometry, then  is isoloid and reguloid.

Proof. If  has isolated points of  , then it is clear from the above 

remark that  is unitary since  ⊆ . Thus  is paranormal, so that 

the result follows (see (2.7)).

  In the next theorems we explore several properties of the spectrum of 

a 2-isometric non-unitary operator and also we prove that the Weyl’s theorem 

holds for 2-isometries.  

Theorem 4.12. If  is a 2-isometry and non-unitary, then

  (a)    .

  (b)    .

  (c)  ∩   .

  (d)    .

Proof. (a) Since  is not invertible,      by preceding Remark 4.10. 

  (b) For any operator ∈ ,  ⊆   (see Theorem 2.7), so 

⊆   by part (a) and  ⊆  by preceding Remark 4.10. Thus 

the result follows. 

  (c) For any operator ∈ ,  ∩ ⊆   (see Theorem 

2.7) and using part (b),  ∩ ⊆ . 

  Conversely if ∈, then  is not isolated point of   by part (a). Thus 

 is not closed (see Theorem 2.8). Hence ∈ ∩ . 
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  (d) Let ∈ . If ∈, then  is not closed, so ∈ . 

If ∈, then  is closed and    since ∉  (see 

Theorem 2.3). And since ∈ , we must have dim≠. Thus 

ind  , so that  ∈  . Therefore  ⊆   by part (a). 

This proved (d). 

Remark 4.13. The above Theorem 4.12 shows that if  is a 2-isometric 

non-unitary operator, then 

  (a)  is not a Weyl operator since  . 

  (b) ⊆ ⊆
  since   ⊆  ⊆   for any operator 

∈  (see Theorem 2.7). 

  (c)  is semi-Fredholm for ∈ (see (2.4)). 

  (d) ind≤  for    ≠. In fact, if    , then ind  in 

the proof of Theorem 4.12(d) and if     , then  is invertible, so 

that ind  . 

  (e) the function from  into  ∪ ±∞ given by  → ind is 

constant (see Theorem 2.6).

Corollary 4.14. Let  be a 2-isometric non-unitary operator. If ∉  

i.e,  is a Fredholm, then ind≤ .

Proof. This proof is immediate by part (b) and (d) of the Remark 4.13.

  The following theorem appeared in [32, Corollary 2.13]. Here we will 

prove this with alternate argument using the Theorem 4,12.

Theorem 4.15. The Weyl’s theorem holds for 2-isometries.  

Proof. Let  be a 2-isometry. If  is unitary, the result is obvious. If  

is non-unitary, then since      by Theorem 4.12(a),   ∅. Thus 

        by Theorem 4.12(d), as desired. 
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Theorem 4.16. Let  be a unilateral weighted shift with weights 
∞ .

Then  is a 2-isometry if and only if for all  ≥ ,

  
   

   
   .

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

        
 

  
  

for all ≥, so that this implies the result. 

  Next we shall give an example that a non isometric unilateral weighted 

shift is a 2-isometry.

Remark 4.17. In [32, Theorem 2.2], S. M. Patel proved that a non 

isometric unilateral weighted shift  with weights  is a 2-isometry if 

and only if (ⅰ)   
   

 
     for each ; (ⅱ)    ≠  

for each . 

Example 4.18. Define    →  by      ⋯       ⋯  

where  




. Then  is a non isometric unilateral weighted shift 

and a 2-isometry  since   
 

   
   and  ≠ for each 

 , easily checked. And ∥∥  since  ≥      for each .

Theorem 4.19. Define    →  by      ⋯      ⋯  

where  is non-zero weights for each . If  is a 2-isometry, then

  (a)      .

  (b)    .

  (c)   ∅.

  (d) for     ,  is closed and ind  .
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  (e)     and        .

Proof. Since  is a 2-isometric non-unitary operator, part (a) and (b) are 

obvious by Theorem 4.12. 

  (c) Since  ⊆   ,  ∉ . Suppose      ⋯∈  

and ≠. If , then   ,   ⋯  Thus     ⋯  

Hence   ∅.

  (d) If     , then since ∉   , so that   is closed 

and dim . To prove ind  , it suffices to show that 

dim  for     . If       ⋯ ∈  and     , 

then    ⋯  
   ⋯ . So  ⋯




 for all  . 

That is, if     


 



 ⋯ ⋯




⋯ , then       ⋯ 

.  Clearly  ∈ . This implies that  is the one 

dimensional space spanned by , as desired.

  (e) Using ⊆  ⊆
  (see Remark 4.13(b)) and part (d), we obtain

   . Since  ∩    by Theorem 4.12(c) and   

∪     by Theorem 2.7(a), we have        .

  Since a unilateral shift  is a 2-isometric non-unitary operator, the foll­ 

owing corollary is obvious by the above Theorem 4.19.

Corollary 4.20. Let  be a unilateral shift defined    →  by     

 ⋯      ⋯ . Then

  (a)      . 

  (b)   ∅.
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  (c) For     ,   is closed with  . 

  (d)        . 

 Remark 4.21. Every isometry is normaloid since   ∥∥ (see 

Remark 4.10). But the Example 4.18 shows that a 2-isometry  need not 

to be normaloid since  ≠∥∥. Also Example 3.8(Chapter 3) and Exam­ 

ple 4.18 show that the following classes are related by proper inclusion :  

 Unitary ⊊  Isometry ⊊  2-isometry ⊊ -operator.

  Next we show that the   satisfies spectral mapping theorem for 

 and furthermore, the Weyl’s theorem holds for  where  is a 

2-isometry and  is analytic on a neighborhood of  .

Theorem 4.22. If  is a 2-isometry and  is analytic on a neighborhood 

of  , then        .   

                                               
Proof. Let  be a 2-isometry. If  is a unitary, the result is obvious. 

Assume that  is a non-unitary. Suppose   is any polynomial. Let 

      ⋯    where          ⋯  . We 

first show that     ⊆   . If ∉   , then

    ⋯    

is Weyl. Since  commutes each other, every  is Fredlhom. 

Thus by Corollary 4.14, ind ≤  for each   ⋯, so that 

ind   since

 ind    ind   ⋯ind    .

Thus ∉ for each    ⋯  and ∉  since    

  ⋯. Hence this implies  ⊆  . 

  The converse assertion     ⊇    is trivial (see (2.6)). Hence 
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we have         for any polynomial  .

  If  is analytic on a neighborhood of  , Then by the Runge’s theo­ 

rem, there is a sequence  of polynomials converging uniformly on a 

neighborhood of  to  so that   → . Note that the mapping 

 →   is upper semi-continuous. Since each   commutes with 

 , it follows from [30] that 

                      lim
→∞
     lim

→∞
      .

Hence         .

  Oberai showed that if  is isoloid and the Weyl’s theorem holds for , 

then the Weyl’s theorem holds for   if and only if    

  for any polynomial   ([30]). Thus the following statement is 

true.

Corollary 4.23. If  is a 2-isometry and  is analytic on a neighborhood 

of  , then the Weyl’s theorem holds for  .

Proof. Recall that if ∈  is isoloid, then 

  ╲       ╲   

for every ∈  ([29], [30]). Since  is a 2-isometry,  is isoloid 

by Theorem 4.11. Also the Weyl’s theorem holds for  by Theorem 

4.15. Thus we have 

               ╲    ╲ 

                      (Theorem 4.22).

Therefore  ╲   , so that the Weyl’s theorem holds

for  . 

  The following results were discussed in [2]. Here we prove them in 
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detail in the case of a 2-isometry.

Theorem 4.24. If  is a 2-isometry, then ∆  is an invariant subspace 

for  where ∆    .

Proof. Since  is a 2-isometry,  ∆∆  and ∆≥ by Remark 

4.2(b). Now if ∈∆ , then 

∆     
∆   

∆     

Thus ∆    since ∆ ≥  (see Theorem 2.9(d)). So  ∈ ∆ .

Theorem 4.25. Let  be a 2-isometry. Then

  (a)   ∆ is an isometry. 

  (b) If  ⊆ is an invariant subspace for  and    is an isometry,  

     then  ⊆∆.

Proof. (a) Let  be the orthogonal projection of  onto ∆ and let 

  ∆  We shall show that  . Let ∈∆  Then     

 and      ∆ . So    , as desired. 

  (b) Let     and  be the orthogonal projection of  onto . 

Given ∈ , we have      since    is an isometry 

by hypothesis. Thus we see that

                   

         ∆    
  

So ∆     and ∆  . Hence ∈∆  and so ⊆∆ .

Remark 4.26. For a 2-isometry, ∆  is a maximal invariant subspace 

such that  ∆  is an isometry. Also ∆ is unique by the above 

Theorem 4.25.
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 5. Quasi-isometric operators 

Definition 5.1. An operator  ∈  is said to be a  if  

                                       

Equivalently,  is a quasi-isometry if

∥∥∥ ∥ for every  ∈ .             (5.1)

Remark 5.2. Every isometry is a quasi-isometry, whereas an idempotent is 

a quasi-isometry, but need not be an isometry. For example, every ortho­ 

gonal projection operator is an idempotent, but is not an isometry. On the 

other hand, a quasi-isometry which is an 2-isometry is an isometry. Thus 

the classes of 2-isometries and quasi-isometries are extentions of 

isometries and they are independent. 

  The above (5.1) immediately gives us the following facts:

  (a)∥∥∥ ∥≤∥∥
. 

  (b) For  ≥ , ∥ ∥║  ║║ ║ for every  in .  

  (c) If    , then  . 

  (d) For any unit vector  in , 

∥∥≤∥ ∥∥ ∥≤∥∥∥ ∥.

  From the above facts, we can obtain the following properties.

Theorem 5.3. For any quasi-isometry , the following properties hold.  

  (a) ∥∥∥ ∥. Furthermore,∥ ∥∥ ∥ for every  ≥ .

  (b) If  is non-zero, then ≤∥∥.

  (c)    .

  (d)  is -paranormal where ∥∥
.   
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  Recall that Lat  is the collection of all invariant subspace for 

Theorem 5.4. For any quasi-isometry , the following properties hold. 

  (a) If  is unitarily equivalent to  then   is a quasi-isometry.

  (b) If  ∈Lat  , then     is a quasi-isometry.

  (c) If  is invertible, then  is unitary.

  (d) If  is invertible, then   is also a quasi-isometry.

Proof. (a) Let     where  is unitary. Then

         

      

     

Hence      

  (b) Let  be the orthogonal projection of  onto . Since ∈  , 

 or taking adjoint,   . Thus  

                  . 

Hence          , as desired. 

  (c) If  is invertible, then by hypothesis    . So  is invertible   

isometry and hence  is unitary.

  (d) By part (c),  is unitary. So 


 is unitary and hence 


 is a 

quasi-isometry.

 

Remark 5.5. Let  be a unilateral shift on  defined in Corollary 4.20. 

Then   is a quasi-isometry since   is an isometry. But   is not a 

quasi-isometry since     . So a quasi-isometry need not have 

a quasi-isometry adjoint.
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Theorem 5.6. Let  be a unilateral weighted shift with non-zero weights 


∞ . Then  is a quasi-isometry if and only if 

      for   ⋯ 

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

       
 

  
  for all  ≥ .

So this implies the result. 

Example 5.7. Let  be a unilateral weighted shift  with weights 

      
                ⋯

where  , i.e.,  

 
. Then      for all  ≥  and 

            for   ⋯  Hence  is a quasi-isometry. 

Theorem 5.8. If  is a non-zero quasi-isometry and if  is hyponormal,  

then ∥∥.

Proof. If  is a non-zero quasi-isometry, then ≤∥∥ by Theorem 

5.3(b). And by hypothesis,   ≤   and    ≤  . So

∥ ∥≤∥∥ and hence ∥ ∥≤ ∥∥ and ∥∥≤∥∥.  

This means ∥∥≤, as desired.

Remark 5.9. S. M. Patel proved the fact: If  is a quasi-isometry and if

∥∥, then  is hyponormal ([31, Theorem 2.2]). Thus Theorem 5.8 

implies that for a non-zero quasi-isometry , 

 is hyponormal if and only if ∥∥.
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Example 5.10. Let     
 

 be defined on ℂ . Then 

  (a)  is a quasi-isometry since  is an idempotent operator. 

  (b)          ∈ℂ, but  ⊂   is failed since 

     ∈ℂ .

  (c)         and ∥∥ . Hence a quasi-isometry is 

not necessarily normaloid. 

  Recall that   is the approximate point spectrum of . Also we denote 

  by  .

  The following theorem will be appeared to be true in the next section :  

Posiquasi-isometric operators (Corollary 6.24 and Corollary 6.26).

Theorem 5.11. Let   be a quasi-isometry. Then

  (a) If  is quasinilplotent, then  .

  (b)  ╲  is a subset of the unit circle.

Remark 5.12. Let   be a quasi-isometry. If   is invertible, then  

⊆   where    ∈ℂ       since   is unitary. If   is not in­ 

vertible, then using Theorem 5.11(b) and  ⊆  , we have either 

  ⊆∪ if 0 is an isolated point of   or      if 0 is 

not an isolated point of  .

Theorem 5.13. ([31]) Let  be a quasi-isometry. Then isolated points of 

  are eigenvalues of  .

Proof. Let  be an isolated point of  . Then we consider the Riesz spec­ 

tral projection  with respect to , 

  

 


 ,                      (5.2)
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where  is an open disk of center  which contains no other points of  . 

Then  is a non-zero idempotent operator commuting with  and  is 

invariant under the operator . And also     (see Theorem 2.5) 

and    a quasi-isometry by Theorem 5.4(b). If  , then    

by Theorem 5.11(a). If ≠, then    is invertible and so must be uni­ 

tary. Thus    .  In either case, ∈ , which completes 

the proof.

  It is well known([37, p.424]) that if  be Riesz spectral projection with 

respect to  where  is an isolated point in   defined by (5.2), then  

                  ｛  ∈         → ｝. 

Evidently, for any positive interger ,

      ⊆ .                            (5.3)

Corollary 5.14. Let  be a quasi-isometry and  be an isolated point of 

. Then the Riesz spectral projection  with respect to  defined by 

(5.2) satisfies   .

Proof. In general,  ⊆  from (5.3) and in the proof of Theorem 

 5.13,   , so that ⊆ . Hence   .

  Recall that an operator   is reguloid if  is closed for the iso­

lated points of .  

Theorem 5.15. If  is a quasi-isometry, then   is reguloid.

Proof. Let  be an isolated point of  . and let  be the Riesz spectral 

projection with respect to  defined by (5.2). Then 

   , 
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both  and  are closed subspace, and they both are invariant 

under the operator . Note that     and     

╲ . If we use the decomposition  , we have    

                

since   and    is invertible. Hence 

 is closed, as desired.

  S. M. Patel proved that the Weyl’s theorem holds for quasi-isometries ([33, 

Theorem 3.19]). Here we will prove this with alternate argument using the 

following Lemma.

Lemma 5.16. Let     
 

 on  ⊕  be a 

quasi-isometry, where ∈. Then

  (a) If ≠, then   and  is a quasi-isometry.

  (b) .

Proof. (a) Suppose ≠. Then     by Theorem 5.11(b). Thus 

     
 

 and   

            

  

 


 .

Since     , we have   and  


.

 
  (b) Suppose ∈ . 

  Case 1.  . In this case, 

⊕ and    since ∈. And since  is 

a quasi-isometry, ∥∥∥ ∥ and hence  . So  ∈  

and ∈ ∩ . Therefore   .
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  Case 2. ≠. In this case, since ,

   ⊕  and     ⊕ .                 (5.4)

Since  is a quasi-isometry, ∥∥ ∥ ∥

 and from (5.4),

∥∥∥∥  ∥∥  ∥∥
.          (5.5)

Since∥∥ by Theorem 5.11(b), we have ∥∥ ∥∥
 from (5.5) 

and   . So    ⊕  from (5.4) and hence ∈  and 

 ∈ ∩ . Thus   . The proof is completed.

Theorem 5.17. Let  and  be non-zero distinct eigenvalues of a quasi 

-isometry . Then  ⊥ .

Proof. Let  have the matrix representation corresponding  as in Lemma

 5.16. Let ⊕∈. Then 

      ⊕ .          

Since   ,         by Lemma 5.16(a), so 

   and hence   and   since ≠. Therefore

   ⊕   ⊥  since ∈
 . 

                                                 

Theorem 5.18. The Weyl’s theorem holds for quasi-isometries.

Proof. First we show that   ╲   ⊂    

Let ∈ ╲. Then  is a Fredholm operator with index 0. Hen­ 

ce    is a non-zero finite demensional subspace and ∈  . 

Let     
 

 on  ⊕. Then  

by Lemma 5.16(b) and 
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         
 

   
 



    

  

     

since  is a finite rank operator. So     and   is an 

invertible operator on   . Thus ∉  and therefore  is an  

isolated point of    ∪. Hence  ╲ ⊂  

  Next we show that     ⊂   ╲    

Let  ∈ . Then    by Corollary 5.14 and  

is closed by Theorem 5.15. And also    in the proof of 

Theorem 5.15, where  is a Riesz spectral projection with respect to  

defined by (5.2). Thus we have

 ≅   ≅  .

This implies that    is a Fredholm operator with index 0 which is not 

invertible. Hence ∈  ╲

  Next we show that   satisfies the spectral mapping theorem for 

 and furthermore, the Weyl’s theorem holds for  where  is a 

quasi-isometry and  is analytic on a neighborhood of  .

Lemma 5.19. If  is a quasi-isometry and    is Fredholm for some 

 ∈ℂ, then ind  ≤ .  

Proof. If ∉ , then  is invertible, so that ind  . 

  Suppose ∈ . 

  Case 1.  . In this case, 

ind  ≤  since   is Fredholm of finite accent by Theorem 5.3(c)  

(see (2.3)).
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  Case 2. ≠. In this case,

if  is an isolated point of  , then ind    (see Theorem 2.6). 

If  is not an isolated point of  , then ∉ , otherwise ran() 

is not closed (see Theorem 2.8), which is a contradiction to the fact that 

 is Fredlhom. Thus  ∈ where  ∈ℂ       by Remark 

5.12. So ∉  by Theorem 5.11(b) and   . Thus we must 

have dim≠ since ∈ . Hence ind  .  

 

Theorem 5.20. If  is a quasi-isometry and  is analytic on a neighbor­

hood of  , then         .   

                                               
Proof. Let  be a quasi-isometry. Suppose  is any polynomial. Let  

      ⋯    where          ⋯  . We 

first show that     ⊆   . If ∉   , then

    ⋯    

is Weyl. Since  commutes each other, every  is Fredlhom. 

Thus ind ≤  for each   ⋯ by Lemma 5.19, so that ind

   since

 ind    ind   ⋯ind    .

Thus ∉ for each    ⋯  and ∉  since    

  ⋯. Hence this implies  ⊆  . 

  The converse assertion    ⊇     is trivial (see (2.6)). Hence 

we have         for any polynomial  .

  If  is analytic on a neighborhood of  , Then by the Runge’s theo­ 

rem, there is a sequence  of polynomials converging uniformly on a 

neighborhood of  to  so that   → . Note that the mapping 

 →   is upper semi-continuous. Since each   commutes with 
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 , it follows from [30] that 

                      lim
→∞
     lim

→∞
      .

Hence         .

Corollary 5.21. If  is a quasi-isometry and  is analytic on a neighbor­ 

hood of  , then the Weyl’s theorem holds for  .

Proof. Recall that if ∈  is isoloid, then 

  ╲       ╲   

for every ∈ ([29], [30]). Since  is a quasi-isometry,  is iso­ 

loid by Theorem 5.13. Also the Weyl’s theorem holds for  by Theorem 

5.18. Thus we have 

               ╲    ╲ 

                      (Theorem 5.20).

Therefore  ╲   , so that the Weyl’s theorem holds

for  . 
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 6. Posiquasi-isometric operators 

  H. C. Rhaly, Jr. introduced posinormal operators as the class of opera­ 

tors  for which     for some positive operator  ([36]). 

This is a very large class that includes the hyponormal as well as all inver­

tible operators. 

  Now, we shall define a new class of posiquasi-isometries which is an 

extension of the class of quasi-isometries and includes all invertible ope­ 

rators. Its concept is motivated by posinormal operators. 

 

Definition 6.1. An operator ∈  is defined to be a ,

shortened to  ∈, if there exists a positive operator  ∈  called 

the interrupter, such that      

  Since      if and only if 

                ,

We can see that  ∈ if and only if for some positive operator 

 ∈ , 

                ∥∥∥ ∥ for all ∈.                 (6.1)

  By (6.1), clearly if  ∈ with interrupter , then ∥∥∥ ∥.

Theorem 6.2. If ∈ with interrupter , then 

  (a)∥∥≤∥∥ ∥ ∥ for every  in .      

  (b)∥ ∥≤∥∥ ∥ ∥ for every   ≥  and every  in .  

  (c)  ≤∥∥  .  

  (d) ≤∥∥∥∥
 if  is non-zero.       

                     

Proof. (a) Since the interrupter  is positive, ∥∥∥∥ . Thus  
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∥∥≤∥∥∥ ∥∥∥ ∥ ∥ for every ∈  from (6.1).  

  
  (b) for  ≥ ,  by part (a),   

 ∥ ∥∥ ∥≤∥∥ ∥  ∥

∥∥ ∥ ∥

 for every  in . Hence the result follows.

  (c) and (d) immediately follow from part (a). because part (a) implies 

∥∥≤∥∥∥ ∥

 for every ∈ and ∥∥≤∥∥ ∥∥.

Theorem 6.3. If  ∈ with interrupter  and  has dense range, then 

 is unique.

Proof. Assume  and  both serve as interrupter for . Then 

             
 

, so  
. 

Since  has dense range,   is one to one. Thus  
. Take 

its adjoint and again applying the fact that  has dense range, then 

 , as desired.

Remark 6.4. Let  be a unilateral shift on . Then since  is isometry,

 is a posiquasi-isometry and since  have not dense range, the inter­ 

rupter  for  is not unique. In fact take positive interrupter  to be 

the diagonal matrix with diagonal entries ≥  ≥ and   for 

≥ . Then we have     by the direct calculation, which 

shows the nonuniqueness of  for .

Theorem 6.5. If ∈ with interrupter  and  is isometry (that is, 

   ), then   ∈ with interrupter   .



44

Proof. Let      Since  is positive,  ≥  and

           
       
       

Hence   ∈ with interrupter   .

  
Theorem 6.6. For any ∈ with interrupter , the following properties 

hold. 

  (a)  is a posiquasi-isometry with interrupter   for each ∈ℂ.

  (b) If  is unitarily equivalent to , then ∈ 

  (c) If ∈Lat , then  ∈ with interrupter   where    

      is an orthogonal projection of  onto .

  (d)  ⊗ and  ⊗ are both posiquasi-isometry.

Proof. (a) If ≠, then           

and  is positive. Hence ∈.

  (b) Let     where  is unitary. Then ∈ with interrupter   

   by the above Theorem 6.5.

  (c) Since ∈Lat ,  (see Theorem 2.4) or     

and   ≥ .  So 

                  .

Hence            , as desired. 

  (d) Since ∈ with interrupter ,  ⊗  is a positive operator and  

  ⊗ ⊗    ⊗ ⊗ 
   ⊗    ⊗
  ⊗ ⊗  ⊗ 

 ⊗ ⊗ ⊗ 
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Hence  ⊗∈ with interrupter  ⊗ . Similarly  ⊗ ∈ with 

interrupter  ⊗.   

Theorem 6.7. (Douglas [14]) For any  ∈ , the following state­

ments are equivalent. 

  (a) ⊆

  (b) ≤ for some ≥ 

  (c) there exist a ∈  such that 

Moreover, if (a), (b), and (c) hold, then there is a unique operator  su­

ch that 

  (1) ∥∥ inf   ≤ 

  (2)     and

  (3) ⊆ .

  Douglas’ theorem leads almost immediately to the following result.

Theorem 6.8. For any ∈ , the following statements are equivalent.  

  (a) ∈.                                                        

  (b)  ≤     for some ≥ .                             

  (c)                                                   

  (d) there exists a ∈  such that                    

Moreover, if (a), (b), (c) and (d) hold, then there is a unique operator  

such that 

  (1) ∥∥  inf    ≤    

  (2)      and

  (3) ⊆
  .

Proof. (a) implies (b) : If ∈, then by Theorem 6.2(c),  ≤ 

∥∥  . Put ∥∥  Then the result follows. 
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  (b) implies (c) : By hypothesis, since   ≤   ,  ⊆ 

  by Theorem 6.7 and in general  ⊇  for any ∈ 

 . Hence   

  (c) implies (d) : This is trivial by Theorem 6.7.

  (d) implies (a) : If   , then 

       
   

 

and ≥ . Thus ∈.

  (1), (2), (3) : They immediately follow from Theorem 6.7.

Remark 6.9. (a) If ∈, then     since     

(b) Let  be a unilateral shift on . Then ∈, but  ∉ since

   , so that a posiquasi-isometry need not have a posiquasi- 

isometry adjoint.

Theorem 6.10. ∈ if and only if there exists a positive operator 

∈ such that   ≤   

Proof. It suffices to show that if there exists a positive operator ∈ 

such that  ≤  , then ∈. For any ∈,             

         ≤     

     

≤∥∥     

Thus  ≤∥∥   Hence ∈  by Theorem 6.8.

Theorem 6.11. Let  and  be commuting posiquasi-isometries. Then 

the product   is a posiquasi-isometry.

Proof. Let ∈ with interrupter , ∈ with interrupter  and 
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. Then by Theorem 6.2(a), we have for each ,

                    ∥∥≤∥∥∥ ∥


 ∥∥∥ ∥


≤∥∥∥∥∥  ∥


∥∥∥∥∥∥



   

Thus  ≤    where        Hence ∈ 

  by Theorem 6.8.

  By the above theorem, any power of a posiquasi-isometry is a posiquasi

-isometry. But we will directly prove this fact as following:

Corollary 6.12. If ∈, then  ∈  for every positive integer .

Proof. If ∈ , then by Theorem 6.2(b), for  ≥ ,

∥ ∥≤∥∥×∥ ∥
≤∥∥×∥ ∥
≤∥∥×∥ ∥
⋯

≤∥∥×∥ ∥

Hence ∥ ∥≤∥∥∥ ∥ for every  in . Put ∥∥. 

Then    ≤ 
    for each  , which implies  ∈ 

for every positive integer  by Theorem 6.8. 

  A posiquasi-isometry need not be invertible (see Remark 6.4), but the 

following theorem tells us that an invertible operator must be a posiquasi 

-isometry. 

Theorem 6.13. Every invertible operator is a posiquasi-isometry with the 

unique interrupter .

Proof. If  is invertible, then           . So 

∈ by Theorem 6.8. Also  has dense range since  is invertible.  
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Thus the interrupter  is unique by Theorem 6.3.

  By Theorem 6.13, we know that if  is invertible, then both  and  

will be a posiquasi-isometry. Furthermore,   and   will also be a 

posiquasi-isometry. The following theorems formalize these relationships 

in terms of interrupters.

Theorem 6.14. If  is invertible with interrupter , then 

  (a)  is invertible and   is a positive operator.

  (b)    is a posiquasi-isometry with interrupter  .

Proof. (a) By hypothesis,      and       since  

is invertible. Thus  is invertible and 
  is positive.

  (b) Since 
 ,   . Thus     and   

          
  
 
 

Hence the result follows.

Theorem 6.15. If  is invertible and if  ∈ with interrupter , 

then  is invertible and 


 serves as the interrupter for the posiquasi    

-isometry  .

Proof. By Theorem 6.14,  is invertible and   is a positive operator.  

    implies      . Thus

       , 

so that   is a posiquasi-isometry with interrupter 


, as desired.



49

  In Remark 5.9, we know that the following statement holds for a non-

zero quasi-isometry , 

   is hyponormal if and only if ∥∥.              (6.2)

The following theorems show the relation between posiquasi-isometry and 

hyponormal operator, paranormal, and -paranormal. 

  Recall that  is -paranormal if ∥∥≤∥ ∥ for any unit vec­ 

tor  in . 

Theorem 6.16. Let ∈ with interrupter  and let ∥∥∥∥. 

Then the following properties holds.

  (a)  is -paranormal and ≥.                              

  (b) If ∥∥∥∥, then  is hyponormal.

Proof. (a) If ∈ with interrupter , then by Theorem 6.2(a), we have

∥∥≤∥∥∥ ∥∥ ∥
≤∥∥∥∥∥ ∥
 ∥ ∥

 

for any unit vector  in . Hence  is -paranormal and ≥ by The­ 

orem 6.2(d).

 

  (b) By hypothesis, we have  ≤∥∥   by Theorem 6.2(c). 

Thus if∥∥∥∥, then     , easily checked. In fact 

 ≤    if ∥∥ and  ≥   if ∥∥. So  is a 

quasi-isometry with∥∥. Hence  is hyponormal by (6.2).

 
Theorem 6.17. If  is hyponormal and  is closed, then ∈.

Proof. Since  is hyponormal,     and  ⊥   ⊥.  

And also since  is closed,   is closed ([10]). Thus we have 

   . Hence ∈  by Theorem 6.8. 
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  The following theorem immediately holds by properties of -paranormal. 

Theorem 6.18. ([25]) Let ∈ with interrupter  and ∥∥∥∥. 

Then we have the followings:

  (a)  ∥ ∥≥∥ ∥∥∥ for any unit vector  in . 

  (b) For every posituve integer  and every unit vector  in ,

                  ∥ ∥

≥∥ ∥


∥ ∥ 

  (c) If  is a unilateral weighted shift  with non-zero weights , then  

   ≤  .

     for each positive integer  .

Theorem 6.19. Let  be a unilateral weighted shift with non-zero weights 


∞ . Then 

∈  if and only if  sup ≥    ∞.        

 Proof. Let 
∞  be an orthonormal basis for . If ∈, then 

 ≤   for some ≥  by Theorem 6.8. So 

     ≤ 
       

for each  . Thus   
≤   

   

 and  

≤  since  is  

non-zero for each . Hence sup ≥    ∞. 

  Conversely, let sup ≥    ∞. Taking a positive operator  to 

be the diagonal matrix with diagonal entries 

 ≥  ≥ and    

 for  ≥ ,       (6.3) 

we have      In fact,      
 for  ≥  since 

  for  ≥  and    and      for  ≥ . 

On the other hand,



51

                          
 

  
 


  



 for ≥ . Hence     
    for  ≥ , as desired.

Corollary 6.20. If  is a paranormal unilateral weighted shift with non- 

zero weights 
∞ , then ∈.

Proof. By hypothesis, non-zero weights 
∞  is bounded and  

∞  

is monotonically increasing. So 
∞  converges to a non-zero limit. Thus 


∞  also converges to a non-zero limit. Hence sup≥   ∞ 

and the result follows from Theorem 6.19.

 

Remark 6.21. A unilateral weighted shift  with weights 
∞  is com­ 

pact if 
∞  converges to zero ([17]). But  ∉ by Theorem 6.19. 

Hence a compact operator need not be a posiquasi-isometry. 

  Let ∈ with interrupter . If  ∥∥∥∥
, then  is paranormal 

by Theorem 6.16(a). But the following example shows that the converse 

is not true.

Example 6.22. Let  be a unilateral weighted shift with non-zero weights

    





  





⋯   





⋯  

  (a) ∈  for every    since 

sup 

 






  ∞.
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  (b) Let a positive operator  be the diagonal matrix with diagonal 

entries       and   for  ≥  from (6.3). Then  

is the interrupter for   for all  .

  (c) If  ≤





, then ∈ with interrupter  and also is a para­

normal since 
∞

 is monotonically increasing. But  ║║║║

 is  

failed since ∥∥   and ∥∥. 

  The above example gives us that if 





, then ∈ , but  

is not a paranormal operator. Thus a posiquasi-isometry need not to be a 

paranormal operator.

  In the next theorems we explore several properties of the spectrum of 

a posiquasi-isometry.

  Recall that ∈  is quasinilpotent if ∥ ∥

→  as →∞. Evi­

dently, if  is quasinilpotent, then    . 

  
Theorem 6.23. If ∈ with interrupter  and if  is quasinilplotent, 

then  .

Proof. By hypothesis, for sufficiently small   , there exits  such that 

 ≥ implies ∥ ∥

  since  is quasinilplotent. Using Theorem 

6.2(b), we get ∥∥≤∥∥      for all  ≥  since   

  ∥∥≤∥∥ ∥ ∥
≤ ∥∥ ∥ ∥
⋯

≤ ∥∥ ∥ ∥
≤ ∥∥ 

Hence this implies that  . 
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Corollary 6.24. Every quasinilplotent quasi-isometriy  is zero.

Proof. Since every quasi-isometriy   is a posiquasi-isometry with the inter­ 

rupter , the result follows from Theorem 6.23.

  Recall that  denotes approximate point spectrum of .

Theorem 6.25. Let ∈ with interrupter . If ∈ ╲ , then   

∥∥


≤   ≤∥∥.

Proof. It is sufficient only to show ∥∥


≤    . Now if ∈   ╲, 

then there exists a sequence  in   with ∥∥ for all  such 

that ∥∥→ . So ∥∥≤∥∥ ∥ ∥ for every  in 

 by Theorem 6.2(a). Thus   ≤∥∥    as →∞. Since ≠, We 

have ∥∥


≤    .

Corollary 6.26. If   is a quasi-isometry, then  ╲  is a subset 

of the unit circle.

Proof. In the proof of Theorem 6.25, using ∥∥∥ ∥ instead of 

∥∥≤
∥∥ ∥ ∥ since   is a quasi-isometry, then the result 

immediately follows. 

Theorem 6.27. Let  be the set of all posiquasi-isometries on . 

Then  is not closed in the operator norm topology on  .

Proof. Let  be a unilateral weighted shift with weights 
∞ . 

Then we have well known that     and  is a compact operator. 
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Suppose  is a sequence converging to 0. Then  converges to , 

but  is not posiquasi-isometry by Theorem 6.23 (or Theorem 6.19), while 

by Theorem 6.13, each  is posiquasi-isometry since it is invertible.

Remark 6.28. In the proof of the above theorem we can know the fact 

that if  is a posiquasi-isometry, then the translate  need not be a  

posiquasi isometry. 

Remark 6.29. Consider   where  is a unilateral shift on . 

Since 2 is not in        ≤ ,  is a posiquasi-isometry. But the 

Corollary 6.26 shows that  is not a quasi-isometry because   

   ≤  and  ╲ is not a subset of the unit circle. Thus 

the following classes are related by proper inclusion : 

            Unitary ⊊ Isomertry ⊊ Quasi-isometry

                            ⊊ Posiquasi-isometry 

           ⊊ -paranormal.

Example 6.30. Let     
 

 be defined on ℂ 
. Then since  is inver­ 

tible, ∈ with unique interrupter     
 

 by Theorem 6.13. 

Note that    and∥∥ . Thus a posiquasi-isometry is not ne­ 

cessarily normaloid. 

Example 6.31. Let     
 

 be defined on ℂ . Then ∈. In fact, 

 is a quasi-isometry since  is an idempotent operator. Thus we have 

       ∈ℂ, but  ⊂   is failed since   

    ∈ℂ. So 0 is not a normal eigenvalue (see (2.1)).
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Theorem 6.32. Let ∈ with interrupter . Then 

  (a) If  ∈, then  ∈  .

  (b) If  ∈, then  ∈ .

  (c) If  has dense range, then    .

Proof. (a) Let ∈. If ∈ℂ ╲  , then   is one-one. So   

   since     . Take its adjoint,     and again 

applying the fact that   is one-one, we have    . This will 

contradict the fact that ∈ . 

  (b) Let ∈. If ∈ℂ ╲  , then ∈ℂ ╲   and     

by in the proof of part (a). Since ∈ , we can choose a sequence  

of unit vectors such that → . Then    , so that   

    for all  . This is a contradiction since ∥∥ for all  , 

and ∥ ∥→   as →∞.

  (c) Since  has dense range,   is one to one. Thus  is also one to 

one by part (a), as desired. 

  If ∈ with interrupter  and  ∥∥∥∥, then the Weyl’s 

theorem holds for  since  is paranormal by Theorem 6.16(a). But in 

general, the following property holds for a posiquasi-isometry.

    
Theorem 6.33. Let ∈ with interrupter . Then ∈ ╲  

if and only if  ∈ .

  
Proof. Let ∈ ╲ . Then  is a Weyl operator. Hence  is 

non-zero finite dimensional subspace. Now we only show that 0 is a isolated 

point in  . Since  has finite ascent (see Remark 6.9),  has finite 

decent (see (2.3)). And hence  is a Browder, so ∉    ∪  

   (see (2.5)). Hence 0 is a isolated point in  . 
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  Conversely, let ∈ . Then we consider Riesz spectral projection 

 with respect to 0 ,  

 


 , where  is an open disk 

of center 0 which contains no other points of  . Then  is a non-zero 

idempotent operator commuting with ,  is invariant under the operator 

 and    ,      ╲  (see Theorem 2.5). 

Thus   ∈ by Theorem 6.6(c) and    by Theorem 6.23. 

Therefore 0 is an eigenvalue of . And  (see (5.3)). If we use 

decomposition    , we have 

     

since ∉   . Hence  is closed. And 

dim  dim   dimdim

This implies that  is a Weyl operator which is not invertible. Hence ∈ 

 ╲ .
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 <국 문 초 록>

-작용소, 2-등거리변환 작용소, 유사-등거리변환 

작용소 그리고 양유사-등거리변환 작용소에 관한 연구

  본 논문에서 -작용소, 2-등거리변환 작용소(2-isometry), 유사-등거리변환 

작용소(quasi-isometry) 그리고 새롭게 정의한 -작용소와 양유사-등거리변

환 작용소(posiquasi-isometry)의 대수적 성질과 이들 작용소들의 스펙트럼의 

특성을 연구한다. 그리고 이들 작용소들과 하이퍼노말(hyponormal), 파라노말

(paranormal)작용소들 등과의 관계를 조사한다. 양유사-등거리변환 작용소들의 

집합은 유사-등거리변환 작용소들의 집합의 확장이며 모든 가역적 작용소들을 

포함한다.

  또한 가중 일단전진이동 작용소(unilateral weighted shift)가 -작용소, -

작용소, 2-등거리변환 작용소, 유사-등거리변환 작용소, 양유사-등거리변환 작용

소가 되기 위한 필요충분조건을 제시한다. 특히 힐버트 공간에서 유계 선형 작용

소 가 2-등거리변환 작용소 또는 유사-등거리변환 작용소라고 하면 바일정리

(Weyl’s theorem)가 에 대하여 성립하고, 가 의 스펙트럼을 포함하는 개 

근방에서 정의한 해석적 함수라고 할 때, 의 바일 스펙트럼은  에 대해 스

펙트럼 함수 정리(spectral mapping theorem)를 만족시키며 나아가  가 바

일정리를 만족한다는 것을 밝힌다.

  어떤 작용소가 양유사-등거리변환 작용소가 되기 위한 필요충분조건들을 제시

하며, 모든 유사-멱영원(quasinilpotent)이고 양유사-등거리변환 작용소는 영인 

작용소이며 양유사-등거리변환 작용소의 임의의 거듭제곱은 또한 양유사-등거리

변환 작용소임을 밝힌다. 그리고 모든 양유사-등거리변환 작용소들의 집합은 

 의 작용소 노름 위상(operator norm topology)에서 닫혀있지 않음을 보인다. 
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