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1. Introduction

Let H denote an infinite-dimensional Hilbert space. If T is an operator,
we write N(T') and R(T') for the null space and range of T. We note that
R(T)t = N(T*) for any T € B(H). An operator T in B(H) is called a
Fredholm operator if N(T) = ker T = T~!({0}) is finite-dimensional, R(T)
is closed and R(T)1 is finite dimensional. Write F and K for the class of
all Fredholm operators and compact operators respectively. The Fredholm
spectrum of T, denoted by o#(T).is theset ox(T) ={A € C: T—-X ¢ F }.
For all T € F. the index of T. i(T), is defined by {(T) = dimker T —
dim R(T)*. An operator T € B(H) is called a Weyl operator if T is Fredholm
and 7(T) = 0. The Weyl spectrum w(T') of T is the set w(T) = {A € C:
T — X is not a Weyl operator }. The concept of a Weyl spectrum is relevant

only for infinite-dimensional space.

In this thesis, we will study properties of Fredholm and Weyl operators,
properties of Weyl spectrum. the relations between Weyl spectrun and sever-
al spectra and that the Weyl spectrum of hyponormal eperator satisfies the
spectral mapping theorem. Also we introduce properties(continuity, topo-
logical properties, spectral mapping theorem, ete.) of a Weyl spectrum and
properties of Fredholm operators and index in detail.

The organization of this thesis is as follows. In section 1, we introduce the
basic properties of various spectra (spectrum, point spectrum, approximate
point spectrum, etc.) of a linear bounded operator on a Hilbert space H

and relations among them.

In section 2, we introduce topological properties of Fredholm operators on



H.

In section 3, we deal with Weyl spectrum of an operator on H. In par-
ticular, we show that the boundary of a Weyl spectrum of an operator is a
subset of the essential spectrum of an operator and the Weyl spectrum is
invariant under similarity.

Let 8(T) be the set of complex number A such that T — A is Fredholm
of nonzero index. We show that 6(T') is an open set of B(H) and 6(T) C
acco(T).

In section 4, we introduce continuities of o,(T) ¢ = 1,2.3.4, 5, which are
defined in Definition 5.12. We see that the mapping T — w(T) is upper
semi-continuous but not continuous. In particular we give some conditions
under which the mapping T — w(T) is continuous.

In section 5, we deal with the spectral mapping theorems. In particnlar
we show that the Weyl spectrum of M —hyponormal operator satisfies the
spectral mapping theorem. Also we show that if T is hyponrmal, then for

any polynomial p on a neighborhood of ¢(T'), Weyl's theorem holds for (T).



2. Basic Properties of Spectra

Let H be a Hilbert space and let B(H) be the set of all bounded linear
operators on H. Denote the kernel of T and the range of T by ker T(= N(T'))
and R(T) respectively. Write o(T) = {A € C: T — AI is not invertible},
op(T) = {A € C:ker(T—A) # (0) }. Let mop(T) be the set of eigenvalues of
finite multiplicity, moo(7') the isolated points of o(T') that are eigenvalues of
finite multiplicity and p(T) = o(7T)" the resolvent of T'.

An operator valued funtion T(A) which maps a subset of C into B(H) is
sald to be analytic at Ay if T(A) =Ty + (A = Ag)Ty + - -+, where T, € B(H)

for each k& and the series converges on each A in some neighborhood of A.
Lemma 2.1. ([3].[7].[9]) The function p(\) = (T —A)~! is analytic on p(T).

Proof. Suppose A\, € p(T). Since p(T) is open. choose ¢ > 0 such that
A= Aol <&, A€ p(T) and [[(A = Ag)p(Ao)ll < 1. Also T — A = (T — A\g) —
(A = Xo) = (T = X)(1 = (T = Ag)= (A = Ag)). We note that if ||A] <
then (1 — A)™! = 14+ 44+ A% + A® + -+ Since ||[(A — Xo)p(Xo)|| <
1 — (A = X)(T — X))~} is invertible and so (1 — (A = A} (T — Ag)~™ 1)~} =
S e (A = A)X(T = 2g)~F. Thus

—_

(T — A Z — ) (T = Xo) 7k
k=0
=Y (A= 20)5(T = ag)KHD
k=0

Hence p is analytic on p(T'). a
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Theorem 2.2. ([3],(7],(9]) For any operator T € B(H), o(T) # ¢.

Proof. Suppose o(T) = ¢. Then p(T) = C and the function p : C — B(H)
defined by p(A) = (T — A\)™! is analytic on C. Also p(3) = (T - 1) =
“AM1-=AT)"!' - 0as A > 0,ie, p(loo) =0. Forall z,y € H, h(}) =
< (T — A)~'z,y > is anayltic on C. Since p(co) = 0, h is bounded on
C. By Liouville’s theorem, h is constant. Since p(oo) = 0, h(A) — 0 as
IA] = oo. Thus h=0. Take (T — A)z and z in place of x and y. Then
h(\) =< (T = \)y"YT — M)z, > = < z,z > > 0. This is a contradiction.
Hence o(T) # ¢. O

Definition 2.3. ([3],[12]) 0,(T) = {A € C : T — X is not injective} Is
called the point spectrum of T and o.om(T) = { A € C: R(T—A) is not dense

in H} is called the compression spectrum of T.

Lemma 2.4. ([3]) For any operator T € B(H).

(1) 0p(T)={A € C : T — Xis aleft divisor of zero in B(H)}.
(2) Geom(T)={A€C : T — X is a right divisor of zero in B(H) }.

Proof. (1) It suffices to show that T is a left divisor of zero in B(H) iff T is
not injective, by Theorem 6.1 (1).

(<) Suppose T is not injective, i.e., ker T # (0). Then there exists y(#
0) € H such that Ty=0. Let f be a nonzero continuous linear form on H
(by Hahn-Banach Theorem). Define S € B(H) by Sz = f(z)y forallz € H.
Then S # 0 and TSz = T(f(z)y) = f(z)Ty = 0 for all z € H. Hence
TS =0,i.e., T is a left divisor of zero in B(H).

(=) Suppose that there exists S € B(H), S # 0 such that TS = 0. Since
S#0,A={z € H|Sz #0} # (0). Since TS =0, TS(4) = 0 and so



S(A) CkerT,ie., ker T # (0).

(2) It suffices to show that T is a right divisor of zero iff T(H) is not dense
in H by Theorem 6.1 (3).

(& ) Suppose that T(H) is not dense in H, i.e., T(H) # H. Then there
exists y € H such that y ¢ T(H). Let f be a continuous linear form on H
such that f(y) # 0 and f(T(H)) = 0 and let z be a nonzero vector in H.
Define S € B(H) by Sz = f(z)z for all z € H. Then STz = f(Tz)z = 0 for
all z € H, but Sy = f(y)z #0,1.e., S # 0. Thus T is a right divisor of zero.

(=) suppose T is a right divisor of zero in B(H). Then there exists
S € B(H) such that S # 0 and ST = 0. Ifm—)— = H, then for all z € H,
there exists a sequence {r,} in H such that ¢ = limT(z,). Since ST = 0,
STz, =0for all n. Thus 0 = lim,—oo STz, = S(limy—oc Tx,) = Sz, L6,

S = 0. This is a contradiction, and so T(H) # H. a
Theorem 2.5. Forany T € B(H). 0,(T) C o(T) and 6com(T) C o(T).

Proof. If A € 0,(T), then ker(T — X) # (0), i.e., T — A is not injective and
so T — X is not invertible. Thus X € o(T).

Let A € 0¢om(T). Then T — X is a right divisor of zero in B(H). Thus
there exists S # 0 in B(H) such that S(T — A) = 0. If T — A is invertible,
then S = 0. This is a contradiction. Thus T — A is not invertible and so

A€ o(T). O

Definition 2.6. ([3],{7],[9]) A € C is said to be an approzimate eigenvalue
of T if there exists a sequence {x, } with ||z,|| = 1 such that Tz, — Az, — 0,

ire, (T — XNz, — 0. Let

04p(T) = {A € C : X is an approximate eigenvalue of T }.



6
Then 04,(T) is called the approzimate point spectrum of T.

Lemma 2.7. Let T € B(H). Then the following conditions are equivalent.

(1) Tisaleft TDZ in B(H).

(2) There exists a sequence {z,} in H with ||z,| = 1 such that Tr,, —
0,ie,0¢€ 0,(T).

(3) T is not bounded below.

Proof. (1) = (2). Let S, be a sequence in B(H) such that ||S,]|| = 1 and
|ITS,|| — 0. Since ||S,.|| = 1 for each n, we can choose a unit vector y,, € H

such that ||S,y.|l > % Put r, = HS,,y”H_lS,,y,,. Then ||z,|| =1 and

1T zall = I T Suynll ™ Suya)l = 1Supall ~ NT(Snya)ll < 21T Syl
<2TS,|| — 0asn — oo.

(2) = (1). Let {z,} be a sequence such that ||z,|| = 1 and Tz, — 0.
Let f € H be a linear functional on H with I|f|l = 1. Define S, € B(H) by
Snz = f(z)zn Yz € H, 'n € N. Then

[Sall = sup |ISnzll = sup [|f(z)zall = sup ||f(x)l] =1,
llzll=1 lizli=1 fxHi=1

TSpz = f(z)Tz, (x € H) and
ITSnll = sup |[f(z)Tznll = sup |f(x)l||Tznl

llzll=1 Itzll=1

= ||Tzn| Sup [f(@)] = 1Tz llFl — 0

as n — oo. Since Tz, — 0, [|[TSa|| — 0. Thus T is a left TDZ in B(H).

(2) = (3). If T is bounded below, then there exists ¢ > 0 such that
|Tz|| > c||z|| for all z € H. Since ||z,| = 1 and ||Tz,|| > ¢ for all z,,
Tz, 4 0. Thus T is bounded below.
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(3) = (2). We can choose z/, € H such that ||Tz,|| < 2%|z)|. Thus

Tz! z! z!
%I—,'fhu < 1 and so ”T(TIT‘:,LIT)” < 1 Put Te'7 = @n- Then llzn]l = 1 and

n

|Tz,|]| — 0, ie, Tz, — 0asn — oo. O

Theorem 2.8. ([3],[7]) Let T be any operator in B(H). Then

(1) 0p(T) C 04p(T) and
(2) 04p(T) C o(T).

Proof. (1) If A ¢ 4p(T), then T — X is bounded below. Thus there exists
¢ > 0 such that | (T — A)z|| > ¢llz|| for all z # 0. If z € ker(T — X), then
0=||(T - MNz| > ¢|jz|| > 0 and so ||z|| = 0. Thus ker(T — X) = (0) and so
A ¢ a,(T).

(2) If A ¢ o(T), then T — X is invertible. Thus ker(T — A) = (0) and so for
all x € H(r #0), ||[(T — A)z|| > 0. So there doesn’t exist {r,} in H with
|lrnll = 1 such that (T — \)z,, — 0. Hence we have that A ¢ 0,,(T), 1.e.,
7up(T) C o(T). | 0

Theorem 2.9. ([3]) Let T € B(H) be any operator. The followings are
equivalent:

(1) T is singular.

(2) T is either a right divisor of zero or a left TDZ in B(H).

Proof. (1) = (2). Suppose that T is neither a right divisor of zero nor a left
TDZ in B(H), then T(H) is dense in H by Lemma 2.4 and T is bounded
below by Lemma 2.7. Since T is bounded below, there exists ¢ > 0 such
that ||Tz|| > c||z| for all z € H. If T(z) = T(y), then 0 = ||Tz — Ty|| =
IT(z — y)|| > cllz — y||. Thus z = y. If y € T(H), then there exists a



8

sequence {z,} in H such that y = lim,,_, oo Tz,. Since {T'z,} converges,
{Tz,} is a Cauchy sequence in H. Since c||z, — zm]| 2 ||[T(zn — zm)|| =
\Tz, — Tzmi| = 0, = ||zn — zm|| — 0 and so {z,} is a Cauchy sequence
in H. Since H is complete, {z,} converges. Put lim,_oox, = z. Then
y = imT(z,) = T(limz,) = T(z), i.e, y € T(H). Thus T(H) = T(H).
Since T(H) is dense in H, T(H) = H. Thus T(H) = H, i.e., T is onto. Since
T is one-one and onto, there exists 77!z for all x € H and so | T(T " 'z)|| >
T z)| = ||z|| > ¢||T'z||. Thus ||T7'z|| < i|jz|| for all z € H and so
|IT~'|| < 1. Thus T7! is invertible. This is a contradiciton to (1). Hence
(2) holds.

(2) = (1). If T is a right divisor of zcro, then there exists S # 0 such that
TS =0,1.e,TSx =0 for all + € H. Since § # 0, there exists a nonzero
vector z € H such that Sz # 0. Thus ker T # (0) and so T is not singualr.
If Tis aleft TDZ in B(H), by Lemma 2.7, there exists {z,} in H such that
|za)l =1 and Tz, — 0,1.e.,0 € 0,,(T). Since 0,,(T) C o(T), 0 € o(T).
Thus T is not invertible. O

From Theorem 2.9, we can know that o(A) = 04p(A4) U 0com(A).
Lemma 2.10. Let A € B(H) be any operator. Then 0,,(A) is closed.

Proof. Let Ao € 04p(A)°. Then A — A, is bounded below, i.e., there exists
¢ > 0 such that ||(A— Xo)z| > c||z||. Since ||Az — Aoz| = || Az — Aoz + Az —
Az || < ll4z = Aal + Az = Aoz I, |4z = Aol — Az — Aozl < |4z — Az .
Thus cfjz]| = |A = Aolllzll < I(A—=Ao)z|l = A = Aolllz]l < Az — Az|| for all z.
Choose 6 > 0 such that c—é6 > 0and ¢ — |A — Ag] > ¢— & > 0 for all A with
A= Ao] < 6. So (c—=8)|lz|| < (c—|A = Xo])llz]| < |I(A = N)z]| for all z € H.
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Thus A4 — X is bounded below and so A ¢ 0,,(A). Hence 0qp(A) is open and
thus 0,,(A) is closed. O

Theorem 2.11. ([7]) 00(T) C 04,(T) for any T € B(H).

Proof. First we will show that if {4,,} is a sequence of invertible operators
and ||An — A|| — 0 where A is not invertible, then 0 € 04,(A4). Since
A is not invertible, then 0 € 0(A) = 04,(A4) U 0com(A), Le., 0 € 0,4p(A)
or 0 € gcom(A). If 0 € 04,(A), then we are done. If 0 € 0.om(A), then

- 1

R(A) # H and so there exists x # 0 such that = 1L R(A). Put z,, = ”—J’:ﬂ;li—”.
”—A—I_-W and Az, L R(A). Since ||(A,—A)z,]| <
|4, —All — 0,][(A,—A)z,|| — 0. Since Az,, € R(A) and A,,z,, L R(A), <

Az, Aty >= 0. Thus [|Ar,||* < [[Auz, | + | Azal® = [Anee — Aza | —

Then |[z,.|| =1, Apz, =

0,i.e., |[Azn|| — 0. Therefore A is not bounded below, i.e., 0 € 0,,(A4). Now
let A € 9o(T). Since o(T) is closed, A € o(T), i.e.. T — X is not invertible.
Since A € Jo(T), there exists {A,} with A,, ¢ o(T) such that A,, — X. Thus
T — Ay is invertible for all n. Since ||[(T — A,,) — (T = A)|l = |An = A| — 0,
by the above argument, 0 € o0,,(T — X), i.e., T — X is not bounded below.
Hence A € 0,,(T) and so 9o(T') C 0,,(T). a

Let T € B(H) be any operator. Since o(T) is closed, a(T) # 0.

Theorem 2.12. ([7]) Let T € B(H) be any operator. The following condi-
tions are equivalent :

(1) A ¢ o4p(T).

(2) R(T — )) is closed and dimker(T — \) = 0.

(3) A ¢ oy(T), the left spectrum of T.

(4) X ¢ o, (T*), the right spectrum of T*.



10
(5) R(T*-X) = H.

Proof. (1) = (2). Suppose that A ¢ 0,,(T), i.e., T — X is bounded below.
Then there exists ¢ > 0 such that || (T — A)z|| > ¢||z|| for all z € H. Let
y € R(T — ). Then y = limp_oo(T — A)z,, where z, € H. Since c|lz, —
Zall 2 (T = Mzn = 20}l = (T = Nrw — (T = Nznl| = 0. {z2} is
Cauchy sequence in H and hence {z,} converges. Let limz, = z. Then
y = lm(T - ANz, = (T - A)(limz,) = (T — M)z, i.e., y € R(T — ). Thus
R(T — X)is closed. If (T — M)z = (T — M)y, then (T — A)(z — y) = 0 and so
0= (T — Az —y)|| > ¢|llz — y||. Therefore r —y = 0, i.e., z = y and so
ker(T — X) = (0).

(2) = (1). T—A: H — R(T — \) is a continuous bijection since ker(T —
A) = (0). By the inverse mapping theorem, there is a bounded operator
S: R(T — A\) = H such that S(T — Az =z for all z € H. Thus if ||z|| =1,
then 1 = [[S(T — Az|| < [ISI(T — M)zl That is, [[(T — Xz|| > |||~
whenever ||z|| = 1. Hence A ¢ 04,(7T).

(2) = (3). Let M = R(T — X). Define S : H - M by Sh = (T — M\h.
Since ker(T — A) = (0), S is one-one and clearly S is onto. Thus there
exists S™! © M — H. Since M is closed in H, H = M & M*. Define
B: M@®ML - Hby Blyy = S71 and B(M*Y) = (0). Then for all h € H,
B(T — A)h = BSh = S7'(Sh) = h. Thus B(T —)) =1I,ie., T — \ is left
invertible. Hence A ¢ o4(T).

(3) < (4). S(T—N)=1TIiff (T*-N\)S*=1.

(4) = (5). Assume that A ¢ o,(T*). Then (T* — }) is right invertible
and so there exists C' in B(H) such that (T* — X\)C = I. Thus H = ((T* —
MC)H) C R(T* -~ X)C H. Thus R(T* — ) = H.
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(5) = (1). Let ker(T* —A)" = N. Define S : N — H by Sh =
(T* — Mh. If Sh = 0, then (T* — A\)h = 0. Thus h € ker(T* — A). But
since h € ker(T* — A)*, h = 0. So ker S = (0). For all h € H = R(T* — }),
there exists £ € H such that (T* — X))z = h. Forif h =0, take z =0 € N
and if h # 0, take z ¢ ker(T* — X). Then z € N. Thus S is onto and so
S is invertible. Define C : H — H by Ch = S™'h. Then C(H) = N and
(T* = M)C(h) = (T* = A\)(S1h) = S(S~'h) = h. Thus C*(T — A) = I. Also
L=11CHT =M < NCHIIT = Al i ICHTT < JIT = Ay i, T— s
bounded below. Hence A ¢ oq,(T). O

From Theorem 2.12, we can know 0ap(T) = 0(T) = o,.(T*)".
Lemma 2.13. 90(T) C 0y(T) N o, (T) for any T € B(H).

Proof. If A € 0o(T), then by Theorem 2.11, A € 0ap(T). By Theorem 2.12
A € oi(T). Since A € Jo(T*), \ € oap(T*) and so A € o(T*) = o,(T)".
Since o,(T*) = o,(T)*, A € 0(T). Thus A € o)(T) N or(T). a
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3. Fredholm Operators

Let H be an infinite-dimensional Hilbert space. If T is an operator, we
write ker T and R(T) for the null space and range of T respectively. We note
that R(T)* = ker T* for any operator T € B(H).

Definition 3.1. ([7],(8]) An operator T is called a Fredholm operator if
N(T) = kerT is finite-dimensional, R(T) is closed and ker T* = R(T)* is
finite dimensional. The Fredholm spectrum of T, denoted by ox(T), is the
set ox(T)={A € C: T — X is not Fredholm operator }.

We write F and K for the class of all Fredholin operators and compact
operators respectively. We note that if T € B(H) and K € X, then TK € A
and KT € K, ie., K is an ideal in B(H). B(H)/K is called the Calkin
algebra of H. Let m denote the natural map from B(H) onto B(H)/K. We
note that the function 7 : B(H) — B(H)/K is continuous.

Thoerem 3.2. (Atkinson’s theorem![12]) Let H be a Hilbert space and let

T € B(H). The following conditions on T are equivalent:

(1) An operator T is a Fredholm operator.
(2) T is invertible modulo the ideal of operators of finite rank.

(3) T is invertible modulo the ideal of compact operators.

From Theorem 3.2, 0 7(T) = o(T).

Definition 3.3. ([7],(8]) For all T € F, the indez of T, denoted by i(T), is
defined by i(T) = dimker T — dim R(T)*.

Since R(T)t = kerT* for any T € B(H), i(T) = dimker T — dim ker T*.
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For examples, if S, is the unilateral shift on /3, then i(S,) = —1.

Lemma 3.4.
(1) If T € B(H) is normal, i.e., TT* = T*T, then i(T) = 0.
(2) If T € B(H) is hyponormal, i.e., TT* < T*T, then (T) < 0.

Proof. (1) If T is normal, then ||Tz|| = ||T*z|| for all € H and so kerT =
ker T*. Since ker T* = R(T)™", i(T) = 0.

(2) If T is hyponormal, then ||T*z|| < ||Tz|| for all z € H and so ker T C
ker T*. Thus dimker T < dimker T* and so i(T) < 0. 0

Definition 3.5. ([7],[8]) Let T € B(H) be an operator. T is a left Fredholm
operator if 7(T) = T is left invertible in B(H)/K, and T is a right Fredholm
operator if m(T) is right invertible in B(H)/K. Let Fi, F, denote the set of
all left Fredholm, right Fredholm operators respectively. Clearly F = F;NF,.

Operators in the set SF = F; U F, are called semai-Fredholm operators.

Definition 3.6. ([7],[8]) If T € B(H), then the essential spectrum of T is
the spectrum of #(T) = T in B(H)/K, denoted by o.(T). Similarly the
left and right essential spectrum of T are defined by ¢! (T) = o'(x(T)) and
o7(T) = o™ (x(T)).

It is obvious from Theorem 3.2 that 0.(T) = o(n(T))={A€C: T- X ¢
F} = ox(T),0l(T) = o' (n(T)) = {A € C: T - X ¢ F} and ol(T) =
o"(m(T)) ={AeC:T-X¢F}

Lemma 3.7. ([7]) If T and S are commuting operators and TS € F, then
TeFandSeF.

Proof. Since kerT UkerS C kerTS (- h € kerT UkerS — Th = 0
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or Sh = 0. If Th = 0, then (TS)h = (ST)h = 0 and if Sh = 0,
then (TS)h = 0. Thus h € kerTS.), dimkerT < dimkerTS < oo and
dimker S < dimker T'S < oo. Similarly since ker T* U ker S* C ker T*S* =
ker (ST)" = ker (T'S)*, dimker T* < dimker (T'S)* < oo and dimker $* <
dimker (TS)" < co. Thus dimker T < oo, dimker T* < oo, dimker S < oo
and dimker S* < oo. If R(T) is not closed, then there exists = € H
such that z = limz,, 2z, € R(T), but = ¢ R(T). Since z, € R(T),
Sz, € S(R(T)) = R(ST), i.e., Sz, € R(ST). Since S is continuous,
Sz = S(limz,) = lim Sz, and Sz, € R(ST). Since R(ST) is closed, Sz €
R(ST) = S(R(T)), i.e., = € R(T). This is a contradiction. Thus R(T) is
closed. Similarly R(S) is closed. Hence T. S € F. a

We note that the function = : B(H) — B(H)/K is continuous. Let A be
the set of invertible operator in B(H)/K. Since A is open, n'A is open.
Thus F is open in B(H). If R(A) is closed, then R(A4*) = R(A)" is also
closed ([7]) and ¢(A) = —i(A*). Henceif A € F, then A* € F. Alsoif 4 € F
and B € F, then AB € F.

Theorem 3.8. ([8]) If H is a Hilbert space, then F is an open subset of
B(H), which is self adjoint, closed under multiplication and invariant under

compact perturbations

Proof. If A denote a group of invertible elements in B(H)/K, then A is
open and hence F = 77'(A) is open since the natural homomorphism  :
B(H) —» B(H)/K is continuous and onto. Since 7 is multiplicative and A is a
group, F is closed under multiplication('.* S,T € F = n(S), n(T) ; invertible
= n(S)n(T) = n(ST) = invertible = ST € F). Further if T € F and K is
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compact, then by Theorem 3.2, T+ K is in F since #(T) = n(T+ K ). Finally
if T 1s in F, then there exist S in B(H) and compact operators K; and K,
such that ST = I + K, and TS = I + K,. Taking adjoint, T*S* = I + K
and $*T* = I + K} and so n(T™*) is invertible in the Calkin algebra. Hence
F 1s self-adjoint. a

Theorem 3.9. ([8]) If H is a Hilbert space, then each of the sets F, is open
in B(H). Thus F. isopen in B(H), where F,, ={T : T € F, {(T) #

n }.

n#o

Proof. If T is a Fredholm operator not in Fy, then there exists a finite rank
operator F' such that T4 F is either left or right invertible( Lemma 5.20 [8]).
By Proposition 2.7([8]), there exists ¢ > 0 such that if S is an operator in
B(H) such that ||T — (S — F)|| = [T+ F — S|| < ¢, then § is either left or
right invertible but not invertible. Thus S is a Fredholm operator of index
not equal to 0 and therefore so 1s S — F. Hence U,x¢F, is also an open

subset of B(H). )

Theorem 3.10. ([6],[7],[{17])

(1) If A € F, then there exists § > 0 such that ||[B — A|| < § — {(B) =
i(A) and B € F. Furthermore, for all A € SF, there exists § > 0
such that ||B — A|| < 6 — B € SF and i(B) = i(A). Thus SF is
open in B(H).

(2) (The index product theorem)If A, B € F, theni(AB) = i(A)+1(B).
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4. Weyl Operator and Weyl Spectrum

Definition 4.1. ([2]) T € B(H) is called a Weyl operator if T is Fredholm
and i(T) = 0. The Weyl spectrum w(T) of T is the set

w(T)={A € C: T — X is not a Weyl operator }.

Let Z, Fy and F be the classes of invertible, Weyl and Fredholm operators
respectively. Then since T C Fo C F, o#(T) C w(T) C o(T).

Remark 4.2. The concept of a Weyl spectrumn is relevant only for infinite-
dimensional space. Indeed, when dim(H) < oo, R(T) is finite dimension-
al in Hilbert space and so R(T) is closed. Clearly, dimkerT < oo and

dim R(T)J' < oo. Hence all operators are Weyl operators.

Lemma 4.3. ([2]) Let T be a Weyl operator. Then T is invertible iff T is

one-to-one iff T is onto.

Proof. Since T is a Weyl operator, dimker T' = dim R(T)*. Hence the proof
is complete by the fact that T is injective iff 0 = dimker T = dim R(T)' iff
R(T)* = (0), i.e., R(T)=H. O

By the Fredholm theory of compact operator ([10]), we have the following

result:

Lemma 4.4. ([9]) If K is any copmact operator, then I — K is a Weyl

operator.
Lemma 4.5. ([2]) If S is invertible and K is compact, then S + K is Weyl.

Proof. Note that S+ K = S(I + S™'K). Since K is compact, S™'K is
also compact. By Lemma 4.4, I + S™!K is Weyl. Since S is invertible,
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dimker(S(I+S7'K)) = dimker(I+S~'K) < oo and dim[R(S(I+S'K))}*
= dim[R(I + S7'K)]* < o0 and R(S(I + S7'R)) = R(I + S™'K) is closed.
Hence S + K 1s Weyl. a

Theorem 4.6. ([2]) If T € B(H) is Weyl, then there exists an operator K

of finite rank such that T + K is invertible.

Proof. Assume that T is Weyl. By hypothesis, (T') = 0 and dimker(T') =
dimker(T*) = dim R(T)* < oco. Since H = (ker T)*@ker T = R(T)*®R(T),
there exists an invertible operator F, : ker T — R(T)* = ker T*. Define
F = Fy(I — P) where P is the projection of H onto (ker T)t. Then F is of
finite rank since dimker T* < co. We show that T + F' is invertible. First we
show that T + F is injective, i.e., (T + F)z =0 (x € H) implies z = 0.

Case 1. If z € ker T, then 0 = (T + F)x = Fz. Since Fx = Fo(I — P)r =
Fo(x — Pz) = Fyz, and F; is injective, x = 0.

Case 2. If z € (ker T)*, then Fr = Fy(I—P)r = Fo(z—Pz) = Fo(z—z) =
0. Hence 0 = (T + F)z = Tz, i.e., v € ker T. Since ker T N (ker T)+ = (0),
z = 0.

From case 1 and 2, T + F is injective.

Secondly, we show that T+ F is onto. If r € H, then z = u + v where
u € R(T) and v € R(T)* since H = R(T) @ R(T)*. So u = Tp for some
p € (kerT)t and v = Fyq for some ¢ € kerT since Fy is one-to-one and
onto. Thusz =u+v=Tp+ Foq. Put h =p+q € (kerT)- @ kerT = H.
Then Fq = Fy(I — P)q = Foq, Fp = Fy(I — P)p = Fo(p — p) = 0 and so
Fh=Fp+Fq=Fq=Fyq. Thusz =Tp+ Fyq =Th+ Fh = (T + F)h and
hence T + F' is onto. O
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Corollary 4.7. ([2]) The following conditions on an operator T are equiv-

alent:
(1) T = Weyl.
(2) T =S+ F, with S invertible and F of finite rank.
(3) T =S+ K, with S invertible and K compact.

Proof. (1) = (2). If T is Weyl, then by the above theorem there exists K
of finite rank such that T + K is invertible. Thus T = (T + K)-K =
(T+K)+(—K).

(2) = (3). Any operator of finite rank is compact.

(3) = (1) . It follows from Lemma 4.5, 0

Lemma 4.8. IfT is any operator and K is a compact operator, then w(T) C
o(T + K).

Proof. If A ¢ o(T + K), then (T + K) — X is invertible and so T — )\ =
((T + K) — A) — K is a Weyl operator. Thus A ¢ w(T). a
Theorem 4.9. ([2],[7]) For all T € B(H), w(T) = Nrex o(T + K).

Proof. By Lemma 4.8, w(T) C (T + K) for all K € K. Thus w(T) C
Nkex o(T+ K). f A ¢ w(T), then T — X is a Weyl operator. By Corollary
4.7, there exists a finite rank operator A such that T— A+ K is invertible, i.e.,

(T+K)— \is invertible. Thus A ¢ o(T + K). Therefore A ¢ Nxex o(T+K)
and 5o (N ex o(T + K) C w(T). Hence w(T) = Ngexo(T + K). 0O

Theorem 4.10. ([2]) For any operator T € B(H), w(T) is a nonempty
compact subset of o(T).

Proof. From Theorem 4.9, w(T) = Nkex o(T + K). Since o(T) is compact
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and w(T) C o(T), w(T) is bounded. Since o(T + K) is bounded and closed
for any compact K, (e o(T + K) is also closed. Hence w(T) is compact.

O

Corollary 4.11. IfT is any operator, then w(T+K) = w(T) for all compact

operator K.

Proof. The proof is easy by the fact that w(T+K) = Nkrex o(T+K+K') =
Nicex o(T + K) = w(T). 0

Theorem 4.12. For any opcrator T € B(H), w(T*) = w(T)*.

Proof. If A ¢ w(T*), then T* — X is a Weyl operator. By Corollary 4.7,
T — X =S+ K, where S is invertible and I is a compact operator. Thus
(T-A\)*=S+KandsoT—\ = (S+ K)" = S*+ K*. Since S* is invertible
and K* is a compact operator, T — X is a Weyl operator. Hence A ¢ w(T)
and so w(T)* C w(T*).

Similarly, we obtain w(7T*) C w(T)*. a

Theorem 4.13. ([2]) For any T € B(H), o(T) — w(T) C Tof(T) or equiva-
lently o(T) — mo5(T) C w(T).

Proof. If A € o(T) — w(T), then T — A is not invertible and T — ) is a
Weyl operator. Since T — X is a Weyl operator, by Lemma 4.3, T — )\ is
not one-to-one, i.e., ker (T — A) # (0). So 0 < dimker (T — ) < oo. Thus
A€ mog(T).

Equivalently, if A € o(T) — Tos(T), then T — X is not invertible and
dimker (T — A) = oo. Thus T — ) is not a Weyl operator. Hence we have

A€ w(T). a
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Corollary 4.14. Forall T € B(H) and for any compact operator K, o(T)—
mof(T) C o(T + K).

Since I C Fo C F, 05 C w(T) C o(T).

Lemma 4.15. Let T € B(H) be any operator. Then

(1) (Schechter) w(T) =ox(TY)U{X : T— A€ F and i(T — A) # 0}.
(2) {A:T—-XeF, i(T—-X)#0} is open in B(H).

Proof. (1) See Theorem 10.8([6]).
(2)Let A€ 8(T)={): T—Ae€ Fand (T - A)#0}. Since T — \ € F,

there exists ¢ > 0 such that
(T -A)=Sll<e=SeF and (T —A) =i(S). (4.1)

Forallpe B(Aje), I(T-A)—(T-p)|l=|A-p/<eBy(4l1),T—pecF
and (T — A) = (T — p) # 0. Hence y € §(T) and so 6(T) is open. O
Theorem 4.16. If T is normal, then w(T) = o+(T).

Proof. If T is normal, then T — ) is also normal for all A\ € C. Since T —
Azll = (T —A)*z| for all z € H, ker(T — \) = ker(T — \)*. Thus (T—-A) =
dimker(T — A) — dimker(T — A\)* = 0 andso {A € C : T— A € F and (T —
A) # 0} = 0. Therefore w(T) = o £(T). O
Theorem 4.17. If S is invertible, then w(S™'TS) = w(T) and {(STITS) =

i(T). Thus the Weyl spectrum and index are invariant under similarity.
Proof. (C) Let A ¢ w(T). Then T — X is Weyl. Thus by Corollary 4.7,

there exists A invertible and B compact such that T — A\ = A + B. Since
S is invertible, STH(T — A\)S = S™Y(A + B)S,i.e., S7ITS — A = S~145 +
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S~'BS and since S7'AS is invertible and S™'BS is compact by Corollary
4.7, S7ITS — X is Weyl, i.e., A ¢ w(S™'TS). Hence w(S~'TS) C w(T).
(D) Let A ¢ w(S™'TS). Then S7'TS — X is Weyl. Thus by Corollary
4.7, there exists A invertible and B compact such that S™!TS — XA = A + B.
Since TS —SA=SA+SB, T—(S5\)S ! =S5SA5"'+SBS !andso T — \
is Weyl, i.e, A ¢ w(T). Thus w(T) C w(S™!TS). By the index theorem,
(STITS) =S ™)+ i(T) +i(S) =i(T) since T C F,. O

Lemma 4.18. Let F be the class of all finite rank operators and K be
the class of all compact operators. Then w(T) = gy o(T + F) for any
T € B(H).

Proof. We note that «(T) = ((.cx o{T + ). We claim that Nrex (T +
K)=Npeyo(T + F). Since F C X,
() o(T+K)cC [ o(T + F). (4.2)
Kexk FeF
Let A ¢ Npex (T +K). Then there exists K € K such that A ¢ o(T+K').
Since I is compact. there exists a sequence {F},} of finite rank operators
such that lim F,, = K and F, € F. Thus (lim, oo F3,) + T = K+ T, 1e.,
lim, o(Fy + T) = K + T. Since spectrum 1s upper semi-continuous(in
Theorem 5.2), limsupa(F,, +T) C a(I\'I +T). Thusif A ¢ o(T + K'), then
A ¢ limsupo(F, +T), i.e..

o o} oC

A¢ ﬂ(Ua(Fk+T)).

n=1 “k=n

So A ¢ Uz, 0(Fx +T) for some m. A ¢ Nrex o(Fx + T). Hence

(Y o(Fe+T)C ) o(T + K). (4.3)
Fe¥ KNeK
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By (4.2) and (4.3), w(T) = Npero(T + F). O

Theorem 4.19. ([7],(8]) If H is a Hilbert space, then the set Fy is open in
B(H).

Proof. Let T be in Fy. Then by Corollary 4.7, there exists a finite rank
operator F' such that T + F is invertible. Then if S is an operator in B(H)
which satisfies ||T — S|| < 1/|(T + F)~'||, then S + F is invertible and hence
S € Fy. Since n(S) = n(S + F) is invertible, F; is an open set. O

Theorem 4.20. For any operator T in B(H), 8w(T) C ¢.(T) where OK
denotes the boundary of K.

Proof. If A € 0w(T) — 0.(T), then T — AI is Fredholm since A ¢ 0.(T) <=
7(T) — Al = invertible &= T — M\I = Fredholm. Also since ) € Ow(T), there
exists a sequence {A,} of points in the plane such that A, » X and T — A\,
is Fredholm of index 0 for each n. By the continuity of the index, T — \I
must have index 0 and so A ¢ w(T). This is a contradiction since w(T) is
compact indeed, w(T') is compact => w(T) is closed =3 X € w(T). Hence
O0w(T) C o (T). O

Corollary 4.21. If T is in B(H), then w(T) and o(7(T)) have identical
boundaries and convex hulls.
By Lemma 4.15, o(7(T')) = w(T) if and only if the open set 8(T') is empty

where §(T) = {A : T — A€ Fand (T —-X)#0}.

Corollary 4.22. If any of the following conditions holds for T in B(H),
then o(m(T)) = w(T) :
(1) T is normal.
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(2) the point spectra of T and T* are countable.

(3) the complement of o(n(T)) is connected.

Proof. Forany T in B(H), A € 6(T) implies that dim ker(T—\) # dimker(T™
%),

(1) If T is normal, then by Theorem 4.16, §(T) is empty and so w(T) =
o.(T).

(2) If A is in 8(T), by the above fact, either A is an eigenvalue of T, i.e.,
A € 0,(T) or X is an eigenvalue of T*. Thus if T and T* have countable
point spetra, 8(T) is countable and open, therefore empty.

(3) Since o(m(T)) C w(T), Ow(T) C 0.(T) and by Lemma 4.15 (2),
condition (3) clearly implies that 8(T') is empty. a

Example 4.23. If U is the simple unilateral shift, then w(U) = {A : |A| <
1} and o(m(U)) = {A: [A| = 1}. Thus §(U) = {X: |A| < 1}

Lemma 4.24. If ) is an isolated point of o(T) and T — A € F, then T — A
is Weyl.

Proof. Since T — A € F, by the continuity of index, there exists §; > 0 such
that
(T = X) =S| < b1 = (T — X)) =1S). (4.4)

Since A is an isolated point of o(T), there exists é2 > 0 such that B(A, )N
o(T) = {A}. Put § = min{é&, &;}. Then for all p € B(A, §) with u # A,
(T — X)) = (T — u)|| =X —p| <8 Thus T — p is invertible and by (4.4),
(T — p) = (T — A). Since T — y is invertible, ¢(T — A) = (T — i) = 0. Thus
T — X is Weyl. O



24

Lemma 4.25. For any operator T € B(H), §(T) < acco(T) where accK

denotes the set of all accumulation points of K.

Proof. Suppose that 6(T) — acco(T) # @. Then there exists A € §(T) —
acco(T), i.e., A € 8(T) and X ¢ acco(T). Since A € (T), T — A € F and
YT — A) # 0. Since A ¢ acco(T), then X is an isolated point of o(T'). Since
T-XeF,by Lemma 4.24, T — X is Weyl and so (T — A) = 0. This is a
contradiction. Thus 8(T) — acco(T) = @, i.e., 8(T) C acca(T). Since §(T)
is open and o(T) is closed, §(T) C acco(T). d
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5. Continuities of Several Spectra

Lemma 5.1. ([12]) The following two definitions of upper semicontinuity

for a set-valued function are equivalent:

(1) (Metric definition) For each open set Ag containing o(A), there exists
€ > 0 such that ||[A — B|| <e = o(B) C Ao.
(2) (Sequential definition) For all A, — A, limsupoa(A,) C a(A).

Proof. (1) = (2). Let A, » A and let A ¢ o(A). Then there exists disjoint
open sets U and V such that A € U and o(A) C V. By (1), there exists
€ > 0 such that

|A-B||<e =0B)CV. (5.1)

Since A,, — A, there exists ng € Nsuch that foralln > ny = ||A,—A4| <e.
By (5.1), o(An) C V for all n > no. Since A € U, o(An) C V for all n > ng
and UNV = 0. Hence A ¢ limsupo(A,). and so limsupo(A4,) C o(A).

(2) = (1). Suppose that (1) does not hold. Then there exists open
set Ao containing o(A) such that for all ¢ > 0, there exists B such that
|A- Bl <eand o(B)NA§ # 0. Put ¢ = L. Then there exists A, such that
|An — Al < + and g(A4,)NA§ # 0. Thus A, — A but A§ C o(A4)° since
0(A) C Ag. Since 0(A,,)NA§ #0, 0(A,)No(A) # 0 and so 0(A,) ¢ a(A).
Thus limsupo(A4,) ¢ o(A). This is a contradiction. Hence (1) holds. O

Theorem 5.2. ([12]) Spectrum is upper semi-continuous.

Proof. Let G° be the set of all singular operators on H, i.e., G° is the set
of noninvertible operators. For all A € B(H), define p(A) = d(4 — X, G°).

Then we can show easily that ¢ : € — R7% is continuous. Let Ay be an
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open set containing o(A) and let A = B(0;1 + ||A||) denote the closed ball
with center 0 and radius 1+ ||A||. If A € A — A, then A ¢ d(A) and so
A — X is invertible, i.e., A — XA ¢ G°. Since G is open, G¢ is closed. Thus
d(A=1X,G%) > 0,ie., p(A) >0. Since A — Ay = AN AS is a closed subset of
A and A is compact, A — Ag is compact. Since () is continuous on A — A,

and @(A) > 0 for all A € A — Ay, there exists ¢ > 0 such that
p(A) > ¢ forall A€ A— A (5.2)

Suppose that |A — B|| < e < 1. We claim that o(B) C Ag. If A € A — Ay,
then by (5.2), (A —=A) = (B - A)|| < € < ¢(A) = d(4 — A,G°). Thus
N(A=X)=(B-A)|| < d(A-X,G°). If B—\ € G, then ||(A—\)—(B—\)| >
d(A — X\, G%). Thus B — A ¢ G° and so B — ) is invertible. Thus A ¢ o(B),
ie.

AEA-Ay = A¢o(B). (5.3)
Forall A € o(B), |A| < ||B|| < ||All 4 |1A = Bj| < ||4]| + 1 and so X € A,
i.e., 0(B) C A. Hence o(B) C Ay by (5.3). O

Definition 5.3. The spectral radius of an operator A, denoted by r(A), is
defined by r(A) =sup{|\| : A € 0(A) }.

The Weyl spectral radius of A, denoted by r,(A) is defined by r,(A) =
sup{|A| : A € w(4) }.

Corollary 5.4. Spectral radius is upper semi-continuous. That is, to each
operator A and for all § > 0, there exists ¢ > 0 such that ||[A — B|| < ¢ =
r(B) <r(A) +4.

Proof. Let § > 0 be given. Let r5 = r(A) + & > r(A). For all A € o(A),
|Al < 7(A) and so |A| < r(A) + 6. Thus A € B(0, r5), i.e., 0(A) C B(0, r's).
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Since spectrum is upper semi-continuous, there exists ¢ > 0 such that ||B —
A|l < e = o(B) C B(0,75). For all A € a(B), |A| < rs, ie., |\ < r(A4) + 6.
Thus sup{ |A| : A € 6(B)} <r(A) + 6§ and so r(B) < r(A) + 6. O

Theorem 5.5. ([12]) Let T,,,T be normal operators and T,, — T. Then
limo(T,) = o(T), i.e., the restriction of spectrum to the normal is continu-

ous.

Example 5.6. (Istratescu) Let H = l; and for each * = (z1,z2,---) € H,
we define T,(z) = (x1, 22, -+ ,70,0,0,---). It is clear that T,, — I pointwise,
ie, To(z) = I(z) = z asn — oo for any x € H and T, is of finite rank.
Thus T,, are compact and w(T,) = w(T, +0) = w(0) = {0} for all n. Also 1

is the only eigenvalue of I and not of finite multiplicity. Since o(I) — w(I) C
mof(I) =0, o(I) —w(l) =0, i.e., w(I) = o(I) = {1}. In fact,

1T = Il = sup ||Tnr —z||

flzll=1

= Ssup ||(O7Os F= a01171+1a-1-'n+2\' 1 )“ =1-»0
llzfl=1

asn — oo, i.e., T, - I in norm. Define the shift operator operator
St =(0,z1,22,---) and put A, = ST,. Then A,, — S pointwise since
Anl‘ = (STn)l' = S(.’IT],IQ,” * ,JI,,‘0,0,‘ )
=(0,zy,29,-- ,2,,0,0,---) > Sz
asn — 0o. Also A, is compact since A, is of finite rank and thus w(A,)

= {0}. Since S is the unilateral shift, we know that w(S) = {z : |z| < 1}.

Clearly the function T — w(T) is not continuous.
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Theorem 5.7. ([20]) The mapping T — w(T) is upper semi-continuous.

Proof. It suffices to show that T,, — T = limsupw(T,) C w(T).

Let A ¢ w(T). Then T — X is Weyl. By Theorem 5.5 ([17]), there exists
an 7 > 0 such that if S € B(H) and ||(A —T) — S|| < 75, then S is Weyl.
Since T,, — T, there exists an integer N such that ||(A — T) — (A - T,,)|| =
|ITn —T|| <  forany n> N.LetV be an open - neighborhood of A, i.e.,
V =B(A:1). We have for any p € V and n > N,

A=T) = (I =T = A =T) = (= Ta) + (A = Tn) — (A = Tn)||
SHA=T) = (A =Tl + lI(n = Tn) = (A = T
=T = T+ lI( = M = 1Tn = T| + | = A

N no_
pty ="
so that u — T, is Weyl, i.e., u ¢ w(T,) for n > N, ie., forn> N,

V' w(T,) =0. So A ¢ limsup w(T,). Hence limsup w(T,) C w(T). a

Corollary 5.8. The Weyl spectral radius is upper semi-continuous. That
is, to each operator A, for all § > 0, there exists ¢ > 0 such that |[A — B|| <
€ = ry(B) <ry(A)+6.

Proof. Let 6 > 0 be given. Let 75 = ry(A) + 6 > ryy(A). For all A € w(A),
Al € rw(A) and so |A| < ry(A) + 6. Thus A € B(0, rs), ie., w(A) C
B(0,75). Since Weyl spectrum is upper semi-continuous, there exists ¢ > 0
such that |[B — A|| < ¢ = w(B) C B(0,rs). For all A € w(B), |A| < rs,
ie, |A < ry(A) +6. Thus sup{ [A| : A € w(B)} < ru(4) + 6 and so
Tw(B) < ry(A)+ 6. O
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Theorem 5.9. ([20]) Let T, — T € B(H). Then limw(T,) = w(T) if
lima(T,) = o(T).

Proof. By the above theorem, limsupw(T,) C w(T). It is enough to show
that w(T) C liminf w(T,). Let A ¢ liminf w(T,). Then there is a neigh-
borhood V of A which does not intersect infinitely many w(7,). Since
o(T) C w(T,) for any n, V does not intersect infinitely many o(Ty), ie.,
A ¢ liminf o(T,) = limo(T,,) = o(T). This shows that A — T is invertible,
ie., A — T is Fredholm. By using Theorem 5.5([17]), it is easy to see that
i(A—T) = 0. Therefore A - T # Weyl, i.e., A ¢ w(T). O

We recall that if the mapping T — o.(T') is continuous, then the mapping

T — w(T) i1s continuous.

Corollary 5.10. Let T, — T. Then limw(7,,) = w(T) if one of the follow-

ing cases holds.

(1) T,T =TT, for all n.
(2) o(T) is totally disconnected.

(3) T, and T are normal operators.

Proof. By [18], each one of the above conditions implies limo (T, ) = 0.(T).

By Theorem 5.8, our result holds. O

Corollary 5.11. Let T,, —» T and w(T,) = 0.(T,) for all n. Then w(T) =
0¢(T) if one of the following cases holds.

(1) T,T =TT, for all n.
(2) o(T) is totally disconnected.
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Proof. By Corollary 5.10 and [18], each the above conditions implies that
0e(T) = limo (Ty) = limw(T,) = w(T). O

Definition 5.12. ([21]) For T € B(H), the essential spectra oi(T) are de-
fined by

o1(T) ={A € C : R(T — ) is not closed. },

02(T) ={A € C : T — X is not semi-Frddholm },

03(T) = 0e(T)={A € C : T — X is not Fredholm},

04(T) =w(T)={Ae€C : T -\ is not Weyl} and

05(T) = 04(T) U { limit points of o(T) }

. the Browder’s limit point spectrum of T.

Clearly 01(T) C 02(T) C 03(T) C 04(T) C o5(T) C o(T). We note that
01(T) may be empty, e.g., take T = 0. 04(T) = w(T) = o3(T)U {A € C :
T—-A€ F and {(T—A) #0}. Put 0j(T) = 03(T)U acco(T), where acc o(T)
is the set of accummulation points of o(T). By Lemma 4.25, §(T) C acc o(T).
Thus o04(T) = o5(T).
Theorem 5.13. ([21]) Let T € B(H). Then the mapping T — o02(T) is

upper semi-continuous.

Proof. Let T, — T. We show that limsup 02(T) C o5(T). Let A ¢ o2(T).
Then T — A is semi-Fredholm. By the continuity of index, there exists € > 0
such that ||(T-))-S|| <e = S € SFand i(T-X) =i(S). Since T, — T,
there exists Ny such that for all n > N,, ITn—T| < . Thus for all n > ND‘
and for all p with |u — M| < £,

A =T) = (b= T)ll = (e = NI + T — T|

Sh=A+IT =Tl <+ =e

€
2



31

Thus p— T, € SF and i(T — ) = i(T,, — p). Since for all g with [u— A < £
and for all n > Ng p ¢ 02(T,), A ¢ limsupao(T). a

Theorem 5.14. Let T € B(H). The mapping T — o3(T) is upper semi-

continuous.

Proof. Let A ¢ 03(T). Then T — X is Fredholm. By the continuity of index,
there exists € > O such that ||(T—-X)-S|| <e = 5 € SFandi(S) =i(T-\).
Since T — A € F, dimker(T — A\) < oo and dim R(T — A\)* < oo. Since
i(S) = (T — A), dimker § — dim R(S)* = dimker(T — A) — dim R(T — \)™.
Thus dimker S < oo and dim R(S)+ < oco. Since S € SF, R(S) is closed.
Thus S € F. Therefore

I(T-X)-S|l<e=>SeF. (5.4)

Since T,, — T, there exists a positive integer N such that for all n >
N, |ITn = T|| < §. Now for all u € B(A,5) with [u — A| < § and for all
n 2 NI =T) = (e =Tll < Nu= NI+ [Tu =TI < § + £ = &. By (5.4),
u — T, € F. Therefore pu ¢ o3(T) for all n > N and for all i € B(), 5).

Thus A ¢ limsup o3(T,). Hence limsup 03(7,,) C o3(T). O
Remark 5.15. The mapping T — o,(T) is not upper semi-continuous.

Proof. Let T be any operator where range is not closed and let T, = %T.
Then ||T,]| = 1T — 0 as n — oo, ie,, Tn — 0. Since a;(0) = 0,
0 ¢ 01(0). But since for all n, R(T,) = R(:T) = 1 R(T) is not closed,
0 € 61(T.). Thus 0 € limsupoy(T). Therefore limsupoy(Ta) ¢ o1(T)
where T,, —» T. 0
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In [22], Oberai have showed that the mapping T — o5(T) is upper semi-
continuous. We note that w(T') = o.(T)U6(T) and 6(T) C acco(T) in Lem-
ma 4.25. Since 05(T) = w(T) Uacco(T), 05(T) = 0.(T) U (T) U acco(T) =
0e(T) U acco(T). Using this fact, we reprove that the mapping T — o5(T)

is upper semi-continuous.
Theorem 5.16. The mapping T — o5(T) is upper semi-continuous.

Proof. We note that ¢4(T) = 05(T). Let T, — T. We show that limsup o}
(T) C 04y(T). Let A ¢ o4(T). If X\ ¢ o(T), then X\ ¢ limsupo}(T) since
limsup oy(T,) C limsupo(T,) C o(T). Let A € o(T) — o4(T). Then X ¢
03(T) and ) ¢ acco(T). Hence T — A is Fredholn and X is an isolated point

of o(T). So there exists £; > 0 such that
(T —-A)—S||<e = S is Fredholm. (5.5)

Since T;, — T, there exists N; such that ||T, ~ T|| < &; for all n > N;. Thus
(Ta = A) = (T = N)|| = |ITn = T|| < &1 for all n'> N;. By (5.5),

T, — X is Fredholm for all n > N, . (5.6)

Since A is an isolated point of o(T'), there exists ¢, > 0 such that o(T)N{ px :
lp—Al < ez} = {A}. Put ¢ = min{e; e2}. For all p with |[u—A| < ¢, u ¢ o(T)
and so p ¢ limsupo(Th) = hZ;(Ure,, o(T%)). Thus p ¢ Use,, o(Tk) for

some m, i.e.,

p¢o(Ty) forall k>m. (5.7)

Let N = max{m,N;}. If A ¢ limsupo(T,), then X ¢ limsupa}(T,) since
limsup 04(7T,) C limsupo(T,). If A € limsupo(T,), then A € Usre,, o(Tx)
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for all n. Thus A € Upeyo(Tk) = A € o(Ti,) for some ky > N and
A E U}:‘;NHJ(T;‘) = X € o(Ty,) for some k; > k; > N. There exists a
sequence {k,} such that A € o(T%,) for all n, k, > N. By (5.5), Tk, — A
is Fredholm. By (5.7), A is an isolated point of o(Tk,) for all n. Hence
A ¢ o' (T, ) for all n and so A ¢ limsup o4(Thn). O
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6. Spectral Mapping Theorem

Theorem 6.1. ([12]) For any operator A and for any polynomial p,

(1) p(mo(A)) = ma(p(A)),
(2) gap(p(4)) = p(0ap(A4)),
(3) gcom(P(A)) = p(dcom(A)) and
(4) p(mo(A)) = mo(p(A)) if A is invertible and p(z) = 2.
Proof. First, we show that if the product of a finite number of operators has
of the following properties:
a) nonzero kernel,
b) it is not bounded below and

c) it has a range that is not dense,
then at least one factor of the product must have the same property.

Let AB be the product of A and B. If ker(4B) # 0, then ker A # 0 since
ker(AB) C ker A. Thus a) holds.

Let AB be not bounded below. If B is bounded below, then there exists
{za} such that ||[(AB)z,|| — 0 and ||Bz,|| > c||z.]| for some ¢ > 0. Put
Yn = ppe2y- Then |lyn|l = 1 and || Aya|| — 0. Thus 4 is not bounded below.
and so b) holds.

Let AB have a range which is not dense. Then R(AB) # H. Let p(z) =
" +a1z" "'+ +an_174a, a; € R. Then p(A)—p(Ao) = (A=20)Q(A, Ao),
i.e., p(A) — p(Ao) is divisible by A — Ag.

(1) Let Ao € mo(A). Then ker(A — Ag) # (0). Since p(A) — p(Aol) =
(A= 2I)Q(A, Xo), ker(A — Xo) C ker(p(A4) — p(AoI)). Since ker(A — o) #
(0), ker(p(A) — p(Ao)) # (0). Thus p(Ao) € mo(p(A4)) and so p(m(A)) C
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mo(p(A)). For all @ € C, let p(A) —a = (A — Ag)(A— A1) - (A — Ap—1) and
a € mo(p(A)). Then ker(p(A) — al) # (0) and p(A) — af = (A — Ao)(A —
A1) (A= Auo1). By a), ker(A — M\ 1) # (0) for some k, ie.,, Ax € mo(A).
Thus mo(p(4)) C p(mo(A)). Therefore p(mo(4)) = ma(p(4)).

(2) Let Ao € 0ap(A). Then A—Xq is not bounded below and so there exists
a sequence {z,}, ||zn] = 1 such that (A — Ag)z, — 0. Since p(A4) — p(ro) =
(A — 2)Q(A, Xo), (p(A) — p(Ao))zn — 0 and so p(Ao) € gap(p(A)). Thus
P(0ap(A)) C oap(p(A)). Let a € 04p(p(A)), ie., p(A) — « is not bounded
below. By b), A — At is not bounded below for some k. Thus Ax € 0,4,(A).
Since p(Ar) —a = 0, o = p(Ak) € p(0ap(A)) and so 04p(p(A4)) C ploap(A4)).
Hence o4p(p(A4)) = p(aap(A)).

(3) Since p(mo(A*)) = mo(p(A4%)) by (1). deom(p(4)) = mo(p(A)")" =
p(mo(A*)") = p(Tcom(A)).

(4) If A is invertible and Ar = Azr with r # 0, then A # 0. Applying
A~! to both sides of the equation and dividing by A, A7’z = z . Thus
5 C op(A7Y). Replacing A by A7} oohes Coy((A7)71) = ap(4)
]

and so a,,(A‘l) C Hence ”,:(44_1) = :A)
P

b UL
op(A)”
Theorem 6.2. For any operator T and for all polynomial p, w(p(T)) is a
proper subset of p(w(T)), t.e., w(p(T)) C p(w(T)).

Proof. Let p ¢ p(w(T)) and p(A) — 0 = a(A = A (A —A2) - (A=A, ). Then
p(T)—pl =a(T = )T —Xy)---(T—=Ap)and for all j, p(A;) —p = 0. Thus
p=p(A;) ¢ p(w(T)) and so A; ¢ w(T). Therefore T — X; € Fy for all ;. By
Theorem 3.8 and index prduct theorem, (T — M )(T — A2)-- - (T — Ap) € Fo
and so p(T') — uI € Fy. Hence p ¢ w(p(T)).

Let T = U & (U* + 2I) where U is the unilateral shift operator and let
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p(A) = A(A = 2). Then R(U) = {(0,z0,21,"-) : (zo,T1,22,--+) € Iz}
and so R(U) is closed. Also ker(U) = (0) and R(U)* = {(z,0,0,--) :
r € C}l. Thusi(U) =0-1= —1. Forall z = (z,), y = (ya) € H,
<Uz, y>=<(0,21,22,,Zn, ), (1,42, ) >= e+ 02+ =
< (1,22, ), (y2,93,--+,) > =<, Uy >. Thus U*(y1, 92, , ) =
(y2,y3,--+, ). Also R(U*) = Iy, ker(U*) = {(2,0,0,---,) : ¢ € C}, and
R(U*)* = (0). Thus i(U*) =1 -0 = 1. Since —2 ¢ o(U*) and 2 ¢ o(U),
U* +2I and U — 21 are invertible and so (U* + 2I) = 0 and «(U — 2I) = 0.
Since p(A) = A(A=2), p(T) = T(T-21) = [Up(U*+2])|[Up(U*+2I)-21] =
[Ua (U* +2I)[(U —2I) ® U*]. We note that (A & B) = i(A) + i(B) and
t(AB) = i(A) + «(B) (see Proposition 3.7 and Theorem 3.8, [7]). Thus
(T) = iU @& (U* +21)) = ~1 and (T - 2I) = (U —21) ¢ U*) = 1.
So i(p(T)) = «(T(T — 2I) = «(T) + (T — 2I) = 0. Therefore p(T) € Fy
and so 0 ¢ w(p(T)). Since «(T) = -1, T ¢ F,, i.e,, 0 € w(T). Since
0 =P(0), 0€ P(w(T)). O

Theorem 6.3. Let T € B(H). Then for any polynomial p(t), we have
a(p(T)) = moo(p(T)) C p(o(T) — moo(T)).

Proof. Let A € o(p(T)) — moo(p(T)) = p(a(T)) = moo(p(T)).

Case 1. X is not an isolated point of p(¢(T')) = o(p(T)). Then there exists
a sequence {A,} such that A, € p(¢(T)) and A, — A, and so there exists
a sequence {u,} in o(T) such that A, = p(pn) — A. Since limp(uy,) = A,
{p(pn)} is bounded and so {un} is bounded. Thus {u,} has a convergent
subsequence. Let po = lim py,,. Then p(po) = p(lim ptpn, ) = limp(pn,) = A,
i.e., p(po) = A. Since limpu,, = po and u,, € o(T), wo is not an isolated
point of o(T). Since o(T) is closed, po € o(T). Thus po € o(T) — meo(T)
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and so A = p(po) € p(o(T) — woo(T)).

-Case 2. A is an isolated point of o(p(T)). Since A & moo(p(T)), either A ¢
mo(p(T')) or A is an eigenvalue of infinite multiplicity. Let p(z) — A = ao(z —
pri)(z—p2) - (z—pn). Then p(T)= Al = ao(T — i INT — p2I) - - - (T — pu1).
If A ¢ mo(p(T)), then ker(p(T) — A) = (0). For all j, ker(T — p;) = (0), i.e,,
pj ¢ mo(T) for all j. If pj ¢ o(T) for all j, then T — y; is invertible, and so
p(T) — X is invertible. This is a contradiction to the fact that A € o(p(T))..
Thus px € o(T) for some k and pix ¢ mo(T). Therefore ux € o(T)—mo(T) and
50 1tk € o(T) = moo(T). Since p(yua) — A = 0, A = plux) € p(o(T) — mo0(T)).

If A is an cigenvalue of p(T) with infinite multiplicity, then ker(p(T)— A) =
Uo— ker(T — pk). Since dimker(p(T) — A) = oo, dimker(T — jx) = oo
for some k. Thus s is an eigenvalue of T with infinite multiplicity, i.e.,
jix & mos(T) and so i ¢ moo(T). Hence px € o(T) — moo(T) and plux) =
A€ p(o(T) — moo(T)). O

Theorem 6.4. If cither m,;(T) = ¢ or n,6(T*) = ¢, then w(f(T)) =
f(w(T)) for every holomorphic function f.

Proof. Suppose m,7(T) = ¢. Since mos(f(S)) C f(705(S)) for every oper-
ator S and any holomorphic f. Thus m,;(T) = ¢ implies 7o ;(f(T)) = 6.
Therefore w(T) = o(T) and w(f(T)) = o(f(T)) by Theorem 4.13. Since
o(f(T)) = f(o(T)) by the usual holomorphic spectral mapping formula,
w(f(T)) = o(f(T)) = f(o(T)) = f(w(T)). Similarly if 7o;(T*) = ¢, then
w(f(T)) = f(w(T)) since w(T*) = w(T)". O

Note that if A is hyponormal, then ||A*z|| < ||Az]| for each z € H. Thus
ker A C ker A*.
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Definition 6.5. ([24]) An operator T is M-hyponormal if there exists M > 0
such that ||(T — z)*z|| < M||(T — 2)z|| for all z € H and z € C.

Every hyponormal operator is clearly 1-hyponormal.

Theorem 6.6. If T and S are commuting M-hyponormal and T'S is a Weyl
operator, then T and S are Weyl operators.

Proof. If T is M-hyponormal, then there exists M > 0 such that ||T*z| <
M||Tz| for all z € H and so ker T C ker T*. Thus dimker T < dimker T*
and so i(T) < 0. If TS is a Weyl operator, then TS € F. Thus by Lemma
37, T € F and S € F. Since T and S are M-hyponormal, :(T) < 0 and
i(8) < 0. Since 0 = i(TS) = i(T) +4(S), i(T) = 0 and i(S) = 0. Thus
T € Fo and S € Fo. O

Corollary 6.7. If T and S are commuting hyponormal operators and T'S
is a Weyl operator, then T and S are Weyl operators.

If the “hyponormal” condition is dropped in the above theorem, then
the theorem may fail even though Ty and 7% commute. For example, if U
is the unilateral shift on 3, consider the following operators on I @ I3 :
T =U®land T, =10U*. Then T, = U {®U*) = U D
U =TT, (h)=i(UeI)=i{U)+iI) = -140= -1, and i(T) =
(IPU*) =iI)+iU*) =0+1=1. So T, and T, are not Weyl. But
(NT2)=:(UU*)=iU)+i{(U*)=-1+1=0,so T\ T, is Weyl.

Theorem 6.8. If T is M-hyponormal and f is analytic on a neighborhood
of o(T), then w(f(T)) = f(w(T)).

Proof. Suppose that p is any polynomial. Let p(T)—AI = ao(T—p,I)---(T—
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pinl). Since T is M-hyponormal, T — u,I ;i =1,2,--+ ,n are commuting M-

hyponormal operators. Thus

A ¢ w(p(T)) < p(T) — A\ = Weyl
&> ao(T — 1 ) (T — upI) = Weyl
& T — pu;I = Weyl foreach:=1,2,--- ,n
< pi ¢ w(T) foreachi=1,2,--- |n

= A ¢ p(w(T)),

which says that w(p(T)) = p(w(T)). If f is analytic on a neighborhood of
o(T), then by Runge’s theorem ([6]), there is a sequence {p,} of polynomials

such that p, — f uniformly on o(T). Since p,(T') commutes with f(T), by
Corollary 5.9, f(w(T)) = limpy(w(T)) = limw(pa(T)) = w(f(T)). O

Corollary 6.9. If T is hyponormal and f is analytic on a neighborhood of
o(T), then w(f(T)) = f(w(T)).

We say that Weyl's theorem holds for T if w(T) = o(T) — 7o0(T). There
are several classes of operators including normal and hyponormal operators
for which Weyl’s theorem holds. Oberai has raised the following question.
Does there exist a hyponormal operator T such that Weyl’s theorem does not
hold for T? ? Note that T may not be hyponormal even if T is hyponormal(
Problem 209 [12]). We will show that Weyl’s theorem holds for p(T) when

T is hyponormal.

Definition 6.10. An operator T is called 1soloid if isolated points of o(T)

are eigenvalues of T'.



40

Theorem 6.11. Let T € B(H) be isoloid. Then for any polynomial p(t),
p(o(T) — moo(T)) = p(o(T)) — moo(p(T))-

Proof. Since p(a(T))—moo(p(T)) C p(c(T)—moo(T)) by Theorem 6.3, we will
show that p(o(T) — 700(T)) C p(o(T))— moo(p(T)). Let A € p(o(T)—r00(T)).
Then there exists u € o(T) — mo(T) such that A = p(u). Suppose that
A € moo(p(T)), ie., A is an isolated point of p(o(T)) = o(p(T)) and an
eigenvalue of p(T') of infinite multiplicity. Let p(z) — A = ao(z — p1)(z —
#2) (2 = p1n). Then p = py for some k since A = p(u). Since A = p(y) and
p € o(T) — moo(T), X = p(px) where px € o(T) — moo(T). Hence px must
be an isolated point of o(T). In fact, if iz is not isolated, then there exists
{€n) in o(T) such that lim €, = ux. Thus A = p(uy) = p(lim &) = lim p(én)
and p(£s) € p(o(T)). Thus A is not an isolated point of p(a(T)) = o(p(T)).
This is a contradiction to the fact A € moo(p(T)). Since T is isoloid, uj is an
eigenvalue of T. Since ker(T — 114) C ker(p(T) — A) and dimker(p(T) - A) <
oo, dimker(T — pux) < co. Thus uy € mpo(7T). This contradicts the fact
that A = p(ux) € p(o(T) = moo(T)). Hence X = pls) € moo(p(T)) and
A € a(p(T)) — moo(p(T)). a

Corollary 6.12. IfT € B(H) is hyponormal, then for any polynomial p on
a neighborhood of o(T'), Weyl’s theorem holds for p(T).

Proof. By [8], T is isoloid and Weyl’s theorem holds for any hyponormal
operator. Thus by Corollary 6.9 and Theorem 6.11, w(p(T)) = p(w(T)) =
p(o(T) — moo(T)) = o(p(T)) — moo(p(T)). Hence Weyl’s theorem holds for
p(T). 0

Theorem 6.13. ([2]) If T is a normal operator, then w(f(T)) = f(w(T))
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for every continuous complex-valued fuction f on o(T).

Proof. If T is normal, then T is normal in B/K. By standard C*-algebra
theory, f(T') exists and f(T) = f(T). If T is normal, then f(T) is normal.
We note that if S is normal, w(S) = o(5). Hence w(f(T)) = 0(@) =
o(f(T)) = f(o(T)) = f(w(T)). O

Theorem 6.14. ([21]) For any T € B(H) and for any polynomial p(t),
P(o2(T)) G o2(p(T)).

Proof. Let A € 05(T) and p(T) — p(A)I = (T = AIYT = MI)-- (T = A1 1).
Since T — X is not semi-Fredholm, p(T) — p(A)I is not semi-Fredholm. Thus
p(\) € oa(p(T)) and so p(02(T)) C o5(p(T)). Define S : b, — I by
S(zv,z2, -, ) =(0,21,0,22,0,25,---). Let T = S & (S* + 2I) and p(t) =
t(t —2). Then p(T) =T(T - 2I) =[S (S*+2D)|[(Sa(S*+2I))-2I] =
[Sa(S*+2D)[(S-2D)@(S*+2I)-2)] =[S (S* +2D))[(S—-2I) D S*]
and ker S* = R(S)" = {(y1,0,42,0,3,0,---) : (y1,¥2,¥3,--) €12 }. Thus
dimker $* = dim R(S)" = oo. Also ker[(S — 2I) & §*)] C kerp(T) =
ker[(S & (S* + 2D))((S — 2I) @& S*)]. Note that (S — 2I)(zy,r2,23, ) =
(0,71,0,22,0,23, -+ ) — (214,222,223, -- ) = (=271,27 — 222, —-273,79 —
2r4,---) = (0,0,0,---) iff zy = 0,29 = 0,---, 1.e., z = 0. Thus ker(S —
2I) = (0). Since S — 2I is invertible, ker[(S — 2I) & S*] = ker S*. Thus
dimker[(S—-2I)®S*] = oo and so dimker p(T) = oo. Also R(p(T)) = R[(S®
(S*+2D)((S—2I)® S*)] C R(S® (S* +2I)) and so R(S & (S* +2I))* ¢
R(p(T))*. Since R[(S @ (S* +2I)] D R(S @ 0) ~ R(S), R(S)* C R(S @
(S§*+2I)*. Since dim R(S))" = oo, dim R(S&(S* +2I))* = co. Thus p(T)
is not semi Fredholm and so 0 € o2(p(T)). Note that T = S& (S*+ 2I), and
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kerT = 0. Also R(S) = {(0,21,0,22,0,23,---)]|(z1,22,3, ) € I} and
R(S* +2I) = {(z2 + 221,23 + 221, - - )| (21, 22,73, -+ ) € I} are closed. In-
deed, if y € R(S* + 2I), then y = limy,, where y, € R(S* + 2I). Thus there
exists z, such that y, = (S* + 2I)z,, and y = limy,. Since -2 ¢ o(S5*),
S* 421 is invertible. Thus y = limy, = im(S* + 2z, = (S* +2I)(lim z,),
and so there exists limz, = (§* + 2I)"'y = z. Thus y = (5* 4 2I)z and so
y € R(S* + 2I). Therefore R(T) is closed. Thus T is semi-Fredholm and so
0 ¢ 0,(T). Hence p(0) = 0 ¢ p(o2(T)). O

Corollary 6.15. Let f be a holomorphic function defined on a neighborhood
of o(T). Then f(02(T)) C oo(f(T)). If f is univalent, then f(oo(T)) =
o2 (f(T)).

Proof. Since f is analytic, there exists a sequence (pn () of polynomials such
that lim p,(¢) = f(¢) uniformly. Thus by Theorem 5.13 and 6.14, f(0,(T)) =
lim py,(02(T)) C limsup a2(pa(T)) C o2(f(T)). Since f is univalent (term for
one-to-one), £~} (52(f(T))) C aa(f~'(F(T))). = o2(T), and so o2(f(T)) C
f(02(T)). Hence o2(f(T)) = f(a2(T)). O

If 02(T) = 03(T), then f(02(T)) = 02(f(T)) and in this case, o2(f(T)) =

03(f(T)). Indeed, 02(f(T)) C o3(f(T)) C f(03(T)) = f(o2(T)) C 02(£(T)),
a2(f(T)) = f(o2(T)).

Remark 6.16. ([21]) p(01(T)) ¢ o1(p(T)) and o1(p(T)) & p(o1(T)).

Recall that o,(T) = {A € C : R(T — )) is not closed }. We show that
there exists T and S such that for the polynomial p(t) = 2, p(0,(T)) ¢
o1(p(T)) and o1(p(S)) ¢ p(01(S)). Define T : I — I by T(x1,x2,---,) =
(0,21,0,%2,0, 38, ,). Put T(1,0,0,---) = (0,1,0,0,--- , ) = 1, T(1,0,1,
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0,---)=(0,1,0,%,0,---,) = y2, -+ and 7(1,0,1,--- ,1,0,- =(0,1,0,1,
3

’37
0,;,0 0,271—1, ,-+) = yn. Then for all n, y, € l2, y, € R(T) and
- (0,1, 0,3,0,5,0 ,0,%1—_1,---) = yasn — oo. Also y € [z since

lyll? = 52, W < oo and since z = (1,0,1,0,---), Tz = y. But
since ||z]|* = ¥52,12 = 00, z ¢ I; and so y ¢ R(T). Thus R(T) is not
closed. Since 0 € g5(T), 0 = p(0) € p(02(T)). But p(T) = T? = 0] For all
(z1,22,23, ) € loy, T*(z1,22,23,---) = T(0,2,,0,%,---) = (0,0,---) ].
Since R(T?)=(0) is closed, 0 ¢ 02(T?) = o2(p(T)).

Theorem 6.17. Let T € B(H). Then for any polynmial p(t), p(ay(T)) =
a3 (p(T)).
Proof. Let p € o4 (p(T)).

Case 1. u is not an isolated point of o(p(T)) = p(o(T')). Then there exists
a sequence {\,} in o(T) such that = limp(A,). Thus {p(A,)} is bounded
and so {),} is also bounded. Therefore {),,} has a convergent subsequence
{Xn,}. Let limA,, = A\. Then X € o4(T). Since p(A) = p(limA,,) =
limp(An,) = g, pp = p(A) € p(o5(T)).

Case 2. u is an isolated point of o(p(T)) = p(o(T)). Then by definition
of oi(T), pn € o3(p(T)), i.e., p(T) — = (T — M )T = Az)--- (T — An) is not
Fredholm. Then for some k, T — Ay is not Fredholm. Thus A\ € o3(T') and
so = p(Ax) € p(o3(T)) C p(o4(T)) since a3(T) C o4(T).

By case 1 and 2, o}(p(T)) C p(o}(T)).

Let A € o4(T). If A is not an isolated point of o(T'), then p(}) is also not
an isolated point of a(p(T)). p(A) € oy(p(T)). If A is an isolated point of
a(T), then A € 03(T), i.e., T — A is not Fredholm and also p(T) — p(AI) =
(T—X )T —X2)---(T—X\y) is not Fredholm. Note that if TS = ST and T is



44

not Fredholm, then T'S is not Fredholm. Hence p(\) € o3(p(T)) C a4(p(T))
and so p(04(T)) C o4 (p(T)). o

Theorem 6.18. If T is isoloid and mo(T) = mos(T), then for every polyno-
mial p(t), moo(p(T)) = p(moo(T)).
Proof. Let A € moo(p(T)). Then we note that
(1) A is an isolated point of o(p(T)) = p(o(T)) and
(2) 0 < dimker(p(T) - A) < co.

Thus A = p(u), 4 € o(T) and p is also an isolated point of o(T'). Indeed, if
is not an isolated point, then there exists a sequence {s,} in o(T) such that
limpn = p. Thus A = p(p) = p(lim 1) = lim (g ). Since p(pn) € o(p(T)),
this is a contradiction to (1). Since T is isoloid, x is an eigenvalue of T. Let
P(T)=A = (T—pu)T—p1)- - (T— ptn—1). Then ker(T —p) C ker(p(T)— ).
By (2), dimker(T — p) < oc and so g € m,0(T), i.e., A = p(p) € p(moo(T)).
Therefore moo(p(T)) C p(mo0(T)).

Conversely, let A € p(moo(T)) C p(mo(T)). Since mo(p(T)) = p(mo(T)),
A € mo(p(T)) and so ker(p(T) — A) # (0). Let p(T) = M = (T — iy (T —
p2) - (T —pn). Then since ker(p(T)- A1) = Uj= ker(T—p;), ker(T — px) #
(0) for some k. Note that if ker(T — px) = (0), ux ¢ 7o(T). Without loss
of generality, we can assume that ker(7 — ;) # (0) for all j = 1,2,--- ,n.
Since mo(T) = mos(T), dimker(T — p1;) < oo for all j = 1,2,--- ,n and so
dimker(p(T) — M) < co. Thus A € 7mos(p(T)). Since A € p(meo(T)) and:
A =p(pj) where u; € mo(T) forall j =1,2,--- | n,

p; € moo(T) forall j=1,2,--- n. (6.1)

If A is not an isolated point of o(p(T)), then there exists {\,} in a(p(T)) such
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that lim A, = A. Let A, = p(u,) where u, € o(T). Thus A = limp(u,) =
p(lim 4, ) and so lim y,, is a solution of p(t) — A = 0. Hence lim pu,, = pux for
some k and so pi is not an isolated point of o(T'). This is a contradiction to

(6.1) and so X is an isolated point of o(p(T')). Hence A € moo(p(T)). O
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< Abstract>

On Fredholm operator and Weyl spcetrum

In this thesis, we deal with the Weyl spectrum w(T') of a bounded linear

operator T on an infinite dimensional Hilbert space H. The followings are

the main results of this thesis.

(1)

(2)

(3)

(4)

We show that the set w(T') — o, (T) is an open subset and is a subset

of acco(T) where o.(T) denotes the essential spectrum of T and
acc K denotes the set of all accumulation points of K. Also we show
that the boundary of the Weyl spectrum is a subset of the essential
spectrum.

We give some sufficient conditions on which the Weyl spectrum and
the essential spectrum are equal.

We define the spectral radius and prove that the Weyl spectral radius
of an operator is upper semicontinuous. Also we give a different proof
of upper semicontinuity of the Browder spectrum.

We show that the spectral mapping theorem w(f(T)) = fw(T))

holds for any M—hyponormal operator T and any analytic function

f on a neighborhood of ¢(T') and that Weyl’s theorem can be extend-

ed to p(T) for any polynomial p and for any hypornormal operator-

T which is an answer for an old question of Oberai.
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