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O. Introduction and preliminaries

The study of semigroup and topological semigroup is very important in al-
gebra, because the structure of semigroup is basic of all the other algebraic
structure. So many mathematicians have studied on semigroup theory,

In this paper, we study the function space of topological semigroup. The

motivation of this study is the theorems with respect to adjoint associativity

on algebra as follows ;

Lemma 1. Let R and S be rings and Ar, rBs, Cs modules., Then there
is an isomorphism of abelian groups @ : Hom s (Ar B, C) »Homr (A, Hom (B,
C)), defined for each f: A®rB—Cby ((af) (a))(b) = f (a Xb).

({3} Chapter [\ = 5)

Lemma 2. Let X, Y, Z be three topolgical space such that X is Hausd-

orff and Y is locally compact,

Then the restriction to C (XXY, Z) of canonical bijection F(XXY,Z2) —
F (X, F(Y,Z} is a homeomorphism of Cc (XXY, Z) onto Cc (X, C(Y,Z)) .

((1) Chapter X —3.4)

which are due to (3] and (1], respectively.

We apply these two lemmas to the topological semigroup on a family of
homomorphisms between semigroups .

This paper is divided into three sections. The first section includes basic
concepts which will pave the way for the further development .

In particular, we show that for any semigroup X and Y, H(X, Y) is a mono-
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source if and only if X is a subsemigroup of H(H(X,Y) Y), ie, X is conside-
red as a subsemigroup of a power of Y, Using the concept that a map f between
semigroups is a homomorphism if and only if we have a commute diagram, we
show that HT (X, Y) is a topological semigroup which compatible with the
initial topology H(X, Y) with respect to (Px: H(X,Y)—Y )sx and pointw -
ise multiplication for any semigroup X and Y a topological commutative sem-
1group,

In the final section, using the tensor product on semigroups, we try to ha-
ve a corresponding result on topological semigroups to adjoint associativity

as follows

Theorem Let X and Y be semigroups and Z a commutative topological se-
migroup, then HT( X®Y, Z) is a topological isomorphic with HT (X, HT

(Y, Z)).



1. Definitions and basic properties

In this section, we collect a list of some definiticons, notations and hasic
results which will be used throughout this thesis .

By a semigroup (X, -) we shall mean a non—empty set X whic has an assocr -
ative binary operation. In the following, we shall write - (z, v ) simply as
xY . The associative condition on S states that x(yz) = (x¥)z for each x,v
Z&S, If S has a Hausdorff topology such that its binary operation is cont-
inous on S XS to Swhere S XS is the product topological space, than S

is called a_topoiogical semigroup. A semigroup S is commutative if xy =yx for

any x.,Y<S. Anelement a&S is said to be idempotent if a’=—aa—= a
and we denote E(S) = {a &S| a® = a}, the set of all idempotent elements

of a semigroup S. A Commutative semigroup S is a semilatzice if E(S) =8,
A semigroup S which has an identity 1, ire, lx=x=wx1 for any X, is
called a momoid. A subset A of a semigroup is a swsemigroup if AA=[ab|a,

b&AJC A A subsemigroup of a semigroup is a semigroup,

Notation., For any sets Xand Y, let F(X, Y) be the family of all fun-
ctions fromX into Y, and denote F(X, X) by F(X). For any semigroups X
and Y, let H(X, Y) be the set of all homomorphisms from X and Y, and

denote End (X), the set of endomorphisms on X into itself.

In the above notation, if Y has an idempotent element, then H(X, Y) is
a non—empty. In particular, if ¥ is an idempotent element on Y, then the

constant map ¥ on X, ¥ (x) =Y for each x€&EX, is a homomorphism,

-3 -



We will assume that H(X, Y) is a non-empty family for any semigroups X

and Y throughout this thesis.

A family of maps (fi)i.1 is called a sowce if dom f; =dom'f; for any i,

j &I, Where dom f; and dam f; are the domain of map f; and f;, resp.[2)

Definition 1.1 A source (f;: X—X;)i.1 is called a mono-source if

fi(x) =1:(), for any i €1, implies x=y. (2]

Remark 1.2 (1) If a source (f :X—Y), the singleton source, is a
mono-source if and only if f is one—to—one.
(2) If (fi: X—Xi)ia1 is a mono —source and IC]J,

(fj: X —X;)je; is a mono—source.

The following concept is a generatization of the topological properties,i-e,

producti ve and hereditary,

Definition 1.3 Let (fi: X—Xi)i.1 be a source, where (X, ¥) and
(Xi,Ti), for all i &1, are topological space. Then (fi)ier is called a im -
tial source If it satisfies the followings;

i) For each i€, fi: X—X, is continous,

) Any map h:Y—X is continous, Where (Y, Z¢) is a topological sp-

ace if and only if for each i&1, f;-h is continous. (2]

Remark 1 4 (1) It is well known that if a source (f;: X—X;):. is an
initial mono—source, then X is homeomorphic with a subspace of ;T; X; and

vice versa.



(2) If A is a subspace of a topological space X, then the

inclusion map (i : A—X ) is an initial source.

Proposition 1.5 Let (f;: X—Xi);.1 be an initial source and for each
11, (gi2:Xi —Yiz)i. is an initial source. Then (giz-fi: X—Yi1)ier 2ea

is an initial source.

Proposition 1.6 Let (fi: X—X;)ia and (gis. Xi »Yi:)a. for each
1 &1 be sources of continous maps.

Then (fi)i.r is an initial source if (gii-fi)ic1, 2+ is an initial source.

Theorem 1.7 Let {f;: X—Xi)ia be a source, where X is a set and
each X; is a topological space. Then there exists unique initial topological
structure T on X which (f;: (X, 7) —Xi)ia is an initial source.

Proof . Clearly {f7'(Gi)| G; is open in X;, i €1} is a subbase for the in-

itial topolgy on X with respect to (f;: X—X;)i.:.

Theorem 1 8 Let (f:X—Y) be an initial source. Then f is a homeo-
morphism if and only if f is bijective,

Proof. If f is bijective, then the inverse map f™' of f exists and satisfy

f-f7' = lv, Since (f) is an initial source and ly is continous, f! is conti-

nous,

Definition 1.9 Let X and Y be topological semigroups.

(1) A map f on X into Y is called a continous homomorp —

kism, if it is continous and homomorphism,[4]

(2) Amap f on X onto Y is called a tomiogical isomo—
_5 —




rphism  if f is a homeomorphism and isomorphism.[4)

(3) X is said to be topolgical tsomorphic with Y if there is

a topological isomorphism on X onto Y.[4)

2 . Topological semigroups of homomorphisms .

In this section, we will contruct a topological semigroup on a family of h-
omomorphisms for a semigroup, and topological commutative semigroup using

the initial topology and pointwise multiplication.

Proposition 2.1 For any set X, F(X) is a monoid under composition

of maps. Moreover, for any semigroup X, End(X) is a subsemigroup of F(X).

Proposition 2.2 Define a binary operation m: F(X, Y)? »F(X,Y) by
m(fg)(x) = f(x)g(x). in general fg(zx) = f(x)glz), for all f, gEF(X, Y) and
<X, Then (F(XY), m) is a [ commutative) semigroup if Y is a [ commut-
ative] semigroup and if Y is a semilattice, then (F(X. Y).m) is a semilat -

tice.

Proposition 2 3 If Y is a commutative semigroup, then (H(X, Y), m)
is a commutative semigroup of (F(X.Y), m).
Proof. Take any f,g in H(X, Y).
Then (ig)(xy) = f(xy) glzy) = (D (y)e(@)e(y) = f(@glz)f(y)gly)
= flxy)glzy), i-e, fgEH (X, Y);
(H(X. Y), m) is a subsemigroup of (F(X, Y), m).

Hence (H(X, Y). m) 1s a commutative subsemigroup of (F(X, Y), m).
_6_



In the above proposition 2.3, if Y is not commutative, then (HX, Y), m)

need not be a subsemigroup of (F(X, Y), m),

In the above proposition 2.2, proposition 2.3, we denote (F(X, Y), m) by

F™(X,Y) and (HX, Y), m) by H"(X, Y).

Example 2 4 Let Q ={=xl,%i,%j,*k} such that i2 =j2=k?= -],
1j=—ji=k, jk=-kj =i, ki=—ik=3.

Then we know that Qg is a non abelian group.

Moreover, End(Q,) is not a semigroup.

Clearly 1lq, €End(Q,), but

loglas (1)) = loglae (k) = log(k)lqe (k) = k? =— 1

(laslas (1))01aslas(j)] = (lag(i)las (i) Tas (j)laali)) = i%-j2

= (=1)+(=1) =1, and so lgslas & End Q,).

Lemma 2 5 For any x&X, define a map

P.i F(X,Y)—>Y by P:.(f) =1f(x) for all fEF(X,Y), and we will say th-
at this map is x-th projection for all z&X. Then

(1) each x-th projections is a homomorphisms,

(2) the collection of all projections is a mono source,

Proof. (1) Let £&X be taken.

Then for any f.,g EF(X, Y), Pix(fg) = f (@)glx) =P.(f) Pu(g). and hence P,
is a homomorphism .

(2) Take any f,g =F(X, Y) With P,(f) =P.(g), i-e, {(z) =g(@

for any x&EX. so f =g.



Hence (Px)yx is a mono—source .

Proposition 2 6 Let X and Y be semigroups. Then HX,Y) is a
mono—source if and only if the mapr : X—HMHEX, Y), Y) defined by =z (x)

=P,, where P, is the restriction to H(X, Y) for P,. and we simply deno-

te P, for P,, is one—to—one, and 7 is a homomorphism.

Proof. Let H(X, Y) be a mono—source and suppose 7(x) = n(y).
Then P, (f) =P,(f) for any f&H(X, Y), and so {{z)
f&H (X, Y).

= {(y) for any

Hence x=y. Thus r is one —to—one .
Take any zx, y&X and fEHX, Y).

Then Py, (f) = f(zy) = f(2)f(y) =P, ()P, (f) = (P,P,)(f). i-e, Py =PPy.

In all n(zy) =P,, =P,P, = TZ)n(y), ire. ® is a homomorphism,

Conversely, Let 7 be one—to—one. Take any x, y&X with f(x) = {(y)
for any fEH(X, Y).

Then P,(f) =f(x) = f(y) =P,(f) for any f&€H(X, Y), i-e, P, =Py.
Since 7 is one—to—one and n(x) =P, =P, =n(y); = y
Thus HX, Y) is a mono — source .
Theorem 2.7 Let X and Y be semigroups. Then X is isomorphic wi-
th a subsemigroup of H(H(X, Y).Y) if HX, Y) is a mono —source ,

Proof, Clearly P,EHHEX. Y), Y) for any r&X, and HX, Y) is  a

mono—source, and #: X—HHX, Y).Y) is one —to—one and a homomorphism.

Hence X is a isomorphic with n(x).



Corollary 28 Let X and Y be semigroups, then X is isomorphic
with a subsemigroup of HHMH(X,Y),Y)Y).
Proof. Clearly the family of x—th projections is a mono—source. And by

theorem 2.7, X is isomorphic with a subsemigroup of H(H(H(X,Y),Y), Y).

From the above theorem 2.7, if H(X, Y) is a mono—source, we can cons-

ider that X is a subsemigroup of F(H(X, Y), Y), i-e, a subsemigroup of YH X'V

Lemma 29 A function f on X to Y is a homomorphism if and only if

the following diagram commutes, ie f-my =my-f X f,

mx
X XX 5 X
fxf 1 f
YXY M=stioy

Where X, Y are semigroups and m,, my are the binary operation on X and
Y, resp.

Proof. Let f be a homomorphism.

Then (f'md)(a,b) = f(m, (a,b)) = f(ab) = f(a)f(b) =my (f(a),f(b))

=my(f X f(a,b)) = (my-f X f)(a.b) for any a,b &X. Thus the diagr-

am commutes,

Conversely, if the diagram commutes, i-e, f-m, =my'f X f, then for any
a,b&EX, f(ab) = f(ms(a,b)) = f-m.(a,b) = (my-f X f)(a,b) =my (f X f(a,b))
=my(f(a), f(b)) = f(a)f(b).

Hence f is a on X into Y,

Using proposition 2.3, Lemma 2.5. Lemma 2.9, one has the following:
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Theorem 2.10 Let Y be a commutatjve topological semigroup and let X
be a semigroup and T be the initial topology on F(X, Y) with respect to
(Px: F(X, Y)—Y) and denote F;(X,Y) = (F(X, Y), Z). Then HT(X.Y) is

a commutative topological semigroup.

Proof. Since Y is a commutative semigroup, by proposition 2.3, HT(X.Y)
is a commutative semigroup

In order to show that H™X, Y) is a topological semigroup, it suffices to
show that the binary operation on HY (X, Y) 1s continous. By Lemma 2.5,

each P, is a homomorphism. So, by Lemma 2.9, we have a diagram,

HT (X, Y) xHT(X. Y) m HT X, Y)

11’, X P, J P, (z€X)

Y XY L] Y

Thus Py m=my-P, XP, Since Y ijs a topological semigroup, my is co-
ntinous and (P,),.. is continous, m is continous. Therefore HY(X, Y) is a

commutative topological semigroup.

Corollary 2 .11 Let X and Y be semigroups and let Z be a comm -
utative topological semigroup (semilattice), then H?(Y, Z) and H?(Y, Z))
are topological semigroup [semilattice].

Proof. Clearly HT(Y, Z) is a commutative topological semigroup(sem-
ilattice], since Z is a commutative topological semigroup(semilattice].
Hence HT (X, HT(Y, Z)) is also commutative topological semigroup (semila-

ttice],

—10 -



Theorem 2.12 Let X be a semingroup and Y a compact semigroup,

then HT(X,Y) is a compact semigroup.
Proof. Tt suffices to show that HT (X, Y) is a closed subspace of F™(X,
Y).
For any z, y&X, K(z, y) = (P, X [my- (P, I, ))) " (Ay)
=Equ(Pyy, my- (P,[1P,))}
= {{ EF(X, Y) [Py, (f) = (my- (P, 1Py ) ()}
={{EFX, V)l flxy) = (@) ()},
Wheremy is a mapon YXY to Y and Ny ={(t,t){t EY)} and
(P T1Py) (f) = (f(x), f(y)), zEX, yEY.

Since Y is Hausdorff, Ay is closed and hence {k(x, y)lzEX, yEY} is

closed.
Now let's show that H(X, Y) = {k(zx, y)lx, yEX}.

Take any f EH(X, Y), then fxy) = f{(2)f(y) for any .z, y&EX,

i-e, f&k(z, y) for all ,y =X, Hance feN{k(x,y)lz, yEX). Moreover:

for any fe&N{k(z, y)lz, yEX}, fy) = {@){(y) for any z, yeX,

1-e, fEH(X, Y). This completes the proof .

Thus let Iu be the unit interval (0, 1) with the usual topology and usual

multiplication, then Iu is a compact semigroup. Thus by above theorem 2.11

we have

Corollary 2.13 For any semigroup X, HT(X, I.) is compact semi -

group.



3 . Adjoint associativity (functor)

Let X and Y be semigroups and denote X®Y={ 7 (z, Qy:)|lzEX,
yi€Y,i=1,-, n, nEN},
where iifl(xi Qvi) = (1 Qv )z, ®y,) - (Xa Ryn) of which elements sat-
isfy the following relation.

for all xz, I =X, v,y <Y, 1 =1, 2,

D @ 2)®Y = (2 ®y) (x Q)
D 2@ W ¥.) = @Qv,)(@®y,).
Now, let’s define a binary operation
m: XY XXKRXY - XRY
by m( ﬂ (x ®yi), ,_ ,ml(x. ®XYi)) = (I. 'yi) for any zi €X,
¥, <Y, 1=1, - ,m+n.

k+m+n

Then m(m (iil(xi®}’i). i:{f’jl(.ri(@yi). iokme (@i @ yi))

=m (1 (2 Qyi), k:E{mH (zi Qyi))
= P @ ®y). and
( k Cr.@by ) In(l k+1

LT ®y, Hm”(x.@y.)))
m (1@ ®y), " (@ @) |

k+m+n

= (T Dyi)

I

Hence ( X®Y,m) is a semigroup

Definition 3.1 For any semigroups X and Y, (X®Y, m) is called

the tensor product of X and Y, [3]

12—



Lemma 32 Let X,Y and Z be semigroups, if for any two homom -

orphisms f and gon X®Y into Z, HxRy) =gxRy)

for any (x, y) & X XY, then f =g,

Proof. Take any (z; ®vy,), (xa®ya) EX XY. Then
f((z ®y,) - (20 Qya))
=z, ®y,) - f(zn Dya)

=g, ¥y,) glan ®ya), f=g.

Theorem 3.3 (Adjoint associativity) Let X and Y be semigrou-

ps and Z a commutative topological semigroup, then HYXX®Y, Z) is a top-

olgical isomorphic with HT (X, HT(Y, Z)).

Step 1. The evalution map evi H™(Y, Z) QY 7

defined by ev (ii;l(fi Xxi)) = i;;fl(fi (z:)) is a homomorphism,

Proof. Take any igl(f; Rzi), i:é’:]fﬁ Xz EHT(Y, Z) Y.

Then EV(m(iEl(fi®xi). N (fi®xi)))

i=m4}

=ev((T (f; Qi)

m+

="1 fi(z)

i=1

=7 fi@) 1 fi(z)
=ev(,Z ({; ®z:)) ev(, 72" (f, @),
Step 2. For any homomorphism f: X®Y—Z. there is a homomorphism

: X—HY(Y, Z) with a diagram;

ev

HT(Y, 2) XY

I?@,lv
X®Y

Z,ie, f=ev-(IRly)

—13—



Proof. Define f:X—HT(Y,Z) by {(2)(y) = {(z®y) for any zEX,
yEY. Let zEX be given.
Then for any ¥,, ¥, €Y, [(2)(v,y,) = {(z® (3,v,))
= f((x®yl)(;c®y2))
= HzQ®y,) {@R®y,)
=@ () [@)(y,); TEH(Y. 2)
Let y€Y and z,, 2, X, Then
{@ z)(y) = (@ z,) Qy)
= {((z; ®y)(x, ®y))
= @) y) Hz)y)
={@) H@)IB); (@ z) = i) f@)

Hence f is a homomorphism.

Step 3. Let X,Y,A andB be semigroups and f =H(X, A) and g<=H (Y,
B). Then a map f@gon X®Y into ARQB defined by

@)1,z ®y)= i ((z) ®(y:)) for any 2: EX ¥, €Y,

i=1,-,n is a homomorphism,
Proof. Take any iif" (i Dyi), i:’:ﬁjl(xi ®yi) EXXY. Then

f@em( T (7 ®y), % (@ Qyi) = Qg% @ Qyi))
= fRg(r (z: ®y:))
=1 (f(z:) X g(yi))

= (7, (fz:’ ®gly (T ((z:) ®glyi))).

Hence f®g is a homomorphism,



Step 4 Define T:HTX®Y, Z) =HT(X, H™Y, Z)) by
T(f) =f and G:HT(X, HN(Y, Z) »H™(XQ®Y. Z) by
G(gl=ev- (g®1v) for any fEHT(X®Y, Z) and gEHN(X, H (Y, 2)).
Then GT=1uaTx@v,z, and T:G= 1xT(x, uTcv,2)).

Proof. Let f&EHT(X®Y, Z). Then by step2 and step3, ev-(f@ly) isa

hom omorphism, and
(G-T){) =G(f) =ev-(I®1y) = f. Hence G-T=1xTxpyv, z,.
Let g&HT(X, HT(Y, Z)).
Then (T-G)(g) =T(ev-(g®1v))
=ev (g®1v)

Hence for any zEX, yEY, ev-(g® 10)()(y)

=lev- (g®1v)) (xR y)

=ev(glr) y)

=g@)(y), i-e, ev(g®1v) =g.

Hence TG = luTx, ufev,2)5.

Step 5. In step4, T is a homomorphism, i-e,
HT(X®Y, Z) is isomorphic with HT(X, H®(Y. Z)).
Proof. Let f. gEH? (X®Y, Z) and zEX, yEY. Then
fe(2)(y) = (fe)(z®y)
= {@Qy) gx®y)
= [@)(y) g@)(y)
= ({§) (xy); fg=Tg
Hence T(ig) =T(f) T(g).
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Step 6. Instep 4, T is a homeomorphism, i-e, H? (XQY, Z) is hom-
eomorphic with HT(X, HT(Y, Z)).

Proof, Consider a diagram;

HY(X. HT(Y, 2)) __Pr pov.z) B 5
]\T X, vyEY)
Px@W
H? (X®Y, Z)

By proposition 1.5, (P,-P;) yex,yey; is an initial source.
. And since each P,g, is continous, T is continous .

Moreover, (Prgy)(xex. yev) is an initial source and Py-P,-T=P,p, for each

z<X, y&Y. By proposition 1.5, (T) is an initial source. By theorem 1.8,

T is a homeomorphism,

—16 -
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