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<Abstract>

On the Class Q*, 2-isometries,

Quasi-isometries and Posiquasi—-isometries

In this thesis we shall study some algebraic and spectral properties of
several classes of operators: ()-operators, 2-isometries, quasi—isometries,
and two new operators that are defined below as @*-operators and
posiquasi—isometries; The class of posiquasi—-isometries is an extension of
the class of quasi—isometries and includes all invertible operators. And
we investigate the relationship between these and other operators, i.e.,
hyponormal, paranormal operators, and so on.

Moreover, we give necessary and sufficient conditions for a unilateral
weighted shift to be a (-operator, Q*-operator, 2-isometry, quasi-isometry,
and posiquasi—isometry respectively. In particular we show that if an operator
T<L(H) on a Hilbert space H is either 2-isometry or quasi-isometriy,
then the Weyl's theorem holds for 7T and for every fEH(a(T)), its Weyl
spectrum satisfies the spectral mapping theorem for f(7), where H(o(T))
denotes the set of analytic functions on an open neighborhood of (7).
Furthermore, we show that the Weyl's theorem holds for f(T).

Also we give necessary and sufficient conditions for an operator to be
a posiquasi—isometry and show that every quasinilpotent posiquasi—isometry
is zero, any power of a posiquasi—isometry is also a posiquasi—isometry,
and the set of all posiquasi-isometries is not closed in the operator norm

topology on L(H).



1. Introduction

Recently paranormal operators have been much investigated ([39],[11],
[25]). and S. Prasanna ([34]) showed that the Weyl’s theorem holds for
every paranormal operator. Let H be a complex Hilbert space and let
L(H) be the set of all bounded linear operators on H. In particular, it is
well known ([3]) that an operator TEL(H) on a complex Hilbert space
1s paranormal if and only if

0< TH**T*—2\T*T+NT
for all A> 0. Also #*-paranormal operators have been studied ([5],[6],
[24]). It is well known ([5]) that T is *—paranormal if and only if

0 AT - 2XT T *+ 2L
for all A> 0. Evidently, hyponormal operators are both paranormal and
¥—paranormal, but paranormality is independent of *—paranormality ([6]).

Put Q= T**T?—2T*T+1. If Q is positive, i.e,, 0< Q, T is called
an operator of class @ introduced by B. P. Duggal, et al. ([15]). Clearly
every paranormal operator is of class Q.

In particular if Q is zero, ie., T**T?— 2T*T +1=0, then T is said
to be a 2—isometry, and a quasi—isometry if T*T=T*>T> These con-
cepts are introduced by S. M. Patel ([31],[32]). The two classes of 2-
i1sometries and quasi—-isometries are extensions of the class of isometries

but they are independent.

In this thesis we shall study some algebraic properties of operators of
class ) , 2-isometries and quasi-isometries. Also we introduce two new

classes of operators defined as follows: T is called an operator of class

Q* if 0< T**T?—2T T* + [ and posiquast —isometry if there exists a po-



sitive operator P €L( H ) called the interrupter, such that T*T= T*?P T2
Clearly every #-paranormal operators is of class @Q*. And the class of
posiquasi—isometries is an extension of the class of quasi—isometries. The
diagram below summarizes the proper inclusion relationship among these

classes that will be required later in this thesis.

7 paranormal —— @-operator

normal —— > hyponormal $ /Q \‘]L/ @ normaloid

—\ s-paranormal — > Q*—operator

[Fig. 1-1]

= 2-isometry @Q operator

unitaty —— isometry \‘t ﬁ posiquasizisometry — M-paranormal

7
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& guasi—isometry

This thesis is organized as follows:

In Chapter 2, we shall give the preliminary definitions and basic proper-

ties of a bounded linear operator needed throughout the thesis.

In Chapter 3, we shall study several properties about the class @ and
explore a new class Q*. Its new concept is motivated by class Q. Also
we give examples and counterexamples in order to put this class @Q* in
its due place and show that classes of @ and Q* are independent as

giving an example. If 7, is the weighted shift with non-zero weights (see

Example 3.23), then we give necessary and sufficient conditions for 7, to



be @Q-operator, Q*-operator, paranormal, and *-paranormal respectively.

In Chapter 4, we investigate some algebraic and spectral properties of
2-isometries. In particular, we show that the Weyl's theorem holds for
2-isometries and also show that for every fEH(o(T)), the Weyl spec-
trum, w(7T), satisfies spectral mapping theorem for f(T), where H(a(T))
denotes the set of analytic functions on an open neighborhood of o(T).
Furthermore, we show that the Weyl's theorem holds for f(7). And we
prove that if 7 is a 2-isometry, then ker (T*T—1I) is a unique maximal
invariant subspace such that 7 |ker (T*T—1) is an isometry. Also we
give an example that a non isometric unilateral weighted shift is a

2-1sometry.

In Chapter 5, we shall study some properties of quasi—isometries. In
particular we show that if TE€ L(H) is a quasi-isometry and )\ is an isol-
ated point of o(7), then EH = ker(T — \), where E is the Riesz spectral
projection E with respect to A (see (2.2)) and ran(7—\) is closed. Also
we prove that the Weyl's theorem holds for quasi-isometries and the Weyl
spectrum, w(7T'), satisfies spectral mapping theorem for f(T). Furthermore,

we show that the Weyl's theorem holds for f(T) for every f € H(o(T)).

In Chapter 6, we define a new class of posiquasi—isometries which is
an extension of the class of quasi—isometries and includes all invertible
operators. Its concept is motivated by posinormal operators which are
introduced by Rhaly, Jr. ([36]). Here we investigate many algebraic and
spectral properties of posiquasi-isometries and also we give necessary
and sufficient conditions for an operator to be a posiquasi-isometry. The

main results are as follows:

(a) T is a posiquasi-isometriy if and only if T*T < X2 T *>T? for

some \=> 0 if and only if ran T *=ran T *°.



(b) If T and S are commuting posiquasi-isometries, then the product
TS is a posiquasi-isometry. Thus any power of a posiquasi—isometry is

a posiquasi—-isometry.

(c) Every invertible operator is a posiquasi—-isometry with the unique in-

terrupter. And if T is invertible with interrupter P, then P is invertible and

-1 . ..
P 1S a positive operator.

(d) Let T be a unilateral weighted shift 7" with non-zero weights {an}.

Then T is a posiquasi-isometriy if and only if sup,-,(1/]a,|)< .

(e) Every quasinilplotent posiquasi—isometriy 7T is zero.

(f) Let P(H) be the set of all posiquasi-isometries on H. Then P(H)

is not closed in the operator norm topology on L(H).

(g) Let T is a posiquasi-isometriy with interrupter P. Then

0€E0(T)\w(T) if and only if 0Emy(T).



2. Preliminaries and Basic Results

Let H be a complex Hilbert space and let L(H) be the set of all boun-
ded linear operators on H. An operator Te L(H) is said to be self-adjoint
if T=T%* ; unitary if T*T=TT*=1; isometry if | Tell= Izl for all
x € H ; contraction if | Tl <1 ( ie, I Txll < llzll for all z€ H ;
equivalently, T*T < I ). We denote the kernel of T and the range of T

by kerT and ran respectively.

Theorem 2.1. ([17, p80]) For any T € L(H ), the following properties hold.
(a) ker T= (ran T*)™*,
(b) ker T*=(ranT)".
(¢) ran T = (ker T*)*.

(d) ranT* = (ker T) .

Theorem 2.2. ([9, p361) For any T € L(H ), the following statements
are equivalent.

(a) T is left invertible.

(b) ranT is closed and ker T={0}.

() inf{l Txll: lzll=1}>0.

(d) T is bounded below, ie., || Tzl = cll x|l for some ¢> 0 and all

r € H.

We write o( 7 )={\A&C : T—\ is not invertible} for the spectrum of T ;
o0 (T) for the boundary of o(7T) ; p(T)=0(T) for the resolvent of T
; ap(T)Z{)\ e C :ker(T—X) #{0}} for the set of eigenvalues of T ;
7T00( T ) for the isolated points of o(7) that are eigenvalues of finite

multiplicity.



A complex number XA € C is said to be an approximate eigenvalue of T if

there exists a sequence (z,) with || z,||=1 such that (7— )z, — 0.
Let O'ap(T) ={\&C : )\ is an approximate eigenvalue of 7 }. Then aap(T)

is called the approximate point spectrum of T. Also we denote o, (T) by

p

w(T).

A point A € C is called a normal eigenvalue of T if eigenspace corres-
ponding to A reduces T. Equivalently,
A € C is a normal eigenvalue if and only if ker(7T—\) Cker(T—\)*. (2.1).

Also if X € C is a normal eigenvalue, then 7, =T | ker(T—\) is normal.

Theorem 2.3. ([10, p353]) For any T € L(H), the following statements
are equivalent.

@A aap(T).

(b) ran(T—N\) is closed and ker (T—\) ={0}.

(¢) T—\ is bounded below, i.e., | (T —X)xll=ell x|l for some

c¢>0 and all z € H.

(d) ran(T *—\)=H.

A closed linear subspace M of H is invariant under the operator T if
T(M )< M. A closed linear subspace M reduces the operator T if both
M and M™ are invariant under the operator T where M ™ is orthogonal
complement of M. We write Lat(7T ) for the collection of all invariant
subspace for T. T | M denotes the restriction of T to M, which is invar-

iant subspace for 1. If M reduces the operator 1, then 1" can decomposed

into the direct sum : T=T|M & T | M™ .



An operator P € L(H ) is called a projection operator if P?=P. If Pis
any projection on H, then ranP and kerP are complementary subspaces
of H, i.e., H=ranP +kerP and ranP Nker P={0}. Also I—P is a
projection and furthermore, ker P =ran(I—P), ranP =ker (I — P). An
operator P € L(H) is called an orthogonal projection if P> =P and in
addition P*=P. If P is an orthogonal projection on H, then ranP and

ker P are orthogonal complements in H ([12]).

Theorem 2.4. ([12, pl64]) Let M & Lat(T) and P be an orthogonal pro-
jection of H onto M . Then
(a) M is invariant under the operator T if and only if TP= PTP.

(b) M reduces the operator T if and only if PT= TP.

Theorem 2.5. ([18, p10]) Let TEL(H) and X be an isolated point in o(T).

Consider the Riesz spectral projection E with respect to )\, given by

1 £
2mi J ,p

" 21 2% (2.2)

where D Is an open disk of center \ which contains no other points of
o(T). Then
(a) The operator E is a projection, I.e., E?>=FE and ET= TE.
(b) Put M=ranFE, and L=%erE. Then H=M @ L, the space M and L
are invariant under the operator T and

o(TIM)={\}, o(T|L)=0(T)\ {\}.

The ascent (resp., descent) of T, denoted by a(T), (resp., d(T)) is the
smallest non-negative integer n such that ker T "=ker T"™' (resp.,

ran7" =ran T ""Y). If no such n exists, then a(7T)=co (resp., d(T)= co).

If a(T)< oo and d(T) < oo, then a(7T)=d(T) ([13]). This notion encom-



passes injectivity: an operator T is injective if and only if a(7T)=0.

An operator T € L(H) is said to be semi— Fredholm if ranT is closed
and either kerT or kerT* are finite dimensional. If T is semi-Fredholm,
The index of T, denoted by ind (T), is defined by

ind(7") =dimker T—dimker T *.
If T is semi-Fredholm and ind(7) is finite, then T is called Fredholm. It
is well known ([20, Theorem 2.6]) that
if TEL(H) is Fredholm of finite accent then ind(7") <0 : (2.3)
indeed, either if T has finite decent, then ind(7)=0, or if T does not

have finite decent, then ind(7") < 0.

An operator T € L(H) is left— Fredholm if ranT is closed and kerT is
finite dimensional and right— Fredholm if ranT is closed and kerT* is
finite dimensional. The essential spectrum of T, denoted by UE(T), 1S
defined by

o,(T)={\& C : T—\I is not Fredholm}
and the left essential spectrum of T, denoted by a;,(7"), is defined by
0,,(T) ={\€ C : dimker (T—)\) =co or ran(7T—)\) is not closed}
and the right essential spectrum of 7, denoted by o, (T), is defined by
0,.(T)={\&C : dimker (T—\)*=co or ran(7—X\) is not closed}
Clearly
T—Ae L(H) is semi-Fredholm if and only if A& 0, (T)No, (T). (2.4)

An operator T € L(H) is said to be Weyl if it is Fredholm of index zero
and Browder if it is Fredholm of finite ascent and descent. The Weyl spec-

trum, w(7), and Browder spectrum, ab(T), are defined by



w(T)={\EC:T—Al is not Wely},
o,(T) ={\&€ C: T—\I is not Browder}.
Then by [21]
o (T)<Sw(T) Co,(T)=0,(T)Uacco(T) (2.5)
where we write acco(T) for the accumulation point of o(7). We say

that the Weyl's theorem hold for T if J(T)\w(T) :WOO(T) or equivalently,

U(T)\ﬂ'()()(T) :w(T)-

It is well known ([30]) that the mapping T —w(7T) is upper semi-con-
tinuous, but not continuous at 1. However if T, — T with T, T=1TT,
for all n € N , then

limw(T,) =w(T).
It is known that w(7) satisfies the one-way spectral mapping theorem

for analytic function: If f is analytic on an open neighborhood of o(7),

denoted by fEH(o(T)), then
w(f(T)) € flw(T)). (2.6)

Theorem 2.6. ([10], p362) For any T < L(H), ind (T—\) is constant on
the components of € \_ O'ZE(T) ﬂam(T). If X\ Is an isolated point of

o(T) and X& 0;,(T)N o, (T), then ind (T—\) =0.

Theorem 2.7. ([10]) For any T € L(H ), the following properties hold.
(@) 0, (T)Uo, (T)=0,(T).

) 0,(T)No, (T) S0,

p

(T).
(c) ac(T) <o (T).

ap

(d) ow(T) < O'S(T) < w(T).



Theorem 2.8. For any T € L(H), the following properties hold.
(a) If ranT is closed, then ranT* is closed ([10, p173]).
(b) If N\ ac(T) and X\ is not an isolated point of o(T), then ran(T—N\)
is not closed ([35]).

An operator T € L(H) is called positive, denoted by T > 0, if < Tx,
x>=> 0 for all x € H. T is normal if T*T—TT*=0. T is hyponormal if
T*T—TT* >0 or equivalently, | Tzl = | T*z |l for all x €H. T
is paranormal if || Tz | < || Tzl zl] for all x € H or equivalently ([3]),

0< T**T*=2\T*T+XI for all A> 0.
T is M—paranormal if || Tz|*> < M| Tl zll for all =z € H. Also an

operator T is #-paranormal if | T*z||> < || T% |||l z| for all x € H or equi-
valently ([5]),
0< T**T?—2\T T* + X1 for all A> 0.

An operator T € L(H) is called normaloid if its norm |l Tl and its spec-

tral radius of r(7)=sup{lzl:z € o(T)} are equal. It is well known

that #(T) < Il Tl and r(T)=1lim T2 Clearly if | T"l=1TI"

n—>00

then T is normaloid. T € L(H) is said to be mnilpotent if T"=0 for some

wp tn

n €N and quasinilpotent if || T >0 as n—co. Evidently, if T is

quasnilpotent, then o(7)=0.
These operators are related by proper inclusion as follows:

Normal & Hyponormal

€ Paranormal (or *—Paranormal) & Normaloid.

An operator T & L(H) is called isoloid if isolated points of o(7) are

eigenvalues of T, i.e., isoo(T) < ap(T) where we write isoo(T) for the



isolated points of o(7) and reguloid if T—M\I has closed range for each

A Eisoo(T). Clearly if T is reguloid, then T is isoloid. It is well known
([39]) that

if T is paranormal, then 7 is isoloid and reguloid. 2.7)

Theorem 2.9. ([7]) Let TE L(H) be positive, i.e., T > 0. Then
(a) T is self-adjoint.
(b) S*TS > 0 for any operator S.
) |< T, y>1* < < Tw,a> < Ty,y> for all x, y EH .

(d) Tx=0 if and only if < Tx, x> =0.

Theorem 2.10. (The Spectral Mapping Theorem) If TE L(H) and f is

analytic on a neighborhood of o(T), then o(f(T))=f(a(T)).



3. Class @ and Class Q* of operators

3.1 Class @ of operators

Definition 3.1. An operator T is of class @, shortened to Q—operator if

0< T**T?’-2T*T+1. Equivalently, T is an operator of class Q if

1
| Tzl 2 < 5( I %212+ 1zl %) for every z €H.

Remark 3.2. Every paranormal operator is clearly of class . Since

0 < T**T*—2\T*T +)XI if and only if N\ 2T €Q for any A> 0,

T is paranormal if and only if AT € @ for all A> 0.

Theorem 3.3. ([16]) Let T be an operator of class Q.
(a) The restriction of T to an invariant subspace Is again of class Q.

(b) If T is invertible, then T ~' is of class Q.

Theorem 3.4. ([16]) For any T = L(H), the following properties hold.
(@ If | Tl <1/+2, then TEQ.

(b) If T?=0, then TEQ if and only if | T < 1/v2.

Theorem 3.5. Let T be an operator of class Q.
(a) If S is unitarily equivalent to T, then S is of class Q.

(b) If T commutes with an isometry S, then the product TS is of class Q.
(c) T®I and IR T are both of class Q.

Proof. (a) Let S=U*T U where U is unitary. Then



S*2G29G* G4+ T
= UXT*2T2U—2U*T*T U+ U*U

=UX(T*>T?—2T*T+1)U = 0.

Hence S is of class Q.

(b) Let A=TS. We must show that A*¥?42—24*A+] > 0. By hypo-
thesis, we have S*S=1, ST=TS8, S*T*=T*S*. Thus
A*PAP—2A%A+]
=S*T*S*T*TSTS—25S*T*TS+1T
=T**T?—2T*T+I>0.
Hence A= TS is of class Q.

(c) Since T is of class Q, (T*?*T?*—2T*T+I)®I= 0 and we have

(TRD* (TR —2(TRQD*(TRI) + (IR1)
= (T**D(T*°RD—2(T*RD(TRI) + (IR 1)
=(T**T°QRI)—2(T*TRI) +(IRI)

=(T*"B—2TF¥TLNXRI = 0

HenceT ® I is of class ) and similarly I ® 7T is of class Q.

01

0 0) be an operator on a two-dimensional Hilbert

Example 3.6. Let S:)\(

space C% Then I SII=|X], S*=0 and o(S)=1{0}. So by Theorem 3.4(b),

01

OO)EQifandonlyif|)\|£1/\/§. (3.1)

5=

Thus S is not normaloid for all A= 0 since | S|l = r(S), so that S is not

paranormal for all A # 0.



The above example shows that an operator of class ) need not to be
normaloid and hence paranormal. Thus the following classes are related
by proper inclusion :

Unitary & Hyponormal & Paranormal & Class Q.

Theorem 3.7. Let T be a unilateral weighted shift with weights {an}:: o
Then T is of class Q) if and only if for all n > 0,

la, Ple, . 1°—2la,I”+1 = 0.

Proof. Let {e,}*" =~be an orthonormal basis for H. Then Te,=aq,e,., for

all n >0 and T*e,=0, T*e,=a,_,e,_, for all n > 1. Thus
(T**T7*=2T7*T +1 )e, =(la, Mo, .1 — 2l |*+ 1)e,

for all n >0, so that this implies the result.

Isolated points of the spectrum of a paranormal operator are eigenvalues,

but an operator of class @ need not to be isoloid.

Example 3.8. Let T be a weighted shift with weights {1/(n+1)}_,.
Then T is a compact operator, o(7T)={0}, ap(T)ZQ and I Tl =1/2
([12, p170]). Thus T is an operator of class @ since

la, ?la, . >— 2lagl?+1 >0

for all n = 1, as easily checked. But T is not isoloid.

Remark 3.9. In the Example 3.6 if A=1/2, then S €Q, but if A\=2,
then 2S5 is not an operator of class @ from (3.1). Hence a multiple of a

(Q-operator may not be of class Q.

Theorem 3.10. ([16]) Let T be an operator of class Q.
(@) If T? is a contraction, then so is T.

(b) If T? is an isometry, then T is paranormal.



Proof. (a) Observe that T is of class Q if and only if 2(T*T—1) <
T*>T2—1 Thus T**T?< T implies T*T < I So T is a contraction

2 .
whenever 17 is.

(b) Take any x in H and note that 7T is of class @ if and only if
20 Tw 1> < (I 72zl =tal)*+20 720 Izl

Hence || 7% = Il z Il implies | Tz 12 < [ 7% I Izl for every z €H.

3.2 Class Q* of operators

Definition 3.11. An operator T is of class Q*, shortened to Q *— operator

if 0 < T**T*>-2TT* + 1. Equivalently, T is an operator of class Q* if

1
| T*z 1l 2 < 5( I T2z 12+ 1z 1l %) for every z €H.

Remark 3.12. Clearly every *-paranormal operator is an operator of class

Q*. Since 0< T**T?*—2AT T* + X1 if and only if A\ /2T €@Q* for
any A >0,
T is #-paranormal if and only if AT € Q% for all A> 0.

Theorem 3.13. For any T € L(H), the following properties hold.
@ If | TI<1/+2, then TEQ*.
(b) If T*=0, then TEQ* if and only if WTIF< 1/v2.
) If TEQ*, T?%0 and |a| <min{1, | T2}, then oT € Q*.
In particular, if T € Q* is a contraction, then aT € Q* whenever
lal < 1.
(d) A contraction T €EQ* is #*—paranormal if and only if

0< TH*2T2-o\T T* +)1  for all A\ (0,1).



Proof. (@) I Tl <1 /2 if and only ifl V27T Il <1 if and only if
2TT*< I Hence Il Tl <1/v/2 implies 0 < T**T?—2T T*+1.

(b) If T?=0, then 0 < T**T%2—2T7 T* +1 if and only if 2TT*< I.
Hence T' € Q* if and only if | Tl < 1 /2.

() If T € Q¥*, then 2TT* < T**T*+ 1, so for each scalar «,
20a|?°TT* < |aPT*T? + | |1
and hence for each scalar o,

oNa I?TT* — | a|*T**T%— 1T
<|al?’T**T?+|a| T—|a|*T**T%—T

=(1—-lal®)(lal*T**T*~1).
Suppose T2# 0. If || < min{1, I 7371}, then 1—|al®> = 0 since |al < 1.
Also |al?T**T2—1 <0 since |al< | 721 " if and only if laT?l <1
if and only if aT? is a contraction. Thus (1—|al*)(la|*T**T*~1)< 0.
Hence 2| a |*TT* < |a|*T**T?+ 1, so that T € Q*.

In particular, let T' € Q* be a contraction. then in the case of T2 = 0,
aT € Q* whenever |al <1 since min{ 1, ||T2||71}:1. And in the case
of T?=0, we have | Tl <1/v/2 by ®). Also lalll Tl <1/v/2 and
laTll <1/v/2 for | a| < 1. Therefore aT € Q* for | a| <1 by (a).

(d) If T € Q* is a contraction, then aT € Q* for a« €(0, 1] or equi-

valently, 0 < o*'T*?T2% = 2a2TT*+ T for a<(0,1], ie.,
0 < T**T2—2— TT* + —I.
o a

Let A=1/a% Then 0 < T*>T2—2\TT* +)°I for all A > 1. Hence a

contraction T'E @Q* is *-paranormal if and only if

0 < T**T2—2\TT* + XTI for all A= (0,1).



Corollary 3.14. If T*=0, then T € Q if and only if T € Q*.
Proof. It follows from Theorem 3.4(b) and Theorem 3.13(b).

Remark 3.15. An operator of class @Q* need not to be normaloid and
hence not to be *-paranormal. For example, by Corollary 3.14,

01

0 O)E @ if and only if S € Q* if and only if |\ < 1/v2

5=

since $2=0. And also S is not normaloid for all A= 0 and hence not

x—paranormal (see Example 3.6).

The above remark shows that the following classes are related by pro-
per inclusion :
Unitary & Hyponormal & #-Paranormal & Class Q*.

And a multiple of a Q*-operator may not be of class Q* (see Remark
3.9).

Theorem 3.16. Let T be an operator of class Q.
(a) If M S H is an invariant subspace for T, then T|M is of class Q*.
(b) If S is unitarily equivalent to T, then S is of class Q*.
(c) If T commutes with a unitary operator S, then the product TS is
of class Q*.

(d T®I and IR T are both of class Q*.

Proof. (a) Let P be the orthogonal projection of H onto M and let A=
T|M denote the restriction of T to M. Then for every z €M,
| A*z |1 2= | PT*z 12 < | T*z |2
<1/2(l 7% 1I° 2y =1/2(Il 4% |12 2
<1200z "+ lzll?) =1/2(FA% 1"+ 1zl?).
Hence A=T|M is of class Q*.

(b) Let S=U*T U where U is unitary. Then
S*262 968G * 4 [
= U*T*T2U—2U*TT*U+U*U
= UX(T*’T*-2TT*+I1)U > 0.



Hence S is of class Q*.

(c) Let A=TS. We must show that A*¥*?>A2—24A4*+ 1 > 0. By hypothe-
sis, we have §*S=88*=1 ST=TS, S*T*=T*S* Thus
AR AP—2A AR+ T
=S*T*S*T*TSTS—2T SS*T*+1
= 1% (5 S* SSKLF- FAESE) B4l
=T°T*-2TT*+1> 0.
Hence A= TS is of class Q¥.

(d) Since T is of class Q*, (T**T*—2T T*+I)®I > 0 and we have
(TRD* X (TR —2(TR(TRI)*+ (IR )
=(T**QN(T°Q1) —2(TRD(T*RI) + (I1)
=(T*¥7T’QI)—2(TT*R1I)+(IRI)

= (Il - 20T + 1) Rd, > 0.
HenceT ® I is of class Q* and similarly I ® T is of class Q*.

Theorem 3.17. Let T be a unilateral weighted shift with weights {an}:zo.
Then T is of class Q* if and only if for all n =1,
12+ 1 0.

2 2
T L REY e R

Proof. Let {e,}”_ be an orthonormal basis for H. Then Te,= a,e,; for
all n>0 and T*e,=0, T*e,=a,_,e,_, for all n > 1. Thus
(T**T7*—2T7T*+ 1 )e,=(la,*la,. I>—2la,_I?+1)e,

for all n>1 and (T**T*—2TT*+ I )e,=(yl*la,*+1)e,. This

implies the result.



Example 3.18. Let T be a weighted shift with weights {1/(n+1)}_,.
Then since |a,_,|> <1/2, |a,_1|*> <1/2 (|, |, +1) for n > 2.
Thus T is a Q*-operator by Theorem 3.17, but T is not isoloid (see
Example 3.8). This means that an operator of class Q* need not to be
isoloid.

The following results are well known ([24],[25]): Let T be a unilateral

weilghted shift with non-zero weights {an}:; .. Then

(a) T is paranormal if and only if | o, | < |, ;| for all n= 0.

(b) T is *=paranormal if and only if | a,_,|® < |, || @+, ] for all n > 1.

The following example shows that classes of (@Q-operators and Q*

—operators are independent.

Example 3.19. Let T be a unilateral weighted shift with weights {an}:;o
=(1,1/2, 2,2, 2,--- ). Then

(@) T is a Q*-operator since |a,_;|* < 1/2(]a, |}, | +1) for all
n > 1, as easily checked. In fact 7' is #*-paranormal since |an,1|2 <
|, || 1] for all n =1,

(b) By Theorem 3.7, T is not a Q-operator since | ayl?| ay[*— 2| oy |?
+ 1< 0, so that 1" is not paranormal.

(@) IT*[1=4 since T*(x;, xy x5++-) =(0,0,1/22,, o, 425, 42---). So aT

€ Q* whenever |a|l< 1/4 by Theorem 3.13(c).

Theorem 3.20. Let T be an operator of class Q*.
(@) If T? is a contraction, then so is T.

(b) If T? is an isometry, then T Is *—paranormal.



Proof. (a) T is of class Q* if and only if 27 T* < T**T* + 1 if and only

if 2T T* < 2I since T? is a contraction. Thus T T* < I, which means

that 7' is a contraction.

(b) Take any « in H and note that T is of class Q* if and only if

o Tzl 2< I T2 1%+ 1 2 1| 2

=%l =twz0)>+201 7% 1.

Hence | T2zl = Izl implies | T*z 12 < I T2l Izl for all x EH.

Therefore T is *—paranormal.

Corollary 3.21. Let T? be an isometry. Then T € Q* if and only if T is

a contraction.

Proof. Since T**T*=1 T € Q* if and only if 2T T* < 2I if and only

if T is a contraction.

Note that there exists a non-zero operator T & Q* that T? is an

i1sometry.

Example 3.22. Let T be a unilateral weighted shift with weights (o, )=
(2,1/2,2,1/2,--+ ). Then

(@) T2z 2 @s ) = (0, 0, @y, &y, @gyo+), Le., T is an isometry, but
T is not of class Q* since T is not a contraction (| Tl =2 ).

b)) r(T)=limIT" | V" =1, In fact, || T"|l =1 if n is even and || T"||
=2 if n is odd. So T is not normaloid since 2= || Tl #7(7T)=1 and

hence 7T is not *—-paranormal.
Example 3.23. Let T, be a unilateral weighted shift with non-zero weights

o ]2 /3 _In+l1
G{O_I’al_ 5 ’a2_ Z 7--.7an_ m’a--.

20



(@ T, € @ if and only if 0 < z ST?’.

(b) T, € Q* if and only if 0 < z < T?,

1

(¢) T, is *-paranormal if and only if 0 < z <

&

(d T, is paranormal if and only if 0 < z <

1 3
(e) f —=<a< L then 7, is of class QN Q*, but not *-para-

) 2

normal.

Proof. (a) For n > 1, 2| o, |’< |, || a,4 |* + 1 since

2= 2(n+1) 4 2(n+2)

2|a n+2 n+3

— 2 2

3
When n=0, 2/ oy|> < lapl’la > +1 for 0 < 2 < %

n

(b) For n>2, 2/, < |l a, Il a,.|* +1 since

om - 2(n+2)
n+1 n-+3

2 2
= an| |an+1\ +1.

3
When n =1, 2|o¢0|2£ |a1|2| a2|2+1 for 0 < &z = %

2| 1 |2 B

(c) T, is #-paranormal if and only if |ay_|* < | a, |l a,, | for all

n=>1. Now for n =2, |a,_, "< laylle,,,| since

| a |2: o3 n+1:|&||a
A nt1 > Vn+s L >

1
When n=1, | oy | <l oy Il ay| for 0 < o < Vo

(d) This is clear from the following the fact that 7T, is paranormal if

and only if | o, | < | a4y | for all n =0, ie., (a,) is increasing.

(e) It follows from the above part (a), (b), and (c).
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4. 2-isometric operators

Definition 4.1. An operator T € L(H) is defined to be a 2—isometry if
T**T?=2T*T +1=0. (4.1)
Equivalently, 7" is a 2-isometry if
20 Te 2= Il T I 2+ llz |  for every = € H.

Clearly every isometry is a 2-isometry since T*T =1 And every

2-isometry is a (Q—-operator.

Remark 4.2. For any 2-isometry T, the following properties hold.

(a) T is left invertible since (27*—T*>*T)T =1 And hence ranT is
closed and kerT={0} (see Theorem 2.2).
(b) I'TIl > 1 since T*T —I > 0 ([2, Proposition 1.5]).

(c) T is invertible if and only if 7T is unitary ([2]).

Theorem 4.3. For any 2-isometry T, the following properties hold.

(a) T is not compact if H is infinite dimensional.

(b) If T is invertible, then T ' is also a 2-isometry.

(c) If T is normal, then T* is also a 2-isometry.

(d) If T? is an isometry, then T is also an isometry.

Proof. (a) If T is a 2-isometry, then T*7T > I. In general I is not compact
on an infinite dimensional Hilbert space. Thus 7T*T is not compact.

Hence 71 is not compact.

(b) The hypothesis that T is an invertible 2-isometry yield 7T is unitary

by Remark 4.2(c). So T ! is unitary and hence T ! is a 2-isometry.

(c) If T is normal, then T*T=TT*, so T**T?*=T?2>T*% From (4.1),

we obtain T2T*2—2T T* 4+ I =0, which implies T* is a 2-isometry.
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(d) If T? is an isometry, then T*?>T?=1T and hence 2(I—T*T)=0

from (4.1), so T*T=1 . This implies T is an isometry.

We denote D to be an open unit disk, i.e., D={z& C : |z|<1} and

also write 0D for the topological boundary of D.

Theorem 4.4. If both T and T* are 2-isometries, then o(T) € aD.

Proof. By Remark 4.2(a), ran T is closed and both 7T and T * are injective,

so T is invertible and hence 7T is unitary by Remark 4.2.(c). This implies

o(T) < aD.

Corollary 4.5. Let T be a 2-isometry. Then the following statements are
equivalent.

(a) T is invertible.

(b) T is unitary.

(¢) T is normal.

(d) T has it's spectrum on the unit circle.

Proof. (a) implies (b) by Remark 4.2(c). Clearly (b) implies (c). Using Theorem
4.3(c) and Theorem 4.4, (¢) implies (d). (d) implies (a) since 0 & o(T).

Theorem 4.6. For any 2-isometry T, the following properties hold.
(a) If S is unitarily equivalent to T, then S is a 2—-isometry.

(b) If M < H is an invariant subspace for T, then T|M is a 2-isometry.

Proof. (a) Let S= U*T U where U is unitary. Then
S*262-0G* Gt = U*T*2T2U—2U*T*T U+ U*U.

= UX(T**T*—2T*T+I1)U=0

Hence S is a 2-isometry.

(b) If w € M, then

20 TIMull =21l Tull = Il T?ull >4+ lull >= 1 (TIM)Pull >+ lul
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So TIM is a 2-isometry.

Theorem 4.7. Let T be a Z2-isometry. If T commutes with an isometry

S, then the product TS is a Z2-isometry.

Proof. Let A= TS. We must show that A**A*—24*A+1=0.
By hypothesis, we have S*S=1 ST=TS, S*T*=T*S*. Thus
A*PAP—2A*A+]T
=SH*T*S*T*TSTS—25*T*TS+1I
= T**T*—-2T*T+1 = 0.

Hence TS is a 2-isometry.

Theorem 4.8. Let T be a Z2-isometry. Then
aT is a 2-isometry if and only if |a|=1 or aT? is an isometry.

Proof. If T is a 2-isometry, then 2| a|? T*T=|a>T**T*+|a|*I for any

a € C. So we have for any a € C,

la *T*2 T2 =2 a ’T*T +I=(la?—1)(|a|?>T**T>— 1),

which implies the result.

Corollary 4.9. If T and oT are 2-isometries. Then |o| < 1.

Proof. Note T2 is a 2-isometry ([32, Theorem 2.11), and so 1 < Il T2l .

Let aT be a 2-isometry. If | a | =1, then Il aT?ll =1 by Theorem 4.8,

which implies |a| < 1.

Remark 4.10. According to [2], If T is a 2-isometry, then Uap(T) C aD.

And either o(T) € aD if T is invertible or o(7)= D if T is not inverti-

ble. Thus if 7 is an isometry, then either o(7T) < 8D or o(T) =D. In

particular if 7' is unitary, then o(7T) € aD.
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Recall that an operator T EL(H) is isoloid if isolated points of o(7")
are eigenvalues of T and reguloid if 7—AI has closed range for each

isolated points of o(7).

Theorem 4.11. If T is a 2-isometry, then T is isoloid and reguloid.
Proof. If T has isolated points of o(7), then it is clear from the above

remark that 7 is unitary since o(7T) € aD. Thus T is paranormal, so that

the result follows (see (2.7)).

In the next theorems we explore several properties of the spectrum of
a 2-isometric non—unitary operator and also we prove that the Weyl’s theorem

holds for 2-isometries.

Theorem 4.12. If T is a 2-isometry and non-unitary, then
(a) o(T)=D.
(b) aap(T) =aD.
(c) 0, (T)N o, (T)=0D.

(d) o(T)=w(T).

Proof. (a) Since T is not invertible, o(T)= D by preceding Remark 4.10.

(b) For any operator TEL(H), ac(T) < aap(T) (see Theorem 2.7), so

oD < o,

p(T) by part (a) and aap(T) C 9D by preceding Remark 4.10. Thus

the result follows.

(¢) For any operator TE€L(H), 0,(T)N0, (T) S 0,(T) (see Theorem
2.7) and using part (b), 0,.,(T) N0, (T) < aD.

Conversely if AE8D, then \ is not isolated point of o(7T) by part (a). Thus

ran(7—\) is not closed (see Theorem 2.8). Hence A€ o, (T)No, (T).
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(d) Let A€o (T). If A E8D, then ran(T—)\) is not closed, so XEw(T).
If A&D, then T—\ is closed and ker (T—\)={0} since A%aap(T) (see

Theorem 2.3). And since AEo(T), we must have dimker(7—M\)*# 0. Thus
ind(7—)\) <0, so that A € w(T ). Therefore o(T) < w(T) by part (a).
This proved (d).

Remark 4.13. The above Theorem 4.12 shows that if 7" is a 2-isometric
non-unitary operator, then

(a) T is not a Weyl operator since l_?:w(T).

(b) aD < UE(T) < D since ow(T) < US(T) C o(T) for any operator

T €L(H) (see Theorem 2.7).

(¢) T—\ is semi-Fredholm for A €D (see (2.4)).

(d) ind(T—X) <0 for [ Al = 1. In fact, if |A|<1, then ind(T—X) <0 in
the proof of Theorem 4.12(d) and if |A|>1, then T—\ is invertible, so
that ind(7—\) =0.

(e) the function from D into Z U {£ o} given by A — ind(T—2M\) is

constant (see Theorem 2.6).

Corollary 4.14. Let T be a 2-isometric non-unitary operator. If X& a,(T)
ie, T—\ is a Fredholm, then ind(T—\) < 0.

Proof. This proof is immediate by part (b) and (d) of the Remark 4.13.

The following theorem appeared in [32, Corollary 2.13]. Here we will

prove this with alternate argument using the Theorem 4,12.
Theorem 4.15. The Weyl's theorem holds for 2-isometries.

Proof. Let T be a 2-isometry. If T is unitary, the result is obvious. If T

is non-unitary, then since o(T') =D by Theorem 4.12(a), WOO(T) = . Thus

o(T) —m(T)=w(T) by Theorem 4.12(d), as desired.
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Theorem 4.16. Let T be a unilateral weighted shift with weights {an}:: o

Then T is a Z-isometry if and only if for all n = 0,

Lo, Pla, (2= 2 a 241=0.

Proof. Let {e,}”_ = be an orthonormal basis for H. Then Te,= a,e,., for

all n >0 and T*e,=0, T*e,=a,_,e,; for all n > 1. Thus

n—1

(T**T°=2T*T +1 )e, =(lo, M, > — 2la, >+ 1)e,

for all n >0, so that this implies the result.

Next we shall give an example that a non isometric unilateral weighted

shift is a 2-isometry.

Remark 4.17. In [32, Theorem 2.2], S. M. Patel proved that a non

i1sometric unilateral weighted shift 71" with weights {an} 1s a 2-isometry if
and only if (i) o, |*la, 1= 2la,)* +1 =0 for each n; (ii) o, | = 1

for each n.

Example 4.18. Define T:1, — I, by T (x, 2y, = )=(0, az,,5ry, )

/ 1
where «,, = 1+g. Then 7T is a non isometric unilateral weighted shift

and a 2-isometry since | a,*la, . >=2la,?+1=0 and |, |1 for each

n, easily checked. And Il Tl = /2 since v2 = | a,| >1 for each n.

Theorem 4.19. Def]ne T: l2_) l2 by T(I1,m2,"' ):(070613:17062:627'” )
where {an} is non-zero weights for each n. If T is a Z2-isometry, then

(a) o(T)=w(T)=D.

(b) 0,,(T)=0D.

(c) ap(T) =g.

(d) for INI <1, ran(T—\) is closed and ind(T—\)= —1.
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(e) 0,(T)=0D and 0,,(T)=0,(T)=0D.

Proof. Since T is a 2-isometric non—unitary operator, part (a) and (b) are
obvious by Theorem 4.12.

(c) Since ap(T) co (T)=6D, 0 %UP(T). Suppose z = (z,,2y, ") €

ap(
and A#0. If Tex= Az, then 0=Az,, ayz; =Azy,--. Thus O =z, =2y =" .

Hence ap(T) =J.

(d) If | A< 1, then since A @aap(T):aD, so that ran( 7 —\) is closed
and dimker (T—\)=0. To prove ind(T—M\) = —1, it suffices to show that

dimker (T—\)*=1 for IANM<1. If z=(z,,29," )E I, and T*z = Az,

- A"
then (ale,agx?,,---):)\(:cl,:z:g,---). So xn+1=mx1 for all n.
il Yy X
That is, if IX:<1’ i e @ > B ), then 93:(1‘1,1'2,"' ):
oy (03107 I 7

rzy. Clearly zy € ker(T—)\)*. This implies that ker (7'—\)* is the one

dimensional space spanned by Ty, as desired.

(e) Using oD < 0, (T) < D (see Remark 4.13(b)) and part (d), we obtain
o,(T)=08D. Since 0,(T)No, (T)=08D by Theorem 4.12(c) and o, (T)
Uo, (T)=0,(T) by Theorem 2.7(a), we have 0,,(T)=o0,.(T)=0aD.

re

Since a unilateral shift 7' is a 2-isometric non—unitary operator, the foll-

owing corollary is obvious by the above Theorem 4.19.

Corollary 4.20. Let T be a unilateral shift defined T:1,— l, by T (z,
Ty, ot )= (0, Ty Loy ). Then

(@) o(T)=w(T)=D.
(b) Up(T) =J.

28



(c) For I[N <1, ran(T—M\) is closed with dimker (T—\)*=1.
(d 0, (T)=0,(T)=0,(T).

Remark 4.21. Every isometry is normaloid since »(T)= Il TIl=1 (see
Remark 4.10). But the Example 4.18 shows that a 2-isometry 7 need not
to be normaloid since (7)== || Tl . Also Example 3.8(Chapter 3) and Exam-
ple 4.18 show that the following classes are related by proper inclusion :

Unitary & Isometry & 2-isometry & (@Q-operator.

Next we show that the w(7) satisfies spectral mapping theorem for
f(T) and furthermore, the Weyl's theorem holds for f(7) where T is a

2-isometry and f is analytic on a neighborhood of o(T).

Theorem 4.22. If T is a 2-isometry and f is analytic on a neighborhood

of o(T), then w(f(T)) = f(w(T)).

Proof. Let T be a 2-isometry. If 1 is a unitary, the result is obvious.

Assume that 7T is a non-unitary. Suppose p(z) 1S any polynomial. Let

p(T)=A=ay(T —p,) - (T — p,) where p(u,)=A=0 i=1,2,---,n. We

first show that p(w(7T)) S w( p(T)). If XZw( p(T)), then

p(T)=A=a)(T —py) - (T—p,)

is Weyl. Since T—p; commutes each other, every T'—pu, is Fredlhom.

Thus by Corollary 4.14, ind(7T—p;) < 0 for each i=1,2,---,n, so that

ind(T—,ui) =0 since
ind(p(T)—X\)=ind ((T—p,) )+ -+ind( (T—p,) ) =0.

Thus ,ui%w(T) for each i=1,2,---,n and A€ p(w(T)) since p(,ui):)\

1 =1,2,---,n. Hence this implies p(w(T)) c w(p(T)).

The converse assertion p(w(7T)) 2 w(p(T)) is trivial (see (2.6)). Hence
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we have p( w(T)) Zw(p( T)) for any polynomial p(z)

If f is analytic on a neighborhood of o(T ), Then by the Runge’s theo-
rem, there is a sequence (pn(z)) of polynomials converging uniformly on a
neighborhood of o(T) to f(z) so that pn(T) —>f(T). Note that the mapping
T — w(T ) is upper semi-continuous. Since each pn(T) commutes with
f(T), it follows from [30] that

flw(T))=limp,(w(T) ) =limw(p,(T)) =w( f(T)).

n—>00 T—>0

Hence w( f(T))=f(w(T)).

Oberai showed that if 7 is isoloid and the Weyl's theorem holds for T,
then the Weyl's theorem holds for p(7) if and only if w(p(T))=

p(w(T)) for any polynomial p(z) ([30]1). Thus the following statement is

true.

Corollary 4.23. If T is a 2-isometry and [ Is analytic on a neighborhood

of o(T), then the Weyl's theorem holds for f(T).

Proof. Recall that if TEL(H) is isoloid, then
FCo(TN\mo(T)) = o f(T) Nag( f(T))
for every fEH(o(T)) (1291, [30]). Since T is a 2-isometry, T is isoloid

by Theorem 4.11. Also the Weyl's theorem holds for 7T by Theorem
4.15. Thus we have

o (f (7)) N\ (f(T)) = flo (T )\ (T'))
=f(w(T))=w(f(T)) (Theorem 4.22).
Therefore O'(f(T))\?TOO(f(T)) Zw(f(T)), so that the Weyl's theorem holds

for f(T).

The following results were discussed in [2]. Here we prove them in
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detail in the case of a 2-isometry.

Theorem 4.24. If T is a 2-isometry, then ker (A ;) is an invariant subspace
for T where A= T*T — 1L
Proof. Since T is a 2-isometry, T*A,;/T—A ;=0 and A,;> 0 by Remark

4.2(b). Now if & Eker(A ), then

<Az, Tz>=<T ATz, >
=< A7z ¥z B4~

Thus A;Tx =0 since Ay = 0 (see Theorem 2.9(d)). So Tz € ker (A ;).

Theorem 4.25. Let T be a 2-isometry. Then
(@) T |ker A, is an isometry.

(b) If M < H is an invariant subspace for T and T | M is an isometry,

then M < ker A .

Proof. (a) Let P be the orthogonal projection of H onto kerA, and let
A=T|kerA . We shall show that A¥A=1. Let x EkerA,. Then T*Tx

=z and A¥A=(PT*T ) | kerAy . So A*Ax=PT*Tz=ux, as desired.

(b) Let B=T |M and P,,; be the orthogonal projection of H onto M.
Given x € M, we have B*Bx=P,T*T x=x since T | M is an isometry

by hypothesis. Thus we see that

0=< By , > B (PRIFBR— 1) , >
=< (T*T—1)z,Pyz>=<Arz,x>.

So <Apz,z> =0 and Apyx=0. Hence & kerA; and so M S kerA .

Remark 4.26. For a 2-isometry, ker A, is a maximal invariant subspace
such that T'lkerA, is an isometry. Also kerA, is unique by the above

Theorem 4.25.
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5. Quasi-isometric operators

Definition 5.1. An operator T € L(H ) is said to be a quasi—isometry if
T*T=T* T2
Equivalently, 71" is a quasi-isometry if

| Tzl = Il T?x || for every z € H. (5.1)

Remark 5.2. Every isometry is a quasi—-isometry, whereas an idempotent is

a quasi—isometry, but need not be an isometry. For example, every ortho-
gonal projection operator is an idempotent, but is not an isometry. On the
other hand, a quasi—-isometry which is an 2-isometry is an isometry. Thus
the classes of Z2-isometries and quasi-isometries are extentions of

i1sometries and they are independent.

The above (5.1) immediately gives us the following facts:
@ITI=1T*1<ITI>

(b) For n =2, | Tzl = | T?*T" 2| = | T" & || for every z in H.
() If T’z =0, then Tz =0.

(d) For any unit vector x in H,

(072 =l Al A T Al e a7 [

From the above facts, we can obtain the following properties.

Theorem 5.3. For any quasi-isometry T, the following properties hold.

@ I Tl =IT2*I. Furthermore, | T"Il = Il T"" ' for every n > 1.

(b) If T is non-zero, then 1 < || T .
(c) ker T =ker T'°.

(d) T is M-paranormal where M= || T |l 2.
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Recall that Lat(T) is the collection of all invariant subspace for T.

Theorem 5.4. For any quasi-isometry T, the following properties hold.

(a) If S is unitarily equivalent to T, then S is a quasi—-isometry.
(b) If M ELat( T ), then T | M is a quasi-isometry.

(c) If T is invertible, then T is unitary.

(d) If T is invertible, then T ' is also a quasi—isometry.

Proof. (a) Let S= UT U* where U is unitary. Then
(UTU*)*(UTU*)=U(T*T)U*=U(T**T*)U*
=UT*(U*U)T*U*
= (UTU* )**(UTU* )*.
Hence S*S=S5**$>
(b) Let P be the orthogonal projection of H onto M. Since MELat( T ),
TP= PTP or taking adjoint, PT *= PT*P. Thus

PT*T=PT*’T?>=(PT*P)T*T*=(PT*)(PT*)T?

Hence (T |M)*(T M) = (T |M)**(T|M)? as desired.

(c) If T is invertible, then by hypothesis T*T =1 So T is invertible

isometry and hence 7' is unitary.

(d) By part (¢), T is unitary. So T ! is unitary and hence T ! is a

guasi—isometry.

Remark 5.5. Let U be a unilateral shift on [, defined in Corollary 4.20.
Then U is a quasi-isometry since U 1is an isometry. But U* is not a

quasi-isometry since ker U* # ker U*?. So a quasi-isometry need not have

a quasi—-isometry adjoint.
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Theorem 5.6. Let T be a unilateral weighted shift with non-zero weights

{an}:: o Then T is a quasi—-isometry if and only if

la, . | =1 for n=0,1,2,3--.

Proof. Let {en}zozo be an orthonormal basis for H. Then Te, = a,e, . for

all n >0 and T*e,=0, T*e,=a,_,e,_, for all n > 1. Thus

i — 1

(T**T?*—T*T)e, =(a, 1T, *=l,|?)e, for all n > 0.

So this implies the result.

Example 5.7. Let T be a unilateral weighted shift 7" with weights

2 B 2 2 2 2
(an):(lawaw ywh Lwhew,w!lw,w,w', 1,0, w,w: )
. r o
where w®=1, ie., MZT\/_' Then |a,:3l =1 for all n =0 and
l e, I, | —la, ;| =0 for n=1,2,3---. Hence T is a quasi-isometry.

Theorem 5.8. If T is a non-zero quasi-isometry and if T is hyponormal,

then | T =1.

Proof. If T is a non-zero quasi-isometry, then 1 < | T'll by Theorem
5.3(b). And by hypothesis, TT* < T*T and T*(TT*)T < T*T. So
I T*Tell < I Txll and hence | TT*I < I Tl and I TI%2< I TI.

This means || Tl <1, as desired.

Remark 5.9. S. M. Patel proved the fact: If T is a quasi—isometry and if
| TIl=1, then T is hyponormal ([31, Theorem 2.2]). Thus Theorem 5.8
implies that for a non-zero quasi-isometry 7,

T is hyponormal if and only if || Tl =1.
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1 0

Example 5.10. Let T:( 10

) be defined on C % Then

(a) T is a quasi-isometry since 7T is an idempotent operator.

() ker T=kerT?={(0,y):y € C}, but ker T C kerT * is failed since
kerT*={(z, —z):2€ C }.

(c) Up(T Y=0(T)=1{0,1} and | Tl =+/2. Hence a quasi-isometry is

not necessarily normaloid.

Recall that aap(T) is the approximate point spectrum of 1. Also we denote

o (T) by n(T).

ap

The following theorem will be appeared to be true in the next section :

Posiquasi—isometric operators (Corollary 6.24 and Corollary 6.26).

Theorem 5.11. Let T be a quasi-isometry. Then
(a) If T is quasinilplotent, then T=0.
(b) aap(T)\{ 0} is a subset of the unit circle.

Remark 5.12. Let T be a quasi-isometry. If T is invertible, then o(T)
C 9D where D={2&C :|z|< 1} since T is unitary. If T is not in-

vertible, then using Theorem 5.11(b) and 90(T) S aap(T), we have either

o(T) <{0}tUaD if 0 is an isolated point of ¢(7) or o(T)=D if O is

not an isolated point of o(7).

Theorem 5.13. ([31]) Let T be a quasi-isometry. Then isolated points of

o(T) are eigenvalues of T.

Proof. Let A be an isolated point of o(7T ). Then we consider the Riesz spec-
tral projection E with respect to A,

1
2mi J ,p

(T—2) 71dz, (5.2)
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where D is an open disk of center A\ which contains no other points of o(7T).
Then FE is a non-zero idempotent operator commuting with 7 and EH is
invariant under the operator 7. And also o(T|EH)={)\} (see Theorem 2.5)
and T |EH a quasi-isometry by Theorem 5.4(b). If A=0, then T|EH=0
by Theorem 5.11(a). If A= 0, then T |EH is invertible and so must be uni-

tary. Thus T |EH =\I |EH. In either case, \ Eap(T), which completes

the proof.

It is well known([37, p.424]) that if F be Riesz spectral projection with
respect to A where ) is an isolated point in ¢(7") defined by (5.2), then
EH={z€H:|(T-\)"z "0} .

Evidently, for any positive interger n,

ker(7—X)" < EH. (5.3)

Corollary 5.14. Let T be a quasi—isometry and A be an isolated point of

o(T). Then the Riesz spectral projection E with respect to \ defined by
(5.2) satisfies EH= ker (T—\).

Proof. In general, ker (T—)\) € EH from (5.3) and in the proof of Theorem
5.13, (T—\) |[EH=0, so that EH € ker(7T—\). Hence EH= ker (T—\).
Recall that an operator T is reguloid if ran(7—\) is closed for the iso-

lated points of (7).

Theorem 5.15. If T is a quasi-isometry, then T is reguloid.

Proof. Let A be an isolated point of o(7T ). and let E be the Riesz spectral

projection with respect to A defined by (5.2). Then
H=FH +(1—E)H ,
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both EH and (1—E)H are closed subspace, and they both are invariant

under the operator 7. Note that o(7T | EH)={\} and o(T |1—E)H) =

a(T)N AN}, If we use the decomposition H=EH + (1—E)H, we have
(T—NH=(T—XN)EH+(T-\)(1—-E)H=(1—-E)H

since EFH=ker(T—\) and (T—\)|(1—E)H is invertible. Hence ran(7—

—\) is closed, as desired.

S. M. Patel proved that the Weyl’s theorem holds for quasi-isometries ([33,
Theorem 3.19]). Here we will prove this with alternate argument using the

following Lemma.

N )

Lemma 5.16. Let TZ( 0 T

) on H=ker(T—)\) @ ran(T—\)* be a

quasi—isometry, where \ € ap(T). Then
(@) If A= 0, then STy =0 and T, is a quasi—-isometry.

(b) ker (7, —\)=1{0}.

Proof. (a) Suppose A# 0. Then |A|[=1 by Theorem 5.11(b). Thus

1 AS

*2 2:
AS*  S*S+TH*T, Erkd- JFSl

T*T:(

1 AS+ ST,
AS*+ NPT RS*  S*S+ NT*S*S+NS*ST, + T *S*ST, + T,** T? |

Since T'T=T"72T? we have STy =0 and T*T, = T,** T

(b) Suppose x € ker (T, —\).

Case 1. A=0. In this case,
Tr=Sx @ T)x=Sr and T’r=TSr=0 since St &EkerT. And since T is
a quasi-isometry, || Tz l= Il T2zl =0 and hence Tz =0. So z € ker T

and z € kerTNranT*={0}. Therefore x=0.
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Case 2. A= 0. In this case, since Tiz = Az,

Tr =Sr @ Mx and T*xr =2\Sz P . (5.4)
Since T is a quasi-isometry, || Tz 2= I T | 2 and from (5.4),
ISz I 2HIAP Izl 2=a X218z 12+ N2zl 2 (5.5)

Since | Al =1 by Theorem 5.11(b), we have | Sz ll?=41 Sz 2 from (5.5)
and St=0. So Tr =0 @ Mz from (5.4) and hence = Eker(7T—)\) and

z € ker(T—X)Nran(7T—X)*={0}. Thus « = 0. The proof is completed.

Theorem 5.17. Let \ and pu be non-zero distinct eigenvalues of a quasi

-isometry T. Then ker(T—M\) L ker(T—,u).

Proof. Let 1" have the matrix representation corresponding A as in Lemma

5.16. Let x =2, ® z, Eker(T—p). Then

0=(T —p)z=[(A\—p)x,+ Sz, B (T, — 1)z,
Since (T, — p)zy, =0, 0=8 (T, — p ) x, = pSx, by Lemma 5.16(a), so S,
=0 and hence (A—p)x; =0 and z, =0 since A# u. Therefore

z=[0® xy] L ker(T—)\) since =, € ran(T—\)*.

Theorem 5.18. The Weyl's theorem holds for quasi—isometries.

Proof. First we show that o( T )\ w( T ) C my( 7).

Let A € a(T)\w(T). Then T— X is a Fredholm operator with index O. Hen-

ce ker (T'—\) is a non-zero finite demensional subspace and A€ ap(T).

A
Let TZ( 5

0o T ) on H=ker (T—\) @ran(T—\)*. Then ker (7, —\)=1{0}
1

by Lemma 5.16(b) and
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0 0 0 Tl_
. 0 0
—1nd(0 T1_)\)
=ind (T, — )

since S is a finite rank operator. So ker(7;— A)* =0 and 7,— X is an
invertible operator on ran(7— \)*. Thus \ & U(Tl) and therefore A is an
isolated point of o(7T ) =0 (T,) U{A}. Hence o(T Nw(T) C 7y (T).
Next we show that my, (7 ) Co( T )\ w( T ).
Let A EWOO(T). Then EH= ker(T—)\) by Corollary 5.14 and ran(7—\)
is closed by Theorem 5.15. And also (T—\) H=(1—E)H in the proof of
Theorem 5.15, where E is a Riesz spectral projection with respect to A
defined by (5.2). Thus we have
ker (T'—\)* = H/ran(T—\)=H/(I-E)H = EH =ker(T—\).

This implies that T — A is a Fredholm operator with index O which is not

invertible. Hence X € o(T )\w(T).

Next we show that w(7T) satisfies the spectral mapping theorem for
f(T) and furthermore, the Weyl's theorem holds for f(T) where T is a

quasi-isometry and f is analytic on a neighborhood of a(T).

Lemma 5.19. If T is a quasi-isometry and T — \ is Fredholm for some

A €C, then ind(T—X) < 0.

Proof. If A& o(T), then T—\ is invertible, so that ind(7—\) =0.
Suppose Ao (T).
Case 1. A=0. In this case,
ind(T—X) <0 since T is Fredholm of finite accent by Theorem 5.3(c)
(see (2.3)).
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Case 2. A# 0. In this case,
if A is an isolated point of ¢(7), then ind(7T—X)=0 (see Theorem 2.6).
If A\ is not an isolated point of o(7), then A& ac(T), otherwise ran(7T—\)
is not closed (see Theorem 2.8), which is a contradiction to the fact that
T—\ is Fredlhom. Thus A € D where D={z& C : | z| < 1} by Remark
5.12. So A & Uap(T) by Theorem 5.11(b) and ker (T—\) ={0}. Thus we must

have dimker(7T—M\)*= 0 since A€o (T). Hence ind(T—\) < 0.

Theorem 5.20. If T is a quasi-isometry and f is analytic on a neighbor-

hood of o(T), then w( f(T))=f(w(T)).

Proof. Let T be a quasi-isometry. Suppose p(z) 1s any polynomial. Let
p(T)—)\Zao(T—,ul)-" (T—,un) where p(ui)—)\ZO 1=1,2,---,n. We
first show that p(w(7T)) S w( p(T)). If A& w( p(T) ), then
p(T)=A=a(T —p,) - (T—p,)
is Weyl. Since T'—pu, commutes each other, every 7T'—pu, is Fredlhom.
Thus ind(T—,ui) < 0 for each 71=1,2,---,;n by Lemma 5.19, so that ind
(T—,ui) =0 since
ind(p(T)—X)=ind ((T—p,) )+ --+ind( (T—p,) ) =0.

Thus ,ui%w(T) for each i=1,2,--,n and A€ p(w(T)) since p(,ui):)\
1 =1,2,---,n. Hence this implies p(w(T)) c w(p(T))

The converse assertion p(w(7T) )2 w(p(T)) is trivial (see (2.6)). Hence
we have p(w(T)):w(p(T)) for any polynomial p(z)

If f is analytic on a neighborhood of o(T), Then by the Runge's theo-

rem, there is a sequence (pn(z)) of polynomials converging uniformly on a
neighborhood of o(T) to f(z) so that p,(T)—f(T). Note that the mapping

T — w(T ) is upper semi-continuous. Since each pn(T) commutes with
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f(T), it follows from [30] that

flw(T))=limp,(w(T))=limw( p,(T))=w(f(T)).

n—>00 Mn—>00

Hence w( f(T))=f(w(T)).

Corollary b5.21. If T is a quasi-isometry and f is analytic on a neighbor-

hood of o(T), then the Weyl's theorem holds for f(T).

Proof. Recall that if T€L(H) is isoloid, then
FCo(T)Nam(T) )= o (f(T) N (F(T))

for every fEH(o(T))([29], [30]). Since T is a quasi-isometry, 7 is iso-

loid by Theorem 5.13. Also the Weyl’s theorem holds for 7T by Theorem

5.18. Thus we have

o (f (7))o (f (1))

f(U(T)\ﬂ'oo(T))
flw(T))=w(f(T)) (Theorem 5.20).
f(T)), so that the Weyl's theorem holds

—~

Therefore o(f (T )\ (f(T)) =w

for f(T).
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6. Posiquasi—isometric operators

H. C. Rhaly, Jr. introduced posinormal operators as the class of opera-

tors T for which TT*=T*PT for some positive operator P ([36]).
This is a very large class that includes the hyponormal as well as all inver-
tible operators.

Now, we shall define a new class of posiquasi-isometries which is an
extension of the class of quasi—isometries and includes all invertible ope-

rators. Its concept 1s motivated by posinormal operators.

Definition 6.1. An operator TEL(H ) is defined to be a posiquasi —isometry,
shortened to T € PQI, if there exists a positive operator P EL(H) called
the interrupter, such that T*T = T**PT >
Since T*T =T*’PT? if and only if
< T*Tg, 2> =< T*PT%x, 2> =< JPTz, VPT x>,
We can see that T €PQI if and only if for some positive operator

PeL(H),

I Tzl = | VPT?z |l for all z EH. (6.1)
By (6.1), clearly if T € PQI with interrupter P, then || Tl = | VP T?Il .

Theorem 6.2. If T €PQI with interrupter P, then
@I Tzl <V IPT T for every = in H.
I Tzl < VI1TPIT I T"'2 |l for every n =1 and every = in H.
) T*T< | PI T*T?

(1< Pl I TI? if T is non-zero.

Proof. (a) Since the interrupter P is positive, | VP Il =/ I Pl . Thus
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I Tzl < I VP I I T2 1=+ ITPI Il Tl for every xEH from (6.1).

(b) for n > 2, by part (a),

I Tz =l 7(T" Yzl <V TPI I 727" 2|l

=/ IPl Il zl,

for every z in H. Hence the result follows.

(¢) and (d) immediately follow from part (a). because part (a) implies

I Tz 12< I PI I 722 1% for every 2 EH and | T < VTP I TII2

Theorem 6.3. If T €PQI with interrupter P and T has dense range, then

P is unique.

Proof. Assume P, and P, both serve as interrupter for 7. Then
T*T=T*P,T*=T**P,T* so T**(P,—P,) T*=0.
Since T has dense range, T* is one to one. Thus (P, — P,) T2=0. Take

its adjoint and again applying the fact that 7" has dense range, then

P,—P, =0, as desired.

Remark 6.4. Let U be a unilateral shift on ly. Then since U is isometry,

U is a posiquasi—isometry and since U have not dense range, the inter-
rupter P for U is not unique. In fact take positive interrupter P to be

the diagonal matrix with diagonal entries p;; =0 , py =0 and py, =1 for

k> 3. Then we have U*U=U*>PU? by the direct calculation, which

shows the nonuniqueness of P for U.

Theorem 6.5. If T €PQI with interrupter P and U is isometry (that is,

U*U=1 ), then UTU* € PQI with interrupter UPU¥*.
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Proof. Let T*T=T*?>PT?2 Since P is positive, UPU*> 0 and

(UTU)*(UTU*)=U(T*T)U*=U(T**PT?)U*
=UT**(U*U)P(U*U) T*U*
=(UTU*)**(UPU* ) (UTU* )*.

Hence UTU * € PQI with interrupter U PU*.

Theorem 6.6. For any T & PQI with interrupter P, the following properties
hold.
(a) AT is a posiquasi-isometry with interrupter (1/|\|*)P for each \& C..
(b) If S is unitarily equivalent to T, then S €PQI
(c) If MELat(T), then TIM €PQI with interrupter EP|M where E
Is an orthogonal projection of H onto M.

(d) T®I and I QT are both posiquasi—-isometry.

Proof. (a) If A= 0, then AT)*(A\T) = \T**PT*=(\T)**(1/I\*P)(\T)*
and (1/|)\|2)P is positive. Hence AT € PQI

(b) Let S=UT U* where U is unitary. Then S & PQI with interrupter

UPU* by the above Theorem 6.5.

(¢) Since M &lat(T), TE=ETE (see Theorem 2.4) or ET*=ET*E
and EP | M>0. So

ET* T=ET*PT?=(ET*E)T*PT*=(ET* )(ET*)(EP)T>.
Hence (T|M)*(T|M)

(TIM)*2(EP|M)(T|M)? as desired.

(d) Since T €PQI with interrupter P, P® I is a positive operator and

(TRQID*(TRI) =(T*RI)(TRI)
T*T)RI =(T**PT*)Q1
T**QI)(PRI)(T*®I)

TRI)**(PRI)(TRI)>

o~ o~~~

44



Hence T ® 1€ PQI with interrupter P & [I. Similarly I ® T € PQI with

interrupter 1 & P.

Theorem 6.7. (Douglas [14]) For any A, BEL(H), the following state-
ments are equivalent.

(a) ranA CranB.

(b) AA* < \’BB* for some \ = 0.
(¢c) there exist a T EL(H) such that A= BT.
Moreover, if (a), (b), and (c) hold, then there is a unique operator T su-

ch that
(1) | TN*=inf{ p| AA* < uBB*};
(2) kerA = ker T ; and

(3) ranT C (ranB*).
Douglas’ theorem leads almost immediately to the following result.

Theorem 6.8. For any TEL(H), the following statements are equivalent.
(a) TEPQI
(b) T*T < NT**T* for some A= 0.
(¢) ran T *=ran T *>

(d) there exists a AEL(H) such that T*= T **A.
Moreover, if (a), (b), (c) and (d) hold, then there is a unique operator A

such that
(D IAI?=inflpl T*T < uT **T?};
(2) kerT* = kerA ; and

(3) ranA < (ranT?).

Proof. (a) implies (b) : If T EPQI, then by Theorem 6.2(c), T*T <

| Pl T*2>T2 Put A\=+/ | PIl . Then the result follows.
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(b) implies (¢) : By hypothesis, since T*(T*)* < NT**T? ranT*C
ranT*% by Theorem 6.7 and in general ranT* DranT*? for any T E

L(H). Hence ranT*=ran T *°.

(c) implies (d) : This is trivial by Theorem 6.7.
(d) implies (a) : If T*= T*%A, then

T*T=T*AT =(T*?4)(4*T?)
= T*2(AA*)T?

and AA*> 0. Thus T €PQIL
(1), (2), (3) : They immediately follow from Theorem 6.7.

Remark 6.9. (a) If T E€PQI then kerT = ker T'? since ranT *=ranT **
(b) Let U be a unilateral shift on l,. Then UEPQI, but U* & PQI since

ker U* #ker U*Q, so that a posiquasi—isometry need not have a posiquasi—

1sometry adjoint.

Theorem 6.10. T &PQI if and only if there exists a positive operator

PeEL(H) such that T*T < T**PT?2

Proof. It suffices to show that if there exists a positive operator PEL(H)
such that T*T < T**PT? then T EPQI. For any =z <H,

<T*Tx, 2> < <T*PT%1, 2>

=< \/ﬁTQx, \/ﬁTQx>
< |Pll<T%, T?z>

Thus T*T < || PIl T**T?2 Hence T EPQI by Theorem 6.8.

Theorem 6.11. Let T and S be commuting posiquasi-isometries. Then

the product TS is a posiquasi—-isometry.

Proof. Let T'€PQI with interrupter P, S <& PQI with interrupter ) and
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TS=ST. Then by Theorem 6.2(a), we have for each =z,

I 7(sz) 12< I PIl I 72(sz) I

= 1Pl |l S(T%)
< 1Pl I QI I S¥T%)I°?
=PI IQI (TSI

2
I

Thus (TS)*TS < X(TS)**(TS)* where A=+ Pl Q. Hence TS€E
PQI by Theorem 6.8.

By the above theorem, any power of a posiquasi—-isometry is a posiquasi

—isometry. But we will directly prove this fact as following:
Corollary 6.12. If T €PQI, then T"E PQI for every positive integer n.

Proof. If T €PQI , then by Theorem 6.2(b), for n > 1,

| P Y2 oty

<
< | P Y222 otz
< | P Y23 o3

I T" |l

z |l

< [|LPJ Y22 || T

A

Hence | T"z 1l < I PI™2I T2 for every @ in H. Put A, = Il Pl s
Then (T™)*T" < )\i(Tn)"‘Q(T")2 for each m, which implies T"€ PQI
for every positive integer n by Theorem 6.8.

A posiquasi=isometry need not be invertible (see Remark 6.4), but the

following theorem tells us that an invertible operator must be a posiquasi

—isometry.

Theorem 6.13. Every invertible operator is a posiquasi—isometry with the

unique interrupter P.

Proof. If T is invertible, then T*=T*(T* )(T* ) '=T*%(T*)1 So

T = PQI by Theorem 6.8. Also T has dense range since 7T is invertible.
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Thus the interrupter P is unique by Theorem 6.3.

By Theorem 6.13, we know that if 7" is invertible, then both 7" and T%*

will be a posiquasi—-isometry. Furthermore, T ' and (Tﬁl)* will also be a
posiquasi—isometry. The following theorems formalize these relationships

in terms of interrupters.

Theorem 6.14. If T is invertible with interrupter P, then

(a) P is invertible and P~ ! is a positive operator.

(b) B=+VPT*\/P is a posiquasi-isometry with interrupter = .

Proof. (a) By hypothesis, T*T=T*?PT? and P=(T "Y)*(T Y since T

is invertible. Thus P is invertible and P~ '= TT* is positive.

(b) Since P '=TT*, TT*P=1. Thus B*B=+\/PTPT*+/P and

B**P 'B’=(/PTPT /P)P (VPT*PT*\/P)
= VPTP(TT*P)T*\/P
= /PTPT*\/P

= B*B.

Hence the result follows.

Theorem 6.15. If T is invertible and if T * € PQI with interrupter P,
then P is invertible and P~ ' serves as the interrupter for the posiquasi

-isometry T iy

Proof. By Theorem 6.14, P is invertible and P lisa positive operator.
TT*=T*PT** implies (TT*) ' =(T*PT*?)"'. Thus
(T ) = (T )**P (T,

so that T 'is a posiquasi—isometry with interrupter Pil, as desired.
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In Remark 5.9, we know that the following statement holds for a non-

zero quasi—isometry T,
T is hyponormal if and only if | Tl =1. (6.2)
The following theorems show the relation between posiquasi—isometry and

hyponormal operator, paranormal, and M-paranormal.

Recall that T is M-paranormal if | Tz lI> < M| T?z |l for any unit vec-

tor x in H.

Theorem 6.16. Let T € PQI with interrupter P and let M= |l Pl || T 2,
Then the following properties holds.
(a) T is M-paranormal and M = 1.

() If | TIl=1Pll=1, then T is hyponormal.

Proof. (a) If T € PQI with interrupter P, then by Theorem 6.2(a), we have

< Pl Il 7%l I T2l
< IPl T2l T2%l.
= Ml 7% |

| Tz | 2

for any unit vector x in H. Hence T is M-paranormal and M > 1 by The-

orem 6.2(d).

(b) By hypothesis, we have T*T < | Pl T**T? by Theorem 6.2(c).
Thus if | TIl=1 Pll=1, then T*T=T*>T? easily checked. In fact
T*T< T**T2if | Pl=1and T*T>T**T%if ITI=1.So Tis a

quasi—isometry with || 7'l =1. Hence T is hyponormal by (6.2).

Theorem 6.17. If T is hyponormal and ranT is closed, then T € PQI.

Proof. Since T is hyponormal, ker T = ker T2 and (ranT*)* = (ran T *?)*.

And also since ranT is closed, ranT* is closed ([10]). Thus we have

ranT *=ran T**. Hence T EPQI by Theorem 6.8.
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The following theorem immediately holds by properties of M-paranormal.

Theorem 6.18. ([25]) Let T €PQI with interrupter P and M= | P |l T 2.

Then we have the followings:
(@ M2l T3 W= I 7% | | Tzl for any unit vector = in H.
(b) For every posituve integer k and every unit vector x in H,
M*F UL T2 1 2= I Th P 72l
(c) If T is a unilateral weighted shift T with non—zero weights {an}, then
|| = Mla,.|.

for each positive integer m.

Theorem 6.19. Let T be a unilateral weighted shift with non-zero weights
{an}:::l- Then

T EPQI if and only if sup,-,(1/|a,]) < co.

Proof. Let {en}:: be an orthonormal basis for H. If T €PQI, then

1

T*T < XNT*>T2? for some A > 0 by Theorem 6.8. So

< T*Te, e, > s T c >

I

for each n. Thus |a,|* < X |a, || aner [F and 1/]o, 41| < A since a,, is
non-zero for each n. Hence sup, -, (1/]q,|) < .
Conversely, let sup,~q(1/|a,|)< oo. Taking a positive operator P to
be the diagonal matrix with diagonal entries
Py =0 ,pyy =0 and p,,=1/]a,_|* for n >3, (6.3)

we have T*T=T*PT? In fact, T*Te,=|a,|’, for n>1 since

n

Te, =a,e,+; for n >1 and T*e; =0 and T*e,=a,_,e,_, for n > 2.

On the other hand,
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T**PT%, =(a, a, ) T**Pe, .,
= (@, a,41) (1/|an,+1|2) T*%, .

:ana_e = |aTZ|2€71

n-n

for n > 1. Hence T*Te, = T**PT%e, for n>1, as desired.

Corollary 6.20. If T is a paranormal unilateral weighted shift with non-

zero weights {an} then T'EPQI.

(oe]
i
n=1

Proof. By hypothesis, non-zero weights {a,}”_ is bounded and {|e,[}"_
1s monotonically increasing. So {|04n|};°: , converges to a non-zero limit. Thus

{1/]e,|} 7 also converges to a non-zero limit. Hence sup,, -, (1/]ey|) < o0

and the result follows from Theorem 6.19.

Remark 6.21. A unilateral weighted shift 7' with weights {an}::1 is com-

pact if {an};o: converges to zero ([17]). But T'& PQI by Theorem 6.19.

1

Hence a compact operator need not be a posiquasi—-isometry.

Let T €PQI with interrupter P. If 1= || PIl | Tll ? then T is paranormal
by Theorem 6.16(a). But the following example shows that the converse

1S not true.

Example 6.22. Let T, be a unilateral weighted shift with non-zero weights

_ _jz /3 . _ |ntl
0y =T, 0y 3,a2 1 y o, o

(a) T, €PQI for every x>0 since

1 1 /3
supn(m)zmax{;, 5}< 00,
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(b) Let a positive operator P be the diagonal matrix with diagonal

entries p;; =0 ,pyy, =0 and p,, =n/n—1 for n >3 from (6.3). Then P

is the interrupter for 7, for all z > 0.

[ 2
o<z < 3 then T, € PQI with interrupter P and also is a para-

normal since {av,} is monotonically increasing. But 1= | P || | T, || * is

[e'e)
n=0

failed since || 7, || =max{xz, 1}=1 and |l Pl =3/2.

[2
The above example gives us that if x> 3 then T, €EPQI , but T,

1s not a paranormal operator. Thus a posiquasi—-isometry need not to be a

paranormal operator.

In the next theorems we explore several properties of the spectrum of

a posiquasi—isometry.

Recall that T € L(H) is quasinilpotent if | 7.7 N 0 as n—oco. Evi-

dently, if T is quasinilpotent, then o(7") =0.

Theorem 6.23. If T €PQI with interrupter P and if T is quasinilplotent,

then T=0.

Proof. By hypothesis, for sufficiently small € > 0, there exits N such that

n > N implies |7 |l 1" < e since 1’ is quasinilplotent. Using Theorem
6.2(b), we get | TI < (v/TPIl €)" 'e forall n=> N since

Vo 72l
(V' 217l
JTPT

Il Pl
| Pl
Pl
| Pl

NN

)
(ViIper)y—thrl
( / | )n*len.

A IA

Hence this implies that 7'=0.



Corollary 6.24. Every quasinilplotent quasi—isometriy T is zero.

Proof. Since every quasi—isometriy T is a posiquasi-isometry with the inter-

rupter I, the result follows from Theorem 6.23.
Recall that 7(7T) denotes approximate point spectrum of 7.

Theorem 6.25. Let T =PQI with interrupter P. If X € 7n(T )N\ A0}, then
1

—— < A ITI.
I Pl
1
Proof. It is sufficient only to show i an <|Xl. Now if A € w(T) \ {0},
then there exists a sequence (z,) in H with |x,||=1 for all n such

that || (T—X)z, || —0. So Il Tz, | </ 1PI || T%z,| for every z, in

H by Theorem 6.2(a). Thus |[A|< v/ I Pl | \]? as m—o0. Since =0, We

1
have ———— < | A\ /.
I Pl

Corollary 6.26. If T is a quasi-isometry, then w(T )N\ {0} is a subset

of the unit circle.

Proof. In the proof of Theorem 6.25, using Il Tz, | = | Tz, || instead of

I Tz, | < IPIl | T%z,|| since T is a quasi-isometry, then the result

immediately follows.

Theorem 6.27. Let P(H) be the set of all posiquasi-isometries on H.

Then P(H) is not closed in the operator norm topology on L(H).

Proof. Let T be a unilateral weighted shift with weights {1/(n+1) ;OZI.

Then we have well known that o(7")={0} and T is a compact operator.
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Suppose (\,) is a sequence converging to 0. Then T— )\, converges to T,

but 7' is not posiquasi—-isometry by Theorem 6.23 (or Theorem 6.19), while

by Theorem 6.13, each T'—\, is posiquasi-isometry since it is invertible.

Remark 6.28. In the proof of the above theorem we can know the fact

that if 7" is a posiquasi-isometry, then the translate T— A\ need not be a

posiquasl isometry.

Remark 6.29. Consider T'=U—2 where U is a unilateral shift on I[,.

Since 2 is not in o(U)={X:|\| <1}, T is a posiquasi-isometry. But the
Corollary 6.26 shows that 7T is not a quasi-isometry because o(7T)=
A x+2/< 1} and «(T)N{0} is not a subset of the unit circle. Thus

the following classes are related by proper inclusion :

Unitary & Isomertry & Quasi—-isometry

< Posiquasi—-isometry

N

M-paranormal.

10

Example 6.30. Let T:( n

) be defined on €2 Then since T is inver-

F -1

1 1) by Theorem 6.13.

tible, T'&PQI with unique interrupter p:(_

Note that 7(7) =1 and || Tl = /2. Thus a posiquasi-isometry is not ne-

cessarily normaloid.

10

Example 6.31. Let TZ( 10

) be defined on C 2 Then T €PQI In fact,

T is a quasi-isometry since 7' is an idempotent operator. Thus we have

ker T =ker T?={(0,y):y € C}, but kerT C ker T * is failed since ker T'*

={(z,—z):2= C}. So 0 is not a normal eigenvalue (see (2.1)).
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Theorem 6.32. Let T €PQI with interrupter P. Then
(a) If OEUP(T), then OEUP(T*).

(b) If 0=x(T), then 0=x(T *).
(c) If T has dense range, then kerT = ker T*={0}.

Proof. (a) Let OEap(T). If 06C N\o,(T*), then T* is one-one. So T'=
T*PT? since T*T=T*PT? Take its adjoint, T*= T**PT and again

applying the fact that T* is one-one, we have I=T*PT . This will
contradict the fact that 0 EUP(T).

(b) Let 0Ex(T). If 0 C \#(T*), then 0€C \o,(T*) and I=T*PT

by in the proof of part (a). Since 0Ex(T), we can choose a sequence (mn)
of unit vectors such that Tx,— 0. Then z,= T*P(Tr,), so that |zl =

| T*P(Tx,)| for all n. This is a contradiction since | z, | =1 for all n,

and || T*P(Tz,) || —0 as n—oo,

(c) Since T has dense range, T* is one to one. Thus 7 is also one to

one by part (a), as desired.

If TEPQI with interrupter P and 1= | PIl | Tl then the Weyl's
theorem holds for T since 7T is paranormal by Theorem 6.16(a). But in

general, the following property holds for a posiquasi—isometry.

Theorem 6.33. Let T €EPQI with interrupter P. Then 0€o(T N\ w(T)
if and only Iif OEWOO(T).

Proof. Let OEU(T)\w(T). Then T is a Weyl operator. Hence kerT is
non-zero finite dimensional subspace. Now we only show that O is a isolated
point in o(7). Since T has finite ascent (see Remark 6.9), T has finite

decent (see (2.3)). And hence T is a Browder, so 0& o, (T)=0,(T)U

acc o(T) (see (2.5)). Hence O is a isolated point in o(7T).
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Conversely, let OEWOO(T). Then we consider Riesz spectral projection

1 _
FE with respect to O , EZ% (T—N\) 1d>\, where D is an open disk
oD

of center O which contains no other points of ¢(7). Then E is a non-zero
idempotent operator commuting with 1, EH is invariant under the operator
T and o(T|EH)=1{0}, o(TI(1—E)H )=0(T) N\ {0} (see Theorem 2.5).
Thus T |EH € PQI by Theorem 6.6(c) and T |EH=0 by Theorem 6.23.
Therefore O is an eigenvalue of 7. And EH=kerT (see (5.3)). If we use
decomposition H=(1—FE )H + EH, we have

TH=T(1—-E)H+TEH=(1—FE)H
since 0Zo(T|(1—E)H ). Hence ranT is closed. And

dimker T*= dim(H /ranT ) =dim EH =dimker T.

This implies that 7' is a Weyl operator which is not invertible. Hence 0&

a(TN\w(T).
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