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<abstract>

ON THE CLASS OF GENERALIZED
*=PARANORMAL: OPERATORS

In this paper, we shall study the various characteristics of
the M- paranormal operators which generalizes
w-paranormal  operators, and  those of  kh  rocis  of
s-paranomal on a Hilbert space. The mam results are as

follows:

(1) Let N he anv closed linear subspace invariant under the
operator T. If T is a M"-paranormal operator, then (a) Ty
and AT 1= M -paranormal - for evens complex number 4.
Also {(b) if § is unitarily equivalent to a M"- paranormal
operator T, then 5§ is M -paranormal, And (¢) if Tis a M°
-paranormal operator, then ker T'S ker T and ker T° =ker 7t

{2) The sum of M -paranormal operators even commuting or
double commuting mav not be M -paranormal, Also the
product of two M -parancrmal operators, in general, may

nol be M -paranomal.

(3) If a M -paranormal operator T 15 double commutative
with a hyponormal operator § then 75 15 M"-paranormal,
Also if a M -paranormal operator T commutes with an
unitary operator S, then TS is M'-paranormal,



{(4) Let T and § are doubly commuting M -paranormal
operators. Then the product TS5 is M -paranormal if one of
the following holds
(a) || 78|l lld] = VM) 7"l S| for any wx in H.

(b)) 17°S%l Il = M TSl for any x in H.

{(5) Let T be any M-paranormal operator. Then
I <M|T* 2T '4* for any unit vector ¥ in A In

particular || T = MIT*dl for any unil vector x in Ff.

(6) Let T be a weighted shift with nonzero weights {a.}
(p=002..). Then T is a gh root of M"-paranormal
operator if and only if

|er ||F'|ﬂ’n 5|E'“|ﬂ’n alnﬂ Mladle ool ler s 2e—1

for w—g k+1, k42, ...

(7) Let T be a #h root of *-paranormal operator and let Ne
Lat (T} he any closed lingar subspace invariant under the
operator 7 Then Tlv is a ph root of =-paranormal
operator, and AT is a Mh root of *-parancrmal operator for
all scalar 4 Also if § is a jh root of *-paranormal
operator and S 1s unitarily equivalent to 7, then T is a jh

root of = paranormal operator.

(8) Let T be a Mh root of M -paranormal operator and
commute with an unitary operator S then 7% is also a gh

root of M*-paranormal operator.

(9) The set of all the #h root of #-paranormal operator is
closed in the norm topology.



(10 Let T: be the weighted shift with nonzero weights

gy = x, @ = lp'r‘;‘;L, ay = f'i', we _ Then we give a
necessary and sufficient condition that ¥, is a &th root
of #-paranormal operator. Also we obtain a condition
which 7T, is *—parancormal but not paranormal. Similarly

we obtain a condition which 7T: is not #*-paranormal and
not paranormal,

- -



1. Introduction

In the theory of non-normal operators on Hilbert spaces, it is important
to seek ways to reduce the problem to the normal operator case. Many
mathematicians have tried to extend the significant properties of normal
operators to the case of non-normal operators in various way since early
1960. Some classes of non-normal operators are closely related to normal
operators, and the analogy and the difference between such non-normal
operators and normal operators have been discussed.

Let H be a Hilbert space and let L(H) be the set of all bounded
linear operators on H. We denote the kernel of T and the range of
T by kerT(= N(T')) and R(T) respectively. Write o(T) = {\ € C :
T — Al is not invertible} for the spectrum of T, p(T) = o(T)¢ for the re-
solvent of T', 0,(T) = 7,(T) = {\ € C : ker(T' — \) # {0} } for the set of
eigenvalues of T, mo(T) for the points of o(7") that are eigenvalues of finite
multiplicity, and moo(7") for the isolated points of o(T') that are eigenvalues
of finite multiplicity. A complex number A € C is an approximate eigenvalue
of T'if there exists a sequence {z,,} with ||z, || = 1 such that T'z,, — Az,, — 0,

ie, (T'— Nz, — 0. Let
oap(T) ={A € C : \is an approximate eigenvalue of T"}.

Then 04,(T) is the approzimate point spectrum of T. The spectral radius

r(T) of T is defined by
lim || 7Y™ = sup{|A| : A € o(T)}.

1



A closed linear subspace M of H is invariant under the operator T if

T(M) C M. A closed linear subspace M reduces the operator T' if both

M and M* are invariant under 7. Clearly, {0} and H are invariant under
every operator 7.

If K is a subset of C, we write iso K for the set of isolated points of K
and Lat T for the lattice of the operator T, i.e. the set of all closed linear

subspaces which are invariant under 7'.

The well-known results on the spectra are as follows;

Lemma 1.1.([11],[14]) For any operator T € L(H),
(1) ker T* = R(T)".
(2) o(T) is a nonempty compact subset of C.
(3) 0,(T) C 04p(T) C o(T).
(4) 0ap(T) is a closed subset of o(T) .
(5) 00(T) C 04p(T).

Lemma 1.2.([7]) If T € L(H) and M is any closed linear subspace of

H, the following conditions are equivalent ;

(1) M reduces T.
(2) M~ reduces T.

(3) M reduces T*.



(4) M is invariant under both T and T*.

By T. Saito, T. Furuta, etc., the following non-normal operators have
been defined as follows; An operator T' € L(H) is called normal if T*T =
TT*, quasinormal if T commutes T*T, i.e., T(T*T) = (T*T)T, subnormal
if T" has a normal extension(i.e., there exist a Hilbert space K containing
H as a subspace and a normal operator B on K such that Tx = Bx for
all x € H), hyponormal if T*T — TT* = D > 0, or equivalently ||Tz| >
|T*z| for x € H, seminormal if T*T — TT* = D, D > 0or D < 0
(or equivalently T or T* is hyponormal), and normaloid if ||T'|| = r(T') or
equivalently [|T™|| = ||T||" for any positive integer n. An operator T is
called x-paranormalif || T*z||? < ||T?z]|||z|| for every x € H.

We have the following implication, but the converse of the implication

are not reversible([23], [42]).
Normal C Quasinormal C Subnormal C Hyponormal
C *x-paranormal C Normaloid.

B. L. Wadhwa([53]) introduced the class of M-hyponormal operators
and V. Istratescu([29]) has studies some structure theorem for a subclass of
M-hyponormal operator. An operator T is called M -hyponormal if there
exists a real number M > 0 such that M|(T" — A)z| > (T — AI)*z|| for

any unit vector x in H and for any complex number A. Every hyponormal



operator is M-hyponormal, but the converse is not true in general : For

example, consider the weighted shift S on [, given by
S(;Cl,.CEQ, .. ) = (0, 2331,.1}2,!173, .. )

Then S is M-hyponormal, but not hyponormal.

On the other hand, an operator T is called M*-paranormal if || T*z||* <
M ||T?z|| for any unit vector z in H. In paticular if M = 1, the class of
M*-paranormal operators becomes the class of x-paranormal operators as
studied by S. C. Arora and S. M. Patel([6], [38]).

S. M. Patel has characterized the x-paranormal operator as follows: An

operator T is sx-paranormal if and only if
TT? = 20TT* + X1 > 0
for all A > 0.

Theorem 1.3.([16]) (The Spectral Mapping Theorem) If T € L(H) and
f is analytic in a neighborhood of o(T'), then o(f(T)) = f(o(T)).

The organization of this thesis is as follows:

In section 1, we introduce basic properties of various spectra(spectrum,
point spectrum, approximate point spectrum etc.) of a bounded linear
operator and the spectral mapping theorem.

In section 2, we give the well-known results of hyponormal operators

and x-paranormal operators on a Hilbert space H.



In section 3, we shall study certain properties of M*-paranormal op-
erators. In particular, we shall give an essentially characterization of M*-
paranormal operators in the following way; An operator T is M*-paranormal
if and only if

MPT*T? + 20TT* + N1 > 0
for all real number \.

In section 4, we shall study a new class of operators called a kth root
of G-operator : An operator T' € L(H) is a kth root of a G-operator if T*
is a G-operator. In particular, if a G-operator is x-paranormal, then T is
called the kth root of a *-paranormal operator. We shall show the following

results:

(1) Let T be a weighted shift with non-zero weights {a,} (n =0,1,2,...).

Then T is a kth root of M*-paranormal operator if and only if
|an—1’2|an—2’2 T |O‘n—k|2 < M‘O‘nHan-&-ﬂ T ‘O‘n+2k—l|
form=kk+1,k+2,...

(2) Let T be a kth root of *-paranormal operator and N € Lat T. Then

T|n is a kth root of *-paranormal operator.

(3) If S € L(H) is a kth root of x-paranormal operator and S is unitarily

equivalent to T', then T is a kth root of x-paranormal operator.

(4) Let T be any kth root of M*-paranormal operator and commute with

an unitary operator S. Then T'S is also a kth root of M*-paranormal

operator.



(5) The set of all the kth roots of *-paranormal operator is a proper closed

subset of L(H) with the norm topology.



2. Hyponormal operators and x-paranormal operators

Lemma 2.1. Let T be a hyponormal operator on a Hilbert space H.

Then
(1) T — X and T~ are hyponormal operators for all X € C.
(2) Tz = Mz implies T*x = Az for all z € H and X € C.

(8) Tx =X x, Ty = py and X\ # p for all z,y € H, A\, u € C imply that

and y are orthogonal.

Proof. (1) Since T is a hyponormal oprator, we have

(T — N (T* = NI) = TT* = \T* — \T + |\*I
< T*T — NT* — AT + |M?I

= (7" — M\)(T — A

for all A € C. Hence T'— A is a hyponormal operator.
If T is invertible and T*T — TT* > 0, then

0 < TYT*T —-TT*)T**

= T7'T*TT* " — 1.
Since A > I implies A™! < I, we have I — T*T~'T*~'T > 0 and hence

T*—lT—l _ T—lT*—l — T*—l([ o T*T—lT*—lT)T—l 2 0.



(2) Since T'— AI is a hyponormal operator and Tz = Az
0 < (T = Al al| < (T = Al)x| = 0.

Thus ||(T — AI)*z|| = 0, and so T*x = Ar.
(3) Since

Mz, y) = (A, y) = (T, y) = (2, T"y) = (2, ) = p(x, y),
(A —u)(x, y) = 0 implies (x, y) =0 (A # u). Hence z,y are orthogonal. [J

Definition 2.2. An operator 7' € L(H) is said to be nilpotent if T" = 0

1
n — 0 as

for some positive integer, n. € N, and quasinilpotent if ||T™
n — 00.

Evidently, if T is nilpotent then T is also quasinilpotent and since the

spectral radius 7(7") can be expressed as
: 1
r(T) = lim |7,
it follows that »(7") = 0 if T" is quasinilpotent.

Lemma 2.3. Let T be a hyponormal operator on H. Then

(1) For any vector x € H,

|\ Tx|| = ||T"x|| if and only if T"Tx =TT x.

(2) The set N ={x € H : ||[Tz|| = ||T*x||} is a closed subspace of H.



(8) The restriction T|y of T to an invariant subspace N is hyponormal.
(4) For every positive integer n, ||T™| = ||T||™ and so T is normaloid.

(5) The only quasinilpotent hyponormal operator is a zero operator.

Proof. (1) The proof of the sufficiency is obvious. If ||Tz|| = || T"*x|| for
each vector x € H, then ((T*T — TT*)z, ) = 0 and hence for each vector

y€eH,
(T"T = TT*)z, y)|* < |[(T*T = TT)z, 2)| |(I"T — TT")y, y)| =0

by the generalized Schwarz inequality for positive operators. Since y is

arbitrary, we have T*Tx = TT*x for each z € H.
(2) By (1),
N = {veH:|Ta| = | T"|}}
= {x € H:(T"T = TT")x = 0} = ker(T*T — TT")
is clearly closed.

(3) Since N is invariant under 7', PT' P = T'P where P is the projection

on N. Since T is hyponormal,
|PT*Pr| < |[T"Pz| < |TPz|| = || PT Pz

for each vector x € H, and so PTP is a hyponormal operator. Hence T'|y

is a hyponormal operator.



(Another method) Let = be any vector in N. Since (T'|y)z = Tx and

T is a hyponormal operator, we have
(T n)xl| = [[T|| = (|77 = [|(T] ) ]|

Hence T|y is a hyponormal operator.
(4) For n = 1, the equality is trivial. Assume that ||7"| = [|7'||™ for
1 < k <n. We shall prove it for n + 1. Then

|T"z|* = (T"z, T"'z) = (T*T"z, T" 'z)
< T T || 1T 2

< AT TS )

Since || T = ||T||"7t, we get |[T™|| > ||T||"™. The converse inequality
being obvious, the proof is complete.
(5) By hypothesis ¢(T) = {0} and so |T|| = (7)) = 0. Hence T is a

zero operator. U

Corollary 2.4. Every nonzero hyponormal operator has a nonzero ele-

ment in its spectrum.

Proof. r(T) = lim | T"||= = | T > o.

Theorem 2.5.([5]) The class of all hyponormal operators on a Hilbert

space H is closed in the norm topology of operators.
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Theorem 2.6.([42]) Let T be the weighted shift operator defined by
Te, = apeni1 (n > 1) with weights {a,}5°,. Then T is a hyponormal
operator if and only if the weight sequence {c,} is monotonically increas-

mg.

S. L. Campbell([13]) and Peng Fan([17]) showed the following examples.

Example 2.1. Let T be the unilateral weighted shift with weight se-

1

quence {1,3,1,1,...}. Then T is not a hyponormal operator by Theorem

2.6.
Example 2.2. Let T be a bilateral shift defined by

el-r <fer <D
Fap e
2¢,_1 forn > 3.

Then T is a hyponormal operator.

Remark. ([21]) 7% may not be hyponormal when 7 is a hyponormal
operator. For example, if U is the unilateral shift on [, and T'= U* + 2U,

then
T —-TT*=3(1-UU") > 0.

Therefore T' is hyponormal, However, if we take z = (1, 0, =2, 0, 0, ...),
then T2z = (0,0, —4, 0, =8, 0,...), (T*)*x = (6,0, =7, =2, 0,...) and

SO

|T2z||* = 80 < 89 = ||(T*)x||*.

Hence T2 is not a hyponormal operator.

11



A hyponormal operator 7" does not imply that 72 is hyponormal. This

can be seen from the following another example due to M. Putinar(34].

Example 2.3. Let H denote an arbitrary Hilbert space and let A denote

the set of all function x = z(n) defined on integers with values in H and

o0

satisfying ™ ||z(n)||* < co. Then A become a Hilbert space with inner
product (z,y) = > (x(n),y(n)). Next, let {P,} be a bounded sequence of
nonnegative operators on H, so that 0 < P, < (constant) - I, and define

the operators U on A by
Uz(n) =xz(n+1) and Px(n)= P,z(n).

It is clear that U is unitary and that P is a nonnegative bounded operator.

Furthermore, if T'= U P then
Tx(n) = Pyyiz(n+1) and T*z(n) = P,z(n — 1),

and hence T*Tz(n) = P2x(n) and TT*z(n) = P2 z(n).

Consequently, T*T — TT™* > 0 if and only if

P2 > p?

e for m=0, %1, £2,.... (1)

An easy calculation shows that
T?2(n) = Pyy1 Py x(n +2)
and T*%z(n) = P,P,_1 z(n — 2), and hence

T**T? z(n) = P,P2_ P, x(n)

12



and

T*T* z(n) = Pyi1 P2y Py z(n).
Thus T2 is a hyponormal operator if and only if
P,P? P, > Py 1P2 3P,y for all n (2)

It will be shown that (1) does not imply (2).
Let H be two-dimensional, so that operators on H can be regarded as

2 x 2 matrices and let

2 1 10
A_(l 1) and B—(O 0).

ThenAZO,BZOandA—B:(} i)ZObutA2—32:<§ 3) "

not positive definite. Let P, be the nonnegative square root of A for n <0
and nonnegative square root of B for n > 0. Then P? > P2, so that (1)

holds and 7" is a hyponormal operator. But
PyP? Py=A* and P P;P = B?

so that (2) fails to hold for n = 0. Hence T2 is not a hyponormal operator.

O

Definition 2.7. An operator T is said to be unitarily equivalent to an

operator S if S = U*TU for a unitary operator U.

Theorem 2.8. An operator unitarily equivalent to a hyponormal oper-

ator is a hyponormal operator.

13



Proof. Suppose S = U*TU, T is hyponormal and U is unitary. Now for

every x € H,
15 a|| = [UT*Uz|| = [|[T*VUz|| < [[TUz|| = |UTUz|| = [[Sz||
and so S is hyponormal. O

In [19], T. Furuta and R. Nakamoto have proved the following theorem.
Theorem 2.9. A hyponormal operator unitarily equivalent to its adjoint

18 normal.
Proof. Suppose T* = U*T'U, U is unitary and T is a hyponormal oper-

ator. Now for any vector x in H,
Tz = |UT*U|| = |T*Uz|| < {TU|| = [UTUz| = | T"z|.
Thus |[|[Tz|| < ||T*z| and ||Tz|| > ||T*z||. Therefore |Tx| = ||T*z|. O

Definition 2.10. Two bounded linear operators S and T are doubly
commutative(resp. weakly doubly commutative) if TS = ST and T'S* =
S*T'(resp. T'S # ST but T'S* = S*T).

Theorem 2.11. Let T be a hyponormal operator such that T*T com-
mutes with TT*. Then T? is a hyponormal operator.

Proof. By hypothesis, we have

T - T°7** = TY(T*T\T — T(TT"T*
> THTTT —T(T*T)T*

= (T*T)* — (TT*)? (because T*T > TT*)

14



> 0.

Thus T2 is a hyponormal operator. O

In the following Lemma, we show that if two operators are weakly doubly
commutative, then the sum and product of two hyponormal operators are

hyponormal.

Lemma 2.12. If T and S are hyponormal operators such that T*S =
ST*, then T + S is a hyponormal operator.
Proof. By hypothesis, we have

(T+8)(T+8) = T"T+T"S+ST+S*S

TT* +T°5+ 3T+ 55

> TT* +TS* + ST + SS*
(T + S)(T + S)*.

v

Thus T+ S is a hyponormal operator. O

Lemma 2.13. If T and S are hyponormal operators such that T*S =
ST*, then T'S is a hyponormal operator.

Proof. For all x € H, we have
(TS)a|* = ||S*T"||* < ||ST"z||* = | T Sz|* < [(TS)x|*.

Thus T'S is a hyponormal operator.

(Another method) By the hyponormality and the hypothesis, we have
(TS)Y(TS) = SYT*T)S > S*(TT*)S

15



= T(S*S)T* > T(SS")T* = (TS)(TS)".
Thus T'S is a hyponormal operator. O

From Lemma 2.12 and Lemma 2.13, the sum and the product of two

weakly double commuting hyponormal operators are hyponormal.

The sum and product of two double commuting hyponormal operators
are easily shown to be a hyponormal operator. But the sum and product
of two commuting hyponormal operators are not necessarily hyponormal.
We attempt to find conditions under which the product of two hyponormal
operators is also hyponormal.

If we replace one of the hyponormal operators by an isometric operator
in Lemma 2.13, then the condition of commutativity is sufficient to ensure

the hyponormality of their product.

Theorem 2.14. If a hyponormal operator T commutes with an isomet-
ric operator S, then T'S is hyponormal.

Proof. For any x € H, we have

(TS) el = [|5*T"x| = [|ST |
= T2l < |T2|| = [[ST=[| = [[(T'S)=]].

Thus T'S is a hyponormal operator. Il

Lemma 2.15. If a hyponormal operator S is unitarily equivalent to T’

such that T commute with S*, then ST is hyponormal.

16



Proof. Let T'= U*SU for a unitary operator U. Then, for each x € H,
[T7x|| = |U*S" U] = |S*Uz| < [[SUz|| = |U*SUz| = || Tz
Thus T is hyponormal. Since T" and S* commute,
I(ST) || = (|75 || < |TS™2|| = ||S*T|| < [[ST=]].
Therefore ST is a hyponormal operator. O

Let H be a separable dimensional Hilbert space. Recall that an operator
T € L(H) is hyponormal if TT* < T*T, or equivalently, ||T*z| < ||Tx||
for every x € H. In general, T? can be hyponormal without T being
hyponormal. An operator " € L(H ) is said to be Fredholm if its range R(T)
is closed and both the null space kerT" and ker T™ are finite dimensional.
The index of a Fredholm operator 7', denoted by ind T" or i(T), is defined
by

ind(7T") = dim ker " — dim ker T™.

The essential spectrum of T, denoted by o.(7T), is defined by
0.(T)={Ae€C : T — I isnot Fredholm}.

An operator T' € L(H) is called Browder if it is Fredholm of finite ascent
and descent, or equivalently if T is Fredholm and T — AI is invertible for
sufficiently small A # 0 in C. A Fredholm operator of index zero is called a
Weyl operator. The Weyl spectrum of 7', denoted by w(T), is defined by

w(T)={A e C : T — X is not Weyl}.

17



For any operator T, o.(T) C w(T) C o(T) and w(T) is a nonempty

compact subset of C.

H. Weyl([54]) asserted that if 7" is a self-adjoint operator acting on a
Hilbert space H, then w(T") consists precisely of all points of o(T') except

the isolated eigenvalues of finite multiplicity, that is,

w(T) =o(T) — moo(T).

Following L. A. Coburn([14]), we say that Weyl’s theorem holds for 7" if

w(T) = o(T) — mo(T), or equivalently, if o(T') — w(T) = meo(T).

There are several classes of operators for which Weyl’s theorem holds :

(1) H. Weyl([54]) showed that Weyl’s theorem holds for any self adjoint

operator.

(2) L.A. Courn([14]) showed that Weyl’s theorem holds for any hyponor-

mal operator and any Toeplitz operator.

(3) S.K. Berberian([8],[9]) showed that Weyl’s theorem holds for any semi-

normal operator.

(4) K.K. Oberai([37]) showed that if N is nilpotent operator commuting
with T and if Weyl’s theorem holds for 7', then it also holds for 7'+ N.

18



Theorem 2.16.([14]) Weyl’s theorem holds for hyponormal operators.

Proof. If T is hyponormal, then T'— A\I is hyponormal. Thus it suffices
to show that 0 € o(T") — w(T) if and only if 0 € meo(T').

(=) Let 0 € o(T) — w(T). Then T is Weyl but not invertible. Then
R(T) is closed, dimker T = dim R(T)* < oo and kerT # {0}, so that
R(T)* # {0}. Since T is hyponormal, ||Tz|| > ||T*z|. In particular,
ker T C kerT* = R(T)*. Thus T' = 0 ¢ B, where B is invertible. Hence
o(T)={0} Uo(B). Since 0 ¢ o(B), 0 € isoc(T). Thus 0 € moo(7T).

(<=) Let 0 € mpo(T"). Then 0 € isoo(T) and 0 < dimker 7" < oo. By

hyponormality, ker T C R(T):. So T' = 0 @ B, where B is injective and

hyponormal. Also, B is invertible. Since
H=%kerT® kerT)" =kerT & R(T),

ker T = R(T) and (ker T)* = R(T). Thus dimkerT = dim R(T)* < oo
and ind (T) = 0. Since 0 € isoo(T), T is not invertible. Hence 0 €

o(T) — w(T). O

Definition 2.17. An operator 7' € L(H) is said to be isoloid if isolated

points of o(T) are eigenvalues of T

Theorem 2.18. Every hyponormal operator T s isoloid.
Proof. 1t suffices to show that if 0 € isoo(T"), then 0 € 0,(7"). Choose

R > 0 sufficiently enough that 0 is the only point of ¢(T") contained in or

19



on the circle |A\| = R. Define
P / (A — T)d.
IN=R

Then P is the Riesz projection corresponding to 0. So PH is an invariant
subspace for T. Moreover, PH # {0} and o(T|pg) = {0}. T|py is hy-
ponormal, since P be a projection of H onto PH. By Lemma 2.3(5), it

follows that T'|pgr = 0, so that 7" is not one-to-one. Therefore 0 € 0,(7T"). O

Lemma 2.19. Every hyponormal operator is x-paranormal.

Proof. If T is a hyponormal operator, then

IT*2|* = (T*2,T"2) = (TT"w,2) < (T"Tw,z) < |T"(T)]|||]

IA

IT(T2)||[le]] = 1T [l].
Thus T is a *-paranormal operator. U

Every hyponormal operator is a x-paranormal operator, but the converse
is not true([5]).

Example 2.4. Suppose H is a 2-dimensional Hilbert space. Let K be
the direct sum of denumerable copies of H. Let A and B be any two positive
operators on H. Let n be any fixed positive integer. Define an operator

T =Tspnon K as

T(l’l,l'g,l'g, .. ) = (O,Al‘l,A.TQ, .. .an+1, an+2, .. .),
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where A and B are positive operators on H satisfying this time A% = C and

B* = D, where C and D are positive operators on H defined as

11 1 2
(1) i oo (1 2)
By the computations, 7' is a x-paranormal operator if and only if

T*T? —ONTT* + \21 = B* —2)\A%2 + )\’ > 0

for each A > 0. Now

L oA N — D 2 (1= 2(1-))
B'—2)\A* + X[ =D 2)\C+)\_(2(1_)\> (2Nt

which is a positive operator for each A > 0. Therefore T is a x-paranormal

operator. However,

T"T —TT*=B*- A*=D—-(C"= (j _31)

which is not positive. Hence T is not a hyponormal operator. O

Lemma. 2.20.([5]) Every x-paranormal operator is normaloid.

Proof. Let T be any *-paranormal operator. We prove that |77 = ||T||"
by mathematical induction on positive integer n. For any unit vector x € H,
we have | T*z||? < ||T?z| and so || T*||* = | T||* < ||T?|| < ||T||*. That means

172 = 177"
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Assume that the result is true for all positive integers & < n. To
prove the result for n + 1, we prove the following inequality : ||7T"z|]* <
[T 2| || T 2.

We assume that T"x # 0. Now we have
1Tzl = (|1T"[*)* = (T"x, T"x)?
— (T*Tn:L‘, Tn_ll')2 < ||T*T”mH2||T”_1x||2
by Schwarz’s inequality. This gives ||[T"z||* < || T 2z||||T" *=|]?||T"z|| and
so [|[Tx|]® < ||T™ 2| [T 'z||*>. Therefore

T < T2 2P < TS =,

Since ||T*|| = ||T||* for all k < n, we obtain ||T||"*! < ||T™*!||. Therefore

T is normaloid. U

The inclusion relation of the classes of non-normal operators listed above

is as follows :

Normal C Quasinormal C Subnormal C
Hyponormal C #-paranormal(or paranormal) C Normaloid.
Every x-paranormal operator is normaloid, but the converse is not true([5]).

Example 2.5. Suppose H is a 2-dimensional Hilbert space. Let K be

the direct sum of denumerable copies of H. Let A and B be any two positive
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operators on H. Let n be any fixed positive integer. Define an operator

T'=Typn,on K as
T(Q?l,xg, T3, .. ) = (O, Al‘l, A.CEQ, ce anH, B.Tn+2, - )

It can be computed to see that T is a hyponormal operator if and only if

B? > A2 Let C and D be defined on H as

1 0 2 1
C:(O O> and D:(l 1).

Then C' and D are positive operators on H satisfying

==t
D—C’z(1 1)20.

Choose A and B to be positive operators so as to satisfy A? = C and
B? = D. With this choice T is a hyponormal operator and hence normaloid
and therefore T2 is also normaloid. We claim that 772 is not a *-paranormal
operator. By the simple computations, we show that 77 is a *-paranormal
operator if and only if B® — 2X\A* + X\2I > 0 for each A\ > 0. Putting

A= %, we obtain

8921
BS—2>\A4+>\2I:(241 @)
4

133

Now if 2 = (1,—%3), then ((241 %g) z,z) < 0. Hence T? is not a *-
4

paranormal operator. U
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Lemma 2.21.([21]) The classes of x-paranormal operators and paranor-

mal operators are independent by using example given by Halmos.

We give an example of a paranormal operator which is not a x-paranormal
operator.

Example 2.6. Let H be a Hilbert space, and let A be the set of all
functions x = z(n) defined on integers with values H, such that Y ||z,[|* <
0o0. Then A becomes a Hilbert space with inner product (x,y) = > (2, Yn)-

Let {S,} be a sequence of positive operators on Z such that {||.S,||} is
bounded, and define, for every x in H, (Ux),, = 2,11 , (Sx), = Spty,. It is
easy to verify that U and S are operators on H. Since U is unitary, (U*z),, =

(U™ 'z), = zp_1. Let T =US. Then (T*Tz), = Sxxn, (TT*x), = S2,1 T,
(T**T?x),, = SpS2_ Spn, (T*T**x), = n+15721+25n+1 Ty

Now let H be a two-dimensional Hilbert space and let

2 1 10 .
A_(l 1), B—<O O) (actionon H).

VA (n<0)
VB (n>0).

Then T*T — TT* = S2 — S2., > 0. So T is a hyponormal operator. Thus

Then A — B > 0, and A% — B? is not positive. Let S, = {

T? is a paranormal operator.
Since (T*T*x),, = SSn_1S-25% 35, 25,_15,Tn, T? is a *-paranormal

operator if and only if
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(T*T* = 20T>*T** + N*I)z),

= ((SnSnflSn725721735n725n715n - 2)\Sn+1513+25n+1 + )\2I)I>n Z 0

for each A > 0.
But, if n =0, then

S0S_15 98255 98 1Sy — 20815551 + AT
= A*—2\B* 4+ NI

34 — 2\ 4+ \? 21
21 13+ N2

) for each A > 0.

133

Putting A = 3, we obtain that A*—2AB?+ 2] = <241 Q) is not positive,
4

and so T2 is not a *-paranormal operator. Therefore, T2 is a paranormal

operator, but T2 is not a s-paranormal operator. U

The above example shows that there exists a paranormal operator which
is not *—paranormal. On the other hand, the example 4.8(later) shows that

there exists a x-paranormal operator which is not paranormal.
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3. Properties of M*-paranormal operators

Definition 3.1. An operator T' € L(H) is said to be M -hyponormal if

there exists a real number M > 0 such that
(T = AD)*z|| < M|[(T — M)z

for all x in H and for all A\ € C. An operator T is said to be M*-paranormal
if there exists a real number M > 0 such that ||[T*z||?> < M||T?z| for any

unit vector z in H.
Every hyponormal operator is M-hyponormal, but the converse is not

true in general : for example, consider the weighted shift S on [, given by
S(ZL‘l, T, .. ) = (O, 2.%'1, T2, T3, .. )
The examples of M-hyponormal non-hyponormal operators seem to be

scarce from the literature. B.L. Wadhwa([53]) gave an example of M-

hyponormal non-hyponormal weighted shift T on [5 :

)
N O
— O
— O
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The notion of a M-hyponormal operator is due to J. Stampfli and B. L.
Wadhwa([48]). The M-hyponormality of operators has been studied by
many authors ([2], [3], [18], [27], [29], [48], [52], [53]).

If T is a *-paranormal operator, then 7" is a M*-paranormal operator
for each real number M > 1. But the converse is not true.

Example 3.1. Let H be a separable Hilbert space and let {a,}>, be

an orthonormal basis of H. Define a weighted shift 7" on H as follows :
Tei = ey, Tey = \/563, Te, =e,y1 foralln > 3.

Then T*e; = 0, T"ey = €1, T e3 = v2ey and Tep1 = e, for all n > 3.

Therefore 7" is M*-paranormal for M > 2 and T is not *-paranormal.
Theorem 3.2. T is a M*-paranormal operator if and only if
MPT*T? —20TT* + X*I > 0

for each A > 0.
Proof. 1f T is M*-paranormal, then ||T*z||*> < M||T?z| for any unit
vector x, and so (||T*z||*)? < M?||T?x|]?, i.e., (||T*x||?)* — M?||T?x||* < 0.

By the elementary properties of real quadratic forms, this gives
NI = 20| T z|)? + M?|| T?z||> > 0

for each A\ > 0. Hence M?T*?T? — 2\TT* + X\2I > 0 for each A\ > 0.
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Conversely, suppose M2T*2T? — 2\TT* + X2 > 0 for each A > 0. Then

for each unit vector x € H,

(MPT*T? = 2XTT* + N*I)x, ) > 0
N —2N(TT*x, x) + M*(T**T?x, ) > 0

NT = 2)||T*z||* + M?||T?z|]* > 0

el

(I7]1%)* = M*|T*z|* < 0

!

1Tz )|* < M||IT?x|.
Therefore T is a M*-paranormal operator. O

Patel([38]) has characterized x-paranormal operator as follow :

Corollary 3.3.([38]) An operator T is a x-paranormal operator if and
only if
T**T% —20TT* + X1 >0 for all A > 0.

Corollary 3.4. Let T be a weighted shift with weights {a,}22 . Then

T is a M*-paranormal operator if and only if
1] < Mool

for eachn=23,4,....
Proof. Let {e,}>2, be an orthonormal basis of the Hilbert space H.

Suppose T is a M*-paranormal operator. Since Te,, = €541,

||T2€nH = |T(anent1) || = lanlllansieniall = an|lani|

28



and [|[T™e,|| = |on-1] for each n = 2,3,4,.... Since T' is a M*-paranormal
operator,

1T enll* < M| T,

and so |a,_1]* < Mlay||any1| for each n=2,3,4,. ...
Conversely, suppose |a,_1|*> < M|ay||an 1] for each n = 2,3,4,....

Then for each n = 2,3,4, ..., we have
M|Te, = T ell* = Mlag ||| = fan—i|* = 0.

Therefore M||T?e,|| > ||T*e,|* for each n =2,3,4,..., and so T is a M*-

paranormal operator. U

Corollary 3.5.([6]) Let T' be a non-singular weighted shift with weights

{an}. Then T is a M*-paranormal operator if and only if
|1 [[an—2| < M|O‘N|2
for eachn =3,4,5,....

Theorem 3.6. An operator T is a M*-paranormal operator if and only
if
MPT**T? + 20TT* + N1 > 0

for all real number .

Proof. Let x be any unit vector in H. Then

M?T*T? 4 2\TT* + NI > 0 for all real number \
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(MPT**T? + 20TT* + XN*I)z, ) > 0 for all real number A
M?||T?2||* + 2\ T*z|* + A?||z||* > 0 for all real number A
(17 (*)* < M*|T*x|*

177 2|* < M||T ]|

[

T'is a M*-paranormal operator.

g

Corollary 3.7. An operator T is a x-paranormal operator if and only
of
TT? 4+ 20TT* + N’ 1 > 0

for all real number .

We establish that the classes of M*-paranormal operators and M-paranormal
operators are independent.
Example 3.2. Let {e,}?>__ be an orthonormal basis of the Hilbert

space H. Define a bilateral weighted shift 7" on H with weights {a,,} given
by

3 .
z ifn< -1
oy, = % ifn=0
n 6 :

Then it can be easily seen that the weights {«,,} satisfy

7
a1 < glanllansa]
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for each n. Hence T is a %*—paranormal operator by Corollary 3.4. But
Hoal = § # /2 = laol. By the fact that M| > |aa| & T is a
M-paranormal operator. Thus 7' is not a %—paranormal operator.

Example 3.3. Let T be a bilateral weighted shift defined as

1
Te, = ﬁ €n+1

for each n. Then T is M-paranormal for M > 2. However, by Corollary 3.4,
T is M*-paranormal provided M > 8. Thus T is not M*-paranormal, for
2 < M <8, although T is M-paranormal.

Theorem 3.8. Let T" be any M*-paranormal operator and let N be any

wnvariant subspace under T'. Then
(1) T|y is M*-paranormal .
(2) AT is M*-paranormal for every complex number \.
(3) If T is unitarily equivalent to an operator S, then S is M*-paranormal.
(4) kerT' C ker T*
(5) ker T = ker T*

Proof. (1) Let = be any unit vector in N. Since T is M*-paranormal,

|IT*z))? < M||T%2| and so

(T ) =l* = |T"2]* < M| Tz = M|(T|x)*].
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Therefore T'|y is M*-paranormal.

(2) Let x be any unit vector in H. Then

IAT) 2l* = [IAT"z|* = AP|I Tz
< APM|T%z]| = M||(AT)x|.

Therefore A\T' is M*-paranormal.
(3) We must show that M?S*25% 4+ 2A\S55* + X\2T > 0 for all real number
A. Since T is unitarily equivalent to S, there is a unitary operator U such

that S = U*TU. For any real number A\ € R, we have

M?S5*2582 + INSS* + \2]
= M(U*T*U)(U*T*U)(U*TU)(U*TU) + 2AU*TU)(U*T*U) + \2U*U

= U*(MPT**T? 4 2XTT* + N*1)U > 0.

Therefore S is M*-paranormal.

(4) Since ||T*z||> < M||T?z|| for any unit vector z € H. Let x € ker T,
i.e., Tw = 0. Then T(Tz) = 0, and so T?x = 0. By definition, T*x = 0.
Hence x € ker T™ and so ker T' C ker T™.

(5) Since kerT' C kerT?, it suffices to show that ker 7% C kerT. If

x € ker T?, then Tz € ker T'. Since T is a M*-paranormal operator, ker T' C
ker T*. Therefore T*Txz = 0, and so

|IT2|* = (T"Tw, ) < |T"Ta|l||z] = 0.

Thus Tx =0, i.e.,, v € ker T'. O
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Corollary 3.9. Let T be any *-paranormal operator and let N be any

mwvariant subspace under T'. Then
(1) T|n is x-paranormal .
(2) AT is x-paranormal for every complex number \.

(8) ([19]) If T is unitarily equivalent to an operator S, then S is *-

paranormal.
(4) ker T C ker T*.

(5) ker T = ker T?.

Corollary 3.10. Let N be any closed linear reducing subspace under
the operator T. Then T is a M*-paranormal operator if and only if both T'|n

and T| 1 are M*-paranormal operators.

The inverse of a M*-paranormal operator may not be M*-paranormal.
Example 3.4. Let T be a bilateral weighted shift with weights {a,}
defined as

{1 ifn <0
oy =

n .

Then T is a 3*-paranormal operator by Corollary 3.4, but by Corollary 3.5,

T, is not 3*-paranormal since |ag||a_i| =1 £ 3|oy|? = 3.
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The sum of M*-paranormal operators even commuting or double com-

muting may not be M*-paranormal.

Example 3.5. Let T = (1 (1]) and S = (_01 _01) be operators

on 2-dimensional space. Then 7" and S are 4*-paranormal operator while
0 0).
T+ S = (1 O> is not so.

The product of two M*-paranormal operators, in general, may not be
M*-paranormal.

Example 3.6. Suppose that H is a 2-dimensional Hilbert space. Let
K be the direct sum of denumerably many copies of H. Let A and B be
any two positive operators on H. Let n be a fixed positive integer. Define

an operator T' =Ty g, on K as
T(xy,29,...) = (0, Az, ..., Axy, Bopy, .. .).
Then T is a M*-paranormal operator if and only if
M?B* — 20A% + X*T > 0

for each A > 0.

M M 1 2
SetC:(M QM) andD:(2 8)'

Then both C and D are positive and for each A > 0

M2D—2AC+A2I=( (M — )’ 2M(M =) )

OM(M —A) (2M — \)? + 402
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is a positive operator. Now choose A = C' > and B = Di. With this choice,
T =Ty py is a M*-paranormal operator.

Now we show that T'® T' is not a M*-paranormal operator. In fact for
A=1,
M(TRT)*(TRT)? —2TTTRT)*+1x®1
= [M*(A'@AN + TR0 [M*(A'® AY) —2(A? @ A?) + I ® I
O @M AR AY) —2(A2 @ A%+ T @]
© [M*(AB*A) @ AB?A) —2(A*’® A*) + 1 ® I
© [M*(B*®BY -2A*@A) +II&---

which is not positive.

From the above examples, we can summarized as follows :

Theorem 3.11.([38]) We have the following properties;

(1) The power and the inverse(if exists) of M*-paranormal operators are

not necessarily M*-paranormal.

(2) The sum, the direct sum, the product and the tensor product of M*-

paranormal operators are not necessarily M*-paranormal.

(3) The class of x-paranormal operators is closed in the norm topology of

operators.

(4) The class of x-paranormal operators is not translation invariant.
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Theorem 3.12. Let T be any M*-paranormal operator. Then we have

the following properties:

(1) |T"z||> < M||T"2z|||| T z||* for any unit vector x in H and positive

mnteger n.
(2) |Tz|® < M||T3z|| for any unit vector x in H.

Proof. (1) Assume that 7"z # 0. We have

T = xz, ") = xz, T" " x)" < T Tz
™ 4 ™ ™ 2 T*Tn ™ 1,.\2 T*Tn 2 ™ 1 2

* T n— n
= ||T W||2HT | T ]

< M|TEr| T 2| T .

Thus [[T"alf® < M) |T" 2],
(2) It follows from (1).

(Another method) Since T satisfies M2?T**T? + 2\TT* + \2I > 0 for
all real number A. This implies that
T*(MPT**T? 4 2\TT* + N2I)T > 0
for all real number \. Let x be any unit vector in H. Then
(MPT*T? + 2XT*TT*T + N*T*T)z, ) > 0 for all real number A
= M| T%z|)? + 2\|T*Tx||* + \*||Tx||* > 0 for all real number \

= (|7"T=|]*)* = M| 7% |*|| T|* < 0

= (IT=[*)* < M| || T=|.
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Hence ||Tx||*> < M||T3z| for any unit vector x in H. O

Corollary 3.13. Let T be any *-paranormal operator. Then we have

the following properties:

(1) |Trx|]® < || T 22| T || for any unit vector x in H and positive

mnteger n.

(2) |Tx||* < [|T3z|| for any unit vector x in H.

Recall that an operator T is quasinormal if T commutes with 7T, or

equivalently (T*T)T = T(T*T)

Theorem 3.14. If a partial isometry T is M*-paranormal, then T is
quasinormal.

Proof. Let T be a M*-paranormal partial isometry. We claim that R(7T),
the range space of T, is contained in ker(T)*, the initial space of T. Since

T is M*-paranormal, we have ||T*z||* < M||T?z|| for any unit vector z in

H. Hence
1L

ker(T) C ker(T*) = R(T) .

This implies that

R(T) CR(T) = R(T) ~ C ker(T)*.

From this it follows that ker(7)* reduces 7. Since T is a partial isometry,
T is of the form A @& O, where A is an isometry. Thus T" commutes T*T

and hence T is quasinormal. Il
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Theorem 3.15. If a M*-paranormal operator T commutes with an

isometric and surjective operator S, then T'S is M*-paranormal.

Proof. Let A =TS. We must show that
MPA®A? 4 20AA*+ N1 >0
for all real number A. Since (S*Sx,z) = (Sz,Sz) = (v,z),S*S = I and
SS* = 8S*(SS™H = 5(5*9)S ™t = SIS = 1.
Thus

MZA2A? + 20NAA* + NI = M2S*T*S*T*TSTS + 2N\T SS*T* + N1
= MET2T2 4 XTT* + M1 > 0

for all real number A\. Hence T'S is M*-paranormal. O

Corollary 3.16. If a x-paranormal operator T commutes with an iso-

metric operator S, then T'S is x-paranormal.

Corollary 3.17. If a M*-paranormal operator T' commutes with a uni-

tary operator S, then T'S is M*-paranormal.

Theorem 3.18. Let T and S be doubly commuting M*-paranormal

operators.

(1) If | T*Sz||||z|| > VM| T*z||||Sz|| for all x in H, then TS is M*-

paranormal.
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(2) If |T*S%x||||z|| > M| T*z||||S?z| for all x in H, then T'S is M*-

paranormal.

Proof. (1) Assume that | T*Sz||||z|| > VM| T*z||||Sz| for all z in H.

Since T" and S are doubly commuting M*-paranormal operators, we have

M TS| S* 2 SelP| T ll=l* > MIT™ S| Sz |*|| T 2||||(|*
= ST ||| Tl S*T"2|l|| S| [l
> |[S T x|*||S* T 2|l|| S
= ST || 7" S%x||]| S[|*| = ]*

> M|S T x|*||T"z|||| S| [ S]]z

Hence M||(TS)?z||||z|| > |[(T'S)*z||*>. Thus T'S is a M*-paranormal opera-
tor.

(2) Assume that ||[7*S%z||||z|| > M||T*x||||S*z| for all z in H. Since T

and S are doubly commuting M *-paranormal operators, we have

M TS| S* 2 | S" 2l | T 2]l > MT™S2|*| S" |72 |||
M| s*T ||| TS = (2] [.S*T x|

> |8 T || S ]|l ]| T S|

v

M| ST |*|I T || S| ]| S|
Hence M||(TS)z|| ||=z|| > ||(T'S)*z||*. Thus T'S is M*-paranormal. O

An operator may be M3*-paranormal operator but may not be M-

hyponormal.
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Example 3.7. If T is an operator on H with basis {e,}2, defined as
Tey = ey, Tey = 368 Te, = et

for each n > 3. Then T is 8*-paranormal, but is not 2-hyponormal.

Theorem 3.19. If a M*-paranormal operator T double commutes with
a N-hyponormal operator S, then the product T'S is (M N3)*-paranormal.

Proof. Let {E(t)} be the resolution of the identity for the self adjoint
operator S*S. By hypothesis both TT* and T*?T? commute with every

projection E(t). Since by the N-hyponormality of S
SSP < N7S%S and NESTHS™ 2069 S)?,
it follows from the double commutativity that for each A > 0.

M?NS(TS)*(TS)* — 2XM(TS)(TS)* + \?
= M?NS(T**T?)(S*28%) — 2X\(TT*)(SS*) + \*

> MANYTT?)(S*S)* — 2AN?*(TT*)(S*S) + N\

> A A
= N* M?*T*T? — 2 TT* + (—)*1t2dE(t
| T+ (P AE()

v

0.

Hence T'S is (M N?3)*-paranormal. O

Corollary 3.20. If a M*-paranormal operator T' is double commutative

with a hyponormal operator S, then T'S is M*-paranormal.
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Corollary 3.21. If a x-paranormal operator T s double commutative

with a hyponormal operator S, then T'S is x-paranormal.

Definition 3.22. An operator T is said to be co-isometry if TT* = 1
but T*T # I. T is called M -quasihyponormal if there exists a real number

M > 0 such that [|T*Tx| < M||T?z| for any unit vector z in H.

Theorem 3.23. Let T € L(H) be a contraction M*-paranormal oper-
ator. Let N be a closed invariant subspace for T. If T|y is a co-isometry,
then T'|n1 is M*-paranormal.

Proof. Let S = T|n be a co-isometry. Then S* = (T'|y)* is isometry.

18"z = T2|* = [IT"z|* = (S"2, T*%) = (T"z, S"z) + ||S"=|*
< al® = (TS*@,2) — (2,T75"x) + |||
= 2ljz[* — 2] $"x|?
= 0.

Thus T*x = (T|y)*z € N for all x € N, which implies that N is invariant

under 7*. Hence N reduces T. By Corollary 3.10, T'| 1 is M*-paranormal.
O

Theorem 3.24. Let T' =V P = PV where P > 0, V s isometry and
surjective. Then T is M -paranormal if and only if T is M*-paranormal.

Proof. We must show that ||Tz||* = ||T*z||* for unit vector x in H.

|Tz|? = (Tx, Tx) = (x, T*Tz) = (z, TT*x)
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= (TFx, T*z) = | T*x||*.
Therefore M||T?x|| > ||Tz|* = || T*x|]. O

Theorem 3.25. IfT is a M*-paranormal partial isometry and it is co-
1sometry, then T is M -quasihyponormal.

Proof. Let A = M?T**T? + 2\TT* + X\*I > 0 for any real number \. If
B =T*T, then B= B?> 0, and so AB > 0. Thus for all real number ),

(MPT**T? + 2\TT* + N*I)(T*T) > 0
M2T*T*TTT*T + 2\TT*T*T + \>T*T > 0
MPT**T? £ IXTT*T*T + N*T*T > 0

D THEE tdn @l Uhienade” hagam

Ll

MPT*T? + 2X(T*T)* + N*(T*T)* > 0

and so for any unit vector x, we have

(MPT**T? + 2M(T*T)* + N(T*T)*)z, x) > 0 for all real number \
= M?|T?x|* 4+ 2\||T*Tx||* + N*||T*Tx|*> > 0 for all real number \
= || T"Tx|* < M?| 72| | 7" T ||

= || T"Tz| < M||T?z].
O

Theorem 3.26. Let T',S and W € L(H), where W has a dense range.
Assume that TW = WS and T*W = W S*. Then
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(1) If S is a partial isometry, then T is a partial isometry.
(2) If S is M*-paranormal, then T is M*-paranormal.

Proof. Let W* = V*B be the polar decomposition of W*, where WIW* =
B?%. Since W has a dense range, W* is injective. Thus B? = WW* is
injective, and V' is co-isometry. From TW = WS and T*W = WS*, we
have TWW* = WSW* = WW*T. Thus WW* commutes with 7', and so
B commutes with 7. Hence we have BTV =TBV =TW =WJS = BVS,
which implies that TV = V'S because B is injective. Since V' is co-isometry,

we have T'=TVV* =V SV* and

VTR =Vt li = W5 3% [ 4=5V " B.

Hence V*T'= SV* and so V*VS = V*TV = SV*V.
(1) Assume that S is a partial isometry. Then

T=VSV* = VVVSSSVVV*
= VSVVSVVSV*
= VSV (VSV*)'VSV*
= TT'T.
Therefore T' is a partial isometry.
(2) If S is a M*-paranormal operator. Then M?S*25%+2XSS*+ 21 > 0

for all real number \.

M?T*2T? £ 2NTT* + \21

= M*(VSV)*(VSV*)*(VSV*)VSV*) + 22XV SV*)(VSV*)* + XT
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= M*VS*VVSVVSV*VSV* + 2V SV VS V* + \2T
= V(M?S*2S8? +2)\SS* + N2 1)V* > 0.

Therefore M?T**T? + 2XTT* + X21 > 0 for all real number . ]

Corollary 3.27. Let S, T and W € L(H), where W has a dense range,
Assume that TW = WS and T*"W = W S*

(1) If S is a normal operator, then every operator T is M -paranormal if

and only if T is M*-paranormal.

(2) If S is a hyponormal operator and T is a M-paranormal operator,

then T is M*-paranormal.

(8) If S is co-hyponormal operator and T is a M*-paranormal operator,

then T 1s M -paranormal.
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4. kth roots of x-paranormal operators

Definition 4.1. An operator T' € L(H) is a kth root of a G-operator if

T* is a G-operator. In particular, if a G-operator is a *-paranormal operator,

then T is called a kth root of a *-paranormal operator. We denote these
classes by (VH), (¥/P*) and (¥/P) respectively. In particular, if k = 1,
the class (v P*) becomes the class of *-paranormal operators and the class

(V' P*)(= (v P*)) consists of square roots of *-paranormal operators.

Lemma 4.2. (1) Every hyponormal operator T on finite dimension

Hilbert space is a normal operator.

(2) If T is a *-paranormal and quasinilpotent, then T is zero.

An operator T is a kth root of a x-paranormal operator, but it is not

necessarily a x-paranormal operator.

Example 4.1. (1) Let H be a k-dimensional Hilbert space. Define T

T = (a) = (8 (1))

where a;; = 0if i > j and a;; = 1 if ¢ < j. Then 7% = 0 (k > 2) is a

on H as

hyponormal operator and so 7" is a kth root of a hyponormal operator. But

TT* L T*T. Therefore T is not hyponormal.
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(2) Let T be an operator on a two-dimensional Hilbert space defined by

01 : .
T = (O O> . Then T is the square root of a *-paranormal operator since

T? = 0 is *-paranormal. But T is not *-paranormal since ||[T*z[]? = 1 >
0 = ||T?x|| for some z = (1,0).

(3) If U is the unilateral shift on Iy and T'= U* + 2U, then
T —-TT*=3-30U"=3(I—-UU")>0.

Therefore T' is hyponormal(and so x—paranormal). However, if we take
r = (1,0,-2,0,--+), then ||[T%z]]*> = 80 < 89 = ||(T*)?z||*>. Hence T? is
not hyponormal. Also we see that 72 is not *-paranormal by the direct
calculation. This ia an example of a x-paranormal operator which is not

the square root of a *-paranormal operator.

From the above Example 4.1(1), we can deduce that if T is any nilpotent

operator of order k, i.e., T% = 0, then T is a kth root of a x-paranormal

operator, but it is not necessarily a *-paranormal operator.

If T is hyponormal, then T is normaloid, i.e., ||T"| = ||T||"* for each
natural number n. This is not true in the case of a square root of a hy-
ponormal operator. This can be seen as follow ; Let T" be the operator on
k-dimensional Hilbert space H in Example 4.1. Then T* is hyponormal and
so T is kth root of a hyponormal operator. Also || T%|| = 0. However, it is

easy to show that ||T||* = 1. Hence ||T||* # ||T*||. Thus T is not normaloid.
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If T is a *-paranormal operator, then T is normaloid, i.e., ||T*|| = ||T||*
for each natural number k, but the converse is not true. This is not true in

the case of the kth root of a -paranormal operator by Example 4.1.

Theorem 4.3. Let T € (¥/H) be any kth root of a hyponormal operator.
Then

(1) AT is a kth root of hyponormal operator for all scalar \.

(2) If N is invariant subspace of T', then T |y is a kth root of a hyponormal

operator.
(3) If T is quasinilpotent, then T is nilpotent.

(4) If T is unitarily equivalent to S, then S is a kth root of a hyponormal

operator.
(5) If T is invertible, then T~ is a kth root of hyponormal operator.
(6) If kerT* is equal to ker (T*)*, then kerT reduces for T.

Proof. (1) For each vector x in H,
1T ]l = AT 2] = AT ]| = [|(AT)* =]

Thus (AT)* is a hyponormal operator. Therefore AT is a kth root of a
hyponormal operator, for all scalar .
(2) If N is invariant subspace of T, then (T'|y)¥ = T*|y = T*. Since

T*|n is hyponormal, T|y is a kth root of a hyponormal operator.
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(3) Since T is quasinilpotent, o(T) = {0}. By the spectral mapping
theorem, we get that o(T%) = {o(T)}* = {0}. Hence T* is quasinilpotent.
Since T* is hyponormal and quasinilpotent, 7% is a zero operator(Lemma
2.3). Therefore T is nilpotent.

(4) Since T is unitarily equivalent to S, there exists a unitary operator U
such that S = U*TU. Thus S* = (U*TU)* = U*T*U and so S* is unitarily
equivalent to T%. Since T* is hyponormal by hypothesis, S* is hyponormal
and hence S is a kth root of a hyponormal operator.

(5) If T is invertible, then T* is invertible and hyponormal. Hence
T-% = (T1)* is hyponormal. Thus T~! is a kth root of a hyponormal
operator.

(6) Let = be any point in ker 7. Then T'(Tx) = 0 and so Tz € kerT.
Hence T'(kerT') C kerT. We need to show that T*(kerT") C kerT. Since
T* is hyponormal,

I(T)* ]| < ||

for all z € H, and hence ker T% C ker (T%)*. Since ker T* = ker (T™*)* and

ker T C ker T*,
ker T C ker T* C ker (T*)* C ker T*.

Therefore T*x = 0 for all z € kerT. Hence T'(T*z) = 0 for all x € ker T

i.e., T*x € ker T for all x € ker T, and so T*(kerT") C kerT'. O
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The set of operators on H has three useful topologies(weak, strong and
norm). The corresponding concepts of convergence can be described by the
following ; A, — A in norm if and only if |4, — A — 0, 4, — A
strongly if and only if ||(A, — A)z|| — 0 for every z € H, and A, — A

weakly if and only if (A,z, y) — (Az, y) for every x and y.

By [5], we know that the class of all hyponormal operators on H is closed
in the norm topology.

Theorem 4.4. The set of all the kth roots of hyponormal operators is
a proper closed subclass of L(H) with the norm topology.

Proof. Since T* is hyponormal, ker 7% = ker T?. Hence ker T* =
ker TH™1. Let U* be any unilateral backward shift on lo. Since ker (U*)* £
ker (U*)*! for any k € N, U* is not a kth roots of hyponormal operator.

Finally we show that the class (¥/H) is closed in L(H). Let T, be a
kth root of a hyponormal operator for each positive integer n and let {7,,}
converge to an operator T in norm. Then {T*} converge to an operator T*
in norm. Since the set of all hyponormal operators is closed in the norm
topology and T* are hyponormal, T* is hyponormal and hence T € (v/H)

is a kth roots of hyponormal operator. (I

Example 4.2. If T' € L(H) is any nilpotent operator of order k — 1,

then by Halmos characterization T is unitarily equivalent to the following
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operator matrix

0 A12 Alk
a=| 0o
0

Since A is a kth roots of a hyponormal operator and a kth roots of hy-
ponormal operators are unitarily invariant, 7" is a kth roots of hyponormal
operator.

The following are the straightway conclusions about shift.

Theorem 4.5. Let T be a weighted shift with nonzero weights {ay, }5° .
Then T is a kth roots of hyponormal operator if and only if |og,—k| -+ - |an—1] <
lan| -+ Jopip—1] form=k,k+1....

Proof. Let {e,}22, be an orthonormal basis of a Hilbert space H.
Since T%e, = ay, -+ Qpip_16nsr and Te, = @,_1 -+ Qp_pep_g, it is easy
to calculate that T* is a hyponormal if and only if |ay, x| |an 1] <

|| - |angr—1] forn =k, k+1,.... O

Corollary 4.6. Let T be a weighted shift with non-zero weights {au,, }5° .

If T is hyponormal, then T is a kth roots of hyponormal operator for every
ke N.

Next we give another example of kth roots of hyponormal operators.
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Example 4.3. Let T, be the weighted shift with nonzero weights oy =
T, ap = \/g , Qg = \/g ,.... Then it is an easy calculation from Theorem 4.5

(k+1)2
4k+2 -

that T} is a kth root of hyponormal operator if and only if 0 < x <

Proof. Let T, be the weighted shift with non-zero weights ag = =, ay =
\/g, gy = \/g, .... Then T, is a kth root of hyponormal operator if and

Only if |an—k| |an—1| < |an| |an+k—1| for n = k7k+ 17

Case 1. If n =k, then |ag|on |- [an-1] < [o||overa] - - [oop-1]
\f\ﬁ \/ ki \/k+1\/k+2 2k

Rt x — [ S
3V 4 E+1 k+2VE+3 2k +1

k:+1\/l<;+1 \/(k+1)2
- 4 = .
< 0<$_\/2k+1 2 1k + 2

Case 2. If n > k + 1, then it is always true since {a,}°, is increasing

sequence. ]

Example 4.4. If £ = 1 in Example 4.3, then T, is hyponormal if and
only if 0 < x < \/g And T, is a kth root of a hyponormal, but is not

hyponormal if and only if
2 (k+1)2
- <3/ — 1).
\/;<x_\/4k+2 (k>1)

Next we characterize a matrix on 2-dimensional complex Hilbert space

which is in (v/H). Since every matrix on a finite dimensional complex

51



Hilbert space is unitarily equivalent to a upper triangular matrix and kth
root of a hyponormal operator is invariant, it suffices to characterize a upper
triangular matrix 7. From the direct calculation, we get the following char-

acterization. The class of the kth root of a hyponormal operators denoted

by (VH).

Lemma 4.7. For k > 2 we have

T= (8 ﬁ) € (VH) & b +d" et 44 =0,

and T* is hyponormal.

Case l. If z = (O

1), then clearly ||T%z| > || T**z||.

Case 2. If x = (1

0), then b(a*~! + a*"2c + -+ + F71) is zero so that

1T 2l > |7 z]].

ak

(<) Ifb(a* ' +a"2c+ -+ 1) =0, then TF = <O

ck> is normal

and so hyponormal. Thus T € (v H). O
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We remark here that Lemma 4.7 offers the convenient criterion to find
some examples of operators in (v H). Also we observe that (v H) is not

necessarily normal on a finite dimensional space.

Example 4.5. If £ = 3 in Lemma 4.7, then T € (W) if and only if

b(a®>+ac+c?) =0. Takea=2,b=1and ¢ = —1+ v/3i. Then

I= ((2) —1+1\/§¢> € (VH),

but 7" is not a normal operator.

Theorem 4.8. Let T € (V/P*) be any kth root of a *-paranormal

operator. Then
(1) XT € (V' P*) for any complex number \ € C.

(2) If N € Lat T is invariant subspace of T, then T|n is a kth root of

x-paranormal operator.
(8) If T is is quasinilpotent, then T is nilpotent.

(4) If T is unitarily equivalent to S, then S is a kth root of *-paranormal

operator.
Proof. (1) For each vector x in H,
[Tl = ([N T ]* = AT ||
< PPEITH]| = NPT = [(AT)* 2.
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Thus (AT)* is *paranormal and so AT is a kth root of a x-paranormal

operator.

(2) If N € Lat T is invariant subspace of T', then (T'|y)¥ = T*|x. Since
T* is #-paranormal, T*|y is *-paranormal. Thus T'|y is a kth root of x*-
paranormal.

(3) Since T is quasinilpotent, o(T") = {0}. By the spectral mapping
theorem, we get that o(T%) = {o(T)}* = {0}. Hence T* is quasinilpotent.
Since T* is *-paranormal and quasinilpotent, T* is a zero operator(Lemma
4.2). Therefore T is nilpotent.

(4) Since T is unitarily equivalent to S, there exists a unitary operator
U such that S = U*TU. Thus T% = (U*SU)* = U*S*U and so S* is
unitarily equivalent to T%. Since T* is *-paranormal by hypothesis, S* is

x-paranormal and hence S is a kth root of *-paranormal operator. U

Theorem 4.9. Let T be a kth root of a M*-paranormal operator. Then

(1) If T commutes with an unitary operator S, then TS is also a kth root

of a M*-paranormal operator.
(2) If kerT* is equal to ker(T*)*, then kerT reduces for T.

Proof. (1) If A = (T'S)*, then we have for any real number \, there

exists M > 0 such that

MPA?A? + 20 AA* + N2
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Since T'S = ST, T*S5* = S*T* and S*S = I, we get
MZA2A? 4 20NAA* + N2T = MPTF2TR2 L o TRTR 1 \2T > 0,

so that A = (T'S)* is a M*-paranormal operator. Hence T'S is a kth root
of M*-paranormal operator.

(2) Let = be any point in ker . Then T(T'z) = 0 and so Tx € kerT.
Hence T'(ker T') C ker T. We need to show that T*(ker T') C ker T'. Since T*
is *-paranormal, ||(T%)*z||> < M| T%z|| for unit vector x in H, and hence

ker T?* C ker (T*)*. Since ker T* = ker (T*)* and ker T' C ker T,
ker T' C ker T C ker (T*)* = ker T*.

Therefore T*x = 0 for all x € kerT. Hence T(T*z) = 0 for all x € kerT.
Thus T*(ker T') C ker T O

Theorem 4.10. Let T be a weighted shift with non-zero weights {o,}
(n =0,1,2,...). Then T is a kth root of M*-paranormal operator if and
only if
1P |an—al? -+ |an-il* < Mlag||anial - lansori]
forn=kk+1,k+2,....
Proof. Since T is a kth root of M*-paranormal operator, T* is a M*-
paranormal operator. Therefore |[(T%)*e,||> < M||T%*e,| (n = 1,2,...).

2k, _
Here T<%e,, = apQupy1 -+ + Qg (2k—1)Eng2k and

(Tk)*en = Qp_1Qp_2 """ Qp_kCp_k
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for k =1,2,.... Since T" is M*-paranormal,
(TFY e, | < M||T%e,||(n=1,2...).

~ |O[n—1|2|05n—2|2 U |Ofn—l<;|2 < M|an||an+1| e |an+2k—1

forn=kk+1.... O

Corollary 4.11. Let T be a weighted shift with non-zero weights {ou, }52 .
Then T is a kth root of x-paranormal operator if and only if |, _g|* - -+ |an_1]* <

la| - Janrok—1| form=Fkk+1,....

Example 4.6. Let T, be the weighted shift with nonzero weights oy =

T, a1 = \/g, Qg = \/g, .... Then T, is a kth root of x-paranormal operator

if and only if

Proof. From Corollary 4.11, T, is a kth root of s-paranormal operator

if and only if

|k |* - lam—a* < Jom] - - Jompar—
forn=Fkk+1,....
Case 1. If n =k, |ao?|as]? -+ - |an_1]* < || -+ - |azp_1]
2 3 k

- \/k;+1 \/k+2 \/3k
= k+2 VE+3 3k+1
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o krl [k+1
2 3k +1

1 4/ (k+1)3
S OI<e < —- .
r= V2 3k+1
Case 2. If n > k 4+ 1, then it is always true. OJ

Example 4.7. If £ = 1 in Example 4.6, then T, is x-paranormal if

and only if 0 < x < % And T, is a kth root of x-paranormal, but not

x-paranormal if and only if

Example 4.8. If 0 <z < %, then T, is x-paranormal and paranor-

mal. If \/g <z < —4\}—5, then T, is #-paranormal but not paranormal. If

T > %, then T} is not *-paranormal and not paranormal.

Theorem 4.12. The set (V/P*) of all the kth roots of *-paranormal
operator is a proper closed subclass of L(H) with the norm topology.

Proof. Since T* is x-paranormal, ker T* = ker T?*. Hence ker T* =
ker T**1. Let U* be any unilateral backward shift on 5. Since ker (U*)* #
ker (U*)k*! for any k € N, U* is not a kth roots of *-paranormal operator.

Finally we show that the class (¥/P*) is closed in L(H). Let T}, be a

kth root of a x-paranormal operator for each positive integer n and let {7}, }
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converge to an operator 7' in norm. Then {T¥} converge to an operator
T* in norm. Since the set of all *-paranormal operators is closed in the

norm topology and T* are *-paranormal, T* is *-paranormal and hence

T € (v/P*) is a kth roots of *-paranormal operator. O

It is known that hyponormal operators have translation invariant prop-
erty. On the other hand, the class of square roots of hyponormal operators

may not have the translation invariant property.

Example 4.9. Let T' € L(H & H) is defined as

T:<8§)

Then T is a square roots of hyponormal operator. But [(T" — \I)**, (T —
C4APAAT 0 . o

2] _ 2

A)?] = ( 0 A2 A* !), which is not positive. Hence (T — A\I)

is not necessarily hyponormal.

Theorem 4.13. If T'—\I is a kth root of hyponormal operator for every
A € C, then T is hyponormal.

Proof. If (T — X )* is a hyponormal for every A € C, then
(T — ), (T~ ADf] > 0.
Therefore, we have

0 < ((T" = WHT = N = (T = NHT" = !
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Set A = pe? for every 0 < 6 < 27 and p > 0. Then we get

- g;:(—l)m (fj) ({:) s ik (T,

Since terms in (x) are eliminated when r = s = k, we do eliminate these

terms and then divide by p?*=2. Then we obtain

k k . i} 1
0< (k: B 1) (k: B 1) [T*T —TT*] + E(the other terms).

Letting p — oo, we get T*T > TT™. U
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