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 <Abstract>

On the Class , 2-isometries, 

Quasi-isometries and Posiquasi-isometries 

  In this thesis we shall study some algebraic and spectral properties of  

several classes of operators: -operators, 2-isometries, quasi-isometries, 

and two new operators that are defined below as -operators and 

posiquasi-isometries; The class of posiquasi-isometries is an extension of 

the class of quasi-isometries and includes all invertible operators. And 

we investigate the relationship between these and other operators, i.e., 

hyponormal, paranormal operators, and so on.

  Moreover, we give necessary and sufficient conditions for a unilateral 

weighted shift to be a -operator, -operator, 2-isometry, quasi-isometry, 

and posiquasi-isometry respectively. In particular we show that if an operator 

∈  on a Hilbert space  is either 2-isometry or quasi-isometriy, 

then the Weyl’s theorem holds for  and for every ∈ , its Weyl 

spectrum satisfies the spectral mapping theorem for  , where   

denotes the set of analytic functions on an open neighborhood of  . 

Furthermore, we show that the Weyl’s theorem holds for . 

  Also we give necessary and sufficient conditions for an operator to be 

a posiquasi-isometry and show that every quasinilpotent posiquasi-isometry 

is zero, any power of a posiquasi-isometry is also a posiquasi-isometry, 

and the set of all posiquasi-isometries is not closed in the operator norm 

topology on  .
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 1. Introduction

  Recently paranormal operators have been much investigated ([39],[11],  

[25]). and S. Prasanna ([34]) showed that the Weyl’s theorem holds for 

every paranormal operator. Let  be a complex Hilbert space and let 

  be the set of all bounded linear operators on . In particular, it is 

well known ([3]) that an operator ∈ on a complex Hilbert space 

is paranormal if and only if  

≤      

for all  . Also *-paranormal operators have been studied ([5],[6], 

[24]). It is well known ([5]) that  is *-paranormal if and only if 

≤        

for all  . Evidently, hyponormal operators are both paranormal and 

*-paranormal, but paranormality is independent of *-paranormality ([6]).

  Put     .  If   is positive, i.e., ≤,  is called 

an operator of class   introduced by B. P. Duggal, et al. ([15]). Clearly 

every paranormal operator is of class . 

  In particular if  is zero, i.e.,         , then  is said 

to be a , and a  if     . These con 

cepts are introduced by S. M. Patel ([31],[32]). The two classes of 2- 

isometries and quasi-isometries are extensions of the class of isometries 

but they are independent. 

  In this thesis we shall study some algebraic properties of operators of 

class  , 2-isometries and quasi-isometries. Also we introduce two new 

classes of operators defined as follows:  is called an operator of class 

 if ≤        and  if there exists a po 
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sitive operator ∈  called the interrupter, such that    

Clearly every *-paranormal operators is of class . And the class of 

posiquasi-isometries is an extension of the class of quasi-isometries. The 

diagram below summarizes the proper inclusion relationship among these 

classes that will be required later in this thesis.

`

[Fig. 1-1]

unitaty isometry

 2-isometry

quasi-isometry

posiquasi-isometry M-paranormalx
x

x
         -operator

[Fig. 1-2] 

This thesis is organized as follows:

  In Chapter 2, we shall give the preliminary definitions and basic proper

 ties of a bounded linear operator needed throughout the thesis.

  In Chapter 3, we shall study several properties about the class  and 

explore a new class . Its new concept is motivated by class . Also 

we give examples and counterexamples in order to put this class  in 

its due place and show that classes of  and  are independent as 

giving an example. If  is the weighted shift with non-zero weights (see 

Example 3.23), then we give necessary and sufficient conditions for  to 
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be -operator, -operator, paranormal, and *-paranormal respectively. 

 
  In Chapter 4, we investigate some algebraic and spectral properties of 

2-isometries. In particular, we show that the Weyl’s theorem holds for 

2-isometries and also show that for every ∈ , the Weyl spec 

trum,  , satisfies spectral mapping theorem for , where   

denotes the set of analytic functions on an open neighborhood of  . 

Furthermore, we show that the Weyl’s theorem holds for . And we 

prove that if  is a 2-isometry, then     is a unique maximal 

invariant subspace such that       is an isometry. Also we 

give an example that a non isometric unilateral weighted shift is a 

2-isometry.

  In Chapter 5, we shall study some properties of quasi-isometries. In    

particular we show that if ∈  is a quasi-isometry and  is an isol 

ated point of  , then     , where  is the Riesz spectral 

projection  with respect to  (see (2.2)) and  is closed. Also 

we prove that the Weyl’s theorem holds for quasi-isometries and the Weyl 

spectrum,  , satisfies spectral mapping theorem for . Furthermore, 

we show that the Weyl’s theorem holds for  for every ∈   . 

  In Chapter 6, we define a new class of posiquasi-isometries which is 

an extension of the class of quasi-isometries and includes all invertible 

operators. Its concept is motivated by posinormal operators which are 

introduced by Rhaly, Jr. ([36]). Here we investigate many algebraic and 

spectral properties of posiquasi-isometries and also we give necessary 

and sufficient conditions for an operator to be a posiquasi-isometry. The 

main results are as follows:

  (a)  is a posiquasi-isometriy if and only if   ≤     for 

some ≥  if and only if   .
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  (b) If  and  are commuting posiquasi-isometries, then the product 

  is a posiquasi-isometry. Thus any power of a posiquasi-isometry is 

a posiquasi-isometry. 

  (c) Every invertible operator is a posiquasi-isometry with the unique in  

terrupter. And if  is invertible with interrupter , then  is invertible and 

  is a positive operator. 

  (d) Let  be a unilateral weighted shift  with non-zero weights . 

Then  is a posiquasi-isometriy if and only if  sup ≥   ∞.  

  (e) Every quasinilplotent posiquasi-isometriy  is zero.

  (f) Let  be the set of all posiquasi-isometries on . Then  

is not closed in the operator norm topology on  .

  (g) Let  is a posiquasi-isometriy with interrupter . Then

 ∈ ╲  if and only if ∈ .
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 2. Preliminaries and Basic Results

  Let  be a complex Hilbert space and let   be the set of all boun

ded linear operators on . An operator ∈  is said to be  

if    ;  if      ;  if∥∥∥∥ for all 

 ∈  ;  if∥∥≤  ( i.e., ∥∥≤∥∥ for all ∈ ; 

equivalently,   ≤  ). We denote the kernel of  and the range of  

by  and  respectively.  

Theorem 2.1. ([17, p80]) For any ∈ , the following properties hold.

  (a)    ⊥.

  (b)    ⊥.

  (c)    ⊥.

  (d)     ⊥.

Theorem 2.2. ([9, p36]) For any  ∈ , the following statements 

are equivalent.

  (a)  is left invertible.

  (b)  is closed and  .

  (c) inf∥∥∥∥ .

  (d)  is bounded below, i.e.,∥∥≥∥∥ for some    and all    

     ∈.

  We write   {∈ℂ   is not invertible} for the spectrum of  ; 

  for the boundary of   ;      for the resolvent of  

;     ∈ ℂ     for the set of eigenvalues of  ; 

     for the isolated points of   that are eigenvalues of finite     

multiplicity.
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  A complex number ∈ℂ is said to be an   of  if 

there exists a sequence   with ∥∥ such that    → . 

Let   {∈ℂ   is an approximate eigenvalue of T }. Then   

is called the    of . Also we denote   by 

 .  

  

  A point ∈ℂ is called a   of  if eigenspace corres 

ponding to  reduces . Equivalently, 

∈ℂ is a normal eigenvalue if and only if ⊆. (2.1). 

Also if ∈ℂ is a normal eigenvalue, then     is normal.

Theorem 2.3. ([10, p353]) For any ∈ , the following statements 

are equivalent.

  (a) ∉ .

  (b)   is closed and   .

  (c)  is bounded below, i.e., ∥   ∥≥ ∥∥ for some       

        and all ∈.

  (d)   .

 A closed linear subspace  of  is invariant under the operator  if 

  ⊆ . A closed linear subspace  reduces the operator  if both 

 and ⊥ are invariant under the operator  where ⊥ is orthogonal 

complement of . We write Lat  for the collection of all invariant 

subspace for     denotes the restriction of  to , which is invar 

iant subspace for  If  reduces the operator , then  can decomposed  

into the direct sum :     ⊕   ⊥.
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  An operator  ∈   is called a   if  . If  is 

any projection on , then   and  are complementary subspaces 

of , i.e.,      and   ∩  . Also    is a 

projection and furthermore,       ,        . An 

operator ∈  is called an   if     and in 

addition . If  is an orthogonal projection on , then  and 

 are orthogonal complements in  ([12]).

Theorem 2.4. ([12, p164]) Let  ∈Lat() and  be an orthogonal pro 

jection of  onto  . Then

  (a)  is invariant under the operator  if and only if .

  (b)  reduces the operator  if and only if  .

Theorem 2.5. ([18, p10]) Let ∈  and  be an isolated point in . 

Consider the Riesz spectral projection  with respect to , given by 



 


,                    (2.2)

where   is an open disk of center  which contains no other points of 

. Then 

  (a) The operator  is a projection, i.e.,    and  .

  (b) Put , and  . Then ⊕, the space  and   

     are invariant under the operator  and 

    ,        ╲ .

  The  (resp., ) of , denoted by  , (resp.,  ) is the 

smallest non-negative integer  such that    
 (resp., 

    ). If no such  exists, then   ∞ (resp.,   ∞). 

If   ∞ and  ∞, then      ([13]). This notion encom 
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passes injectivity: an operator  is injective if and only if    .

  An operator ∈  is said to be  if  is closed 

and either  or   are finite dimensional. If  is semi-Fredholm,  

The  of , denoted by ind  , is defined by 

ind    . 

If  is semi-Fredholm and ind  is finite, then  is called . It 

is well known ([20, Theorem 2.6]) that 

if ∈  is Fredholm of finite accent then ind ≤  :     (2.3) 

indeed, either if  has finite decent, then ind   , or if  does not 

have finite decent, then ind  

  

  An operator ∈  is  if  is closed and  is 

finite dimensional and  if  is closed and   is 

finite dimensional. The essential spectrum of , denoted by  , is 

defined by 

 {∈ℂ   is not Fredholm}

and the left essential spectrum of , denoted by   , is defined by

  {∈ℂ   ∞ or   is not closed}

and the right essential spectrum of , denoted by  , is defined by

   {∈ℂ   ∞ or   is not closed}

Clearly 

 ∈  is semi-Fredholm if and only if ∉  ∩ . (2.4)    

   

  An operator ∈  is said to be  if it is Fredholm of index zero 

and  if it is Fredholm of finite ascent and descent. The Weyl spec 

trum,  , and Browder spectrum,  , are defined by
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{∈ℂ   is not Wely},

    {∈ℂ   is not Browder}.

Then by [21]

                  ⊆  ⊆     ∪    (2.5)         

where we write    for the accumulation point of  . We say 

that the Weyl’s theorem hold for  if  ╲   or equivalently,  

╲   .

  It is well known ([30]) that the mapping  →  is upper semicon 

tinuous, but not continuous at . However if →   with   

for all ∈ , then

lim  

It is known that   satisfies the one-way spectral mapping theorem 

for analytic function: If  is analytic on an open neighborhood of  , 

denoted by ∈ , then

 ⊆                         (2.6)

Theorem 2.6. ([10], p362) For any ∈ , ind  is constant on 

the components of ℂ╲   ∩ . If  is an isolated point of 

 and ∉  ∩ , then ind   .                      

Theorem 2.7. ([10]) For any ∈ , the following properties hold.

  (a)   ∪    .

  (b)   ∩ ⊆  .

  (c)  ⊆  .

  (d)  ⊆  ⊆  .
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Theorem 2.8. For any ∈ , the following properties hold.

  (a) If  is closed, then   is closed ([10, p173]).

  (b) If ∈  and  is not an isolated point of  , then   

     is not closed ([35]).

  An operator ∈  is called , denoted by  ≥ , if  

≥  for all ∈.  is  if    .  is  if 

     ≥  or equivalently, ∥∥≥∥ ∥ for all ∈.  

is  if      ≤         for all ∈ or equivalently ([3]),  

≤       for all  .

 is  if   ≤      for all ∈. Also an    

operator   is *‑ if    ≤       for all ∈ or equi 

valently ([5]), 

≤        for all  .

  An operator ∈  is called  if its norm ∥∥ and its spec‐ 

tral radius of   sup     ∈   are equal. It is well known  

that  ≤∥∥and   lim
→∞

∥ ∥


. Clearly if ∥ ∥∥∥, 

then  is normaloid. ∈  is said to be  if   for some 

∈ and  if ∥ ∥

→  as →∞. Evidently, if  is 

quasnilpotent, then    . 

  
  These operators are related by proper inclusion as follows:

         Normal ⊊ Hyponormal 

      ⊊ Paranormal (or *-Paranormal) ⊊ Normaloid.

  An operator ∈  is called  if isolated points of   are 

eigenvalues of , i.e., iso ⊆   where we write iso  for the 



11

isolated points of   and  if  has closed range for each 

∈ iso. Clearly if  is reguloid, then  is isoloid. It is well known 

([39]) that 

            if  is paranormal, then  is isoloid and reguloid.       (2.7)

Theorem 2.9. ([7]) Let ∈  be positive, i.e., ≥. Then

  (a)  is self-adjoint.

  (b)  ≥  for any operator .

  (c)     ≤        for all  ∈ .

  (d)   if and only if    .

Theorem 2.10. (The Spectral Mapping Theorem) If ∈  and  is 

analytic on a neighborhood of  , then      . 
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 3. Class  and Class   of operators

 3.1 Class  of operators

Definition 3.1. An operator  is of class , shortened to  if 

≤     .  Equivalently,  is an operator of class   if 

∥∥≤ 


∥ ∥∥∥  for every ∈.

Remark 3.2. Every paranormal operator is clearly of class . Since   

 ≤         if and only if   
 ∈  for any  , 

 is paranormal if and only if  ∈   for all    

Theorem 3.3. ([16]) Let  be an operator of class . 

  (a) The restriction of  to an invariant subspace is again of class .

  (b) If  is invertible, then 


 is of class .

Theorem 3.4. ([16]) For any ∈ , the following properties hold.

  (a) If ∥∥≤  , then ∈.

  (b) If  , then ∈  if and only if ∥∥≤  .

Theorem 3.5. Let  be an operator of class . 

  (a) If  is unitarily equivalent to , then  is of class .

  (b) If  commutes with an isometry , then the product   is of class . 

  (c)  ⊗ and  ⊗ are both of class .

Proof. (a) Let     where  is unitary. Then 
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      ≥ 

Hence  is of class .

  (b) Let . We must show that   ≥ . By hypo

thesis, we have     ,    ,     . Thus

    

           

    ≥ 

      

Hence  is of class .

  (c) Since  is of class ,    ⊗ ≥  and we have

  ⊗  ⊗⊗⊗⊗

  ⊗ ⊗ ⊗⊗⊗

   ⊗ ⊗⊗

    ⊗ ≥ 

Hence ⊗ is of class  and similarly  ⊗ is of class .

Example 3.6. Let    
 

 be an operator on a two-dimensional Hilbert

space ℂ
. Then ∥∥   ,   and    . So by Theorem 3.4(b),

    
 

∈ if and only if    ≤  .          (3.1)

Thus  is not normaloid for all ≠ since∥∥≠ , so that  is not 

paranormal for all ≠.    
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  The above example shows that an operator of class  need not to be  

normaloid and hence paranormal. Thus the following classes are related 

by proper inclusion :  

Unitary ⊊ Hyponormal ⊊ Paranormal ⊊ Class .  

Theorem 3.7. Let  be a unilateral weighted shift with weights 
∞ .  

Then  is of class   if and only if  for all ≥ ,

  
   

   
   ≥ .

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

        
 

  
  

for all ≥, so that this implies the result. 

  Isolated points of the spectrum of a paranormal operator are eigenvalues, 

but an operator of class  need not to be isoloid.

Example 3.8. Let  be a weighted shift with weights  
∞

. 

Then  is a compact operator,   ,   ∅ and ∥∥

([12, p170]). Thus  is an operator of class   since 

  
   

   
   ≥  

for all  ≥ , as easily checked. But  is not isoloid.

Remark 3.9. In the Example 3.6 if  , then  ∈, but if  , 

then  is not an operator of class  from (3.1). Hence a multiple of a 

-operator may not be of class .

Theorem 3.10. ([16]) Let  be an operator of class .

  (a) If   is a contraction, then so is .

  (b) If   is an isometry, then  is paranormal.
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Proof.  (a) Observe that   is of class  if and only if     ≤

   Thus   ≤  implies   ≤ . So  is a contraction 

whenever   is.

  (b) Take any  in  and note that   is of class   if and only if

∥∥≤∥ ∥∥∥ ∥ ∥∥∥

Hence∥ ∥∥∥implies∥∥≤∥ ∥∥∥ for every ∈.

 3.2 Class   of operators 

 

Definition 3.11. An operator  is of class , shortened to   

if ≤       . Equivalently,  is an operator of class  if  

            ∥ ∥≤ 


∥ ∥∥∥  for every ∈.

Remark 3.12. Clearly every *-paranormal operator is an operator of class 

. Since  ≤        if and only if 
 ∈ for 

any  , 

 is *-paranormal if and only if  ∈   for all    

Theorem 3.13. For any ∈ , the following properties hold.

  (a) If ∥∥≤ , then ∈ .

  (b) If  , then ∈  if and only if ∥∥≤ .

  (c) If ∈ ,  ≠ and    ≤     , then  ∈.     

     In particular, if  ∈  is a contraction, then  ∈ whenever    

        ≤ .

  (d) A contraction ∈  is *-paranormal if and only if 

≤         for all ∈  
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Proof. (a) ∥∥≤    if and only if∥  ∥≤ if and only if  

 ≤ . Hence ∥∥≤  implies ≤    .

  (b) If  , then  ≤         if and only if  ≤ . 

Hence  ∈  if and only if ∥∥≤   .

  (c) If  ∈ , then  ≤     , so for each scalar ,

      ≤          

and hence for each scalar ,

       
        

≤                  

            

Suppose ≠. If    ≤  , then    ≥  since    ≤ .  

Also       ≤  since   ≤∥ ∥


 if and only if ∥ ∥≤ 

if and only if   is a contraction. Thus           ≤ . 

Hence      ≤        , so that  ∈  . 

  In particular, let  ∈  be a contraction. then in the case of  ≠,  

 ∈ whenever    ≤  since   . And in the case 

of  , we have ∥∥≤  by (b). Also   ∥∥≤   and

∥∥≤  for    ≤ . Therefore  ∈  for    ≤  by (a). 

  (d) If  ∈  is a contraction, then  ∈   for ∈    or equi 

valently,  ≤        for ∈ , i.e., 

 ≤  


   



 

Let   . Then   ≤        for all  ≥ . Hence a 

contraction ∈  is *-paranormal if and only if 

 ≤           for all ∈  
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Corollary 3.14. If    , then  ∈  if and only if  ∈ 

Proof. It follows from Theorem 3.4(b) and Theorem 3.13(b).

Remark 3.15. An operator of class  need not to be normaloid and 

hence not to be *-paranormal. For example, by Corollary 3.14, 

     
 

∈    if and only if  ∈ if and only if    ≤ 

since  . And also  is not normaloid for all ≠ and hence not 

*-paranormal (see Example 3.6).

  The above remark shows that the following classes are related by pro 

per inclusion : 

Unitary ⊊ Hyponormal ⊊ *-Paranormal ⊊ Class . 

And a multiple of a -operator may not be of class  (see Remark 

3.9). 

Theorem 3.16. Let  be an operator of class . 

  (a) If ⊆ is an invariant subspace for , then   is of class .

  (b) If  is unitarily equivalent to , then  is of class .

  (c) If  commutes with a unitary operator , then the product   is    

     of class . 

  (d)  ⊗ and  ⊗ are both of class .

Proof. (a) Let  be the orthogonal projection of  onto  and let  

  denote the restriction of  to . Then for every ∈,

∥∥∥ ∥≤∥ ∥

≤∥ ∥

∥∥  ∥ ∥


∥∥

Hence    is of class .

  (b) Let     where  is unitary. Then 

   
      
        ≥ 
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Hence  is of class  .

  (c) Let . We must show that    ≥ . By hypothe 

sis, we have     ,    ,  . Thus

  

        

   

    ≥ 

      

Hence  is of class .

  (d) Since  is of class ,     ⊗ ≥  and we have

  ⊗  ⊗⊗⊗⊗

  ⊗ ⊗⊗ ⊗⊗

   ⊗ ⊗⊗

   ⊗ ≥ 

Hence ⊗ is of class  and similarly  ⊗ is of class .

Theorem 3.17. Let  be a unilateral weighted shift with weights 
∞

. 

Then  is of class  if and only if  for all  ≥ ,

  
   

   
≥ .

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

           
   

  
 

 for all  ≥  and           
   

. This 

implies the result. 
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Example 3.18. Let   be a weighted shift with weights 
∞ .

Then since  
≤,  

≤    


   for ≥ . 

Thus  is a -operator by Theorem 3.17, but  is not isoloid (see 

Example 3.8). This means that an operator of class  need not to be 

isoloid.

  The following results are well known ([24],[25]): Let  be a unilateral 

weighted shift with non-zero weights 
∞ . Then 

  (a)  is paranormal if and only if    ≤    for all  ≥ . 

  (b)   is *-paranormal if and only if   
≤       for all  ≥ . 

  The following example shows that classes of -operators and 

-operators are independent.

Example 3.19. Let  be a unilateral weighted shift with weights 
∞  

        ⋯ . Then

  (a)  is a -operator since   
 ≤     

 
 for all 

 ≥ , as easily checked. In fact  is *-paranormal since  
≤  

       for all ≥ . 

  (b) By Theorem 3.7,  is not a -operator since   
   

    


  , so that  is not paranormal.    

  (c)     since    ⋯       ⋯. So   

∈ whenever  ≤  by Theorem 3.13(c).

Theorem 3.20. Let  be an operator of class .

  (a) If   is a contraction, then so is .

  (b) If   is an isometry, then  is *-paranormal.
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Proof. (a)  is of class  if and only if    ≤      if and only 

if    ≤   since   is a contraction. Thus    ≤ , which means 

that  is a contraction.

  (b) Take any  in  and note that  is of class  if and only if

∥ ∥≤∥ ∥

∥∥

 ∥ ∥∥∥ ∥ ∥∥∥

Hence ∥ ∥∥∥ implies ∥ ∥≤∥ ∥∥∥ for all ∈.

Therefore  is *-paranormal.

Corollary 3.21. Let   be an isometry. Then  ∈  if and only if  is

a contraction.  

Proof. Since    ,  ∈  if and only if    ≤   if and only 

if  is a contraction.

  Note that there exists a non-zero operator  ∉  that   is an 

isometry.

Example 3.22. Let  be a unilateral weighted shift with weights    

       ⋯ . Then

  (a)      ⋯        ⋯, i.e.,   is an isometry, but 

 is not of class  since  is not a contraction (∥∥ ).  

  (b)    lim      . In fact,        if  is even and    

  if  is odd. So  is not normaloid since  ∥∥≠   and 

hence  is not *-paranormal.         

Example 3.23. Let  be a unilateral weighted shift with non-zero weights

            




  




⋯   




⋯  
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  (a)  ∈   if and only if    ≤ 


.

  (b)  ∈   if and only if    ≤ 


.

  (c)   is *-paranormal if and only if    ≤  


.

  (d)   is paranormal if and only if    ≤ 





. 

  (e) If  


 ≤


, then   is of class ∩, but not *-para 

normal.    

Proof. (a) For  ≥ ,    
≤   

   
   since 

  
 





    

   
.

When   ,    
 ≤   

   
   for    ≤ 


.

  (b) For  ≥ ,    
 ≤   

   
   since 

  
 





   

   
.  

When   ,    
≤   

   
  for    ≤ 


.

  (c)   is *-paranormal if and only if   
 ≤        for all

 ≥ .  Now for ≥ ,   
 ≤        since

   
 


 




       . 

When   ,   
 ≤        for    ≤  


.

  (d) This is clear from the following the fact that   is paranormal if 

and only if    ≤     for all  ≥ , i.e.,    is increasing. 

 
  (e) It follows from the above part (a), (b), and (c).
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 4. 2-isometric operators

Definition 4.1. An operator  ∈  is defined to be a  if 

          .                    (4.1)

Equivalently,  is a 2-isometry if 

∥∥ ∥ ∥∥∥ for every  ∈ . 

Clearly every isometry is a 2-isometry since     And every 

2-isometry is a -operator.

Remark 4.2. For any 2-isometry , the following properties hold.

  (a)  is left invertible since      . And hence   is    

       closed and   (see Theorem 2.2).    

  (b) ∥∥≥  since     ≥  ([2, Proposition 1.5]).  

  (c)  is invertible if and only if  is unitary ([2]).

   

Theorem 4.3. For any 2-isometry , the following properties hold.

  (a)  is not compact if  is infinite dimensional.

  (b) If  is invertible, then 


 is also a 2-isometry.

  (c) If  is normal, then   is also a 2-isometry.

  (d) If   is an isometry, then  is also an isometry.

Proof. (a) If  is a 2-isometry, then  ≥ . In general  is not compact 

on an infinite dimensional Hilbert space. Thus   is not compact. 

Hence  is not compact.

  (b) The hypothesis that  is an invertible 2-isometry yield  is unitary 

by Remark 4.2(c). So   is unitary and hence   is a 2-isometry.

  (c) If  is normal, then    , so      From (4.1), 

we obtain           , which implies   is a 2-isometry.
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  (d) If   is an isometry, then     and hence     

from (4.1), so     . This implies  is an isometry.

  We denote  to be an open unit disk, i.e.,  ∈ℂ     and  

also write  for the topological boundary of .

Theorem 4.4. If both  and   are 2-isometries, then ⊆ .

Proof. By Remark 4.2(a),  is closed and both  and   are injective, 

so  is invertible and hence  is unitary by Remark 4.2.(c). This implies 

⊆ .

Corollary 4.5. Let  be a 2-isometry. Then the following statements are 

equivalent. 

  (a)  is invertible.

  (b)  is unitary. 

  (c)  is normal.

  (d)  has it's spectrum on the unit circle.

Proof. (a) implies (b) by Remark 4.2(c). Clearly (b) implies (c). Using Theorem  

4.3(c) and Theorem 4.4, (c) implies (d). (d) implies (a) since ∉.  

 
Theorem 4.6. For any 2-isometry , the following properties hold.

  (a) If  is unitarily equivalent to , then  is a 2-isometry.

  (b) If ⊆ is an invariant subspace for , then   is a 2-isometry.

Proof. (a) Let     where  is unitary. Then 

           

       

.

Hence  is a 2-isometry. 

  (b) If  ∈, then 

∥ ∥ ∥∥ ∥ ∥∥∥ ∥ ∥∥∥. 
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So   is a 2-isometry.

Theorem 4.7. Let  be a 2-isometry. If  commutes with an isometry 

, then the product  is a 2-isometry.

Proof. Let . We must show that    . 

By hypothesis, we have      , ,    . Thus

 

           

     

      

Hence   is a 2-isometry.

Theorem 4.8. Let  be a 2-isometry. Then 

 is a 2-isometry if and only if      or   is an isometry.

Proof. If  is a 2-isometry, then               for any 

∈ℂ. So we have for any ∈ℂ,

                      , 

which implies the result. 

Corollary 4.9. If  and  are 2-isometries. Then   ≤ .

Proof. Note   is a 2-isometry ([32, Theorem 2.1]), and so  ≤∥ ∥. 

Let  be a 2-isometry. If ∣∣≠, then ∥ ∥ by Theorem 4.8, 

which implies    .

Remark 4.10. According to [2], If  is a 2-isometry, then  ⊆ . 

And either   ⊆  if  is invertible or     if  is not inverti 

ble. Thus if  is an isometry, then either  ⊆  or    . In 

particular if  is unitary, then  ⊆ . 
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  Recall that an operator ∈  is isoloid if isolated points of   

are eigenvalues of  and reguloid if  has closed range for each 

isolated points of  . 

 

Theorem 4.11. If  is a 2-isometry, then  is isoloid and reguloid.

Proof. If  has isolated points of  , then it is clear from the above 

remark that  is unitary since  ⊆ . Thus  is paranormal, so that 

the result follows (see (2.7)).

  In the next theorems we explore several properties of the spectrum of 

a 2-isometric non-unitary operator and also we prove that the Weyl’s theorem 

holds for 2-isometries.  

Theorem 4.12. If  is a 2-isometry and non-unitary, then

  (a)    .

  (b)    .

  (c)  ∩   .

  (d)    .

Proof. (a) Since  is not invertible,      by preceding Remark 4.10. 

  (b) For any operator ∈ ,  ⊆   (see Theorem 2.7), so 

⊆   by part (a) and  ⊆  by preceding Remark 4.10. Thus 

the result follows. 

  (c) For any operator ∈ ,  ∩ ⊆   (see Theorem 

2.7) and using part (b),  ∩ ⊆ . 

  Conversely if ∈, then  is not isolated point of   by part (a). Thus 

 is not closed (see Theorem 2.8). Hence ∈ ∩ . 
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  (d) Let ∈ . If ∈, then  is not closed, so ∈ . 

If ∈, then  is closed and    since ∉  (see 

Theorem 2.3). And since ∈ , we must have dim≠. Thus 

ind  , so that  ∈  . Therefore  ⊆   by part (a). 

This proved (d). 

Remark 4.13. The above Theorem 4.12 shows that if  is a 2-isometric 

non-unitary operator, then 

  (a)  is not a Weyl operator since  . 

  (b) ⊆ ⊆
  since   ⊆  ⊆   for any operator 

∈  (see Theorem 2.7). 

  (c)  is semi-Fredholm for ∈ (see (2.4)). 

  (d) ind≤  for    ≠. In fact, if    , then ind  in 

the proof of Theorem 4.12(d) and if     , then  is invertible, so 

that ind  . 

  (e) the function from  into  ∪ ±∞ given by  → ind is 

constant (see Theorem 2.6).

Corollary 4.14. Let  be a 2-isometric non-unitary operator. If ∉  

i.e,  is a Fredholm, then ind≤ .

Proof. This proof is immediate by part (b) and (d) of the Remark 4.13.

  The following theorem appeared in [32, Corollary 2.13]. Here we will 

prove this with alternate argument using the Theorem 4,12.

Theorem 4.15. The Weyl’s theorem holds for 2-isometries.  

Proof. Let  be a 2-isometry. If  is unitary, the result is obvious. If  

is non-unitary, then since      by Theorem 4.12(a),   ∅. Thus 

        by Theorem 4.12(d), as desired. 
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Theorem 4.16. Let  be a unilateral weighted shift with weights 
∞ .

Then  is a 2-isometry if and only if for all  ≥ ,

  
   

   
   .

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

        
 

  
  

for all ≥, so that this implies the result. 

  Next we shall give an example that a non isometric unilateral weighted 

shift is a 2-isometry.

Remark 4.17. In [32, Theorem 2.2], S. M. Patel proved that a non 

isometric unilateral weighted shift  with weights  is a 2-isometry if 

and only if (ⅰ)   
   

 
     for each ; (ⅱ)    ≠  

for each . 

Example 4.18. Define    →  by      ⋯       ⋯  

where  




. Then  is a non isometric unilateral weighted shift 

and a 2-isometry  since   
 

   
   and  ≠ for each 

 , easily checked. And ∥∥  since  ≥      for each .

Theorem 4.19. Define    →  by      ⋯      ⋯  

where  is non-zero weights for each . If  is a 2-isometry, then

  (a)      .

  (b)    .

  (c)   ∅.

  (d) for     ,  is closed and ind  .
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  (e)     and        .

Proof. Since  is a 2-isometric non-unitary operator, part (a) and (b) are 

obvious by Theorem 4.12. 

  (c) Since  ⊆   ,  ∉ . Suppose      ⋯∈  

and ≠. If , then   ,   ⋯  Thus     ⋯  

Hence   ∅.

  (d) If     , then since ∉   , so that   is closed 

and dim . To prove ind  , it suffices to show that 

dim  for     . If       ⋯ ∈  and     , 

then    ⋯  
   ⋯ . So  ⋯




 for all  . 

That is, if     


 



 ⋯ ⋯




⋯ , then       ⋯ 

.  Clearly  ∈ . This implies that  is the one 

dimensional space spanned by , as desired.

  (e) Using ⊆  ⊆
  (see Remark 4.13(b)) and part (d), we obtain

   . Since  ∩    by Theorem 4.12(c) and   

∪     by Theorem 2.7(a), we have        .

  Since a unilateral shift  is a 2-isometric non-unitary operator, the foll 

owing corollary is obvious by the above Theorem 4.19.

Corollary 4.20. Let  be a unilateral shift defined    →  by     

 ⋯      ⋯ . Then

  (a)      . 

  (b)   ∅.
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  (c) For     ,   is closed with  . 

  (d)        . 

 Remark 4.21. Every isometry is normaloid since   ∥∥ (see 

Remark 4.10). But the Example 4.18 shows that a 2-isometry  need not 

to be normaloid since  ≠∥∥. Also Example 3.8(Chapter 3) and Exam 

ple 4.18 show that the following classes are related by proper inclusion :  

 Unitary ⊊  Isometry ⊊  2-isometry ⊊ -operator.

  Next we show that the   satisfies spectral mapping theorem for 

 and furthermore, the Weyl’s theorem holds for  where  is a 

2-isometry and  is analytic on a neighborhood of  .

Theorem 4.22. If  is a 2-isometry and  is analytic on a neighborhood 

of  , then        .   

                                               
Proof. Let  be a 2-isometry. If  is a unitary, the result is obvious. 

Assume that  is a non-unitary. Suppose   is any polynomial. Let 

      ⋯    where          ⋯  . We 

first show that     ⊆   . If ∉   , then

    ⋯    

is Weyl. Since  commutes each other, every  is Fredlhom. 

Thus by Corollary 4.14, ind ≤  for each   ⋯, so that 

ind   since

 ind    ind   ⋯ind    .

Thus ∉ for each    ⋯  and ∉  since    

  ⋯. Hence this implies  ⊆  . 

  The converse assertion     ⊇    is trivial (see (2.6)). Hence 
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we have         for any polynomial  .

  If  is analytic on a neighborhood of  , Then by the Runge’s theo 

rem, there is a sequence  of polynomials converging uniformly on a 

neighborhood of  to  so that   → . Note that the mapping 

 →   is upper semi-continuous. Since each   commutes with 

 , it follows from [30] that 

                      lim
→∞
     lim

→∞
      .

Hence         .

  Oberai showed that if  is isoloid and the Weyl’s theorem holds for , 

then the Weyl’s theorem holds for   if and only if    

  for any polynomial   ([30]). Thus the following statement is 

true.

Corollary 4.23. If  is a 2-isometry and  is analytic on a neighborhood 

of  , then the Weyl’s theorem holds for  .

Proof. Recall that if ∈  is isoloid, then 

  ╲       ╲   

for every ∈  ([29], [30]). Since  is a 2-isometry,  is isoloid 

by Theorem 4.11. Also the Weyl’s theorem holds for  by Theorem 

4.15. Thus we have 

               ╲    ╲ 

                      (Theorem 4.22).

Therefore  ╲   , so that the Weyl’s theorem holds

for  . 

  The following results were discussed in [2]. Here we prove them in 
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detail in the case of a 2-isometry.

Theorem 4.24. If  is a 2-isometry, then ∆  is an invariant subspace 

for  where ∆    .

Proof. Since  is a 2-isometry,  ∆∆  and ∆≥ by Remark 

4.2(b). Now if ∈∆ , then 

∆     
∆   

∆     

Thus ∆    since ∆ ≥  (see Theorem 2.9(d)). So  ∈ ∆ .

Theorem 4.25. Let  be a 2-isometry. Then

  (a)   ∆ is an isometry. 

  (b) If  ⊆ is an invariant subspace for  and    is an isometry,  

     then  ⊆∆.

Proof. (a) Let  be the orthogonal projection of  onto ∆ and let 

  ∆  We shall show that  . Let ∈∆  Then     

 and      ∆ . So    , as desired. 

  (b) Let     and  be the orthogonal projection of  onto . 

Given ∈ , we have      since    is an isometry 

by hypothesis. Thus we see that

                   

         ∆    
  

So ∆     and ∆  . Hence ∈∆  and so ⊆∆ .

Remark 4.26. For a 2-isometry, ∆  is a maximal invariant subspace 

such that  ∆  is an isometry. Also ∆ is unique by the above 

Theorem 4.25.
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 5. Quasi-isometric operators 

Definition 5.1. An operator  ∈  is said to be a  if  

                                       

Equivalently,  is a quasi-isometry if

∥∥∥ ∥ for every  ∈ .             (5.1)

Remark 5.2. Every isometry is a quasi-isometry, whereas an idempotent is 

a quasi-isometry, but need not be an isometry. For example, every ortho 

gonal projection operator is an idempotent, but is not an isometry. On the 

other hand, a quasi-isometry which is an 2-isometry is an isometry. Thus 

the classes of 2-isometries and quasi-isometries are extentions of 

isometries and they are independent. 

  The above (5.1) immediately gives us the following facts:

  (a)∥∥∥ ∥≤∥∥
. 

  (b) For  ≥ , ∥ ∥║  ║║ ║ for every  in .  

  (c) If    , then  . 

  (d) For any unit vector  in , 

∥∥≤∥ ∥∥ ∥≤∥∥∥ ∥.

  From the above facts, we can obtain the following properties.

Theorem 5.3. For any quasi-isometry , the following properties hold.  

  (a) ∥∥∥ ∥. Furthermore,∥ ∥∥ ∥ for every  ≥ .

  (b) If  is non-zero, then ≤∥∥.

  (c)    .

  (d)  is -paranormal where ∥∥
.   
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  Recall that Lat  is the collection of all invariant subspace for 

Theorem 5.4. For any quasi-isometry , the following properties hold. 

  (a) If  is unitarily equivalent to  then   is a quasi-isometry.

  (b) If  ∈Lat  , then     is a quasi-isometry.

  (c) If  is invertible, then  is unitary.

  (d) If  is invertible, then   is also a quasi-isometry.

Proof. (a) Let     where  is unitary. Then

         

      

     

Hence      

  (b) Let  be the orthogonal projection of  onto . Since ∈  , 

 or taking adjoint,   . Thus  

                  . 

Hence          , as desired. 

  (c) If  is invertible, then by hypothesis    . So  is invertible   

isometry and hence  is unitary.

  (d) By part (c),  is unitary. So 


 is unitary and hence 


 is a 

quasi-isometry.

 

Remark 5.5. Let  be a unilateral shift on  defined in Corollary 4.20. 

Then   is a quasi-isometry since   is an isometry. But   is not a 

quasi-isometry since     . So a quasi-isometry need not have 

a quasi-isometry adjoint.
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Theorem 5.6. Let  be a unilateral weighted shift with non-zero weights 


∞ . Then  is a quasi-isometry if and only if 

      for   ⋯ 

Proof. Let 
∞  be an orthonormal basis for . Then    for 

all ≥  and     ,        for all  ≥ . Thus 

       
 

  
  for all  ≥ .

So this implies the result. 

Example 5.7. Let  be a unilateral weighted shift  with weights 

      
                ⋯

where  , i.e.,  

 
. Then      for all  ≥  and 

            for   ⋯  Hence  is a quasi-isometry. 

Theorem 5.8. If  is a non-zero quasi-isometry and if  is hyponormal,  

then ∥∥.

Proof. If  is a non-zero quasi-isometry, then ≤∥∥ by Theorem 

5.3(b). And by hypothesis,   ≤   and    ≤  . So

∥ ∥≤∥∥ and hence ∥ ∥≤ ∥∥ and ∥∥≤∥∥.  

This means ∥∥≤, as desired.

Remark 5.9. S. M. Patel proved the fact: If  is a quasi-isometry and if

∥∥, then  is hyponormal ([31, Theorem 2.2]). Thus Theorem 5.8 

implies that for a non-zero quasi-isometry , 

 is hyponormal if and only if ∥∥.
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Example 5.10. Let     
 

 be defined on ℂ . Then 

  (a)  is a quasi-isometry since  is an idempotent operator. 

  (b)          ∈ℂ, but  ⊂   is failed since 

     ∈ℂ .

  (c)         and ∥∥ . Hence a quasi-isometry is 

not necessarily normaloid. 

  Recall that   is the approximate point spectrum of . Also we denote 

  by  .

  The following theorem will be appeared to be true in the next section :  

Posiquasi-isometric operators (Corollary 6.24 and Corollary 6.26).

Theorem 5.11. Let   be a quasi-isometry. Then

  (a) If  is quasinilplotent, then  .

  (b)  ╲  is a subset of the unit circle.

Remark 5.12. Let   be a quasi-isometry. If   is invertible, then  

⊆   where    ∈ℂ       since   is unitary. If   is not in 

vertible, then using Theorem 5.11(b) and  ⊆  , we have either 

  ⊆∪ if 0 is an isolated point of   or      if 0 is 

not an isolated point of  .

Theorem 5.13. ([31]) Let  be a quasi-isometry. Then isolated points of 

  are eigenvalues of  .

Proof. Let  be an isolated point of  . Then we consider the Riesz spec 

tral projection  with respect to , 

  

 


 ,                      (5.2)
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where  is an open disk of center  which contains no other points of  . 

Then  is a non-zero idempotent operator commuting with  and  is 

invariant under the operator . And also     (see Theorem 2.5) 

and    a quasi-isometry by Theorem 5.4(b). If  , then    

by Theorem 5.11(a). If ≠, then    is invertible and so must be uni 

tary. Thus    .  In either case, ∈ , which completes 

the proof.

  It is well known([37, p.424]) that if  be Riesz spectral projection with 

respect to  where  is an isolated point in   defined by (5.2), then  

                  ｛  ∈         → ｝. 

Evidently, for any positive interger ,

      ⊆ .                            (5.3)

Corollary 5.14. Let  be a quasi-isometry and  be an isolated point of 

. Then the Riesz spectral projection  with respect to  defined by 

(5.2) satisfies   .

Proof. In general,  ⊆  from (5.3) and in the proof of Theorem 

 5.13,   , so that ⊆ . Hence   .

  Recall that an operator   is reguloid if  is closed for the iso

lated points of .  

Theorem 5.15. If  is a quasi-isometry, then   is reguloid.

Proof. Let  be an isolated point of  . and let  be the Riesz spectral 

projection with respect to  defined by (5.2). Then 

   , 
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both  and  are closed subspace, and they both are invariant 

under the operator . Note that     and     

╲ . If we use the decomposition  , we have    

                

since   and    is invertible. Hence 

 is closed, as desired.

  S. M. Patel proved that the Weyl’s theorem holds for quasi-isometries ([33, 

Theorem 3.19]). Here we will prove this with alternate argument using the 

following Lemma.

Lemma 5.16. Let     
 

 on  ⊕  be a 

quasi-isometry, where ∈. Then

  (a) If ≠, then   and  is a quasi-isometry.

  (b) .

Proof. (a) Suppose ≠. Then     by Theorem 5.11(b). Thus 

     
 

 and   

            

  

 


 .

Since     , we have   and  


.

 
  (b) Suppose ∈ . 

  Case 1.  . In this case, 

⊕ and    since ∈. And since  is 

a quasi-isometry, ∥∥∥ ∥ and hence  . So  ∈  

and ∈ ∩ . Therefore   .
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  Case 2. ≠. In this case, since ,

   ⊕  and     ⊕ .                 (5.4)

Since  is a quasi-isometry, ∥∥ ∥ ∥

 and from (5.4),

∥∥∥∥  ∥∥  ∥∥
.          (5.5)

Since∥∥ by Theorem 5.11(b), we have ∥∥ ∥∥
 from (5.5) 

and   . So    ⊕  from (5.4) and hence ∈  and 

 ∈ ∩ . Thus   . The proof is completed.

Theorem 5.17. Let  and  be non-zero distinct eigenvalues of a quasi 

-isometry . Then  ⊥ .

Proof. Let  have the matrix representation corresponding  as in Lemma

 5.16. Let ⊕∈. Then 

      ⊕ .          

Since   ,         by Lemma 5.16(a), so 

   and hence   and   since ≠. Therefore

   ⊕   ⊥  since ∈
 . 

                                                 

Theorem 5.18. The Weyl’s theorem holds for quasi-isometries.

Proof. First we show that   ╲   ⊂    

Let ∈ ╲. Then  is a Fredholm operator with index 0. Hen 

ce    is a non-zero finite demensional subspace and ∈  . 

Let     
 

 on  ⊕. Then  

by Lemma 5.16(b) and 
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since  is a finite rank operator. So     and   is an 

invertible operator on   . Thus ∉  and therefore  is an  

isolated point of    ∪. Hence  ╲ ⊂  

  Next we show that     ⊂   ╲    

Let  ∈ . Then    by Corollary 5.14 and  

is closed by Theorem 5.15. And also    in the proof of 

Theorem 5.15, where  is a Riesz spectral projection with respect to  

defined by (5.2). Thus we have

 ≅   ≅  .

This implies that    is a Fredholm operator with index 0 which is not 

invertible. Hence ∈  ╲

  Next we show that   satisfies the spectral mapping theorem for 

 and furthermore, the Weyl’s theorem holds for  where  is a 

quasi-isometry and  is analytic on a neighborhood of  .

Lemma 5.19. If  is a quasi-isometry and    is Fredholm for some 

 ∈ℂ, then ind  ≤ .  

Proof. If ∉ , then  is invertible, so that ind  . 

  Suppose ∈ . 

  Case 1.  . In this case, 

ind  ≤  since   is Fredholm of finite accent by Theorem 5.3(c)  

(see (2.3)).
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  Case 2. ≠. In this case,

if  is an isolated point of  , then ind    (see Theorem 2.6). 

If  is not an isolated point of  , then ∉ , otherwise ran() 

is not closed (see Theorem 2.8), which is a contradiction to the fact that 

 is Fredlhom. Thus  ∈ where  ∈ℂ       by Remark 

5.12. So ∉  by Theorem 5.11(b) and   . Thus we must 

have dim≠ since ∈ . Hence ind  .  

 

Theorem 5.20. If  is a quasi-isometry and  is analytic on a neighbor

hood of  , then         .   

                                               
Proof. Let  be a quasi-isometry. Suppose  is any polynomial. Let  

      ⋯    where          ⋯  . We 

first show that     ⊆   . If ∉   , then

    ⋯    

is Weyl. Since  commutes each other, every  is Fredlhom. 

Thus ind ≤  for each   ⋯ by Lemma 5.19, so that ind

   since

 ind    ind   ⋯ind    .

Thus ∉ for each    ⋯  and ∉  since    

  ⋯. Hence this implies  ⊆  . 

  The converse assertion    ⊇     is trivial (see (2.6)). Hence 

we have         for any polynomial  .

  If  is analytic on a neighborhood of  , Then by the Runge’s theo 

rem, there is a sequence  of polynomials converging uniformly on a 

neighborhood of  to  so that   → . Note that the mapping 

 →   is upper semi-continuous. Since each   commutes with 
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 , it follows from [30] that 

                      lim
→∞
     lim

→∞
      .

Hence         .

Corollary 5.21. If  is a quasi-isometry and  is analytic on a neighbor 

hood of  , then the Weyl’s theorem holds for  .

Proof. Recall that if ∈  is isoloid, then 

  ╲       ╲   

for every ∈ ([29], [30]). Since  is a quasi-isometry,  is iso 

loid by Theorem 5.13. Also the Weyl’s theorem holds for  by Theorem 

5.18. Thus we have 

               ╲    ╲ 

                      (Theorem 5.20).

Therefore  ╲   , so that the Weyl’s theorem holds

for  . 
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 6. Posiquasi-isometric operators 

  H. C. Rhaly, Jr. introduced posinormal operators as the class of opera 

tors  for which     for some positive operator  ([36]). 

This is a very large class that includes the hyponormal as well as all inver

tible operators. 

  Now, we shall define a new class of posiquasi-isometries which is an 

extension of the class of quasi-isometries and includes all invertible ope 

rators. Its concept is motivated by posinormal operators. 

 

Definition 6.1. An operator ∈  is defined to be a ,

shortened to  ∈, if there exists a positive operator  ∈  called 

the interrupter, such that      

  Since      if and only if 

                ,

We can see that  ∈ if and only if for some positive operator 

 ∈ , 

                ∥∥∥ ∥ for all ∈.                 (6.1)

  By (6.1), clearly if  ∈ with interrupter , then ∥∥∥ ∥.

Theorem 6.2. If ∈ with interrupter , then 

  (a)∥∥≤∥∥ ∥ ∥ for every  in .      

  (b)∥ ∥≤∥∥ ∥ ∥ for every   ≥  and every  in .  

  (c)  ≤∥∥  .  

  (d) ≤∥∥∥∥
 if  is non-zero.       

                     

Proof. (a) Since the interrupter  is positive, ∥∥∥∥ . Thus  
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∥∥≤∥∥∥ ∥∥∥ ∥ ∥ for every ∈  from (6.1).  

  
  (b) for  ≥ ,  by part (a),   

 ∥ ∥∥ ∥≤∥∥ ∥  ∥

∥∥ ∥ ∥

 for every  in . Hence the result follows.

  (c) and (d) immediately follow from part (a). because part (a) implies 

∥∥≤∥∥∥ ∥

 for every ∈ and ∥∥≤∥∥ ∥∥.

Theorem 6.3. If  ∈ with interrupter  and  has dense range, then 

 is unique.

Proof. Assume  and  both serve as interrupter for . Then 

             
 

, so  
. 

Since  has dense range,   is one to one. Thus  
. Take 

its adjoint and again applying the fact that  has dense range, then 

 , as desired.

Remark 6.4. Let  be a unilateral shift on . Then since  is isometry,

 is a posiquasi-isometry and since  have not dense range, the inter 

rupter  for  is not unique. In fact take positive interrupter  to be 

the diagonal matrix with diagonal entries ≥  ≥ and   for 

≥ . Then we have     by the direct calculation, which 

shows the nonuniqueness of  for .

Theorem 6.5. If ∈ with interrupter  and  is isometry (that is, 

   ), then   ∈ with interrupter   .
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Proof. Let      Since  is positive,  ≥  and

           
       
       

Hence   ∈ with interrupter   .

  
Theorem 6.6. For any ∈ with interrupter , the following properties 

hold. 

  (a)  is a posiquasi-isometry with interrupter   for each ∈ℂ.

  (b) If  is unitarily equivalent to , then ∈ 

  (c) If ∈Lat , then  ∈ with interrupter   where    

      is an orthogonal projection of  onto .

  (d)  ⊗ and  ⊗ are both posiquasi-isometry.

Proof. (a) If ≠, then           

and  is positive. Hence ∈.

  (b) Let     where  is unitary. Then ∈ with interrupter   

   by the above Theorem 6.5.

  (c) Since ∈Lat ,  (see Theorem 2.4) or     

and   ≥ .  So 

                  .

Hence            , as desired. 

  (d) Since ∈ with interrupter ,  ⊗  is a positive operator and  

  ⊗ ⊗    ⊗ ⊗ 
   ⊗    ⊗
  ⊗ ⊗  ⊗ 

 ⊗ ⊗ ⊗ 
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Hence  ⊗∈ with interrupter  ⊗ . Similarly  ⊗ ∈ with 

interrupter  ⊗.   

Theorem 6.7. (Douglas [14]) For any  ∈ , the following state

ments are equivalent. 

  (a) ⊆

  (b) ≤ for some ≥ 

  (c) there exist a ∈  such that 

Moreover, if (a), (b), and (c) hold, then there is a unique operator  su

ch that 

  (1) ∥∥ inf   ≤ 

  (2)     and

  (3) ⊆ .

  Douglas’ theorem leads almost immediately to the following result.

Theorem 6.8. For any ∈ , the following statements are equivalent.  

  (a) ∈.                                                        

  (b)  ≤     for some ≥ .                             

  (c)                                                   

  (d) there exists a ∈  such that                    

Moreover, if (a), (b), (c) and (d) hold, then there is a unique operator  

such that 

  (1) ∥∥  inf    ≤    

  (2)      and

  (3) ⊆
  .

Proof. (a) implies (b) : If ∈, then by Theorem 6.2(c),  ≤ 

∥∥  . Put ∥∥  Then the result follows. 
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  (b) implies (c) : By hypothesis, since   ≤   ,  ⊆ 

  by Theorem 6.7 and in general  ⊇  for any ∈ 

 . Hence   

  (c) implies (d) : This is trivial by Theorem 6.7.

  (d) implies (a) : If   , then 

       
   

 

and ≥ . Thus ∈.

  (1), (2), (3) : They immediately follow from Theorem 6.7.

Remark 6.9. (a) If ∈, then     since     

(b) Let  be a unilateral shift on . Then ∈, but  ∉ since

   , so that a posiquasi-isometry need not have a posiquasi- 

isometry adjoint.

Theorem 6.10. ∈ if and only if there exists a positive operator 

∈ such that   ≤   

Proof. It suffices to show that if there exists a positive operator ∈ 

such that  ≤  , then ∈. For any ∈,             

         ≤     

     

≤∥∥     

Thus  ≤∥∥   Hence ∈  by Theorem 6.8.

Theorem 6.11. Let  and  be commuting posiquasi-isometries. Then 

the product   is a posiquasi-isometry.

Proof. Let ∈ with interrupter , ∈ with interrupter  and 
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. Then by Theorem 6.2(a), we have for each ,

                    ∥∥≤∥∥∥ ∥


 ∥∥∥ ∥


≤∥∥∥∥∥  ∥


∥∥∥∥∥∥



   

Thus  ≤    where        Hence ∈ 

  by Theorem 6.8.

  By the above theorem, any power of a posiquasi-isometry is a posiquasi

-isometry. But we will directly prove this fact as following:

Corollary 6.12. If ∈, then  ∈  for every positive integer .

Proof. If ∈ , then by Theorem 6.2(b), for  ≥ ,

∥ ∥≤∥∥×∥ ∥
≤∥∥×∥ ∥
≤∥∥×∥ ∥
⋯

≤∥∥×∥ ∥

Hence ∥ ∥≤∥∥∥ ∥ for every  in . Put ∥∥. 

Then    ≤ 
    for each  , which implies  ∈ 

for every positive integer  by Theorem 6.8. 

  A posiquasi-isometry need not be invertible (see Remark 6.4), but the 

following theorem tells us that an invertible operator must be a posiquasi 

-isometry. 

Theorem 6.13. Every invertible operator is a posiquasi-isometry with the 

unique interrupter .

Proof. If  is invertible, then           . So 

∈ by Theorem 6.8. Also  has dense range since  is invertible.  
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Thus the interrupter  is unique by Theorem 6.3.

  By Theorem 6.13, we know that if  is invertible, then both  and  

will be a posiquasi-isometry. Furthermore,   and   will also be a 

posiquasi-isometry. The following theorems formalize these relationships 

in terms of interrupters.

Theorem 6.14. If  is invertible with interrupter , then 

  (a)  is invertible and   is a positive operator.

  (b)    is a posiquasi-isometry with interrupter  .

Proof. (a) By hypothesis,      and       since  

is invertible. Thus  is invertible and 
  is positive.

  (b) Since 
 ,   . Thus     and   

          
  
 
 

Hence the result follows.

Theorem 6.15. If  is invertible and if  ∈ with interrupter , 

then  is invertible and 


 serves as the interrupter for the posiquasi    

-isometry  .

Proof. By Theorem 6.14,  is invertible and   is a positive operator.  

    implies      . Thus

       , 

so that   is a posiquasi-isometry with interrupter 


, as desired.
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  In Remark 5.9, we know that the following statement holds for a non-

zero quasi-isometry , 

   is hyponormal if and only if ∥∥.              (6.2)

The following theorems show the relation between posiquasi-isometry and 

hyponormal operator, paranormal, and -paranormal. 

  Recall that  is -paranormal if ∥∥≤∥ ∥ for any unit vec 

tor  in . 

Theorem 6.16. Let ∈ with interrupter  and let ∥∥∥∥. 

Then the following properties holds.

  (a)  is -paranormal and ≥.                              

  (b) If ∥∥∥∥, then  is hyponormal.

Proof. (a) If ∈ with interrupter , then by Theorem 6.2(a), we have

∥∥≤∥∥∥ ∥∥ ∥
≤∥∥∥∥∥ ∥
 ∥ ∥

 

for any unit vector  in . Hence  is -paranormal and ≥ by The 

orem 6.2(d).

 

  (b) By hypothesis, we have  ≤∥∥   by Theorem 6.2(c). 

Thus if∥∥∥∥, then     , easily checked. In fact 

 ≤    if ∥∥ and  ≥   if ∥∥. So  is a 

quasi-isometry with∥∥. Hence  is hyponormal by (6.2).

 
Theorem 6.17. If  is hyponormal and  is closed, then ∈.

Proof. Since  is hyponormal,     and  ⊥   ⊥.  

And also since  is closed,   is closed ([10]). Thus we have 

   . Hence ∈  by Theorem 6.8. 
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  The following theorem immediately holds by properties of -paranormal. 

Theorem 6.18. ([25]) Let ∈ with interrupter  and ∥∥∥∥. 

Then we have the followings:

  (a)  ∥ ∥≥∥ ∥∥∥ for any unit vector  in . 

  (b) For every posituve integer  and every unit vector  in ,

                  ∥ ∥

≥∥ ∥


∥ ∥ 

  (c) If  is a unilateral weighted shift  with non-zero weights , then  

   ≤  .

     for each positive integer  .

Theorem 6.19. Let  be a unilateral weighted shift with non-zero weights 


∞ . Then 

∈  if and only if  sup ≥    ∞.        

 Proof. Let 
∞  be an orthonormal basis for . If ∈, then 

 ≤   for some ≥  by Theorem 6.8. So 

     ≤ 
       

for each  . Thus   
≤   

   

 and  

≤  since  is  

non-zero for each . Hence sup ≥    ∞. 

  Conversely, let sup ≥    ∞. Taking a positive operator  to 

be the diagonal matrix with diagonal entries 

 ≥  ≥ and    

 for  ≥ ,       (6.3) 

we have      In fact,      
 for  ≥  since 

  for  ≥  and    and      for  ≥ . 

On the other hand,
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 for ≥ . Hence     
    for  ≥ , as desired.

Corollary 6.20. If  is a paranormal unilateral weighted shift with non- 

zero weights 
∞ , then ∈.

Proof. By hypothesis, non-zero weights 
∞  is bounded and  

∞  

is monotonically increasing. So 
∞  converges to a non-zero limit. Thus 


∞  also converges to a non-zero limit. Hence sup≥   ∞ 

and the result follows from Theorem 6.19.

 

Remark 6.21. A unilateral weighted shift  with weights 
∞  is com 

pact if 
∞  converges to zero ([17]). But  ∉ by Theorem 6.19. 

Hence a compact operator need not be a posiquasi-isometry. 

  Let ∈ with interrupter . If  ∥∥∥∥
, then  is paranormal 

by Theorem 6.16(a). But the following example shows that the converse 

is not true.

Example 6.22. Let  be a unilateral weighted shift with non-zero weights

    





  





⋯   





⋯  

  (a) ∈  for every    since 

sup 

 






  ∞.
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  (b) Let a positive operator  be the diagonal matrix with diagonal 

entries       and   for  ≥  from (6.3). Then  

is the interrupter for   for all  .

  (c) If  ≤





, then ∈ with interrupter  and also is a para

normal since 
∞

 is monotonically increasing. But  ║║║║

 is  

failed since ∥∥   and ∥∥. 

  The above example gives us that if 





, then ∈ , but  

is not a paranormal operator. Thus a posiquasi-isometry need not to be a 

paranormal operator.

  In the next theorems we explore several properties of the spectrum of 

a posiquasi-isometry.

  Recall that ∈  is quasinilpotent if ∥ ∥

→  as →∞. Evi

dently, if  is quasinilpotent, then    . 

  
Theorem 6.23. If ∈ with interrupter  and if  is quasinilplotent, 

then  .

Proof. By hypothesis, for sufficiently small   , there exits  such that 

 ≥ implies ∥ ∥

  since  is quasinilplotent. Using Theorem 

6.2(b), we get ∥∥≤∥∥      for all  ≥  since   

  ∥∥≤∥∥ ∥ ∥
≤ ∥∥ ∥ ∥
⋯

≤ ∥∥ ∥ ∥
≤ ∥∥ 

Hence this implies that  . 
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Corollary 6.24. Every quasinilplotent quasi-isometriy  is zero.

Proof. Since every quasi-isometriy   is a posiquasi-isometry with the inter 

rupter , the result follows from Theorem 6.23.

  Recall that  denotes approximate point spectrum of .

Theorem 6.25. Let ∈ with interrupter . If ∈ ╲ , then   

∥∥


≤   ≤∥∥.

Proof. It is sufficient only to show ∥∥


≤    . Now if ∈   ╲, 

then there exists a sequence  in   with ∥∥ for all  such 

that ∥∥→ . So ∥∥≤∥∥ ∥ ∥ for every  in 

 by Theorem 6.2(a). Thus   ≤∥∥    as →∞. Since ≠, We 

have ∥∥


≤    .

Corollary 6.26. If   is a quasi-isometry, then  ╲  is a subset 

of the unit circle.

Proof. In the proof of Theorem 6.25, using ∥∥∥ ∥ instead of 

∥∥≤
∥∥ ∥ ∥ since   is a quasi-isometry, then the result 

immediately follows. 

Theorem 6.27. Let  be the set of all posiquasi-isometries on . 

Then  is not closed in the operator norm topology on  .

Proof. Let  be a unilateral weighted shift with weights 
∞ . 

Then we have well known that     and  is a compact operator. 
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Suppose  is a sequence converging to 0. Then  converges to , 

but  is not posiquasi-isometry by Theorem 6.23 (or Theorem 6.19), while 

by Theorem 6.13, each  is posiquasi-isometry since it is invertible.

Remark 6.28. In the proof of the above theorem we can know the fact 

that if  is a posiquasi-isometry, then the translate  need not be a  

posiquasi isometry. 

Remark 6.29. Consider   where  is a unilateral shift on . 

Since 2 is not in        ≤ ,  is a posiquasi-isometry. But the 

Corollary 6.26 shows that  is not a quasi-isometry because   

   ≤  and  ╲ is not a subset of the unit circle. Thus 

the following classes are related by proper inclusion : 

            Unitary ⊊ Isomertry ⊊ Quasi-isometry

                            ⊊ Posiquasi-isometry 

           ⊊ -paranormal.

Example 6.30. Let     
 

 be defined on ℂ 
. Then since  is inver 

tible, ∈ with unique interrupter     
 

 by Theorem 6.13. 

Note that    and∥∥ . Thus a posiquasi-isometry is not ne 

cessarily normaloid. 

Example 6.31. Let     
 

 be defined on ℂ . Then ∈. In fact, 

 is a quasi-isometry since  is an idempotent operator. Thus we have 

       ∈ℂ, but  ⊂   is failed since   

    ∈ℂ. So 0 is not a normal eigenvalue (see (2.1)).



55

Theorem 6.32. Let ∈ with interrupter . Then 

  (a) If  ∈, then  ∈  .

  (b) If  ∈, then  ∈ .

  (c) If  has dense range, then    .

Proof. (a) Let ∈. If ∈ℂ ╲  , then   is one-one. So   

   since     . Take its adjoint,     and again 

applying the fact that   is one-one, we have    . This will 

contradict the fact that ∈ . 

  (b) Let ∈. If ∈ℂ ╲  , then ∈ℂ ╲   and     

by in the proof of part (a). Since ∈ , we can choose a sequence  

of unit vectors such that → . Then    , so that   

    for all  . This is a contradiction since ∥∥ for all  , 

and ∥ ∥→   as →∞.

  (c) Since  has dense range,   is one to one. Thus  is also one to 

one by part (a), as desired. 

  If ∈ with interrupter  and  ∥∥∥∥, then the Weyl’s 

theorem holds for  since  is paranormal by Theorem 6.16(a). But in 

general, the following property holds for a posiquasi-isometry.

    
Theorem 6.33. Let ∈ with interrupter . Then ∈ ╲  

if and only if  ∈ .

  
Proof. Let ∈ ╲ . Then  is a Weyl operator. Hence  is 

non-zero finite dimensional subspace. Now we only show that 0 is a isolated 

point in  . Since  has finite ascent (see Remark 6.9),  has finite 

decent (see (2.3)). And hence  is a Browder, so ∉    ∪  

   (see (2.5)). Hence 0 is a isolated point in  . 
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  Conversely, let ∈ . Then we consider Riesz spectral projection 

 with respect to 0 ,  

 


 , where  is an open disk 

of center 0 which contains no other points of  . Then  is a non-zero 

idempotent operator commuting with ,  is invariant under the operator 

 and    ,      ╲  (see Theorem 2.5). 

Thus   ∈ by Theorem 6.6(c) and    by Theorem 6.23. 

Therefore 0 is an eigenvalue of . And  (see (5.3)). If we use 

decomposition    , we have 

     

since ∉   . Hence  is closed. And 

dim  dim   dimdim

This implies that  is a Weyl operator which is not invertible. Hence ∈ 

 ╲ .
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 <국 문 초 록>

-작용소, 2-등거리변환 작용소, 유사-등거리변환 

작용소 그리고 양유사-등거리변환 작용소에 관한 연구

  본 논문에서 -작용소, 2-등거리변환 작용소(2-isometry), 유사-등거리변환 

작용소(quasi-isometry) 그리고 새롭게 정의한 -작용소와 양유사-등거리변

환 작용소(posiquasi-isometry)의 대수적 성질과 이들 작용소들의 스펙트럼의 

특성을 연구한다. 그리고 이들 작용소들과 하이퍼노말(hyponormal), 파라노말

(paranormal)작용소들 등과의 관계를 조사한다. 양유사-등거리변환 작용소들의 

집합은 유사-등거리변환 작용소들의 집합의 확장이며 모든 가역적 작용소들을 

포함한다.

  또한 가중 일단전진이동 작용소(unilateral weighted shift)가 -작용소, -

작용소, 2-등거리변환 작용소, 유사-등거리변환 작용소, 양유사-등거리변환 작용

소가 되기 위한 필요충분조건을 제시한다. 특히 힐버트 공간에서 유계 선형 작용

소 가 2-등거리변환 작용소 또는 유사-등거리변환 작용소라고 하면 바일정리

(Weyl’s theorem)가 에 대하여 성립하고, 가 의 스펙트럼을 포함하는 개 

근방에서 정의한 해석적 함수라고 할 때, 의 바일 스펙트럼은  에 대해 스

펙트럼 함수 정리(spectral mapping theorem)를 만족시키며 나아가  가 바

일정리를 만족한다는 것을 밝힌다.

  어떤 작용소가 양유사-등거리변환 작용소가 되기 위한 필요충분조건들을 제시

하며, 모든 유사-멱영원(quasinilpotent)이고 양유사-등거리변환 작용소는 영인 

작용소이며 양유사-등거리변환 작용소의 임의의 거듭제곱은 또한 양유사-등거리

변환 작용소임을 밝힌다. 그리고 모든 양유사-등거리변환 작용소들의 집합은 

 의 작용소 노름 위상(operator norm topology)에서 닫혀있지 않음을 보인다. 
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