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(Abstract)

ON THE BISHOP CURVATURES OF CURVES
IN EUCLIDEAN SPACES

In this thesis, we study the properties of curves in Euclidean space. Firstly we
review the Frenet formulas in Euclidean space and Lorentz space, respectively. And
we study the several curves with the Frenet theory. Also, we introduce the Bishop
theory and study the relations between Frenet theory and Bishop theory.
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1 Introduction

Curves arise in many different ways. Specially, curves arise naturally in the motion
of a particle. This is the most appropriate for a formal mathematical research of curves.
The history of the curve theory were initiated by G. Monge and his school (Meusnier,
Lancret, and Dupin). One of the study of curves is to use the moving frames. Classi-
cally, the basic tool in the study of curves is the Frenet-Serret theory. In 3-dimensional
Euclidean space, it consists of three vector fields along the given curve and two scalar
functions, so called the curvature and torsionRIh the Frenet frame can be defined,
but the curves need to be of claS8~! and the scalar functions should not be zeros.

In this thesis, we introduce an another moving frame, so called the Bishop frame. In
the Bishop theory, it is enough to satisfy that the curves’&relass. So, in this thesis

we summarize the well-known facts about the Frenet theory. And then we study the
Bishop theory and give the relationships between them. This thesis is organized a fol-
lows. In Chapter 2, we give the well-known facts and review the isometries. In Chapter
3, the Frenet formulas are studiedRA, R? andR™, respectively. Moreover, many in-
teresting curves, including sphere curves, Bertrand curves, involutes and evolutes, are
studied. In Chapter 4, we give the Bishop formulaif and study the properties

of curves with Bishop curvatures. Lastly, we study the relationships between Frenet
theory and Bishop theory.
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2 CurvesinR"

2.1 Curves inR"

LetR" = {(z1, - ,zp)|z; € R, (i =1,--- ,n)} andd : R" x R" — R is a metric
function, which is defined by

2.1)

ThenE"™ = (R",d) is said to be Euclidean space. We wriké instead ofE" if we
have no confusion.

Definition 2.1 A differentiable curvan R™ is a differentiable map : I — R™ of an
open intervall = (a,b) C R into R™.

Sometimes the curve means the image of the curve.

Definition 2.2 Let [ and.J be open intervals. Suppose I — R” is a differentiable
curve and) : J — [ is a diffeomorphism frony to I with df/ds # 0. Then the map
4 =v00:J — R"is said to be aeparametrizatiorof ~.

Definition 2.3 Any differentiable curvey : I — R" is said to be aegular curveif +/
never vanishes.

Let <,> be the natural inner product d&*, and||v|| = /< v,v > the length of
v e R".

A regular curve segment is a functian: [a,b] — R" such that there exists a regular
curvey : (¢,d) — R™ with (t) = a(t) forall t € [a,b] C (c,d).

Sometimes we call the curve instead of curve segment.

Definition 2.4 Thearclength functiors(¢) of v : [a, b] — R™ is defined by

s(t) = / 1 (2 | (2.2)

Trivially, s(b) is the length ofy, which is denoted by.(7).
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Proposition 2.5 The length of a regular curve is invariant under reparametrization.

Proof. Lety = [a,b] — R™ be a regular curve segment, afid= [c,d] — R"
be a reparametrization of. Letd : [c,d] — [a,b] be a differentiable function with
A(t) = (v 0 0)(t). Then we must show

Case 1:1f9'(t) > 0, thend(c) = a,0(d) = b, and

15" @)1 = 16°(t) - 7' (0@l = 16"y (O@)IF= 0" @)Y O E)]I-

By integration by substitution, we have

D= [ = [ eoneon= [ o= w6

Case 2 : If9'(t) < 0, thend(c) = b,0(d) = a, and

15" @1 = =0" @)1 (O@)N-

-/ ()
- [ e
/ I/ (0(2) 19/t

We have

Theorem 2.6 Any regular curve can be reparametrized so as to have unit speed ev-
erywhere.

Proof. Let~ : (a,b) — R™ be a regular curve anglt) be the arc length function.

Sinces’( ) = |7 (t)|| is positive,s is strictly increasing. Se has inverse function
= h. Therefore, by the inverse function theorem, it is smooth%n& ||7 B

So if we putj(s) = (v o h)(s), theny(s) = +'(h(s))4: = 2k, which impliesy’ is

a unit vector.C
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Proposition 2.7 There is no curve joining two points IR shorter than the line seg-
ment between them.

Proof. Letp, ¢ € R™ with p # ¢. Leta : [a,b] — R™ be any curve such that(a) = p

anda(b) = q. If we putu = ﬁ then

b b
/cwwwmw:/<mw»ww=aw»u—amwu=@—pwu=Hq—my

On the other hand, by the Schwarz inequality, we have

b b
dlp.0) =g —pll = [ @) uit < [ a0t = Lia).
which implies the result

Definition 2.8 Let vy : I — R" be a unit speed curve affd = +/(s) a unit tangent
vector field. Theprincipal curvatureof - is defined by

dT "
ra= ==l = 117" (s)]] (2.3)
Proposition 2.9 A curvey in R” is a straight line if and only ift: = 0.

Proof. By (2.3),x = 0 if and only if 4* = 0, which impliesy (¢) = p=constant.
Then, by integrating,
V() =tp+4q,q€R”

which meansgy is a straight line[d

2.2 Euclidean isometry
Let{ey,--- ,e,} be the standard basis Bf*.
Definition 2.10 An isometryof R" is a mappingt' : R* — R” such that
d(F(p), F'(q)) = d(p.q) (2.4)

for all pointp, ¢ € R™.

Definition 2.11 Given pointa € R", T, : R®™ — R" defined byT,(p) = p + a is
called thetranslationby a.
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Proposition 2.12 If F'is an isometry oR" such that/'(0) = 0, thenF" is an orthogo-
nal transformation.

Proof. SinceF’ is an isometry, we have that for apyandq
1F(p) — F(a)ll = [lp —dll
which implies
IF@)|* =2 < F(p), F(a) > +|F(a)|* = |Ip||* -2 < p,a > +||a]|*
SinceF’ preserves norms, we have

< F(p),F(q) >=<p,q>.

It remains to show thak’ is linear. Letp € R". Thenp is expressed by

b= Z pie€;.
i=1

SinceF preserves inner product§F(e;), - - - , F/(e,)} is an orthonormal basis. Thus

F(p) = Z < F(p), F(e;) > F(e;).

Since
< F(p>7F(el) >=<DPp,€e >= D,

we have g
F(p) =) piF(e:).
=1
Using this identity, it is easy to check the linearity condition
F(ap + bq) = aF(p) + bF(q),

wherea andb € R. Hence the proof is completed.

Theorem 2.131If F'is an isometry oR", then there exist a unique translati@i and
a unique orthogonal transformatiaa such thatt”’ = T, A, a € R".
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Proof. Let T, be the translation by = F(0). ThenT ! is the translation by- F'(0).
Thatis, 7' = T_,. SinceT, ! is an isometry/,, ' F' is an isometry with

(T, 'F)(0) = 0.

Thus, by Proposition 2.12,7! F is an orthogonal transformation, sdyi.e., ;' F =
A.SoF = T,A. Suppose that" = Ty, A, whereT,, is a translation and! is an
orthogonal transformation. SindeA = T, A, A = T 'T, A. SinceA and A are
linear transformations, it follows thafl; 17;,)(0) = 0, which meansl;'T;, = 1.
Hencel}, = T, and soA = A. Hence the proof is completed.

Definition 2.14 Let F' : R* — R™ be a mapping. Then théerivative map(F), :
T,R" — Tr,,)R™ atp of I is defined by

d
(F)pV = = (F o a)(t)]io,

wherea(0) = p anda’(0) = V.

It is well-known that( F), is a linear transformation.

Lemma 2.15 (See [5])Letv andw be tangent vectorR? at p. If £ is an isometry of
R3, then
(Fi)p(v X W) = (sgnF")(F.),(v) x (E)p(w),

wheresgnF = +1 is the sign ofF'.
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3 Frenet formulas

3.1 Frenet formulain R?

Let~y : I — R?* be a unit speed curve with # 0, andT = 7. DefineN = 177,
which is said to be mormal vector fieldalongy. And B = T x N is said to be a
binormal vector fieldalong~. Then{T, N, B} is called theFrenet framealong~ on
R3.

Theorem 3.1 ( Frenet Formulas). For a unit speed curve(s) with x > 0, the
derivatives of the Frenet frame are given by

T 0 0 T
Nl=|-« 0 N |, (3.1)
B’ 0 -7 B

wherer = — < N, B’ > is the torsion of the curvg.

Proof. Itis trivial 7" = kN. Since{T, N, B} is an orthonormal basis, any vector field
V along~ can be expressed by

V=<T,V>T+<N,V>N+<B,V>B.

Hence
N =<T,N >T+<N,N >N+ <B,N >B
=<T,N >T+<B,N' > B
=—<T' .N>T-<B,N>B
= —xkI +7B.

Similarly, we have
B' =<T,B'">T+ < N,B">N
=—<T'.B>T+<N,B'">N
=—Kk<N,B>T+<N,B' >N
=—7N. O
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Theorem 3.2 Lety(s) be a unit speed curve with > 0. Then~ is a plane curve if
and only ifr = 0.

Proof. Supposer = 0. By the Frenet Formulas}’ = 0, so B is a constant. It is
sufficient to show that for al,

<7(s) =7(0), B >=0.
By differentiating, we have
< 3(s) =7(0), B >'=<4/(s),B >=<T,B >= 0.

Hence< ~(s) — v(0), B >= constant, which means that ~(s) — v(0),B >= 0
because at = 0, it is zero.

Conversely, supposgis a plane curve. Hence, for any constant unit vectiave have
< 7(s) —(0),n >=0.

By differentiating,< +/(s),u >= 0 and< ~"(s),u >= 0. Thatis,< T, >= 0 and
< kN,u >= 0. These mean that . 7"andu L N. Sou = +B, which means
B’ = 0. Hencer = 0. O

Corollary 3.3 A curveyis a part of a circle if and only ik > 0 is constant and = 0.
Proof. Supposey is part of a circle. Ther is a plane curve and for any
17v(s) = pl* = 7,2 =7(0),
wherer is constant. By Theorem 3.2,= 0. By differentiating, we have
<T,9(s) —p>=0. (3.2)
If we differentiate again, then we have
0=<T' 7(s)—p>+<T,T>=r<N,y(s) —p> +1.

Hence we have
K< N,v(s) —p>=—1, (3.3)
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which means: > 0 and< N, ~(s) — p ># 0. By differentiating(3.3), we have

0=k <N,v(s)—p>+r < —kT+7B,v(s) —p >
=K <N,y(s) —p >,

because = 0 and(3.2). This means that’ = 0, by (3.3) and sox is constant.

Conversely, suppose> 0 is constant and = 0. If we put

then'(s) = 0 because of = 0. This impliesg is constant. If we puB(s) = p, then
1

)
K

1
—pll=1 = =N|| =
[7(s) =gl = Il = — V]|
sop is the center of a circle with radius%. O

Definition 3.4 A regular curvey is ahelix,if < T, u > is constant for some fixed unit
vectoru.

Theorem 3.5 A unit speed curve(s) with  # 0 is a helix if and only if” is constant.

Proof. Assumey is a helix. Since< T',u > is constant, we may write. 7, u >=
cos 0, wheref is some fixed angle.

Case 1: Ifd = A (A = 0,1), thenT(s) = +u. Sinceu is constant]” = kN = 0,
and thenx = 0, which is contradiction.

Case 2: 1) # Ar (A =0,1),then0 =< T,u >'=< kN,u > .SoN L u. If we put
u=<Tu>T+< B,u>DB,

then

0=u =cosfT" +sinfB’
= cos kN + sin(—7N)
= (kcosf — Tsind)N.

HenceZ = <= is constant.

sin 0
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Conversely, assume that= c, for constant. Letc = cot ¢ with0 < 6 < 7, and
letu = cos0T + sinfB. Then

u = cosOT' +sin B’
= kcosON — 7sinON

cos

= (cosf — sin @)k N

sin 6
= 0.

Henceu is constant vector and 7', u >= cos 6, which is constant. Hencgis a helix.
O

Remark 3.6 In R?, we give the geometric meaning lofof the unit speed curve.
Sincey is a unit speed curve iR?, we can consider

7'(5) = (cos(s), sin 6(s)),
whered is an angle betweefi ande; = (1,0). Also, we take
N = (—sinf(s),cosf(s))

and then
kN =T =6'(s)(—sinf(s),cos0(s)) = @'(s)N.

So we have
bl G 5
3.2 The sphere curves

A curve v is called thesphere curvef ~ satisfies||y(s) — m||? = r? for some
constantsn andr.

Theorem 3.7 Let~ be a unit speed curve with # 0 and7 # 0. Thenvy is a sphere
curve if and only if(1)2 + (5-)2 =12, 1 > 0 is constant.

K2T

Proof. Let v be a sphere curve on the sphere of radiuend centern. That is,
< (s) —m,v(s) —m >= r?. By differentiating,

<v(s) =m, T >=0.

10
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By differentiating, we also have

0=<~(s)—m,T> =<T,T >+ <~(s) —m, T >
=14+ < y(s) —m, kN >,

which implies—1 = k < y(s) —m, N > andx # 0. Now, fora, b, ¢ € R, if we put
v(s) —m = aT 4+ bN + ¢B,

then
a=<7v(s)—m, T >=0
and

1
b=<(s) —m,N >= ——.
K

By differentiating, we have fop = %,

—p =<~(s) =m, N >
=<T,N >+ <~v(s)—m,N >
=<~(s) =m,—kT + 7B >
=—k<y(s)=m,T >+7 <~v(8) —m,B >

=7<v9(s)—m,B>.
Soc =< 7(s) —m, B >= —p o, wheres = 1. Hence
¥(s) —m =—pN — paB,
which yields
r? =ly(s) — m||® = || - pN.= p o BI?
=p*+(po)*
Conversely, suppos€ + (p'0)? = r> andp # 0. Then
20 p+2pc +po)po)=D0.
Sincep’ # 0, we have

plo'l + p//o_ _ _B
g

11
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Lety(s) + pN + p'oB = m(s). Then, by differentiating, we have

m' =7 (s)+pN+pN'+(p'o+po)B+poB
=T+ p N+ p(—kT +7B) — prB + p o(—7N)
— 0.

Hencem is constant and so

lln(s) —ml|* = p* + (p 0)* = 7*.

Thus~(s) is a sphere curvel

Let v be a unit speed curve. Singd’(s)|| = 1, T'(s) is a sphere curve. Similarly
N(s), B(s) are sphere curves. Hen€#s) is called thetangent spherical imagef ~.
And N(s) andB(s) are called theormal sphericahnd thebinormal spherical image
of v, respectively.

Theorem 3.8 Let~ be a unit speed curve iR?. Then
(1) ~ is a straight line if and only if the tangent spherical imageyo$ a constant.
(2) v is a plane curve if and only if the binormal spherical image/a$ a constant.

(3) v is a helix if and only if the tangent spherical image is an arc of a circle.

Proof. (1) Suppose théf'(s) is a constant. Ther(s) = |[T7(s)|| = 0. Thus~(s) is a
straight line. Conversely, suppose thét) is a straight line. Ther(s) = 0. Hence
k(s) = ||T"(s)|| = 0, which meand" is constant.

(2) Suppose that(s) is a plane curve. Then(s) = 0, and soB’(s) = 0. HenceB(s)
is constant. Conversely, suppose thdt) is constant. Then

7(s) = — < B'(s),N(s) >= — < 0,N(s) >=0.

Thus~(s) is a plane curve.

(3) Suppose that(s) is a helix. Then< 7, u >= C'is a constant for some constant
unit vectoru. Since

<T—=T(ty),u>=<T,u>—<T(t),u >
=C-C=0,

12

@ jeju



T(t) is a plane curve. Hencé&(t) lies on the sphere and plane, which mediis)
is a part of a circle. Conversely, suppose that) is a part of a circle. Theff'(¢)
is a plan curve. Sec T'— T'(tp), u >= 0 for some constant unit vectar. Hence
< T,u>=<T(ty),u > is constant. Thus(s) is a helix.O

3.3 Bertrand curves

Definition 3.9 Two curvesxy and 3 are calledBertrand curvesf for eachs,, the nor-
mal line toa ats = sy Is the same as the normal line tbat s = s,. That is,
N, = £N3;. In this case, we say thatis aBertrand mateof a.

Proposition 3.10 The distance between corresponding points of a pair of Bertrand
curves is constant.

Proof. Let a be a unit speed curve amtibe a Bertrand mate of. Then there is a
function A(s) such that3(s) = a(s) + A(s)Na(s). Generally,3 is not unit speed. We
must show||3(s) — a(s)|| = A = constant. In fact,we have

B'(s) = Ta(s) + X (s)Na(s) + A(s) Ni(s)
= (1 — A6a)Tu(s) + X (5)Na(5) + ATaBa(s).

And so
X (s) =< B(s), No(s) >=<_5'(s), £Ng(s) >= 0.

Hence\(s) is constantd

Proposition 3.11 The angle between the tangents to two Bertrand curves at corre-
sponding points is constant.

Proof. SinceN, = £Nj3, we have
T, = kaNa = ko Ng, Ty = rgNs = £rgN,.
Then

< To(s), Tp(s) > =< Th(s), Tp(s) > + < Tu(s), Th(s) >
=< £kaNg(s),T5(s) > + < Th(s), £ksNa(s) >= 0.

Hence< T,(s), T3(s) > is constant. So the proof is completéd.

13
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Theorem 3.12 Let o be a unit speed curve withr # 0. Then there is a Bertrand
mate(s) of « if and only if there are constants # 0 and i with § =K+ uT.

Proof. Let 5 be a Bertrand mate @f. Then for some constant=£ 0,
B(s) = a(s) + AN,(s). Sinces'(s) = (1 — Aka)Ty + Ao Ba, We have
B(s)

7 >

15 ()]l
|

= Hﬁ’(s)l\(l 17,

cost) =<T,,Ts > =<1T,,

9_— 6% - «
sin | T % || = ||Ta x Hﬁ( )||H

LT
=T

1
— AT,
=17 el 70,

whered is constant by Proposition 3.11. S8¢ = 1-2% — ; js constant. This implies

sin 0

that: = x + ur. Conversely, le(s) = a(s) + )\Na( ). Then

gl

ﬁ/(s) = AT(uT + Ba)

and
B = A uT, + ATk — AMT2) Ny + AT B.,.

So we have
B'(s) x 8" (s) = Arpu(Arpk — A\r2) By — Atk — M)A T.
By the direct calculation, we have
(5'(s) x 8" ()) x B'(s) = Arpas = Ar®)(A7)* (1 + p®) N

Thus

(B(s) x B'() x B(s)
V= FExFE) < FEN e

That is, is a Bertrand mate af. O

14
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3.4 Involutes and Evolutes

Let o be a unit speed curve on an interyal b). Theng is aninvolute of « if
B(s) = a(s) + (¢ — s)T.(s), wherec is a constant and, = «'. And /3 is anevolute
of a if « is an involute of3.

Proposition 3.13 (1) An involute of a plane curve lies in that same plane.

(2) An involute of a helix is a plane curve.

Proof. (1) Let« be a plane curve anél(s) be an involute ofv. Then, by definition,
Bs) = als) + (¢ = s)Ta(s). (3.4)
From (3.4), we have
< B(s) — a(s), Ba(s) >=< (¢ — s)Tw(s), Ba(s) >= 0.

SinceB,, is constant is also plane curve, which lies in the same plane.

(2) Leta(s) be a helix andi(s) be a involute curve. Then, by (3.4), we have

/

B(s) = (c— )Ti(s)
and
18 ()] = Kalc— s).

Hence we have

_BE _(e=9Ts) L
A Hﬁ/(S)H 1 Iia(c—s) 1 I{aTa( )7

which impliesT! (s) = k,15. Sincea(s) is helix, < 7;,,u >=constant for some

T

constant unit vecton. So we have
0=<Thu>=ry < Tgu>.

If ko, = 0, thena(s) is straight line. Hence by (1), it is a plane curvexlf # 0, then
< T,u >= 0. By differentiating,

0=< Tg,u >/: /@5<Ng,u>.

If kg = 0, then3(s) is straight line and s@ is a plane curve. Ifz # 0, then
< Ng,u >= 0. Henceu = + B3 and

0 =< Njg,u>= —kg < Tg,u>+73 < Bz, u >= *75.

Hencefs(s) is plane curve. Thus, an involute of a helix is a plane curve.

15
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Theorem 3.14 Let o be a unit speed curve anél be an evolute ofv. Thenj(s) =
a(s) + LN + uB, wherey = L cot( [ rds + constant).

Proof. Let ¢ be a point on the evolute curyecorresponding to the pointon a
reparametrized curwe. Sincef(q) — a(p) is orthogonal tdl,, in the normal plane of
a atq. Henceg — a = AN + uB. But

B(s)=To+ANN+AN'+ 4 B+ uB'
= (1—A&)To+ (N —p7)N + (1 +A7)B

is the tangent t@ and so parallel t@ — «. Thus

X—,w'_//—l—)\r

1-X=0
k=0, S ﬂ
That is T
1 P— Ap Y
T Rt ds
Thus )
/ 7ds + C = cot™" %, C : constant
r )\cot(/ Tds + C).
Therefore

B(s) = a(s) + %N +upB. O

3.5 Frenet formula in Minkowski spaceR?

Let us define the metrie;, >, onR? by
<X, Y >.= —m1y1 + Tay2 + X3Ys3, (3.5)

where X = (1,79, 23) andY = (y1,y9,93). ThenR? = (R3 <, >,) is called the
Minkowski space (or Lorentz space)

Definition 3.15 A vector X onR? is said to be

space — like, if <X, X>,>0,
time — like, if < X, X >,<0,
light — like, if < X, X >,=0,X #0.

16
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Definition 3.16 A regular curvey : I — R} is calledspace-like, time-likandlight-
like if for V¢ € I,/ (t) is space-like, time-like and light-like, respectively.

Example 3.17 The curvex(t) = (cosht,sinht,0) is space-like and(t) = (sinh ¢, cosht,0)
is time-like andy(t) = (¢,¢,0) is light-like.

Definition 3.18 A vector product’ x W onR?$ is defined by
<V X W,U >o= det(V,W,U) (3.6)
forall U. That s, for anyy' = (vy, v,, v3) andW = (wyq, ws, w3),
V X W = (—vws3 + v3ws, —v1W3 + V3W1, V1Wy — VoW ).

Now, we can define three frames as follows. For two vectgrand e, such that
< e,6; >o= *1, < e,e5 >,= 0, a third is defined by; = e; x e5. Then<
e, e3 >o= 1. So{ey, ey, e3} form an orthonormal frame field. Generally, if we put
e,n € {1,—1} by < e1,e; >,= ¢, and< ey, e5 >,= 1, then< ez, e3 >,= —en. The
frame{e;, 5, e3} is said to be amrthonormal basiof R?.

Lemma 3.19 Any vectorX onR? can be uniquely decomposed as
X=e< Xe1>e1+n< X, 65 >,e0—€n < X,e3 >, e3, 3.7
where{e,, e2, 3} is an orthonormal basis.
Proof. Let X = aje; + ases + azes fora; € R(i = 1,2,3). Then
< X,e1 >o=a1 < eq,e1 >o= a€.
Henceu; = e < X, e; >, . Similarly,a, =1 < X, es >,andas = —en < X, eg >,.0

Theorem 3.20 ( Frenet formula in R? ). Let~ be a space-like or time-like curve by
unit speed and< 7",y >,#0. Then{T =+ N = —2L_— B =T x N} form

|<v" " >0l

an orthonormal frame field and satisfies

T 0 KM 0 T
N |=]-re 0 —7en N |, (3.8)
B 0 —-mm 0 B

wherex =< T’ N >, andT =< N’, B >, are called the curvature and torsion of the
curver.

17
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Proof. Let v be a space-like (or time-like) with unit speed. We have
T'=e<T' ,T>T+n<T' N> N—-—en<T,B >, B,

because< 7,7 >.= e and< N,N >,= 7. By the definition of N, 7" = " =
V<79 >0 [N, and soy/| <1",7" >o | = < T',N >.= nr. Hencel’ =
knN. Next, we have

N =¢e<N T>T+n<N,N> N-en< N, B>, B.

Since
<N T>=—<T N >,=—k,

< B' N >=—< N ,B>,=—1,

we haveN’ = —keT — TenB. Similarly, we haveB’ = —mB. O

3.6 Frenet formula in R”

Definition 3.21 Let~ : I — R™ be a unit speed curve. The generalifednet frame

field {v1 = +/(t),vs, -+ ,v,} In R™ is defined as follows: if we define,, by
%
Wjt1 = V; — Z < v, v; > U, (3.9)
=1
then 7
Vi1 = ——Wig1,  Kjp1 = (Wil (3.10)
Kj+1

Theorem 3.22 (Frenet formulas) Lety : I — R™ be a unit speed curve with; # 0.
Then we have

0o —x 0o - 0 . (3.11)
: : : Kn
v;z 0 0 0 —Kn 0 Up,
18
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Proof. Let V(t) = (v;---v,)T be the orthogonal matrix since rows are orthonormal
basis forR". So

VW) =1 = V'V + VeV =o.

Sincev; = Kjp1v41 + Y0y < v/, v; > v;, We can write

whereK;; are of< v%,v; > or k4. O
Theorem 3.231If x,, = 0, then the curve lies in a hyperplane.

Proof. Sincex; # 0(i = 1,--- ,n—1), we define an orthonormal vectdrs,, - - - , v,,_1}.
LetW = (vy, -+ ,v,_1)T. Now we define univ,, so that

det(vy, - ,vn)T = 1.

If we put A = (vy,---,v,)%, then
1= det(AAT) =< Up, Up > — < Up,Up 2 —ieim < Up_q, Uy >
Since< v,,v, >= 1, we have< v, v, >=--- =< v,,_1, v, >= 0. Hence

< W,v, >= 0. Differentiating< W, v, >= 0, we have
< W vy>+ < W, >=0.
Sincek,, = 0, W’ is linear combination of, - - - ,v,_,. Hence< W', v, >= 0. So
< W, v, >=0.

ie.< vj,v; >=(0forj=1,---,n—1. Also, since< v,,v,, >=0,v,, =0, i.e.,v, IS
constant. Now,

<vun > = <A >+ <0 >
= <U,v, >+ <7v,0>=0.

Hence we gek v, v, >= constant. i.e.y lies in hyperplanel

19
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Theorem 3.24 (Fundamental theorem of Frenet theofy Given any smooths,, - - - | k,,
on (a,b) C R such thatk; > 0, i < n. Then there exists a unit speed curve
v : (a,b) — R™ with these curvatures and is unique up to oriented isometry of
R™.

Proof. Consider the matrix ordinary differential equation with an initial value. i.e.,
V=KV, V(a)=1I.

From the fundamental theorem of ordinary differential equations (linear case), there
exists a solution to this equation.

Theorem 3.25Let I : R? — R? be an isometry. Le be a unit speed curve iR?
with ks > 0. If « = F o 3, thenkg = ko, 75 = (sgn ) 7,.

Proof. Sinceg is a unit speed curvey = I’ o 3 is also a unit speed curve. Hence we
have
i — I3

SinceF, preserves both acceleration and norm, we have
ko = |la || = |[F.(8)]] = |I8|| = &g-

Moreover, by definition)V. = %T’. Hence

4

_E(8) (ﬁ

N_a
a_lia kg Rg

This implies that, by Lemma 2.15,
B, =T, x Ny = F.(Tp) x F.(Ng) = (sgnF)F.(I3 x Ng) = (sgnF)F.(Bg).
Hence, by the definition of the torsion,

To =< N, B, >=< F.(Ny), (sgnF)F.(Bg) >= (sgnF) < N, Bg >= (sgnF)75. O

20
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4 Bishop formulas

4.1 Bishop formula in R?
Letv : I — R3 be a unit speed curve.

Definition 4.1 A vector field NV along a curvey is callednormalif < N,~ >= 0 for
all .

Note that the Frenet vector fieldsv, B} are normals when they exist.

Definition 4.2 A normal vector fieldV on~ is calledparallelif N’ has no component
perpendicular to the curve. i.6V = A/, where) is a real valued function.

Proposition 4.3 There exist parallel orthonormal normal vector fields along @ity
curvey in R3.

Proof. Let v be a smooth curve. Let; andw, be normal vector fields along such
that

< Wi, wW; >= 51_]

Now, we construct parallel orthonormal normal normal vector fi¢lds, N, }. This is
equivalent to exist an orthogonalbx 2 matrix A = {a,;} such that

Ni: E a,-jwj
J

is parallel. AssuméV; = \;y". Then< N;,w; >= 0 for all i, j. Equivalently,
< a;jwj = aijw;,wk >= 0.

That is
5jka;j+ < w;-,wk > Qi = 0.

By the existence of the solutions of linear ordinary differential equation, the solutions
(ai;) exist. This means thgtV; = » . a;w;} are parallel orthogonal normal vector
fields. O

Definition 4.4 Let { Ny, N>} be the parallel orthonormal normal vector fields aleng
with N, = &1y, N, = kyy . Theser, and, are called théBishop curvaturesf
and{T, Ni, N, } are called th@ishop frames.
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Theorem 4.5 ( Bishop Formula). For a unit speed curve € R?, we have

T 0 —KR1 —Ko T
N =& 0 0 N |- (4.1)
Né l_€2 N2

Proof. Let~ be a unit speed curve afid= ~'. Then

T = <T,T>T+<T,N;y>N+<T ,Ny,> N,
L W —RlNl 1 RQNQ.
Others are trivial from the definitior

Theorem 4.6 Let~ be a unit speed curve iR3. Thenk? = k? + k3.

Proof. Let~ be a unit speed curve. Then, by the Bishop’s formula, we have

&=y |I? = [IT"])?
- R% < NluNl > +2R1R2 < N17N2 > +/_i§ -4 NQ,NQ >

_ 22 z2
=FkR]+ K. O

Theorem 4.7 Let~ : I — R? be a smooth curve. They = —kcosf, ky = Ksinb,
whered(t) = [ 7(u)du+constant.

Proof. Let {T, N, B} be a Frenet frame and", N;, N>} be Bishop frame. Then

and
T, 0 — K1 —kKao T
N|l=1|/ 0 0 Ny
N, o 0 0 Ny

Since{N, B} L T'and{N;, N.} L T, we can put

Ny B cosf) sin6 N
N, ~ \—sinf cosf B/

22
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So

N, = —0 sinON + cos ON' + 60 cosOB + sin 0B’
= —0 sinON + cosO(—kT +7B) + 6 cos OB + sin(—7N).

Hence

T = —kcos 0T + (=0 sinf — 7sin )N + (6’ cos @ + 7 cos 0) B.

Similarly,

RoT = ksinfT + (—60 cos — 7 cosO)N + (—6 sinf — 7sin ) B.

Thus

K1 = —Kcosf, Ry = Ksinb,
6 sinf 4+ 7sinf =0, 7cosf+ 0 cosb = 0.
Then§ = —r, and

H(t):—/tT(u)du+C’. o

Theorem 4.8 Let v be a unit speed curve iR* with & > 0. Then(z})? + (

(k)2 + K272
Proof. By Theorem 4.7, we have
t
R = —kcost = —k cos(—/ T(u)du + C),
t
Rg = ksinf = —k sin(—/ 7(u)du + C).
By differentiating (4.2),
Ry = —K cosf — kTsinf , Ry =k sinf — k7 cosb.
Hence we havér,)? + (75)? = (k') + k72 O

Notation : %(t) = (k1(t), k2(t)) is considered as a curve R¥.

23
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Corollary 4.9 Let~y be a unit speed curve. Thenis a straight line if and only if
k = 0. And~ is a circle if and only ifs = constant# 0.

Proof. This follows from Proposition 2.9 and Corollary 313.
Corollary 4.10 Letg—j = constant. Ther is plane curve.
Proof. From (4.2), we have

K2
—~ = —tan 8 = constant.
R1

So6' = 0, which impliesr = 0. Therefore;y is a plane curve

4.2 Bishop formula inR"”

Lety : I — R" be a unit speed curve adadvy, - - - , N,,_1 } be a fixed parallel normal
vector fields. Lefl” = +' be the unit tangent vector field. Define forany 1,--- ,n—
1, by

K; =< N, T >=< N+ >. (4.4)

SinceN; is parallel, i.e. N/ = k;7/, we have the Bishop formula.

Theorem 4.11 For a unit speed curve € R", we have

T 0 45 —FRn—1 T
R R 0 0 0 N-
=] " 1 (4.5)
0
En—lT Kn—1 0 0 Nn—l

Proof. It is trivial from the following fact.

T = <T'.T>T+<T ,Ny>N +---+<T N,_1 >N,
= —I_€1N1 — E/QNQ — = Rn—an—l- O
24
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Proposition 4.12 Let~ : I — R"™ be a unit speed curve. Then

2 =2 =2 =2
K=K +Ry+ -+ K,_1

Proof. It is trivial from the definition. O

Definition 4.13 Regardz(t) = (R1(t), -+, kn—1(t)) € R™ as a curve. We calt as
thenormal developmerdf ~.

Theorem 4.14 A curve~ lies in an affine subspace of codimensienin R if and
only if its normal developmentlies in a linear subspace of codimensionin R !,

Proof. First, we prove in case: = 1. Then subspaces of higher codimension can be
obtained by intersecting codimension 1 subspaces(hyperplanes). In fagt=ar, ~
lies in hyperplane if and only & -, a > = constant, where = 0 is a constant vector.
By differentiating, we have

B'.a = 0.

Hencea = Z;‘:—f ¢;N;, where{N;} are Bishop vector fields. By differentiating,
0= Z c:N; + Z e;N! = Z(céNi + ik ).

Then) . ¢;k; = 0 andc; = 0. Hence we have
< R,c>=0, c= (e, + ;cn1) = constant,

which meansk,,--- ,,_1) € linear subspace (hyperplane)ii—!.

Generally, for higher codimensian, leta; andb; (i = 1,--- ,m) are constant such
that < v,a; >= b, Thena; = 37"/ ¢;;N; and< +/,a; >= 0 for all i. Hence
< RK,¢; >= 0, wherec; = (¢;1,-- - ,cin—1). This implies that the proof is completed.

O

Theorem 4.15 A curve~ lies on a sphere of radiug > 0 in R™ if and only if its
normal developmer lies on a hyperplane distantéefrom 0€ R

Proof. Let~ : I — R™ be a unit speed curve. Theries on a sphere of radius That
is ||y — al|* = r2. By differentiating, we have

O:<"}//,(’}/—G)>.

25
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Hencey — a = > ¢;N; where{N,} are Bishop vector fields. By differentiating,
v = Z ;N; + ;N = Z GN; + iRy

Thenc, = 0 and)_, ¢;k; = 1. Hencek lies on hyperplane orthogonal to c.
Moreover, since? = ||y — a||* = >_ ¢ = ||¢||?, the distance frond to hyperplane is
<k (8 >=1i O

Corollary 4.16 A curvev lies on a sphere of radius > 0 in R? if and only if% lies
on a straight line with a distancTé from0.

Remark 4.17 (Conclusions)

(1) In Frenet theory, any curve must be at least™! in R". Moreover, if anyx;
vanishes at single point, we can not define highés andv;’s.

(2) In Frenet theory, if,, = 0, then curve lies in an affine subspa@eorem 3.23)
But we do not know when the curve lies on the sphere.

(3) In Bishop theory, we know when the curve lies on the spfi¢reorem 4.15)

26
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