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< abstract >

On the class of generalized paranormal
operators

In this paper, we shall study the various characteristics of the M-paranormal

operators which generalizes a paranormal operators, and those of kth roots

of a paranormal on a Hilbert space H. The main results of the characteristics

are as follows:

(1)

(2)

If S is unitarily equivalent to any M —paranormal operator T', then S
is M-paranormal.

In general, the product T'S of commuting M-paranormal operators T,S
is not M-paranormal. But the following holds; Let T and S be commut-
ing M-paranormal operators. Then the product TS is M-paranormal
if one of the following holds;

(a) (ITSz||jzll = VMI||Tz][|Sz]| for any z € H.
(b) [|T2Szll|zll > M||T?z]||||Sz|| for any z € H.

Let T and S be double commuting M-paranormal operators and let
M > 1. Then the product T'S is M-paranormal if

(@M — 1)|IT*S%zlll<]| > 1Tz|||| S]]

for any z € H.

If an M-paranormal operator 7 commutes with an isometrc operator
S, then T'S is M-paranormal.

Let A and y be distinct eigenvalues of a M-paranormal operator T and
0 < M < 1. Then ker(T — A) L ker(T — p).
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(6)

We have the following implications among paranormal operators, kth
roots of paranormal operators and algebraically paranormal operators:

paranormal C the kth roots of paranormal operators

C algebraically paranormal

The kth roots of a paranormal operator T is closed in the norm topology
and a proper subclass of B(H).

Let T be a kth root of a M — paranormal operator. If T commutes with
an isometric operator S, then T'S is also a kth root of M — paranormal.

Let T be a weighted shift with nonzero weights {a,} (n = 1,2,---).
Then T is a kth root of M —paranormal operator if and only if

lanHan+1| T |an+k—1| < Mlan+k”an+k+1| T |an+2k——l|
forn=1,2,3,---.

If T is a kth root of a paranormal operator with 0 € mgo(T™"), then T
is a Weyl operator.

i -



0. Introduction

In the theory of non-normal operators on Hilbert spaces, it is impor-
tant to seek ways to reduce the problem to the normal operator case.
Many mathematicians have tried to extend the significant properties of
normal operators to the case of non-normal operators in various way since
early 1960. Some classes of non-normal operators are closely related to
normal operators, and analogy and difference between such non-normal
operators and normal operators have been discussed.

Let H be a Hilbert space and let B(H) be the set of all bounded linear
operators on H. By T. Saito([43]), T. Furuta([22]), etc., the following
non-normal operators have been defined as follows;

An operator T € B(H) is called normal if T*T = TT*; quasinormal if
T commutes T*T, i.e., T(T*T) = (T*T)T; subnormal if T has a normal
extension (i.e., there exists a Hilbert space K containing H as a subspace
and a normal operator B on K such that Tx = Bz for all z € H);
hyponormal if T*T — TT* = D > 0, or equivalently ||Tz|| > ||T*z|| for
¢ € H ; seminormal if T*T —TT* = D, D > 0 or D < 0 (or equivalently
T or T* is hyponormal), and normaloid if ||T|| = r(T), where r(T) =
sup{|A] : A € o(T)} denotes the spectral radius of T . An operator T’
is called paranormal or equivalently of class N if ||Tz||? < ||T?z|||z|| for
every z € H.

We have the following implications ([43]), but the converse of the
implications are not reversible([26]).

Normal C Quasinormal C Subnormal C Hyponormal
C Paranormal C Normaloid.

B. L. Wadhwa ([57]) introduced the class of M-hyponormal operators
and V. Istratescu ([30]) has studied some structure theorems for a sub-
class of M-hyponormal operator: An operator T is called M -hyponormal
if there exists a real number M > 0 such that M|[(T—X)z|| > [[(T-A)*z||
for any unit vector z in H and for any complex number A. Every hy-
ponormal operator is M —hyponormal, but the converse is not true in
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general: for example, consider the weighted shift S on I given by
S($1,$2, o ) = (0) 2$13$2,$3, ot )

Then S is M —hyponormal, but not hyponormal. The M-hyponormality
of operators has been studied by many mathematicians([2], [19], [35],
[40], [51], [57)).

On the other hand, an operator T is called M -paranormalif M ||T?z|| >
|Tz||? for any unit vector z in H. In particular if M = 1, the class of
M-paranoramal operators becomes the class of paranormal operators as
studied by T. Ando ([1)) and T. Furuta ([21]). T. Ando([1]) has charac-
terized the paranormal operator as follows:

Theorem. (Ando) An operator T' is paranormal if and only if
T*2T% - 2XT*T + A1 > 0

for all XA > 0.

Every paranormal operator is normaloid. However this result is not
valid for M-paranormal operator if M > 1. Also, similarity need not
preserve M-hyponormality and M-hyponormal operators need not be
normaloid.

The organization of this thesis is as follows:

In section 1, we introduce basic properties of various spectra(spectrum,
point spectrum, approximate point spectrum, essential spectrum, Weyl
specrum etc.) of a bounded linear operator and the spectral mapping
theorem.

In section 2, we give well known results of hyponormal operators and
M-hyponormal operators on a Hilbert space H. Also we shall give some
properties of algebraically M —hyponormal operators.

In section 3, we shall study certain properties of M-paranormal op-
erators. In particular, we shall give an essentially characterization of
M -paranormal operators in the following way;
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Theorem 3.8. An operator T is M -paranormal if and only if
M2T*2T? 4+ 2AT*T + X1 >0 for all real A.

Also we shall give an example due to T. Ando([1]) that there is a
paranormal operator such that some translation is not paranormal. And
we discuss the conditions under which, the sum, the product and the
inverse (if it exists Jof M-paranormal operators become M-paranormal.
The question of inverse can be readily answered. We show that ker(T —
A) L ker(T — ) for distinct eigenvalues A, u of a M-paranormal operator
T where 0 < M < 1.

In section 4, we shall study a new class of operators called a kth roots
of G-operator: An operator T € L(H) is a kth root of a G-operator if
T™ is a G-operator. In particular, if a G-operator is paranormal, then
T is called the kth root of a paranormal operator. We shall show the
following results:

(1) The kth roots of a paranormal operator T is a proper subclass
of B(H).

(2) If T € B(H) is a kth root of a paranormal operator and T is
invertible, then 7! is a kth root of a paranormal operator.

(3) Unitary equivalence preserves kth root of paranormality i.e., If
S € B(H) is a kth root of a paranormal operator and S is uni-
tarily equivalent to T, then T is a kth root of a paranormal
operator.

(4) The set of all the kth roots of hyponormal operators is closed in
the norm topology.

(5) A weighted shift T with nonzero weights {an} (n=1,2,---) is
a kth root of M —paranormal operator if and only if

lan|lansa] - [antk—1] < Mlanikllontesr] - oms2r-1]
forn=1,2,3,---.
Also we show that if T is a kth root of a of a paranormal operator
with 0 € 7oo(T*), then T is a Weyl operator. If S and T are commuting

kth roots of paranormal operators respectively, we prove that ST is Weyl
if and only if S and T are both Weyl.



1. Preliminaries and Basic Results

Let H be a Hilbert space and let B(H) the set of all bounded linear
operators on H. We denote the kernel of T and the range of T by ker T'(=
N(T)) and R(T) respectively. We note that R(T)* = N(T*) for any
operator T' € B(H). Write o(T) = {A € C: T — AI is not invertible}
for the spectrum of T, p(T) = o(T)¢ for the resolvent of T, o,(T) =
7o(T) = {A € C : ker(T — X) # {0} } for the set of eigenvalues of T,
mos(T') for the points of o(T') that are eigenvalues of finite multiplicity,
and moo(T) for the isolated points of o(T) that are eigenvalues of finite
multiplicity. If K is a subset of C, we write iso K for the set of isolated
points of K.

A complex number A € C is said to be an approzimate eigenvalue of T
if there exists a sequence {r,} with ||z,|| = 1 such that T'z,, — Az, — O,
ie., (T — Az, = 0. Let

0ap(T) = {X € C : Xis an approximate eigenvalue of T'}.

Then 0,,(T) is called the approzimate point spectrumof T. Let ocom (T) =
{A e C: R(T - )) is not dense in H} be the compression spectrum of
T.

An operator T € B(H) is said to be Fredholm if its range R(T) is
closed and both the null space ker T and ker T* are finite dimensional.
The indez of a Fredholm operator T, denoted by ind T or i(T') is defined
by

ind(T) = dimker T — dimker T™.

The essential spectrum of T, denoted by o.(T), is defined by
o0e(T) = {A € C: T — AI is not Fredholm}.

A Fredholm operator of index zero is called a Weyl operator. The Weyl
spectrum of T, denoted by w(T), is defined by

w(T)={A € C: T — Al is not Weyl}.
It was shown ([5]) that for any operator T,

0e(T) C w(T) C a(T)
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and w(T) is a nonempty compact subset of C. The spectral radius r(7)
of T is

lim ||T"||Y/™ = sup{|A| : A € o(T)}.
n—00

An operator T € B(H) is said to be Browder if it is Fredholm “of
finite ascent and descent”, or equivalently [28] if T is Fredholm and T—AI
is invertible for sufficiently small A # 0 in C. It is well known that g(T)
and w(T) are both compact. If T € B(H) for a finite dimensional Hilbert
space H then T is always Fredholm, so that o.(T) = 0. However, if dim
H = oo then we can easily show that o(T") is non-empty by using Calkin
algebra theory. Atkinson Theorem says that T is Fredholm if and only
if T is invertible modulo compact operators.

Theorem 1.1. Let H be a Hilbert space and let T € B(H). Then
ker T* = (ran T)*.

Proof. If z € ker T*, then 0 =< T*z,y >=< z,Ty > for all y € H and
hence z is orthogonal to ran T. i.e. z € (ran T)L. Conversely if z €
(ranT)* i.e., = is orthogonal to ranT, then < T*z,y >=< z, Ty >=0
for y in H, which implies T*z = 0. Therefore x € ker T". 0O

Definition 1.2. A vector £ € H is said to be a proper vector for the
operator T or equivalently eigenvector of T if x # 0, and Tx = uzx for a
suitable scalar . A scalar p is said to be a proper value for the operator
T or equivalently eigenvalue of T if there exists a vector T # 0 such that
Tz = pz, and the null space of the operator T — ul is called the p-th
proper subspace of T ,denoted by Nt(u).

That is,
Nr(u)={z € H:Tz = pz}.

Briefly speaking, Ny (u) is called the p-space of T. Thus Nr(u) is
different from {0} if and only if u is a proper value for T. A nonzero
vector z is a proper vector for T if and only if z belongs to some u-space
of T.



Definition 1.3. A closed linear subspace M of H is said to be invariant
under the operator T if T(M) C M. A closed linear subspace M 1is said
to reduce the operator T if both M and M~ are invariant under T.

Clearly, {0} and H are invariant under every operator T

Theorem 1.4. ([7]) If T € B(H) and M is a closed linear subspace of
H, the following conditions are equivalent ;

(1) M reduces T.

(2) M+ reducesT.

(3) M reduces T*.

(4) M is invariant under both T and T*.

Theorem 1.5. If S and T are operators such that ST = TS, then the
p-space of T is invariant under S, that is, S(Nt(p) C Nr(u) for all p.

Proof. Let x € Np(p). Then
T(Sz) = (TS)z = (ST)z = S(Tz) = S(pz) = u(Sz)
shows that Sz € Np(u). O

From the above theorem, the u-space of T is invariant under T

Let M be a closed invariant subspace of T and T'|p the restriction of
T on M. If M is a reducing subspace of T, then T can be decomposed
into the direct sum : T = T|p @ T|p1, where Mt is the orthogonal
complement of M.

The projection with range R(M) on a closed subspace M is the linear
transformation P defined by Pz = z, for every vector z of the form z+y
with z € M and y € ML,

Corallary 1.6. ([8]) If T is an operator on H, M is a closed subspace of
H and P is the projection onto M, then M is an invariant subspace for
T if and only if PTP = TP if and only if M1 is an invariant subspace
for T*. Further, M is a reducing subspace for T if and only if PT = TP
if and only if M is an invariant subspace for both T and T*.
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The well-known results on the spectrum are as follows;

Theorem 1.7. ([8/,[18]) For any operator T € B(H),

(1) o(T) is a nonempty compact subset of C.
(2) 0p(T) C 04p(T) C o(T).

(3) 0ap(A) is a closed subset of o(T) .

(4) 00(T) C 04p(T).

Definition 1.8. An operator T is said to be self-adjoint (or Hermition)
if T* = T ; positive if (Tz,z) > 0 for all x € H, denoted by T > 0;
isometry if ||[Tx|| = ||z|| for all z € H ; unitary if T*T = TT* = 1.
An operator T is said to be unitarily equivalent to an operator S if S =
U*TU for a unitary operator U. An operator S is said to be similar to the
operator T' if there exists an invertible operator A such that T = A"1SA,
denoted by S ~ T

Clearly every positive operator is self-adjoint, and if S ~ T, then
S* ~ T*.

Lemma 1.9. (/7))
(1) If T is a positive operator, then for all z,y € H,

|(Tz,y)|® < (Tz,z) - (Ty,y).

(2) If S < T and R is any operator, then R*SR < R*TR. IfT >0
and S is any operator, then S*TS > 0.

Theorem 1.10. ([7])

(1) If S and T are self-adjoint, so is S+ T.

(2) If T is self-adjoint and o € R, then oT is self-adjoint.

(3) If T is any operator, then T*T and T 4+ T* are self-adjoint.

(4) If S and T are self-adjoint, then ST is self-adjoint if and only if
ST =TS.



Theorem 1.11. The range R(T) of an isometric operator T is a closed
linear subspace of H.

Proof. Clearly R(T) is a linear subspace([7]). Suppose y is a limit point
of R(T). It suffices to show that y € R(T). Choose any sequence y, €
R(T) such that y, — y. Say yn = Tn. Since ||Zm — Tnl| = |TZm —
Tz,|| = |lym—unl| = 0, {zs} is a Cauchy sequence. Since H is complete,
z, — z for some vector z. By the continuity of T, yn, = Tz, — Tz,
that is, Tz = lim Tz, = limy, = y. d

Theorem 1.12. (/7]) The following conditions on T are equivalent ;
(1) T is unitary.
(2) T* 1is unitary.
(3) T and T* are isometric.
(4) T is isometric and T* is injective.
(5) T is isometric and surjective.
(6) T is bijective and T~! = T*.
Theorem 1.13. (The Spectral Mapping Theorem) If T € B(H) and f
is analytic in a neighborhood of o(T), then o(f(T)) = f(o(T)).



2. Hyponormal operators and M-hyponormal operators

Lemma 2.1. Let T be a hyponormal operator on a Hilbert space H.
Then

(1) T — M and T~ are hyponormal for each A € C.

(2) Tz = Az implies T*z = Az, forallz € H, A € C.

(3) Tz = Ax, Ty = uy and A # p for all z,y € H, A\, u € C mmply
that x and y are orthogonal.

Proof. (1) Since T is hyponormal, we have

(T = AI)(T* = X) = TT* — AT* = AT + |A*I
<T*T — AT* = AT + |\ 1
= (T* — M)(T - \)

for each A € C, and so T — AI is hyponormal.
If T is invertible and TT* < T*T, then TT* = TIT* < T*T and so
I <T-'T*TT*"!. Since A > I implies A~! < I for any operator for A,
we get that T*T—!T*"'T < I i.e., I — T*T~'T*7'T > 0. Thus
Tl = I T T T TITITT > 0
and so T~! is hyponormal.
(2) Since T — AI is hyponormal by (1), we have
0< [T — AD)z]| < ||(T = M)z =o.
Thus ||(T — A)*z|| = 0 and so T*z = Az.
(3) Since
Mz, y) = (Az,y) = (Tz,y) = (2, T"y) = (z, iy) = (=, ),

(A— p)(z,y) = 0 implies (z,y) = 0 (A # u), that is, x,y are orthogonal.
i



Definition 2.2. An operator T € B(H) is said to be nilpotent if T" =0
for some n € N ; quasinilpotent if |IT™||= = 0 as n — oco.

Evidently, if T is nilpotent then T is also quasinilpotent, and since
the spectral radius 7(T") can be expressed as

r(T) = lim||T"||"/"
it follows that o(T') = {0} if T is quasinilpotent.

Lemma 2.3. Let T be a hyponormal operator on H.

(1) oT + BI is hyponormal for any complex numbers o and 3.

(2) If z € H is any vector of H, then ||Tz| = || T*z|| if and only if
T*Tx =TT"*z.

(3) M= {z e H:|Tz| =|T*z||} is a closed subspace of H.

(4) If M C H is invariant under T, then T|y is hyponormal.

(5) For every positive integer n,

(2.1) 1™ = ITl",
and so r(T) = ||T|| i.e., T is normaloid.
Proof. (1) Since T is hyponormal,
(aT + BI)*(aT + BI) — (T + BI)(aT + BI)* = |o|*(T*T - TT*) 2 0

for any complex numbers a and 8. Hence oT + §I is hyponormal.

(2) The proof of the sufficiency is obvious. If |T'z|| = ||T*z| for each
vector z € H, then ((T*T — TT*)z,z) = 0 and hence for each vector
yEH,

(T*T = TT*)z,y)* < |(T*T - TT*)z,z)| - |(T*T = TT")y,y)| = 0

by the generalized Schwarz inequality for positive operators. Since y is
arbitrary, we have T*T'z = TT*z for each vector z € H.

(3) By (2),
M = {z € H Tzl = |T"al}
={zeH: (T*T -TT*)z =0} =ker(T*T - TT")



is clearly closed.

(4) Since M is invariant under T, PTP = TP where P is the projec-
tion on M. Since T is hyponormal,

|PT*Pz|| < ||T* Pz|| < |TPz| = || PT Pz

for each vector z € H and so PTP is hyponormal. Hence T'|as is hy-
ponormal.

(5) Let n € N be any positive integer and { € H be fixed. Then

IT*T €N < N\TTEN < IT™ 11,

and hence || T*T™¢|| < [|[T™*||I€]I-
Assume relation (2.1) holds for every positive integer p < n, and let
us prove it for n + 1. Then

[T"2 = |7 = |7 T
Tl
< T e
= It

Since [T~ = |T[|*~* and ||T™|| = ||T||", we get | T™*!]| > || T||"**.
The converse inequality being obvious, the proof is complete.

(Another Method) For each x € H with ||z|| = 1, we have
|ITz|® = (Tz,Tz) = (T*Tz,2) < |T*Ta|| < | T?z|.
But then ||T]|2 < ||T?|| < ||T||? which implies ||T||> = ||T?||. Now

IT"z||? = (T"z, T"z) = (T*T"z,T" 'z)
<|T*T"a|| - |T" 2]
< T e - 1T .



Thus ||[T™)|2 < |7+ - ||T™"!]], and combining this with the equality
above, a simple induction argument yields |T'||* = ||T"|| forn =1,2,---.
Thus

r(T) = lim |[T||'/™ = lim | T|| = |IT.

a

Corollary 2.4. The only quasinilpotent hyponormal operator is the zero
operaltor.

Proof. By hypothesis o(T) = {0} and so |T|| = (T) = 0. Hence T is
zZero. ]

Theorem 2.5. Let T be the weighted shift operator defined by Te, =
Qnént1 with weights {a,}3%, for each positive integer n. Then T 1is
hyponormal if and only if the weight sequence oy is monotonically in-
creasing.

P. Fan([18]) and S. L. Campbel([11]) showed the following examples.

Example 2.6.
(1) ([18]) Let T be a bilateral shift defined by

{ en—1 forn<2
Te,, =
2e,-1 forn > 3.

Then T is a hyponormal operator.

([11]) Let T be the unilateral weighted shift with weight sequence
{1, %, 1,1,---}. Then T is not a hyponormal operator.

Theorem 2.7. Let A be a point in the resolvent set of a hyponormal
operator T. Then

1

T =N = o, ey



Proof. Let o € o((T — A)7!). By the spectral mapping theorem, we
infer p = a~' 4+ X € o(T), and conversely every 3 € o(T) is of the form
a~! + A, with a € o((T — A)71). In fact,
a¢o((T-N"1Y)eal-(T-A)"'=S: invertible
s afT —A)—I=(T- XS : invertible
& (T-AN-a 'I=a (T~ \)S : invertible
salt¢o(T-N)
and so o ((T = A)™1) = [o(T - X)] " . Also
_\1 -1 _ -1
cco(T-NNealesT-Nea +rea(T).
B
Therefore
r(T—A)"'=max{la| : a€a (T-A"")}
= (min{]A — B : Beo(DN
= dist(), o(T)) .

But (T — A)~! is still a hyponormal operator (for instance from the
factorization ), so that

1T = X)7H = r((T = X)) = dist(A, o(T) 77,

as desired. [l

It is well-known ([25]) that 72 may not be hyponormal when T' is
hyponormal. For example, if U is the unilateral shift on 2and T =
U* + 2U, then

T*T —TT* =31 -3U0U*=3I-UU")>0.
Therefore T is hyponormal. Howerver if we take z = (1,0,-2,0,---),
then T2z = (0,0, —4,0,-8,0,---), (T?)*z = (—6,0,-7,-2,0,---) and
SO

|IT22||” = 80 < 89 = [|(T™)?|?,



and so T? is not hyponormal.

The following another example is due to ([34]).
Example 2.8. Let H denote any Hilbert space and let A denote the
set of all function z = z(n) defined on integers with values in H and

satisfying 3> _ ||z(n)||> < oo. Then A becomes a Hilbert space with
inner product

(z,9) = ) (2(n),y(n)).

Next, let {P,} be a bounded sequence of nonnegative operators on H,
so that 0 < P, < (constant) - I, and define the operators U and P on A
by

Uz(n)=z(n+1) and Pz(n)= P,z(n).

It is clear that U is unitary and that P is a non-negative bounded oper-
ator. Furthermore, if T = UP, then

Tz(n) = Poyiz(n+1) and T*z(n) = Pyz(n-—1),
and hence T*Tz(n) = Piz(n) and
TR i st LA

Consequently, T*T — TT* > 0 if and only if
(2.2) P2>P2., forn=0,£1,%2,- -
An easy calculation shows that

T?z(n) = Poy1Pryaz(n+2)
and T*%z(n) = P,P,_1z(n — 2), and hence

T**T?z(n) = 2 P,x(n)

and
T27*%g (n) = Pny1 +2Pn+1x( n).



Thus 72 is a hyponormal operator if and only if
(2.3) P,P:_|P, > P11 P2 ,Poy1 forallm.

It will be shown that (2.2) does not imply (2.3).
If H is two-dimensicnal, so that operators on H can be regarded as
2 x 2 matrices. Let

2 1 1 0
A—<1 1) and B—(O O)'
Then A > 0,B > 0 and

11
am= ()20

4
2_p2_
But A°—B (3 9

square root of A for n < 0 and the non-negative square root of B for
n > 0. Then P2 > P2 ,, so that (2.2) holds and T is a hyponormal
operator. But

is not semi-definite. Let P, be the non-negative

PyP?,Py= A%? and P,P}P, = B?

so that (2.3) fails to hold for n = 0. Hence T2 is not a hyponormal
operator.

We recall that an operator T is unitarily equivalent to an operator S
if S = U*TU for a unitary operator U.

In ([20]), T. Furuta and R. Nakamoto have proved the second part
(2) of the following theorem;

Theorem 2.9.

(1) An operator unitarily equivalent to a hyponormal operator is a
hyponormal operator.

(2) ([20]) A hyponormal operator unitarily equivalent to its adjoint
1s normal.



Proof. (1) Suppose S = U*TU, T hyponormal and U unitary. Now for
every x € H,

18*z|| = |[U*T*Usz|| = [|T*Uz| < |TUg|| = |[U*TUz| = ||Sz||

and so S is hyponormal. O

Definition 2.10. Two bounded linear operator S and T are doubly com-
mutative(resp. weakly doubly commutative) if TS = ST and TS* = S*T
(resp. TS # ST but TS* = S*T).

In the following lemma, we show that if two operators are weakly
doubly commutative, then the sum and product of two hyponormal op-
erators are hyponormal.

Lemma 2.11. Let T and S be hyponormal operators such that T*S =
ST*. Then

(1) T + S is hyponormal.
(2) ST is hyponormal.

Proof. (1) By hypothesis,

(T+8)*(T+S8S)=T"T+T*S+S*T+S5*S
>TT*+T*S+S*T+S5*S
>TT*+TS*+ ST* + SS*
= (T + S)(T* + S*).

Thus T + S is hyponormal.
(2) For every z € H,

I(ST)*z|? = (T*S*2,T*S*z) = |T*S"||*
< |T8*z||? = ||5*Tlf® < ||ST||*.

Thus T'S is hyponormal.



(Another Method) By the hyponormality and the hypothesis, we have

(ST)*(ST) = T*(8*S)T > T*(SS*)T
— S(T*T)S* > S(TT*)S"* = (ST)(ST)*.

Thus ST is a hyponormal operator. O

The sum and product of two double commuting hyponormal opera-
tors are easily shown to be a hyponormal operator. But the sum and
product of two commuting hyponormal operators are not necessarily hy-
ponormal. We attempt to find conditions under which the product of
two hyponormal operators are also hyponormal.

If we replace one of the hyponormal operators by an isometric oper-
ator in Lemma 2.11(2), then the condition of commutativity is sufficient
to ensure the hyponormality of their product.

Theorem 2.12. If a hyponormal operator S commutes with an isomet-
ric operator T, then ST is a hyponormal operator.

Proof. For any z € H,

1(8T)"z|| = ||T*S*=|| < ||S™ ||
< ||8zf| = TSz = ||ST=]|.

Thus ST is a hyponormal operator. O

H. Weyl([58]) asserted that if T is a self-adjoint operator acting on a
Hilbert space H, then w(T') consists precisely of all points of o(T") except
the isolated eigenvalues of finite multiplicity, that is,

w(T) = o(T) — moo(T).

Following L. A. Coburn([12]), we say that Weyl’s theorem holds for
T if w(T) = o(T) — moo(T), or equivalently, if o(T) — w(T) = moo(T).



There are several classes of operators for which Wey!’s theorem holds:

(1) H. Weyl([58]) showed that Weyl’s theorem holds for any self-
adjoint operator.

(2) L. A. Coburn([12]) showed that Weyl’s theorem holds for any
hyponormal operator and any Toeplitz operator.

(3) S. K. Berberian([5],[6]) showed that Weyl’s theorem holds for any
seminormal operator.

(4) K. K. Oberai([37]) showed that if N is a nilpotent operator com-
muting with T and if Weyl’s theorem holds for T then it also
holds for T' + N.

(5) A. Uchiyama([54]) recently showed that Weyl’s theorem holds for
any paranormal operators.

Theorem 2.13. ([12]) Weyl’s theorem holds for hyponormal operators.

Proof. If T is hyponormal then T' — AI is hyponormal. Thus it suffices
to show that 0 € o(T) — w(T) if and only if 0 € mo(T).

(=) : Let 0 € o(T)—w(T). Then T is weyl but not invertible. Then
T(H) is closed, dim T-!(0) = dimT(H)* < oo and T-1(0) # {0}, so
that T(H)* # {0}. Since T is hyponormal, ||T'z|| > ||T*z||. In particular,
kerT C kerT* = T(H)L. Thus T ='0 & B, where B is invertible. Hence
o(T) = {0} Ua(B). Since 0 ¢ o(B),0 € isoo(T). Thus 0 € moo(T).

(<= ) : Let 0 € mgo(T). Then 0 € isoo(T) and 0 < dimker T' < oo.
By hyponormality, ker T € T(H)*. So T = 0 ® B, where B is 1-1 and
hyponormal. Also, B is invertible. Since

H =ker T ® (ket T)* = ker T & T(H),
ker T = T(H) and (ker T)* = T(H). Thus dimker T = dimT(H)* <

oo and index (T) = 0. Since 0 € isoo(T), T is not invertible. Hence
0€ o(T) — w(T). O

Definition 2.14. An operator T € B(H) is said to be isoloid if isolated
points of o(T) are eigenvalues of T'.



Theorem 2.15. If T is hyponormal, then T is isoloid.

Proof. Tt suffices to show that if 0 € isoo(T'), then 0 € 0,(T). Choose
R > 0 sufficiently small enough that 0 is the only point of o(T") contained
in or on the circle |A| = R. Define

Pz/. (AI — T)"1dA.
IA|l=R

Then P is a nonzero projection which commutes with T. Thus T'|py is
hyponormal. Also o(T|py) = {0}. That is, T|px is a quasinilpotent
hyponormal operator. Since the only quasinilpotent hyponormal oper-
ator is 0 by Corollary 2.4, it follows that T|py = 0, so that T is not
one-to-one. Therefore 0 € o,(T). O

Recall that an operator T € B(H) is M — hyponormal if there exists
M > 0 such that
(T - 2)*z|| < MI|(T - z)z]

for all z in H and for all 2 € C. The notion of an M-paranormal oper-
ator is due to J. Stampfli and B. L. Wadhwa ([51}). Every hyponormal
operator is M —hyponormal, but the converse is not true in general: for
example, consider the weighted shift S on I, given by

S($1,$2, vt ) - (O, 21:1,1:27:53)' : )

The examples of M-hyponormal non-hyponormal operators seem to
be scare from the literature. B. Wadhwa([57]) gave an example of an
M-hyponormal non-hyponormal weighted shift T on I3 ;

0
Lo \
2 0
1 0
1 0
1

0



The following facts are well-known : If T € B(H) is M-hyponormal,
then

(1) M*(T — N)*(T — A) > (T — A)(T — A)* for any A € C and the
converse is also true.

(2) Tz = Az implies T*z = Az.

(3) (T = N)™Hia|| > M—FD2(T — Az +E.

(4) T is isoloid.

(5) Weyl’s theorem holds for T.

(6) M||(T — X\)~z|| > ||(T* — A)"'z| for all A € p(T) and for all
r € H.

(7) The only M-hyponormal quasinilpotent is zero.

(8) If N C H is invariant for T, that is, TN C N, then T|n is also
M-hyponormal.

Theorem 2.16. Suppose T is the weighted shift with weight sequence
{0}, If {an} is eventually monotonically increasing, that is,
{on}22, is monotonically increasing for some k € N, then T s M-
hyponormal.

The following examples showed that similarity need not preserve M-
hyponormality and M-hyponormal operators need not be normaloid.

Example 2.17. If on [,

o O

N O

N O

and S =

O

— O

then 7 and S are similar while S is not M-hyponormal.

O

— o




If on l2

o= O

- o
O
—

then T is M-hyponormal and transloid(i.e., T — X is normaloid for all
X € C), but not hyponormal.

If T is both Fredholm and M —hyponormal, then ¢(T) < 0. It was
known that the mapping T — w(T) is upper semi-continuous, but not
continuous at T'([37]). However if T,, & T with T,,T = TT, for alln € N
then

limw(T,) = w(T).

It was known that w(T) satisfies the one-way spectral mapping theorem
for analytic funcions: if f is analytic on a neighborhood of ¢(T') then

w(f(T)) C f(w(T)).

If T is normal then g.(T) and w(T) coincide. Thus if T is normal and f
is analytic on a neighborhood of o(T), it follows that w(f(T)) = f(w(T))
since f(T) is also normal.

We recall that for any operator T € B(H),
o(T) — w(T) C mos(T) or equivaently o(T) — mos(T) C w(T).

Theorem 2.18. Let S and T be operators in B(H). Suppose the indices
of S and T are either both nonnegative or both nonpositive. Then

S, T Weyl <= ST Weyl

Proof. If S,T are Weyl, then S, T are Fredholm and #(S) = #T) = 0.
Therefore ST is Fredholm and by the index product theorem,

i(ST) = i(S) + i(T) = 0.



Hence ST is Weyl.

Conversely, suppose that ST is Weyl and each index is nonpositive.
Then ST is Fredholm and i(ST) = 0. Since we note that kerS* C
ker(ST)* and i#(S) < 0, dimkerS < dimker S* < dimker(T*S*) =
dimker(ST)* < 20, and so ker S and ker S* are finite dimensional. Also
the range R(S) is are closed. Thus S is Fredholm. Therefore S and T
are Fredholm. Since each index is nonpositive and

0 = i(ST) = i(S) +i(T), i(S)=4i(T)=0.

Hence S and T are Weyl.
Suppose that ST is Weyl and each index is nonnegative. By the
similar argument, S and T are Weyl. a

Corollary 2.19. If S and T are M —hyponormal operators, then
ST Weyl— S5,T Weyl

Proof. Since S and T are M —hyponormal, we have (S) < 0 and ¢(T) <
0. Thus by the above theorem 2.18, both S and T are Weyl. O

If the “M —hyponormal” condition is dropped in the above Corol-
lary 2.19, then the backward implication may fail even though S and T
commute: For example, if U is the unilateral shift on lo, consider the
following operators on lo @Iy : Ty =U & I and To = I & U*. Since

nnhL,=Uel(IaU*)=UsU",
we have i(T1T3) = i(U) +¢(U*) = 0 . Therefore 71T is Weyl. But since
i(Ty) = 1,i(T3) = —1, so Ty and T are not Weyl.

It is possible for the product of non-Weyl operators to be Weyl. For
example, consider the unilateral shift on l;. Then since dimkerU = 0
and dimker U* = 1, U and U* are Fredholm operators of index —1 and
1 respectively and so U and U* are not Weyl operators since {(U) = —1
and {(U*) = 1. But UU* is Fredholm and

WUt =iU)+iU*)=-141=0

by the index product theorem. Thus UU* is Weyl.



Theorem 2.20. If T is M —hyponormal and f is analytic on a neigh-
borhood of o(T), then w(f(T)) = f(w(T)).

Proof. Suppose that p(t) is any polynomial. Let
p(T) — M =ao(T — 1 I)--- (T — puI).

Since T is M —hyponormal, T — u;I are commuting M —hyponormal
operators for each i =1,2,--- ,n. Thus

A ¢ w(p(T)) < p(T) — AI = Weyl

> ao(T — iy I)-- - (T — pnl) = Weyl
< T — p;I = Weyl foreach 1 =1,2,--- ,n
<= p; ¢ w(T) foreachi=1,2,--- ,n
< A ¢ p(w(T))

which says that w(p(T)) = p(w(T)).

If f is analytic on a neighborhood of ¢(T), then by Runge’s the-
orem([14]), there is a sequence (p,(t)) of polynomials converging uni-

formly in a neighborhood of ¢(T') to f(t) so that p,(T) — f(T). Since
each p,(T') commutes with f(T), by ([37])

f(w(T)) = limpa (w(T)) = limw(pa (T)) = w(f(T)).
g

Corollary 2.21. IfT is hyponormal and f is analytic on a neighborhood
of o(T), then w(f(T)) = f(w(T)).

An operator T € B(H) is said to be algebraically M -hyponormal if
there exists a nonconstant complex polynomial p such that p(T) is M-
hyponormal ; pth root of a M -hyponormal operatorif TP is M-hyponormal
; polynomially M -hyponormal if p(T) is M-hyponormal for every com-
plex polynomial p. Evidently, we have the implications:

polynomially M-hyponormal C M-hyponormal
C the pth roots of M-hyponormal
C algebraically M-hyponormal.



But the converse is not true in general : for example, if T = ((1) } )

on two dimensional Hilbert space, then T? is not M-hyponormal for any
p € N, whereas p(T) = 0 with p(z) = (z — 1)2.

The following facts follow from the above definition and the well-
known facts of M-hyponormal operators.

(1) If T € B(H) is algebraically M-hyponormal, then so is T — AT
for each A € C.

(2) If T € B(H) is algebraically M-hyponormal and M C H is in-
variant under 7', then T'|ys is algebraically M-hyponormal.

(3) Unitary equivalence preserves algebraic M-hyponormality.

The following Lemma gives the essential facts for algebraically M-
hyponormal operators that we will need to prove the main theorem.

Lemma 2.22. Suppose T € B(H).

(1) If T is algebraically M —hyponormal and quasinilpotent, then T
is nilpotent.

(2) If T 1is algebraically M —hyponormal, then T is isoloid.

(3) If T is algebraically M —hyponormal, then T has finite ascent.

Proof. (1) Suppose p(T) is M —hyponormal for some nonconstant poly-
nomial p. Since M —hyponormality is translation-invariant, we may as-
sume p(0) = 0. Thus we can write

p(A) = aoA™(A = A1) - (A= Ap)
where m # 0, A; # 0 for every 1 <1i < n. If T is quasinilpotent, then
o(p(T)) = p(o(T)) = p({0}) = {0},

so that p(T) is also quasinilpotent. Since the only M —hyponormal and
quasinilpotent operator is zero, it follows that

aoT™(T = A D) - (T — Aud) = 0.



Since T — A;I is invertible for every 1 < i < n, we have that T™ = (.

(2) Suppose p(T') is M —hyponormal for some nonconstant polyno-
mial p. Let A € isoo(T). Then using the spectral decomposition, we
can represent T as the direct sum T = T & T», where o(T}) = {A}
and o(Ty) = o(T) — {A}. By the preceding remark, 77 — Al is also al-
gebraically M —hyponormal. Since T; — AT is quasinilpotent, it follows
from the statement (1) that 73 — Al is nilpotent. Therefore A € op,(T1)
and hence A € o,(T). This shows that T is isoloid.

(3) If T is M —hyponormal, then it follows from the property in Intro-
duction that N(T—A)"*1 C N(T-\). But since, in general, N(T— ) C
N(T —X)", it follows that N(T —A) = N(T — A)2. Thus M —hyponormal
operator is one of ascent 1. Suppose p(T) is M —hyponormal for some
nonconstant polynomial p. We may assume p(0) = 0. If p(A) = apA™
then N(T™) = N(T?™). Thus we write

P(A) = aoA™(A = A1) - (A= An)
where m # 0, A; # 0 for 1 < ¢ < n. We then claim that
(2.4) N(T™) = N(T™*1).
To show (2.4), let z(# 0) € N(T™*!). Then we can write
p(T)xz = (—1)"apA1 - - - AT zx.

Thus we have

laoXs - - An 2|1 T™2||? = [Ip(T)z|)?

= (p(T)z,p(T)x) < ||p(T)*p(T)||||]]

< M||p(T)?z||||z|| (because p(T) is M —hyponormal)

= M||a3(T — A 1)?-- - (T — A I)*T?™ x|
=0,

which implies z € N(T™). Therefore N(T™t!) C N(T™) and the re-
verse inclusion is evident. This completes the proof. O



Theorem 2.23. Weyl’s theorem holds for every algebraically M — hy-
ponormal operator.

Proof. Suppose p(T) is M — hyponormal for some nonconstant polyno-
mial p. We first prove that moo(T) € o(T) — w(T). Since algebraic
M —hyponormality is translation-invariant, it suffices to show that

0 € meo(T) = T is Weyl but not invertible.

Suppose 0 € mo(T'). By the spectral decomposition, we can represent
T as the following 2x 2 operator matrix with respect to the decomposition
H=KoKL:

r=(Tt O) . koxt koKt
0 T

where o(Ty) = {0} and o(T2) = o(T) — {0}. But then T) is also alge-
braically M — hyponormal and quasinilpotent. Thus by Lemma 2.22(1),
T is nilpotent. Thus we should have that dim K < oo : if it were not so
then N(T}) would be infinite dimensional, so that 0 ¢ moo(T), giving a
contradiction. Therefore T} is a finite dimensional operator. Since finite

dimensional operators are always Weyl it follows that T7 is Weyl. But
since T» is invertible we can conclude that T is Weyl. Therefore

moo(T) € o(T) — w(T).

For the reverse inclusion, suppose A € o(T) — w(T). Thus T — Al is
Weyl. Then by the “Index Product Theorem”,

dim N((T — A)™) — dim R((T — AI)™)* = ind ((T — A)™)
=nind (T — AI) = 0.

Thus if dim N((T' — AI)™) is a constant then so is dim R((T — AN™)L.
Consequently finite ascent forces finite descent. Therefore by Lemma
2.22(3), T — Al is Weyl! of finite ascent and descent, and thus it is Brow-
der. Therefore A € moo(T). This completes the proof. O



3. M-paranormal operators

We recall that an operator T is hyponormal if T*T — TT* =D > 0
or equivalently ||[Tz|| > ||T*z]|| for every vector x € H; paranormal or
equivalently of class N if ||Tz||®> < ||T%z||||z|| for every £ € H and *
paranormal if | T*z||? < ||T%z]|||z]| for every z € H.

By ([21],[29],[32]), we have the proper inclusion relation among the
classes of non-normal operators as follows :

Normal = Quasinormal = Subnormal
—> Hyponormal

—> Paranormal(or *-paranormal) —> Normaloid

The following example due to P. R. Halmos([26]) shows that the im-
plications subnormal = hyponormal = paranormal are not reversible.

Example 3.1. ([26],[43]) Let H be a Hilbert space and let K = --- @
Ho H®---. K be a Hilbert space with inner product defined by

(may): Z (-’Enayn)

n=—oo

for z = {z,}%,, ¥ = {yn}>=, with

o0 o0
Y lleall? <00, 3 llyml® < co.
- 00 — 00

Let {P,}*, be a sequence of positive operators on H such that {|| P, ||}
i1s bounded, and define the operators U and P on K by

(3.1) (Uz)p = zp—1; (Px)p = Pazy,
for z = {z,}>°,, € K. Then U is a bilateral shift operator on K and

(3.2) (U*z)p = Tny1; (P*z)p = Pz, = Pazy,..



Let T = UP. Then from (3.1) and (3.2), we have

(3.3) (T*Tzx), = P2z,; (TT*z)n = P?_,z,

for z = {£,}*_ € K. Consequently, T*T — TT* > 0 if and only if {P?}
is increasing. Again by (3.1) and (3.2), we have

(3.4) (T*’T%x), = PoPpy12Patn; (T?T*?1)q = Poo1P2_yPa 170

for = {2,}*, € K. Thus T? is hyponormal if and only if

(3'5) Pn—IPn—22Pn—l S PnP3+1Pn

for all n.

Now let H be a two-dimensional Hilbert space and let

o (o) 2= (i)

(acting on H). Then

1 1
po=(1 1)20

2 ~2_ (4 3
p-ct= (3 3)

and D?—C? has negative determinant. Thus D?—C? is not semi-definite.
Let
P VC (n<0)
" \vD (n>o).
Then P2 < P2, forn=0,%1,£2,--- and

but



PyP2,Py=C? P P*P, =D

Thus {P,} is increasing, but does not satisfy (3.5). Hence T is hyponor-
mal and T2 is not hyponormal. Since every hyponormal is paranormal,
T? is paranormal, so that T2 is a non-hyponormal paranormal operator.

From this fact, we can see that T is not subnormal. In fact, if T
is subnormal, then T has a normal extension B. Thus B? is a normal
extension of T2 and T? is subnormal, hence hyponormal. This is a
contradiction.

B. L. Wadhwa in ([57]) introduced the class of M-hyponormal op-
erator and V. Istratescu in ([30]}) has studied some structure theorems
for a subclass of M-hyponormal operators. The following definition of
M -paranormal operators also appears in ({30]).

Definition 3.2. An operator T is called M-paranormal if M||T?z| >
|Tz||? for any unit vector z in H; M*-paranormal if M||T%z| > ||T*z||?
for any unit vector x in H.

Recall that an operator T is M -quasthyponormal if
M| T?z|| > ||T*Tx|]

for any unit vector z in H.

If M = 1, the class of M-paranoramal operators becomes the class of
paranormal operators as studied by T. Ando ([1]) and T. Furuta ([21}).
The purpose of the present paper is to study certain properties of M-
paranormal operators.

Theorem 3.3.

(1) Every M-hyponormal operator T is M -quasthyponormal.
(2) Fvery M -quasihyponormal operator T is M -paranormal.



Proof. (1) Since T is M-hyponormal,

M|[T?| = M|[Tz] ||T<”T Dl
> [Tl I ()
17 17
IT12)
= (e T2 ey,
[T

(2) Since T is M-quasihyponormal, M||T2z|| > ||T*Tz|| for any unit
vector z in H. We know that for any bounded linear operator T on H,

|ITz]* < 1T Tz

for any unit vector z in H. Therefore M||T2z|| > ||T*Tz| > ||Tz|? for
any unit vector z in H. O

we have the proper inclusion relation among the classes of non-normal
operators as follows :

Hyponormal => M —hyponormal
—> M —quasinormal =—> M —paranormal.

Lemma 3.4. If T is paranormal, then ||T"|| = ||T||* for every positive
integer n, and so T is normaloid(i.e., |T|| = r(T)).

Proof. Let T be a paranormal operator on H. It is sufficient to show
that ||T"|| = ||T||™ for all n = 1,2,---. Suppose that

IT*z|| > || Tz|*
for all unit vectors z € H and k =1,2,--- ,n. Then by induction,

Tx
| Tz||

T( Tx ) ™
I Tz||
= ||Tz|' | T%z ||
> || T~ T=||*" = ||Tz||™*!

|T** || = [T || T"

2 ||T=|




for any unit vector £ € H. Thus by the mathematical induction, [|T"} =
|T|I* for n =1,2,---.

From the well-known fact that the spectral radius of an operator T
is equal to limy,_, o %/||T™||, we have |T'|| = r(T') and so T is normaloid.
O

An operator T € B(H) is said to be nilpotent if there is a positive
integer n such that T™ = 0; guasinilpotent if o(T) = {0}. Since the
spectral radius is defined by

r(T) =sup{|Al : A€ o(T)} = lim [|T™||'/",

it follows that r(T') = 0 if T is quasinilpotent.

Corollary 3.5. The only quasinilpotent paranormal operator is the zero
operator.

Proof. ||T|| = r(T) = 0 by Lemma 3.4. a

Every paranormal operator is normaloid. However the following op-
erator T shows that this result is not valid for M-paranormal operator
if M > 1.

Example 3.6. Let T be an operator on a three-dimensional Hilbert
space defined by

1 00
T=[(0 0 0
010

with respect to the orthonormal basis {e1,ez,e3}. Then o(T) = {0,1}
and

T[] =r(T) =1

so that T is normaloid. But since 1 = ||Tez||? and ||T2e2|| = 0, M||T?e;|| <
ITe2!|? = 1. Hence T is not M-paranormal.



The classes of M*-paranormal operators and M-paranormal opera-
tors are independent by the following example;

Example 3.7.([3]) Let (e5)3%, be an orthonormal of a Hilbert space H.
Define a bilateral weighted shift T on H with weight {a,} given by

3 .

7 1fn§—1
Qn = % ifn=20

n 6 ;

17 1fn21.

Then T is %'-paranormal, but T is not %-paranormal.

We begin with a characterization of M-paranormal operators in the
following way;

Theorem 3.8. ([2]) A bounded linear operator T is M -paranormal if
and only if

M2T*2T2 _2AT*T + X2 >0
for all X > 0.

Proof. We know that for positive numbers b and ¢, ¢ — 2bA + A2 >0
for all A > 0 if and only if b2 < c. Let b = ||Tz||? and ¢ = M?||T?z||?,
|z]l = 1. Then by definition of M-paranormal, T is M-paranormal if
and only if b2 < ¢. This means that T is M-paranormal if and only if

M3?||T2z||2 = 2M||Tz||>+ 22 >0

for each A > 0 and for each vector z with ||z|| = 1. This proves the
proof. O

Equivalently, putting A = (T'T*)? and B = (T"‘T)% we see that T is
M-paranormal if and only if M2AB2A — 2AA%2 + A2 > 0 for each number
A>0.



Corollary 3.9. (/1)) A bounded linear operator T is paranormal if and
only if

T*2T2 _AT*T + A2 >0

for all A > 0.

Corollary 3.10. Let T be a weighted shift with weights {an}. Then T
is M -paranormal if and only if

lan| < M|on 41

for each positive integer n.

Proof. Let {e,}2%, be an orthonormal basis of a Hilbert space H.
(=) Suppose T is M — paranormal. Then

ITenll = llanentill = lan|
and
[T?en]| = [|T(anen+1)l = lanlllantienszll = lanllanti]
for each positive integer n. Since T is M — paranormal,
I Teall* < MIT?enll,
and so |an! < M|a,41| for each positive integer n.
(<=) Suppose |a,| < M|ay41]| for each positive integer n. Then for

each positive integer n, we have

M||T?e,|| - ||Ten||? = Mlan||ans1] — |anl®
= |on|(M|any1| — jaal) > 0.

Therefore M|/ T?e,| > ||Ten||? for each positive integer n, and so T is
M — paranormal. O



It can be easily shown that every M-hyponormal operator T" is M-
paranormal because

IT2|? = (T* Tz, 2) < |T*(Tz)llllzll < M| T?||||]

for any vector x € H. However the converse need not be true. Indeed if
{en} is an orthonormal basis for a separable Hilbert space and if T" is a
weighted bilateral shift defined as

1
Te, = men+1

for each n, then T is not M-hyponormal for any M > 0 ([40, Corollary

5] but T is M-paranormal for any M > 2. We also notice that T is not
a paranormal operator.

We shall give an essentially characterization of M-paranormal oper-
ators in the following way;

Theorem 3.11. An operator T is M -paranormal if and only if

M2T*2T2 L 2AT*T + A’I >0 for all real M.
Proof. Let x be any unit vector in H. Then

M2T*2T2 L 2AT*T + A2 > 0 for all real A
& ((M2T*2T? 4+ 2AT*T + A%I)z,z) > 0 for all real A
& M?||T?z|| + 2X||Tz||?> + A?||z||> > 0 for all real
& ||Tz||* < M?||T?z||
< T is M-paranormal.
O

We recall that the smallest positive integer n, for which N(T") =
N(T™*1) is the ascent of T, where N(T') denotes the null space of T. It
is well known that the ascent of a normal operator is 0 or 1. I. Sheth
({44]) has proved that if T is hyponormal then the ascent of T" is 0 or 1.
We generalize this result to M —paranormal operator.



Theorem 3.12. Let T be any M —paranormal operator. Then

(1) The restriction T|n to its invariant subspace N is M-paranormal.

(2) AT is M —paranormal for every compler number A.

(3) If T is a invertible, then T~! is also M -paranormal.

(4) If S is unitarily equivalent to T, then S is M-paranormal.
(5) The ascent of T is 0 or 1.

Proof. (1) Let z be any vector of N. Then we have
ITInz|i® = |IT2l® < M||T?z|||zl| = MI|(TIn)*zlll|=]]-
This implies that T |ps is M-paranormal.
(2) It is sufficient to show that
I(AT)z||* < M||(AT)’z|
for all unit vector x € H and A € C. Thus
IAT)z|? = AP T2|* < [APM||IT?2|| = M|(AT)*||.

(3) Since T is M-paranormal, we have M||T2z||||z|| > ||Tz||? for each
vector z. This can be replaced by

Milz|| _ |IT<|
1Tzl ~ [|T2|

for each vector z in H. Now replacing z by T2z, we have
M||z|[|T 22| > ||T ™ =]?
for each vector z in H. This shows that T~! is M-paranormal.

(4) Since S is unitarily equivalent to T', there exists a unitary operator
U such that § = U*TU. It is sufficient to show that

M?28*282 4 2AS*S + A% >0



for all real A. Then since T is M-paranormal,
M?25*28% £ 208*S + NI
= M2(U*T*U)2(U*TU)? + 2A(U*T*U)(U*TU) + X*(U*U)
= U*(M*T*2T? 4 2AT*T + N*I)U > 0.

Therefore S is M-paranormal.

(5) Let = be any vector in N(T2). Then T?z = 0. Since T is
M —paranormal,

|1Tz|? < M|IT?z|||jz|| = 0

and so Tz = 0, i.e., z € N(T). Hence N(T?) C N(T) C N(T?). This
completes the result. a

Corollary 3.13. Let T be any paranormal operator. Then

(1) The restriction T|y to its invariant subspace N is paranormal.
(2) AT is paranormal for every complex number A.

(3) If T is a invertible, then T~ is also paranormal.

(4) If S is unitarily equivalent to T, then S is paranormal.

The following example due to T. Ando([1]) shows that there is a
paranormal operator such that some translation is not paranormal.

Example 3.14. ([1]) Let C and D be operators on a two-dimensional
Hilbert space defined by

o-(19). o=(32)

Then D> C >0, but

2 ocp2_ (105 130
26D" - 25C _(130 160



is not positive. Let n be a positive integer such that 4 x 25" < 26".
Then 41/"D? — C? is not positive. Let A = (C®C®---® C)% and
B=(D®D®---®D)? be operators on a 2"-dimensional Hilbert space
H. Then D > C is equivalent to B> > A2, Let K =X° @ H, and let T
be an operator on K defined by

T{zn} = {ya}

0 (n=1)
Yn =& Arpn_1 (n=2,3,4)
Bz,_1 (n>5)

for {z,} and {y,} € K. By this definition,
(T*T — TT*){z1, 22, T3, - - } = {A%21,0,0,0,(B* — A%)z5,0,0,--- }.
Hence T is hyponormal, so that T2 is paranormal.
Suppose that T2 — AI is paranormal for all A. Let = and y be vectors

of H. Then we have

(3.6) IT2Z0|1” = ||A%2||* + | B*y|I".

(T41_:0)f0) = (A4l', y)
for 2o = {z,0,0,0,%,0,0,---} € K. Applying Corollary 3.9, we have

(T — re—i01 )2(T? — reiol)z - 2r2(T2‘ —re~t )(T2 — rew‘) +74I>0

for all * > 0 and 0 < @ < 27. Expanding the left hand side, dividing
by r2? and letting r — +o00, we have

e—2i9(T2)2 + e2i9(T2t)2 + 2T2*T2 > 0.

Hence we have ||T2Z||2 > —Re{e~%*®(T*z,%)} for £ € K. Since 0 < 8 <
27 is arbitrary, we get

(3.7) (T*%,7)| < ||T%z|)?



for all z € K. From (3.6) and (3.7), we have
|A%2]|? + || B?y|1* > |(A%z, )]
for all z,y € H. Since z,y € H are arbitrary, this implies that
2||A%||| Byl > |(A*z,y)|
for all z,y € H. Setting x = y, we have
2||B%z|| 2 [|A%z]l,

and hence 4B* > A4, a contradiction, since if 4B* > A%, then 4= D? >
C?. Therefore T2 is paranormal and T2 — AI is not paranormal for some

A.

Now we discuss the conditions under which, the sum and the product
of M-paranormal operators become M-paranormal. The question of in-
verse can be readily answered. The sum of two M-paranormal even com-
muting or double commuting (A and B are said to be double commuting
if A commutes with B and B*) operators may not be M-paranormal as
can be seen by the following example;

Example 3.15. Let

(11 (-1 0
T—(O 1) and S-(O _1)

be operators on 2-dimensional space. Then T and S are both V2-

paranormal while
01
T+S= (0 0)

is not so because ||(T+S)z||? =1 > 0 = ||(T+S)?z|| for some = = (0,1).



Theorem 3.16. If T is any M —paranormal operator, then T ® I and
I ®T are both M —paranormal.

Proof.
MUYT QD' P(TRN?-22(TRN* (TR + X (IRI)
= [M?T*2T? — 2AT*T + \3|® I
since T is M —paranormal. O

The properties of normaloid and hyponormal are invariant under the
tensor product operators. But paranormality is not in this case. We
find an example of a M-paranormal operator T such that T'® T is not
M-paranormal.

Example 3.17. Let H be a 2-dimensional Hilbert space and let K be
the direct sum of a denumerable copies of H. Let A and B be any two
positive operators on H. Define an operator T' = T4:p', on K as

T < zx1,Z9,- - >=<0,Ax,,Axs, -+ , ATy, Bxpn41, BTy, - >,

we can compute to find that T is M-paranormal iff M2AB2A — 20A?% +
A2 > 0 for each A > 0. Set

M M 1 2
C_<M ZM) and D—(2 8)'

Then both C and D are positive and for A > 0,

M2D—2/\C+/\2:( (M - A)? ZM(M — ) )

IM(M —)) (2M — A)? + 4M?

This operator is also seen to be positive. Now let A = C 3 and B =
(C_%DC‘%)%. Taking T = T'a'p'y, as mentioned above, we find that T
is M —paranormal. We claim that T ® T is not M-paranormal. Let if
possible

MUT QTP -2TT)*(TRT)+ NI ®1)>0



for each A > 0. Putting A = 1, we get that

MY T?T? @ T**T?| - 2(T*T @ T*T|+I®1>0.

Thus the compression of this operator to the canonical image of H ® H
in K ® K is also positive. But the compression coincides with

1— M2 0 0 2M?
2 _ _ 0 AM?2+1 2M? 12M?
M?*(D®D)-2(C®C)+IRI = 0 oM?  AM?4+1  12M?

2M? 12M? 12M?  56M?%+1
which is not positive.

Lemma 3.18. Let T be an M -paranormal operator. Then we have the
followings;

(1) M?||T3z| > ||T%z||||Tz)| for every unit vector x in H.
(2) For every positive integer k and every unit vector z in H,

(Px) MY TR e > | T )| T3]

Proof. (1) For a unit vector z in H, we may assume T'z # 0. Then

2

Tx Tz
M?||T3z|| = M2||Tz|| || T? || > M||T=|| ||T =
| iz | 2 M7 | T
T2 _ T2 lITl? o
=M > = | T*z||||Tz||-
Tzl ey T eliTed

(2) For the case k =1,
M| Tc|* = M||T?z||| T%| > |ITz||*IT*z|

and (P,) is clear. Now suppose that (Py) is valid for k and we assume
that ||Tx|| # 0. Then



2

M2k+1||Tk+2$”2 M2k+1|T:E '2 Tk+l( )
Tl nTzu
)|
IIT || IIT I
T3z||
_M2||Tk+1 ”2”
1T |

> |7 || T2

by (1) and (Px). So (Pk4+1) is valid and the proof is completed by the
mathematical induction.

(Another method) Since T is M —paranormal, ||Tz|? < M||T?z|| for
any unit vector z. Putting ﬂ%;;il—l instead of z, we have

2

)| <7 ()|
T(——— <M|T? ==
H | Tk || I T*z||

|75+ | |T**%z|
esa el exltong: gplersiry-ibe

| Tkz||2 | T*z||

Therefore %ﬂi < M||T*+2z||. Squaring both sides, we have

1 [T
M2 ||T*z||

< ”Tz(Tkx)”2 (k =12, )

Hence



[T+ )? _ JT2(T* )| 1 1 |7

ITrzl2 ~  [T%P © IT*al? M2 [T 1z|?
1 ||T*e)?
M
1 1 2 k-2 2
= M2 ’ ||Tk_1.’L'”2||T (T .'E)”
51 1 1 || T* tz|*
=M TSR MR TR
1 1
— . Tk—l 2
e
N e
- M6 “Tk—3$H2 -
R W k1
= M2(k-1) ||T:I:||2
1 ||T2$||2 _ 1 2
Z e M||T?z| M2k—1”T zll-
Therefore )
|75 z||? > Y 1T z||?|| T %]
for any unit vector z. O

Corollary 3.19. Let T be a paranormal operator. Then

(1) ||T3z|| > ||T2z||||Tz|| for every unit vector z in H.
(2) For every positive integer k and every unit vector r in H,

IT** 2)|? 2 | T 2|*| T

Theorem 3.20. If T is M-paranormal, then T? is M*-paranormal.

Proof. Let X be any real number. Then since T is M-paranormal, we

have
M2T*373 4 2AT*2T2 + \2T*T

= T*(M?*T*2T? 4+ 2XT*T + X*I)T > 0.



Therefore ((M2T*3T3 4+ 2AT*2T? + A2T*T) z,z) > 0 for any unit vec-
tor z € H, and so

M2 T3z||%2 + 20| T2z||2 + A%||Tz||? > 0.

Since \
T(T?z)
T3 2: T2 2: T2
T z||* = |T(T*"z)|| T2z 1Tzl
T2z 2
= || | T 5=
1T2=||
T2z
< IT%z||>M ||T?
< Il ’ (IIT%II)”
= M| T%z|||T*z|,
we have

M3 T2||||T*z|| + 2X||T?||® + 3| Tz||* 2 0
for any unit vector z € H and so
D/4 = ||T%|* - M3|| T2z|||\T*z|||Tz]” < 0.
Since T is M-paranormal,
1T22||* — M| T?2|||T*2| M| Tz < 0.
Dividing both by ||T%z||2, we have ||T%z||2 < M*||T*z| for some M > 0

and so T2 is M4-paranormal. 0

Theorem 3.21. Let T and S be commuting M -paranormal operators.
Then the product TS is M -paranormal if one of the following holds;

(1) [TSz|l||zll > VM| Tx||||Sz|| for any z € H.
(2) [IT2Sz|llz]| = M| T?z||[|Sz|| for any z € H.

Proof. First, suppose that (1) holds. Since T is M-paranormal,
M|IT?*(S%2)|||S%z]| > [IT(S>x)|1*.



Thus we have
M| T2S%|[||S%|[||Sz|?||z]| > [|TS%||*]|Sz||?||
> M||TSz||?||$%z|]? ||zl
> ||ITSz||?||S%]||| Sz||*
for any vector z € H. Therefore M| T2S%z||||z|| > ||T'Sz||?, and so T'S
is M-paranormal.
Secondly, suppose that (2) holds. Then
M|\ TS%||||T2z|||lz]| > IS(T22)|)?||=]|
= | T*Sz|[[|T*Sz|||=||
> M||T?Sx||||T%z||||Sz|
> | TSz|?|Tx]|.

Therefore M||T%S2z||||z|| > ||TSz||? and so T'S is M-paranormal. O

Theorem 3.22. Let T and S be double commuting M -paranormal op-
erators and let M > % Then the product TS is M -paranormal if

2M — )| T?S%z|||z|| > (| T?||||S><||
foranyxz € H.

Proof. Suppose that (2M —1)||T2S82%z||||z|| > ||T%x||||S%x|| for any z € H.
Then

M2(TS)*2(TS)2 +/\2p2 + /\2MS~2S2 +p2MT*2T2
= (MS*2S% + p?)(MT**T? + )?)
> AMAp(TS)Y*(TS)
for any A, p > 0. Thus
M2|T2S%z|)? + M2 p?||z||* + MA%|S%2|® + Mp?|| T2z||?
> 4M/\p||TS:c||2.

_.44_.



M||T?s? 52
Put A\p = _”IITIEH and § = HTQ—:J% Then A||S?z|| = p||T2z|],

, _ M|T2S%])]|S%]|

IT2zl||=l|
and so
M?||T%8%z||? + M?|T?52z|% + 2M p*||T?z|)?
M||T252
> ap Mzl g2,
llz|l
Therefore
1
M?|T?S%z|)® + Mp®||T?z| > 2MzmIIT2~5'21‘I||ITS$II2,
ie.,
M||T%5%z]]|| S%z|| 1
M?||T*S?z||>+ M- IT2z|f? > 2M? — || T*S?z||||T Sz||?
1 T2z|| ||| llz|l

and so we have

|IT2S%||||z|| + || S|\ Tz > 2||TSz|.
By hypothesis,

IT2S%z||||z]| + (2M — V| T?S?a|||z]| > 2/|TS=|*.
Hence M||T?2S%z||||z|| > ||TSz||?. This completes the proof. O

Recall that an operator T is isometric if ||Tz|| = ||z|| for all z € H.
It is easy to verify that every isometric operator is hyponormal.

Theorem 3.23.

(1) (/2])If an M -paranormal operator T double commutes with a hy-
ponormal operator S, then the product TS is M -paranormal.

(2) If a paranormal operator T double commutes with an M -hyponormal

operator S, then T'S is M -paranormal.
(3) If an M-paranormal operator T commutes with an isometrc op-
erator S, then TS is M-paranormal.



Proof. (1) Let {E(t)} be the resolution of the identity for the self-adjoint
operator S*S. By hypothesis T*T and T*2T? both commute with every
E(t). Since S is hyponormal, S*S > SS*. Hence for each A > 0,

M2[(TS)*)A(TS)? — 2A(TS)*(TS) + A?

= M?(T*?T?)(8*282) — 2A(T*T)(S*S) + A?

> M2(T**T?)(8*S)? — 2A(T*T)(S*S) + A\

= / (t2M2T*2T? — 2XT*T + A\*)dE(t)

0

>0,

since T is M-paranormal. Hence T'S is M-paranormal by Theorem 3.8.

(2) If S is a M-hyponormal operator, then M2S*S > SS* ([57)).
Now if T is any operator double commuting with S, then
M2(TS)**(TS)? — 2A(TS)*(TS) + X*1
> T*2T2%(5*S)? — 2A(T*T)(S*S) + NI
for each A. Using this and arguing as in (1), the proof is completed.

(3) If A =TS, then we have for any real A there exists M > 0 such
that
M?A*2A% + 20A* A+ N1

= M2S*T*S*T*TSTS + 2AS*T*TS + NI.
Using TS = ST, T*S* = S*T* and §*S = I, we get
M2A*2A% £ 20A* A + A21 = M2T*2T? + 2XT*T + A\*1 > 0.
Hence A = T'S is M-paranormal. O

Corollary 3.24.

(1) If a paranormal operator T double commutes with a hyponormal
operator S, then the product TS is paranormal.

(2) ([46]) If a paranormal operator T commutes with an isometrc
operator S, then TS is paranormal.



Theorem 3.25. ([2]) Let T and S be double commuting operators. Let
one of T and S be paranormal and other be M-paranormal. Then the
product TS is M -paranormal if there are a self-adjoint operator A and
bounded positive Borel function f(t) and g(t) such that

(f(&) = f(s)Ng(t) —g(s)) 20 (-0 <t s < 0),

and one of the following holds;
(1) f(A) =T*T and g(A) = S*S.
(2) f(A)=T**T? and g(A) = S§*S

Proof. First of all, we remark that the assumption implies
(F(A)g(A)z,2) - (2,2) > (f(A)z,2) - (9(A)z, 7).
Because, let {E(t)} be the resolution of identity for A. Then
(F(A)g(A)z,5) - (2,5) - (F(4)z,2) - (9(A)z, 2)
-/ f {£(D)9(t) - Fg(9)}A(E(t)z, D)d(E(s)z, 2)

=/ N (F() = F(s))(g(t) = g(s))d(E(t)z, x)d(E(s)z,T) > 0.

Double commutativity, when applied to (1), (2), yield respectively
(1) [TSllllz) > [Tz][|Sz])
(2°) IT=*Sz|l|lzl} = || T=||[| Sx|-

Let (1*) holds. Without loss of generality, we may assume that T is
M-paranormal and S is paranormal. Then

M| T2S%2||(|S%|||| Szl ? ||zl > ITS2||?|S=|1? |||l
> ||TSz||?||S%|)? |||
> || TSx|?|8%x||||Sx||>.

Therefore

M| T?S%z||||=l| > ||T Sz,



This implies that T'S is M-paranormal.

Let (2*) holds. Assume that T is M-paranormal and S is paranormal.

Then 2q2 2 2 2
IT*S 2 (|IT*=|l|=l| > |S(T2)]"||=]

= | T2Sz|||T*Sz||||
> ||T?Sz|||T*z]||| Sz

> —|TSzl?T?].

Therefore M||T%2S%z||||z|| > ||TSz||? for any vector z. This implies that
TS is M-paranormal. O

Motivated by M-power class considered by V. Istratescu([30]), we
consider the subclass S of M-paranormal operators satisfying

ITz||* < M|IT* ||

for each n > 1 and for all unit vector z € H. We can easily prove the
following:

Theorem 3.26. The followings are valid:
(1) If T € S, then the spectral radius 7(T') of T satisfies

ST < r(T).
(2) If T € S and is invertible, then T~ € S.
(3) If T € S and z € p(T), the resolvent set of T, then
M
< —— .
I< oy

(4) If T € S and is quasinilpotent then T = 0.
(5) If T € S, then the set

(T ~ 2)

My = {z: |T"z|| < M|znl,n=1,2,---}

is a closed invariant subspace for T and also for operators com-
muting with T'.



Proof. (1) Suppose T € S. Then ||T"z||? < M||T?"z|| for each n > 1
and all unit vector z € H. If n = 1, then ||T%z| > %|Tz||? and if
n = 2, then

1
IT%]| > HT2 [ 373 1Tl

Tz

> L Liraye -
By the same method, ||T8z|| > 37 ||Tz||® if n = 4. In general, we have
|T?**z|| > 3p=7||Tz||*" for each n > 1. Therefore

IT2"| = sup [|T* | 2 a1 Sup [Tz = I,
= sup I3l gy sup |5l = g
and so
_ 2n(11/2n 2n\1/2n
P(T) = lim [[T2"|/2" > Jim ( Mz,, I
1

= lim W”T” = M”T”'

(2) Suppose T € S and is invertible. Then T* is M-paranormal and
so || T™x||? < M||T?"z|||z|| for all x € H. We need to show that

(3.8) (T )l < MI(T=1) ]| ||=]].
In (3.8),
Miz|  |IT"a]
n — 2n .
||| — [T ]|

Replacing z by T~ 2"z

M|T2"z| _ T™T~?"a)|
[T~(T=2r2)|| = | T2(T > )|

Therefore ||(T~1)"z||2 < M||(T~1)?"z||||z]| for all z € H.

(4) Since T € S and is quainilpotent, by (1),
1
27171 < 7(T) =sup{|A|: A € o(T)} = 0.

Therefore T = 0. d



Theorem 3.27. Let T be M-paranormal. The followings are valid;

(1)
ITz||* < M|IT"+'2||||T" 2|
for every positive integer n and for every unit vector .
(2)

M T > ||
for any unit vector x € H and for every positive integer n > 2.

Proof. (1) (Mathematical Induction) If n = 1, then it holds immediately
by the definition of M-paranormal. Suppose our results holds for n = k.
Then for every unit vector z, we have

1Tz < MIT* 2| T* 2]

We shall show that ||[T*+1z||2 < M||T*+2z||||T*z|| for every unit vector

z. We have
Tzx
e (uTxu)“ 17l

r ()|

M||TF*+2z|| = M'

IT=ll

k—1 Tz
T (uTzu)
|T*+1z|

| T%z||

2

17|l

and hence ||[T*+1z|? < M||T*+2z||||T*z| (k = 1,2,3,---). This com-
pletes the proof.

(2) (Mathematical Induction) If n = 2, then it holds by definition of
M —paranormal. Suppose that it holds for n = k. Then

k(k—1)
M™T | T*z|| > | Tz|*

for k =1,2,--- ,n and for any unit vector x € H. It is sufficient to show

that

MESE TR )| > || T



for any unit vector x € H. Thus we have

e B Yl e
721
k Tz *
> M4 |7 (o )| I
1
:Mk T2 k
W e
> ||T$||2ka = || T=|[**".

By mathematical induction, our results holds for every positive inte-

ger n > 2 and for any unit vector z € H. That is, M™% |T"z| >
|ITz||™ for every positive integer n > 2 and for any unit vector z € H.
4

Corollary 3.28. Let T' be paranormal. Then we have the followings;
(1)

1T2]|* < |17+ 2T g

for every positive integer n and for every unit vector x.
(2)
1Tzl > | Tz

for any unit vector £ € H and for every positive integer n.

J. Stampili([49]) proved that if T is hyponormal with its spectrum on
the unit circle, then T is unitary. We generalize this result to paranormal
operators.

Theorem 3.29. (/32]) If T is paranormal with its spectrum on the unit
circle, then T is unitary.

Proof. Since T is a paranormal operator, the result ||T|| = spectral radius of T
follows from the fact that spectral radius of T = limp_,o0 ||T™]| . Since



the spectrum of T lies on the unit circle, 0 ¢ o(T) and so T is invert-
ible. Then by Corollary 3.12(3), T and T~! are paranormal operators.
Therefore by Lemma 3.4,

1Tl =117~ | =sup{|A| : A€ o(T)} =1.

Now ||z|| = ||T'Tz| < ||Tz|| < ||z||, that is, ||Tz| = ||z|| for all
z € H. Since T is invertible, T is unitary. This completes the proof.

(Another method) If o(T) lies on the unit circle, then ||T|| = ||T~!|| =
1 since T is normaloid. We have

Tz
izl > 1Tzl = |7~ || | T
1T~ ||
Tz ||
]
1T =
l=I?
= > |||
IT-12]
Hence ||T'z|| = ||z|| for x € H and T is a unitary operator. O

Theorem 3.30. Let A and p be distinct eigenvalues of a M -paranormal
operator T and 0 < M < 1. Then ker(T — A) L ker(T — p).

Proof. Without loss of generality, we may assume that [A| < 1and p = 1.

Let T = (3 g) on H = ker(T — A) @ ran(T — A)*. Let

z =z ®zy € ker(T — A) ®ran(T — A)*

be an arbitrary (non-zero) eigenvector of T with respect to 1. Then Tz =
z implies that Az, + Azy = z; and Bz, = z2. Hence Azy = (1 — A)z;.
If z; = 0, then z; = 0 since 1 — A # 0, and this is a contradiction for
z # 0. Thus we have z2 # 0 and we may assume ||z2|| = 1. We shall
show that z; = 0. Put 2’ = 0® z,. Then

Tz'=(1-Nz1 @22, T?2'=(1-2)21®22,,
Tz = (1 — A"z, & z2.



Since T is M-paranormal and ||z’|| = 1, by the above Lemma 3.27(2) we

n(n—1) " A
have M~ 2 ||T"2'|| > ||T<'||" for every positive integer n > 2 and for
any unit vector ' € H. Hence

(V= AP[ealZ+1 )" < M= T APz |2 + 1

for every positive integer n > 2. And this is impossible unless z; = 0
because if z; # 0, the left-side of the above inequality tends to oo as
n — oo and the right-side is uniformly bounded by /4||z1||2 + 1. So we
have z£; = 0 and

z=0®z; € ran(T — \)* = (ker(T — \))*L.

This completes the proof. a

Corollary 3.31. Let A and p be distinct eigenvalues of a paranormal
operator T. Then ker(T — A\) L ker(T — p).

Lemma 3.32. (/54]) Let T be a paranoral operator and let A € o(T) be
an isolated point. Then the Riesz projection

1
3.9 E=— —T)"1d
(39) i . =T
satisfies EH = ker(T — A), where D is a closed disk with its center \
and satisfies DNo(T) = {A}.

Proof. Since E commutes with T', the range R(E) is T-invariant, so the
restriction T|gy of T to EH is also paranormal. It is easy to see that
the spectrum o (T|gn) = {A}. T|gy = A immediately from this, see
([55], [56]). Hence EH C ker(T — ).

Conversely, let z € ker(T — A) be any vector. Then by Cauchy’s
integration theorem,

1 1
Er=— ~T) 'zdz = — - A)"lzd
z=5— aD(Z ) 'zdz 5 aD(z A) zdz

_L/ L G
“\2wi Jypz AT




Hence we have also ker(T' — A). This completes the proof. O
Theorem 3.33. If T is paranormal, then T is isoloid.

Proof. Let A € o(T) be an isolated point. Then the Riesz projection

1
) E=-—"— ~T) 'd
(3.9) 5 aD(z )" dz

is invariant closed subspace of T' and o (T|gn) = {)A}, where D is a
closed disk with its center A and satisfies D No(T) = {A}. If A = 0,
then o (T|gn) = {0}. Since T|gy is paranormal by the above Corollary
3.12(1), T|gn = 0 by Lemma 3.4. Therefore 0 is an eigenvalue of 7.
If A # 0, then T|gy is an invertible paranormal operator and hence
(T'|gn)~! is also paranormal by Corollary 3.13. By Lemma 3.4, we see
IT|exn|l = |A and ||(T|gn)~ || = |5|. Let z € EH be an arbitrary
vector. Then ||z|| < [|(T|ex) " Il(T|eazl = RlIT|enzll < pylAlllzll =
lz||. This implies that +T'|gy is unitary with its spctrum (37T |gn) =
{1}. Hence T|gy = A and ) is an eigenvalue of T. This completes the
proof. O

A S
0
be paranormal, where A € op(T) is an arbitrary point. Then ker(T1—A) =

{0}.

Lemma 3.34. ([54]) LetT = ( ) onH = ker(T—A)®ran(T — \)*

Proof. Suppose ker(T; — A) # {0}. Then for each non-zero z € ker(T; —
A), we have Sz # 0, otherwise (T — A)z = Sz & (T — A)x = 0 and hence
z € ran(T — A)* Nker(T — A) = {0}.
First, we consider the case A = 0. Then Tz = St & Tz = St since
z € kerT) and T2z = TSz = 0 since Sz € kerT. Paranormality of T
implies
182||* = |T=||* < | T?z|||l=]| = o,

hence Sz = 0 and this is a contradiction. Therefore ker T} = {0}.



Next, we consider the case A # 0. Without loss of generality, we may
assume that ||z]| = 1. It is easy to see that

(3.10) Tz = nA"" 'Sz @ A"z for all neN.
Since T is paranormal by Corollary 3.28, we have

IT2)|* < [T 21T 2|

for every positive integer n. So we have

n®APP2)|Sz ]| + A2
< V(n+ 1DEARYS]? + AP/ (n — 1)2 AR~ S| + [A[2r-2

and
(3.11)

(R IAPISz])” + A1)
< {(n+ DPAPSz? 4 AP} (r — DAPR4ISa]? + A2

The left side of (3.11) is
nf A4Sl + 2n? A2 Sz || 4 A4,

and the right side of (3.11) is

(n* = 1)" A4Szl + {(n + 1) + (n — 1)2} ]A*2[|Sz]|? + | A|*".

Hence, we have

{n4 — (n? - 1)2} A4Sz < {(n+1)2 + (n— 1)2 — 202} |A|*"=2||Sz||2
and therefore

1Sz||* <

2
573 1]/\|2——)0 (as n — 00).
n p—

This also contradicts the fact that Sz # 0. Hence ker(T} — A) = {0}. O



Theorem 3.35. ([54]) Weyl’s theorem holds for paranormal operators.

Proof. First we show that o(T) \ w(T') C mgo(T). Let A € o(T) \ w(T)
be arbitrary. Then T' — X is a Fredholm operator with index 0. Hence

ker(T—A) is a (non-zero) finite demensimal subspace. Let T' = (6\ 1‘? )
1

on H = ker(T — )\) @ ran(T — A)* be 2 x 2 matrix representation. Then
ker(T) — A) = {0} by Lemma 3.34 and ind(T} — A) = ind(T — A) =0
since S is a finite rank operator. Hence T; — A is an invertible operator
on ran(T — A)*. So we have A ¢ o(T1) and therefore A is an isolated
point in o(T') (C o(T1) U {A}). Hence o(T) \ w(T) C moo(T).

Next we show that meo(T) C o(T) \ w(T). Let A € mpo(T) be an
arbitrary point. Then the Riesz projection E defined by (3.13) satisfies
EH = ker(T - \) by Lemma 3.32. It is clear that (1— E)H is T-invariant
subspace such that o(T|1-gyn) # A. If we use the decomposition H =
(1-E)H + EH, we have

(T-NH=(T-N1-E)H+(T-ANEH=(1-FE)H..
Hence ran(T — )) is closed and

ker(T — A\)* = H/ran(T — A\) 2 EH = ker(T — A).

This implies that T — A is a Fredholm operator with index 0 which is
not invertiple, hence A € o(T) \ w(T). O

Theorem 3.36. (/54]) Let T be a paranormal operator with w(T) =
{0}. Then T is compact and normal.

Proof. Since Weyl’s theorem holds for T, each element in o(T) \ w(T') =
a(T)\ {0} is an eigenvalue of T with finite multiplicity, and is isolated in
o(T). This implies that o(T) \ {0} is a finite set or a countable infinite
set with its accumulating point is only 0. Put o(T) \ {0} = {An}, where
An # Am whenever n # m and {|A,|} is a non-increasing sequence. Since
T is normaloid, we have |A;| = ||T||. By the general theory, (T—X;)z =0
implies (T — A\;)*z = 0. In fact,

1
(1T = T*T) 2 «||* = | T1*||=l|® - | T=||®
= ITI*NzlI* — | Mz]|* = 0.



Thus \,T*z = T*Tz = ||T||’z = |M\1]?z and T*z = A;z. Hence ker(T —
A1) is a reducing subspace of T. Let E; be the orthogonal projection
onto ker(T'—A;). ThenT = A\ ®Tyon H =E,H&(1— E)H. Since Ty
is paranormal and 0,(T) = 0,(T1) U {A1}, we have A; € 0,(T1). By the
same argument as above, ker(T; — A,) is a finite dimensional reducing
subspace of T" which is included in (1 — E1)H. Put E;, be the orthogonal
projection onto ker(T — A2). Then

T=ME1®XE 0T,
on
H=FE,H®E;H® (1—- E, — E;)H.

By repeating above argument, each ker(T — A,) is a reducing subspace
of T and

n
IT — @D MExll = ITull = [Ans1]| = 0
k=1

as n — oo. Here Ey, is the orthogonal projection onto Ker(T — Ag) and
T= (®2=1 /\kEk) 7] Tn on

H = (éEkH) & (1 —;Ek) H.

Hence T = G)iozl Ar E) is compact and normal because each Fy is a finite
rank orthogonal projection which satisfies ExF; = 0 whenever k # | and
An = 0 as n — oo. O



4. The kth roots of paranormal operators

In this section we shall study a new class of operators called a kth
roots of G-operator: An operator T € B(H) is a kth root of a G-operator
if T* is a G-operator. In particular, if a G-operator is paranormal, then
T is called the kth root of a paranormal operator if T* is paranormal.
Also we show that if T is a kth root of a paranormal operator with
0 € moo(T*), then T is a Weyl operator. If S and T are commuting kth
roots of paranormal operators respectively, we prove that ST is Weyl if
and only if S and T are both Weyl.

Lemma 4.1. (1) ([5],[27]) Every hyponormal operator T on a finite
dimensional Hilbert space is normal.

(2) If T is paranormal, then T* is paranormal for every positive in-
teger k.

Proof. (2) (Method 1) It is sufficient to show that if T and T* is para-
normal, then T*+! is also paranormal. We may assume ||T2z| # 0.
Then

T2z
T2+ = [T%( )| 172
[T
T2z |
> 74 Z2 0 g
1773
I N
e 2 el
_ [T

by (Pi41) of Lemma 3.19(2). Hence T**+! is paranormal.

(Method 2) We give the proof by induction. First we prove that 72
is also paranormal. Since T is paranormal, we have, for any real A,

T*3T° + 2AT**T? + N2T*T = T*(T**T? + 2AT*T + A\2I)T > 0
which is equivalent to

IT%2]|? + 2 T2 + A2|| T|)® > 0



for every unit vector z. As ||T3z|? = |T(T%2)||? < ||T*z|| - || T?x||, we
have for every real ),

IT*z|| - | T%2 + 2A|T22||* + ATz > o.
Hence
IT%z||* < ||T*|| - | T2 - | T2||® < | T4z - || T 2|2

Therefore ||T%z||2 < ||T*z||, so that T2 is paranormal.
Now assuming that T* is paranormal, we show that T*+! is also
paranormal. Therefore we have for any real A

T*(2k+1)T2k+1 + 2/\Tt(k+l)Tk+1 + /\2T*T
=TT L oaT*®)Tk 4 32T > 0.
This implies that

IT** 2] + 20| T+ 2| + A%||T2)|® > 0

for every unit vector z. Hence ||T*+1z||* < ||T?**+1x||?||Tz||?. Now T be-
ing paranormal, by Lemma 3.19(2) we have ||T"*1z||2 > ||T"z||?||T?z||
for any positive integer n. Thus

IT%+2a]j* < |T2H o] |Tal? < T+ 2|2 T3] < T2+

and T**! is paranormal.
(Method 3) Suppose T* (k > 1) is also paranormal. Then

IT**z||l] > | T*|f?

for all x € H. Since T is paranormal, we have

“Tk+2$”2

IT*** Dz ||llz|| = | T?*(T2)||||z]| > Wllzll
1
- T2 Tk 2
72T Ple]
2
1 (IIT'“+1$||2) 2]
~T?z|| \ || T
TR g2 lzl| 7"+ |
T2z || T*=||?



and

[T ) _ |T*(T* 1))

ITkz||2 —  ||T*z|?
1 (T2 \* _ |iT*s)?
~ || TRz||2 \||T*1z]| ] — ||T* 1z||?
.
— 7 ||ITx|?
Thus we have
lzll 1T
T+ > e+t
| e BT
— ”Tk+1$”2 . ||T21I||||.’L'|| > “Tk+1.’L‘”2
Tz||2 ~ '
This shows that T5+! is paranormal. O

Example 4.2. Let H be k-dimensional Hilbert space. Define T on H
as

T = (ai5)

where a;; = 0if i > j and a;; = 1 if i < j. Then T* is hyponormal
and so T is a kth root of a hyponormal operator . But TT* # T*T.
Therefore T is not hyponormal since every hyponormal operator T on a
finite dimensional Hilbert space is normal([5],[27]).

From Example 4.2, we can deduce that if T is any nilpotent operator
of order k, i.e., T* = 0, then T is a kth root of a paranormal operator,
but it is not necessarily a paranormal operator. Also it is well-known
({34]) that T2 may not be hyponormal when 7T is hyponormal.

An operator T' € B(H) will be called algebraically paranormal if there
exists a nonconstant complex polynomial p such that p(T) is paranor-
mal; polynomially paranormal if p(T) is paranormal for every complex
polynomial p.



Theorem 4.3.

(1) Every paranormal operator T is a kth root of a paranormal op-
erator.

(2) Every kth root of a paranormal operator T is algebraically para-
normal.

Proof. (1) Suppose T is a paranormal operator. Then by Lemma 4.1(1),
T* is a paranormal operator for every positive integer k. Therefore T is
a kth root of a paranormal operator.

(2) Suppose T is a kth root of a paranormal operator. Then T* is a
paranormal operator. Putting p(z) = z*. Then p(T') = T* is paranor-
mal. Therefore T is algebraically paranormal. O

The converse of the above Theorem is not true by the following ex-
amples;

Example 4.4. (1) Let T be an operator on a two-dimensional Hilbert

space defined by T = (8 (1)

mal operator. But T is not paranormal since ||Tz|? =1 > 0 = ||T?z||

for some z = (0,1).
1 1
7= (o 1)

on two dimensional Hilbert space and we put p(z) = (z — 1)2, then

) . Then T is the square root of a paranor-

(2) If

p(T)=<T—I)2:(8 (1,)2:0-

Hence T is algebraically paranormal since p(T') is paranormal. But T
is not the square root of a paranormal operator: In fact, if we take

o= (%), ten
(-0



and so ||T?z||? = 5.

On the other hand, since T* = (1 4

01

(b 0)- (0

and so ||T*z|| = v/17. Therefore ||T2z||? £ ||T*z||. This means T2 is not
a paranormal operator.

) , we have

From the above Theorem and examples, we have the following impli-
cations:

polynomial paranormal C paranormal
C the kth roots of paranormal operators
C algebraically paranormal.

Theorem 4.5. Let T € B(H) be a kth root of a paranormal operator.
Then we have the followings;
(1) IfT is quasinilpotent, then T is nilpotent.
(2) If S is unitarily equivalent to T, then S is a kth root of a para-
normal operator.
(3) IfT is invertible, then T~ is a kth root of a paranormal operator.
(4) T™ is a kth root of a paranormal operator for every posilive in-
teger n.
(5) AT is also kth root of a paranormal operator for every complex
number .
(6) The restriction Ty to its invariant subspace M is kth root of a
paranormal operator.

Proof. (1) Since T is quasinilpotent, o(T) = {0}. By the spectral map-
ping theorem, we get that

o(T") = {o(T)}* = {0}.

Hence T* is quasinilpotent. Since T* is paranormal and quasinilpotent,
by Corollary 3.5, T* is a zero operator. Therefore T is nilpotent.



(2) Since S is unitarily equivalent to T", there exists a unitary operator
U such that § = U*TU. Thus S* = (U*TU)* = U*T*U and so S* is
unitarily equivalent to T*. Since T* is paranormal by hypothesis, S* is
paranormal and hence S is a kth root of a paranormal operator.

(3) By hypothesis. T* is an invertible paranormal operator and so
(T*)~! is paranormal. Hence (T-1)* is paranormal i.e., T-! is a kth
root of a paranormal operator.

(4) By hypothesis T* is paranormal and so (T*)" = (T™)* is paranor-
mal for every positive integer n. Hence T™ is a kth root of a paranormal
operator for every positive integer n.

(5) It is sufficient to show that

k K
IOT)*2? < (XT)%a

for all unit vector z € H and every complex number A. Since TF* is
paranormal,

IOAT)*2? = APHIT*(? < [AP*| Tz = [|(AT)* |

for all unit vector z € H and every complex number A. Therefore AT is
also kth root of a paranormal operator for every complex number A.

(6) Let z € M. Then we have

(T 1) 21 = I(T*1an)el® = | T*2)® < | T%*<]|||z]
= IT*a0)zllllzll = I(T|a) ]|

This implies that (T'|a)* is paranormal, and so T|ps is kth root of a
paranormal operator. a

Corollary 4.6. Let T € B(H) be a kth root of a hyponormal operator.
Then we have the followings;

(1) IfT is quasinilpotent, then T is nilpotent.



(2) If S is unitarily equivalent to T, then S is a kth root of a hy-
ponormal operator.
(3) If T s invertible, then T~ is a kth root of a hyponormal opera-

tor.

(4) T™ is a kth root of a hyponormal operator for every positive in-
teger n.

If T is hyponormal, then T is normaloid, i.e., |T*|| = ||T||* for each

natural number k. This is not true in the case of a kth root of a hyponor-
mal operator. This can be seen as follows; Let T be the operator on a
k-dimensional Hilbert space H in Example 4.2. Then T* is hyponormal
and so T is a kth root of a hyponormal operator. Also ||T*|| = 0. How-
ever, it is easy to show that ||T||*¥ = 1. Hence ||T||* # ||T*)|. Thus T is
not normaloid.

If T is paranormal, then T is normaloid, but the converse is not true
([43]). This is not true in the case of a kth root of a paranormal operator
by Example 4.4(1).

Theorem 4.7. The kth roots of a paranormal operator T is a proper
subclass of B(H).

Proof. Since T* is a paranormal operator, ker T* = ker T?*. Hence we
have ker T* = ker T**! since

kerT* C kerT*t1 C ... C ker T2k,

Let U™ be any unilateral backward shift on [2(N). Since ker(U*)* #
ker(U*)*+1 for any k € N, (U*)* is not paranormal. Therefore U* is not
a kth root of a paranormal operator. O

Theorem 4.8. Let T be a weighted shift with nonzero weights {ay}
(n=1,2,---). Then T is a kth root of M—paranormal operator if and
only if

|anHan+1| s Ian+k—1| < M|an+k||an+k+1| s |Otn+2k—1|

forn=1,2,3,---.



Proof. Let {e,}32, be an orthonormal basis of a Hilbert space H.

(=) Suppose T is a kth root of M —paranormal operator. Then
T* is M —paranormal operator. Therefore ||T*e,|? < M||T%*e,|| (n =
1,2,---). Here

k
T%en = @nOny1 - Any(k—1)ntk
and

TZken = 0nQny1° " Ony(k—1)0ntk " Cnt(2k—1)En42k
for k = 1,2, --. Then ||T*e,||? < M||T%*ey,|| (n =1,2,---), and so
!an|2|an+1|2 T |an+k—1‘2 < Mlanl|lont1] - lantk-1llantk] - - - lonyar—1].

Therefore forn =1,2,3,---,

lomlanti] - |antk—1| < Mlomikllanter1] - lant2r-1]-

(<=) Suppose

lanllantil - longk—1] < Mlanik|lantrs1] - |ontor—1
forn =1,2,3,---. Then we have

M||T*e,|| — || T*en |2
= M“anan+1 Oy k—10n4k an+2k—1en+k|l
- Hanan+1 et an+k—len+k”2

= IanHan+1! < |angk-1] (Mlan+k| o lomyak—1] = lam] - - |an+k-—1|)
> 0.

Therefore ||T*e,||2 < M||T%*e,|| (n = 1,2,---) and so T is a kth root
of M —paranormal operator. O

Theorem 4.9. Let T be a kth root of a M~ paranormal operator. If

T commutes with an isometric operator S, then T'S is also a kth root of
M — paranormal.



Proof. If A = (TS)* = T*S*, then we have for any real A, there exists
M > 0 such that

M2A*2A? 4 2XA* A+ N2

— M2sk*TktSk*Tk*Tkskask + 2/\Tk*5k*Tksk + )\2I

Using T'S = ST, T*S* = S*T* and S*S = I, we get
M2A*2A% £ 20 A" A + 2T = M2(T%)*2T** 4 oA (T*)*T* + 321 > 0

and so A = (T'S)* is M— paranormal operator. Hence T'S is a kth roots
of M — paranormal. O

The set of operators on H has three useful topologies (weak, strong,
and norm). The corresponding concepts of convergence can be described
by the following ; A, = A in normif and only if ||A,, — A|| - 0, 4, - A
strongly if and only if ||(A, — A)z|| — O for every z € H , and A, = A
weakly if and only if (A,z,y) — (Az,y) for every z and y.

By ([34]), we know that the set of all hyponormal operators on H is
closed in the norm topology.

Theorem 4.10. The set of all the kth roots of hyponormal operators is
closed in the norm topology.

Proof. Let T, be a kth root of a hyponormal operator for each positive
integer p and let {T,} converge to an operator T in norm. Then TF is
hyponormal for each p =1,2,3,--- and we have

k kif — (| k—1 k—1 k—2m2 k—272
1Ty =T = 1T, - T, T+T, ' T-1,;,°T°+T,~°T
— -+ T,TF ! - T¥|
< T3~ IT, = Tl + 1T 2T INT, - Tl
+- -+ T HIT, - T
Since T, — T in norm and {7,} is bounded, Tl’f — T™. Therefore

T* is hyponormal by the above remark. Hence T is the kth root of a
hyponormal operator. O



We recall that if T € B(H) and M is a closed subspace of H , then
M is an invariant subspace for T if TM C M, and a reducing space if,
in addition, T*M C M.

Theorem 4.11. Let T € B(H) be a kth root of a hyponormal operator.
If ker T* is equal to ker (T™*)", then ker T reduces for T.

Proof. Let z be any point in ker T. Then T(Tz) = 0 and so Tz € ker T.
Hence T'(ker T) C kerT. We need to show that T*(ker T) C ker T.
Since T* is hyponormal, ||(T*)*z| < |T*z|| for all z € H, and hence
ker T* C ker (T*)*. Since ker T* = ker (T*)* and ker T C ker T* |

ker T C ker T™ C ker (T*)* = ker T*.

Therefore T*z = 0 for all x € ker T. Hence T(T*z) =0 for all z € ker T
e, T*z € ker T for all z € ker T, and so T*(ker T) C ker T. d

Lemma 4.12. (Index Continuity Theorem) If T € B(H) is Fredholm
and if S € B(H) with ||T — S|| < € for sufficiently small € > 0, then S
1s Fredholm and ind S = ind T.

Lemma 4.13.

(1) ([28]) If ST = TS and ST is a Fredholm operator, then both S
and T are Fredholm operators.

(2) If S and T are in B(H) and ST is Fredholm, then S is Fredholm
if and only if T is Fredholm.

(3) (Indez Product Theorem) If both S and T are Fredholm, then ST
is Fredholm and ind(ST) = ind S+ ind T.

Theorem 4.14. If T is a kth root of a paranormal operator with 0 €
moo(T™), then T is a Weyl operator.

Proof. By (1), T* is Fredholm if and only if T is Fredholm. Since T* is a
paranormal operator, Weyl’s theorem holds for T* by ([54]). Therefore
o(T*) — w(T*) = moo(T*). Since 0 € moo(T*) = o(T*) — w(T*), T* is
Fredholm of index 0, i.e., is Weyl. Therefore, T is Fredholm. By Lemma
4.13(3), 0= ind(T*) = k ind T, and so ind T = 0. Hence T is Fredholm
of index 0, i.e., is Weyl. O



Corollary 4.15. IfT is a kth root of a hyponormal operator with 0 €
moo(T™), then T is a Weyl operator.

Theorem 4.16. Let both S and T in B(H) be commuting kth roots of
hyponormal operators respectively, Then ST is Weyl if and only if both
S and T are Weyl.

Proof. Assume that ST is Weyl. Then ST is Fredholm of index 0. By
Lemma 4.13, both S and T are Fredholm and ind (ST') = 0. Now we must
show that ind § = 0, and ind T = 0. Since both S* and T* are hyponor-
mal, ker S*¥ C ker (S¥)* and ker T* C ker (T*)*. Therefore, ind (S*) < 0
and ind (T%) < 0. And s0 ind S < 0 and ind T < 0. Since ST is Weyl,

indST = indS + indT = 0,

and so ind S = 0, and ind T = 0. Thus both S and T are Weyl.
Conversely, if both S and T are Weyl, then S and T are Fredholm of
index 0, respectively. By Lemma 4.13, ST is Fredholm and

indST = indS+ indT =0.

Therefore, ST is Weyl. O

Theorem 4.17. Let T € B(H) be a kth root of a hyponormal operator
with 0 € moo(T™). If S is similar to T, then S is Weyl.

Proof. If S is similar to T, there exists an operator X such that § =
X~ITX. Since X is invertible, X is Fredholm of index 0 by [2]. Similarly,
X1 is Fredholm of index 0. Since 7T is Fredholm of index 0 by Corollary
4.15, Lemma 4.13(3) implies that S = X ~!TX is Fredholm and

indS= indX '+ ind7T +ind X = 0.

Hence S is Weyl. O

Corollary 4.18. Let T € B(H) be a kth root of a paranormal operator
with 0 € moo(T™). If S is similar to T, then S is Weyl.



Theorem 4.19. Let T € B(H) be a kth roots of a paranormal operator
with 0 € moo(T™). If S € B(H) with ||T — S|| < € for sufficiently small
€ > 0, then S is Weyl operator.

Proof. By Theorem 4.14, T is a Weyl operator. i.e., Fredholm of index
0. By the above Lemma 4.12, S is Fredholm and index S = index T
Therefore S is Weyl operator. 0O

Lemma 4.20. If T is a Weyl operator and K is compact, then T + K
s Weyl.

Corollary 4.21. Let T € B(H) be a kth roots of a paranormal operator
with 0 € meo(T™) and K is compact. Then T + K is Weyl operator.

Proof. By Theorem 4.14, T is a Weyl operator. i.e., Fredholm of index
0. Thus T + K is a Weyl operator by the above Lemma 4.20. O

Recall that an operator T € B(H) is called isoloid if every isolated
point of o(T) is an eigenvalue of T (i.e., iso o(T) C 0p(T)). Every
hyponormal operator is isoloid. Every paranormal operator is isoloid.

Theorem 4.22. IfT is the square root of an isoloid operater with o(T)N
[—o(T)] = 0, then T is isoloid.

Proof. If A € isoo(T), then A? € isoo(T)% = iso o(T?) by the spec-
tral mapping theorem. Since T? is isoloid, A2 € 0,(T?) = op(T)>
Therefore, A € o,(T) or —A € 0,(T). By hypothesis, —A € p(T') since
A € isoo,(T). Hence A € 0,(T) and so T is isoloid. O

Corollary 4.23.

(1) If T 1is the square root of a paranormal operater with o(T) N
[~o(T)] =0, then T is isoloid.

(2) If T is the square root of a hyponormal operater with o(T) N
[—o(T)] = 0, then T is isoloid.

Proof. (1) This follows from Theorem 4.22 and the fact that every para-
normal operator is isoloid.



(2) This follows from Theorem 4.22 and the fact that every hyponor-
mal operator is isoloid. ]

Lemma 4.24. Let T € B(H) be isoloid. Then for any polynominal p(t)
we have

a(p(T)) — moo(p(T)) = p(o(T) — moo(T))-

Corollary 4.25. If T is a square root of a paranormal operator with
o(T)N[-o(T)] =0, then for any polynomial p(t),

p(o(T) = moo(T)) = o (p(T)) — moo(p(T)).

Proof. By Corollary 4.23(1) and Lemma 4.24, it is proved imediately. O
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At3tE Paranormal #4459 Al B A7

wZodME YHE FH(Hilbeert space) H Yol A 4] A 3 (nonnormal) & 7
28424 paranormal #84E Yusst: M-paranormal 28 49
paranormal #8229 AAIFI A E29] o] 712 EHE ZAEYE U, 1 =

43T AR5 dgy 2o

(1) M-paranormal #8249 4 €25 2 (unitary equivalent)7} = 28 A
% 9 A] M-paranormal #H& 4 o)t}

(2) d¢Hor 7#Ad F M-paranormal FHEA S T 7 ST=
M-paranormal 2§27} S ¢4Agh g HA F s Aysid 1 F
ST+ M-paranormal 2§ 4o|t},
deole] xe Ho fisto
(@ NTSx|lllxll = VMI Tl I Sxll.

() (1T2SxllIlxll = M) T2xI111Sx)l .

(3) °137F&(doubly commuting)?! ¥ M-paranormal 44 S, T & ST
+ M-paranormal &7} 2] gt M ‘%‘ olm
@M—DITAS %l llxll = 1| 7211 11 S x|l

°|", 1 ¥ ST+ M-paranormal #& A7} ®t},

(4) M-paranormal 2849 572l ¥ g (isometry)o] 7}8tol®W. 2 F & AA M

-paranormal & A ojt}

(5) A, p7t M-paranormal 284 T9 M & n§olm (M<1Y o,
ker(T—A) L ker(T— p)
o] Ayt



(6) paranormal 2849 kAlFZ 2849 paranormal &4, NFA A

g 43 paranormal (algebraically paranormal) Z&4 Alo)e] ¥ a7
© og3 2o

paranormal 2}# % C paranormal €49 kAT LA

N

=2 paranormal & .

(7) paranormal €49 kAFZ FELEAE TS BH)Q =294
(norm topology)ell W&t #HAgFeln w3 B(H) S JAREHFo|c)

(8) paranormal #8249 kI 49 SAES0] Jlgeld, 1 F I
paranormal 2849 kAFZ 2L Aol

©) Fol otd HAFH {a,) (=1, 2, )& %

e e 2T HEL
(weighted shift) 77} paranormal 2849 kAlF3 ZF&471 57 93
deF3Ex1AL n=1, 2, 3, o W3y

Ian”‘""n+l|“'lan+k—ll SMlart+le“an+k+l|'“|a n+2k—l'

o)},

(10) 0€rpy(T™ & WEs= paranormal 849 kAFI L 4E

Wevl
2t g 2ot
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