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I. Introduction

Suppose that A is a field and let M,,, ,(A) denote the set of m x n matrices
with entries in A. If B € M, ,(A), recall that the column rank of B is the
column space of B while the factor rank of B is the smallest integer k such

that B can be factored as B = XY where X € M, ,(A) andY € M, ,(A).

It is well known that the column rank is the factor rank in this situation.

However, we can also consider matrices whose entries come from another
kind of an algebraic system, such as a semiring or Boolean algebra. In this
different context, the notions of column rank and factor rank of a matrix can
be still defined, but the two ranks do not necessarily agree. Indeed, Beasley
and Pullman [3] compared the column rank and the factor rank for matrices
over anti-negative semirings, Boolean algebra and chain semirings and found
that except small value of m and n, the two ranks did not agree in general.
Later Beasley and Song [7] extended this study to include real rank where
the algebraic system was a subsemiring of the real numbers. On the other
hand, the maximal column rank was introduced in [9], by S. G. Hwang, S. J.
Kim and S. Z. Song at 1994. For a matrix A over a semirings, the maximal
column rank of a matrix A is the number of the largest linearly independent
columns over the given semiring. Then we know that the maximal column
rank of A is larger than or equal to the column rank of A. For any matrix,

the two ranks are different in general.

In this thesis, we will continue the study of factor rank, column rank
and the maximal column rank, but instead of fixing the algebraic system

and comparing the three ranks, we will fix the type of rank and compare



its values when the matrix is considered over different algebraic systems.
Recently, Beasley, Kirkland and Shader [6] proved the comparisons of factor
rank or column rank between various semiring and their extended semirings.
We will correct the mistakes of the above results for factor rank and column
rank, and show the new result for the maximal column rank. Now, given
semirings K and L, suppose that A is a matrix which can be considered
either as a matrix over K or as a matrix over L. Under what circumstances
is factor rank, column rank and maximal column rank over K equal to the
factor rank, column rank and maximal column rank respectively over L 7
Less than? Is there any relationship 7 We will investigate these questions
for several well studied semirings, including the reals, the integers module a,
finitly generated Boolean algebra, and chain semirings.

In chapter II, we give necessary definitions and preliminary results. In
chapter III, IV and V, we will investigate some general inequalities for the
factor rank, column rank and maximal column rank, respectively of any
matrix between the comparable semirings. In particular, each section will
establish some equality cases for rank functions.

We shall adopt the convention that for M, »(S), S denotes a semiring,

and we assume m < n in this thesis.



I1. Definition and Preliminaries

A semiring is algebraic system which satisfies all the axioms of a ring with
identity except that not all elements need have an additive inverse. Many
combinatorially interesting semirings have the property that zero is the only
element with an additive inverse. These semirings are called anti-negative
semirings. That is, in such a semiring S, if z +y = 0 for z,y € S then
r = y = 0. Examples of anti-negative are reals, R* and the nonnegative

rationals, Q%.

The Boolean algebra of subsets of a k- set, denoted By, is also an anti-
negative semiring, where addition corresponds to set union and multipli-
cation corresponds to set intersection. In particular, we assume that By
is the set 0,1, where arithmetic in By is the same usual rules except that
1+ 1 = 1. In the sequl, we will often want to consider By to be a subsemir-
ing of B; when k < ;. This is easily accomplished by considering the
-set for B to be {ay,as, --- . ap} and then associating Bx with the isomor-
phic subsemiring of B consisting of the set of all unions and intersections
of {a1},{az}, -+ ,{ax—1}. and {ak, - ,a;}. Henceforth we will assume that

B; is a subsemiring of B; whenever j < k.

Let Z be a set of two or more elements which is totally ordered by < .
Further, suppose that Z contans both a universal lower bound and a univer-
sal upper bound. If for each z,y € Z we define addition and multiplication
by  +y = max(z,y) and zy = min(z,y), then the resulting algegraic struc-
ture is a chain semiring. In particular, the chain semiring generated by the

numbers in the interval [0,1] is denoted by F. Evidently, a chain semiring is



another example of an anti-negative semiring, and as above for the Boolean
semirings, a chain semiring that is a subset of another may be considered a
subsemiring by appeending the zero and identity of the larger to the smaller.
Henceforth we will assume that a chain semiring that is a subset of another

is a subsemiring.

Given any semiring S we denote the set of m x n matrices with entries
in S by M., »(S). Addition of vectors (m x 1 matrices), addition and mul-
tiplication of matrices, and scalar multiplication are defined as if S were a
field. A set of vectors is a semimodule if it is closed under addition and scalar
multiplication (others, including Beasley and Pullman refer to such a set as a
vector space). A subset W of a semimodule V is a spanning set if each vector
in V can be written as a sum of scalar multiples (i.e. a linear combination )

of elements of W.

As for semirings S we can define two notions of rank for a matrix 4 €
M 2(S). The column space of a matrix A is the semimodule spanned by the
columns of A. Since the column space is spanned by a finite set of vectors,
it contains a spanning set of minimum cardinality ; the cardinality is the
column rank of A, xs(A) (others, including Beasley and Pullman refer to a
spanning set of the column space, and to the cardinality of a basis as the
dimension of the column space). The factor rank of A, ¢s(A), is the minimum
integer k such that A can be factored as A = BC, where B € M,, ,(S) and
C € My 2(S). The maximal column rank of A, ¥s(A) is the number of the

largest linearly independent columns of A over S.

Our goal here is to compare the values of 1)5(A) as S varies over some fa-

miliar semirings such as R, R, Z, Z*, Z,, and By. First, let’s begin seeing
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some example which column, maximal column and factor ranks are different

one another, and necessary basic proposition.
Example 2.1. Consider the matrix
01 1
A=11 0 1
1 10
Then A is considered as a matrix over R, the real numbers, or as a matrix
over Z,, the integer module 2. Considered as a matrix over R, the rank

(column rank and factor rank) of A is three, while considered as a matrix

over Z,, the rank of A is two (the third column is the sum of the first two

0 1
andnote A = |1 1 [(1) 1 (1)])
1 0

<

0 3
of M3 2(R), Myo(RY), Mao(Z1), or My2(Z,) for any a > 4. We have

¢s(A) = 2if Sis R, R*, Z, Z*, or Z, if a is relatively prime to 6. But

Example 2.2. Let A = [ ] . Then A can be considered as being in any

¢z.(A) since over Zg,

T m (4 3]

Note that yz+(A4) = 1.

Example 2.3. Let asemiringSbeZt and A=[1 2 3 4 5]. Thenthe
column rank of 4, xyz+(A4) is 1 since the first column generates the others.
But the maximal column rank of A, ¥ z+(A4) is 3 since the last three columns

are the largest linearly independent columns of A.

Example 2.4. Let a semiring S be Rt and consider the matrix

0 4 1 8
A=11 3 1 7
2 21 6
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Then the column rank of A, xg+(A4) is two since EL;EZ = a3z and a; + 2a; =
a4, while the maximal column rank of A, ¢ g+(A) is three since the columns
a;, a3, a4 are the largest linearly independent columns of A (i.e. {a;,a3,as}
is the linearly independent set and {a;,a;,a3,as} is the linearly dependent

set).
The following is the proposition which shall be used in each chapter.

Proposition 2.5. Suppose that S is a semiring and A is p X ¢ matrix over
S. IfA = [g g] _ where the zero block on the diagonal has arbitrary
dimensions, then

(1) ¢s(A4) = ¢s(B).

(2) xs(A) = xs(B).

(3) ¥s(A) =s(B).

Proof. Case (1). =) Let ¢s(A) = k. Then for some X € M, (S) and
Y € My 4(S), A= XY. If Bisam Xxn martrix with m < p and n < g,
then we claim that X is the form [)g"] and Y is the form [Y; 0] where
Xo 1s the m x k matrix, Y; is the £ x n matrix and 0 is the zero block. If

not, we may assume that Xy is ¢ x k matrix for some : > m. Then A =

% ol(% o= %410 ¢

That is, the nonzero block of A is a ¢ x n matrix for ¢ > m. This is a

and XY, 1s a ¢ x n matrix for some 1 > m.

contradiction to the fact that B is the nonzero block of A, as m x n matrix.
For : < m, it is similar. Therefore B = XY, for Xy € M, x(S) and
Yy € M,n(S), and so ¢5(B) < k = ¢s(A).

<=) Suppose that ¢s(B) = k and B € M, »(S). Then for some Z €



M k(S) and W € My (S), B = ZW. Since
B 0 ZW 0 VA
a=[3 o] =% o) [E]ow o
let X =[Z 0]andletY =[W 0].Then X € M, i(S)andY € M ,(S).
Therefore ¢s(A) < k = ¢s(B) by definition.
Case (2). The minimum cardinality of column space of A and that of

B are the same since zero columns do not act on the cardinality of column

space.

Case (3). The number of largest linearly independent columns of A4 is

equal to that of B as the case 2. O



ITI. The Comparisons of Factor Rank

In this section, we establish some general theorems about the factor rank

of matrices whose entries lie in two related semirings.
3.1. Factor Rank Inequalities

Suppose that K and L are semirings and that £ : K — L is a semiring
homomorphism. We identify an m x n matrix A = [a;;] whose entries lie
in K, with the m x n matrix =(A) whose (z,7) th entry equals {(a;j). Thus
Z: Mpa(K) > My, o(L) and any matrix, 4 € M,, ,,(K) can be viewed as
a matrix =(A4) € M,, o(L).

Theorem 3.1.1. Let K and L be semirings and ¢ : K — L be semiring

homomorphism. Then, ¢ x(A) > ¢1(=(A)) for every matrix A € M, ,(K).

Proof. Let A € My, o(K) with, ¢x(A) = k. Then there exist matrices
B € M o(K) and C € M ,(K) satisfying A = BC. Since ¢ is a semir-

ing homomorphism,

E(B)E(C) = [Tr_, €(bir)(ers)] = [(TE, €bivery))]
= [&(r, birerj) ] = Z(BC) = Z(A).

Hence the proof is complete. O

If K is a subsemiring of L, then the canonical injection of K into L is
a homomorphism, and hence by Theorem 3.1.1, ¢x(A4) > ¢.(A) for each

matrix A € M, »(K). In this case, we abbrebiate the above to ¢ > ér.
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Corrollary 3.1.2. IfK is a subsemiring of L, then ¢ > ¢1. In particular,

(1) ifj > k then ¢, > éB;.

(2) ¢z+ > ¢z, ¢z > ¢p, and ¢p > ¢R for any subring ,P, of the reals
with identity.

(3) ¢z+ > ép+ and ¢pp+ > ¢pg+ for any subsemiring with identity P+,
of RY.

Let A = [a;;] be an n x n matrix whose entries belong to a semiring S.
We define the pattern matrix of A to be the m x n matrix A = [a;;] where

a,; = 0if a;; = 0 and a;; equals to the multiplicative identity of S otherwise.

Corollary 3.1.3. Let S be an anti-negative semiring with multiplicative
identity and let S have no zero divisor. Then ¢, (A) < ¢s(A) for all matrices

A€ M, o(S). In particular, if A is any (0, 1) matrix, then ¢g,(A) < ds(A).

Proof. Define the map £ : S — B; by

i 0 ifa=0,
é.((L)_{l ifa # 0.

Then £(a + b) = £(a) + €(b) for all a,b € S. If a and b are all zero then
E(a+b) =0 = €(a) + £(D). If one of two is zero and the other is not, then
Ela+b) =1=¢(a)+ £(b). And if neither a nor b is zero then £(a) + £(b) =
1+ 1 =1 over Bg. Thus &(a + b) = €(a + b) = £(a) + &(b). Futhermore,
£(ab) = €(a)f(d) = £(a)é(d) in the similar manner. Therefore £ is a semiring
homorphism and so from Theorem 3.1, ¢, (A) < ¢s(A). O

Corollary 3.1.4. Let a and b be integers with a,b > 0. Suppose A is a
matrix with entries in {0,1,2,--- ;a—1}. Then ¢z, (A) < ¢z,,(A) < dz(A).
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Proof. Define the map € : Z — Z, by £(n) = k with n = k(mod ab).
Then the map £ is a homomorphism of ring into factor ring. Similarly the
map ( : Zsy — Z, defind by ((k) = p with ¥ = p(mod a). Then £ is a

homomorphism of ring into factor ring. O

3.2. The Case of Equality in Factor Rank

It turns out that equality holds in certain cases.

Theorem 3.2.1. Suppose that C; and C; are chain semirings and that C,
is a subsemiring of Ca. If A € M,,, 2(Cy), then ¢¢c,(A4) = ¢c,(A).

Proof. Since C; C C,, we have ¢¢,(A) > ¢c,(A) by Corollary 3.1.2. Let
C(A) be the chain semirimg consisting of 0, 1 and the entries in A (i.e., 0 and
1 are the additive and the multiplicative identities of C(A), respectively). If
A can be factored as A = BC where both B and C have their entries in
C(A), then B is also in My, x(Cy)rand C is also in My ,(C) since C(A4)
is a subsemiring of Cy. It follows that ¢4y (A) > dc,(A). Let the map
£ : C; — C(A) given by £(z) = 3, e5(s) ¥ Where S(z) = {y € C(4) : y < 2.
If 21,20 € Cy with z; < x5, then we find that S(z;) C S(z2). Hence {(z,) <
£(z2) by the definition of chain semiring. Therefore we will easily prove that
¢ is a homomorphism. Note that if z1,z2 € C; then z; +z, = max(zq,z2) =
z2. Also {(z1) < £(x2) implies (1) + £(x2) = max(§(z1),¢(22)) = &(72).
Thus é(z1 + z2) = &(z2) = £(z1) + &(x2). Also for the above z;,z3, note
that z; - o = min(z,,z2) = z; and £(z1) - £(z2) = min(é(zy),€&(z2)) =
£(z1). Thus &(z; - z2) = €(z1) = &(21) - {(x2). That is, therefore for any
21,22 € Cp,&(21 + 22) = {(x1) + {(22) and {(x1 - 22) = {(21) - {(22). Hence
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¢ is a homomorphism. Evidently Z(A) = A, since all entries in A are in
C(A). So, by Theorem 3.1.1, ¢¢,(A) > dc(a)(A). But ¢c,(A) > éc,(A).
Hence ¢c,(A) > ¢c,(A). Since C; is a subsemiring of Cz, it follows that
¢, (A) = dc,(A). =

Theorem 3.2.2. Suppose that j < k, so that B; C Bi. If A € My, »(Bj),
then ¢B,(A) = ¢Bk(A)

Proof. Since B; C By, ¢ép,(A). Suppose that C(A) be a chain semiring of
O(empty set), 1(univesal set, Bx) and all entries in A. Then in the similar

method as above theorem, it is proved that ¢, (A4) = ¢5,(A4). O

Corollary 3.2.3. For any (0, 1) matrix A, any chain semiring C which
contains 0 and 1, and any integer with k > 1, we have ¢p,(A) = ¢B,(4) =

¢c(A) = or(A).

Proof. By Theorem 3.2.2, é5,(A) = ¢p,(A) for any & > 1. The Boolean
algebra By is also a chain semiring C, and in particular, in the fuzzy numbers

F. Thus by Theorem 3.2.1, both ¢c(A) and ¢r(A) are equal to ¢p,(A). O

Suppose that K is a subsemiring of a semiring L. Let ®(K, L, m,n) denote
the maximum integer j such that there exists a matrix in M, »(K) with
dr(A) < j, wehave ¢ (A) = ¢1(A). Note that & > 0, since for any semiring
S, ¢s(A) = 0 if and only if A is the zero matrix. The equalities ¢p, =
¢p, for any j < k and d¢, = ¢¢, for any chain semirings C, and C, with

C, C C; have been established. Further, from the results in the preceding
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section, we have that for any matrix 4 € M, .(R™"),

¢B, < dr+, (3.1)
Or+ < bz+, (3.2)
R < SR+, (3.3)
20 < DZas (3.4)

for any positive integers a and b, and

¢z, < ¢z, (3.5)

for any positive integer a. The equality does not hold in general for any of

(3.1)-(3.3). First we will look at (3.1).

Example 3.2.4. Let M = . Then ¢ép,(M) = 2 since M is

— = O

11

01

Ligel
0%

evidently not rank 1 and M = |1 O} (here, the arithmetic is
11

Boolean). However, considered as a real matrix, a straight forward calcula-

tion reveals that ¢r(M) = 3. Thus, by inequality (3.3), ¢g+(M) = 3.
The below theorem follows from Example 3.2.4 and Proposition 2.5.

Theorem 3.2.5. Suppose that A € My, ,(Bg). If min(m,n) < 2, then
éB,(A) = ¢r+(A). On the other hand, if m,n > 3, there is a matrix M €
M n(RY) such that ¢, (M) < dr+(M).

Our next example gives some insight into inequality (3.2).



—
[}

2 0 3 2 0 1 0 3
Example 3.2.6. Let M = |1 1 4|.Then M = |1 1 [0 1 g]
139 1 3 d

and from which it follows that ¢ 7+ (M) > 2, we claim that in fact ¢z+ (M) =
3. To see the claim, suppose that M can be factored over Z%1 as vy va]W,

where W is 2 x 3. If W = [C“ c12 C”’] , then M = [vq vz ]W =

C21 C22 C23
0

[c11v1 + ca1v2|ci12vy + cazva|eizva]. Thus the vector | 1| is a linear com-
3
bination (over Z1) of v; and va. We can suppose, without loss of generality,
0
that [ 1| > vy ( where the inequality holds entrywise ). Then the first entry

3

of vy is 0, so that the first entry of v, cannot be 0 since if both v; and v,

has the first zero entry then the first row of M is a zero row, a contradiction.

0 2
Therefore vy and | 1| are the same. Since | 1 | is also a linear combination
3 1
2 0
(over Z%) of vi and v,. Then note that | 1| = epyvi +eaiveo =eq | 1| +
1 3

¢21V2. Thus ¢;; = 0 and it implies that v; = . But then we must have

—o— B

3 0
()
4| =1z [ ] +y [ 1] with 2,y € Z1, which is impossible. Thus we see
9 3

that ¢z+(M) =3 > ¢r+(M).

The above example will help us establish the following.

Theorem 3.2.7.

&(Z* R, m.n) = { 1 if min(m,n) =1,

2  otherwise.
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Proof. Case 1. it is clear that ¢z+(A) = dr+(A) = 1 or 0. Thus the first
case holds.

Case 2. From Example 3.2.6, there exists a 3 x 3 matrix such that
éz+(A) =3 but ¢p+(A) = 2. Hence ®(Z*,R*,m,n) < 2. To show that the
second case holds, it suffices to show that for ¢g+(A) =1, ¢z+(A) =1 for
all m,n. If this is proved then for ¢z+(A) = 2, ¢r+(A) = 2, since ¢p+(A) <
#z+(A) = 2 and ¢r+(A) # 1. Then the proof would end. Therefore put
A = uv*® where u, v are vectors with entries in R*, i.e., dp+(A) = 1. Let u;
be a nonzero entry in a vector u, and note that (u;/u;) in lowest terms as
(pj/q;) (i.e., pj/q; is a simple fraction). and let d be the least common mul-
tiple of the g;’s. For any k and j, we have a;x = ujvx = (pj/q;)uivk € Z7,
and we see that ¢; divides ujvx. Consequently, d divides u;vi (for any k).
Thus b* = (1/d)(u;v) is a vector over Z* | as is a = (d/u;)u over Z7F, since
we notes that u;/u; = p;/q; and that a = (d/u;)u = [ui‘uj] = d[%] and d be
the least common multiple of ¢;'s. Further, ab’ = (E{%u)( Yv)=uv' = 4,
so that ¢z+(A) = 1. Suppose that 4 € M,,, ,(R") ;if ¢r(A) = 1, then each
column of A is a multiple of the first nonzero column of A. Consequent-

ly, each column of A is a nonnegative multiple of that column, and hence

ér+(A) =1 as well. Thus we have ®(R*,R,m.n) > 1. a
Theorem 3.2.8. Let A € M,, o,(R*). If r(A) = 2 then ¢p+ = (A) = 2.

Proof. We will show this result using Theorem 4.2.8 in chapter IV. That is,
we begin with the assumption that for xr(A) =2, xgr+(A) = 2. lf ¢r(A4) = 2;
then xr(A), since the column and the factor rank are the the same on field.
Further, in general it holds that ¢p+(A) < xgr+(A). Thus ¢r+(A) < 2.
Also ¢r+(A) > ¢r(A) = 2, since R* is a subsemiring of R. Therefore
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dr+(A) = 2. O
1 0 0 1
11 0 0 .

Example 3.2.9. Let M = 011 0l Then a straight forward cal-
0 0 11

culation shows that ¢r(M) = 3, since xypr(M) = 3. By Corollary 3.1.3
¢, (M) < ¢p+(M), and note ¢, (M) = 4. Thus we have ¢r+(M) = 4.

Using Theorem 3.2.8, Example 3.2.9 and Proposition 2.5, the following

corollary can be proved.
Corollary 3.2.10. We have that

if min(m,n) =1,

(I)(R+,R,m,n) =

if min(m,n) =2,

W N

otherwise.
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IV. The Comparisons of Column Rank

4.1. Column Rank Inequalities

Suppose that K and L are semirings and that £ : K — L i1s a semiring
homomorphism. The map = : M, ,(K) - M, »(L) as in chapter III was

defined. Note that = is also an homomorphism.

Theorem 4.1.1. Let K and L be semirings and £ : K — L be a semiring
homomorphism. Then xx(A) > x1(A) for every matrix A € M, »(K).

Proof. Let x;,X2, -+ ,X; be column vectors in My, 1(K) which span the
column space of A. Since ¢ is a homomorphism, {Z(x1),=(x2), -+ ,=(xk)}
spans the column space of =(A4), since for y € < A > where < 4 >=
the column space of A, y = r1X; +raoXx2+ -+ +7kXk for r; € K. Then Z(y) =
E(r)E(x1) + + E(re)E(xe). Henee xic(A) 2 x2(E(A)). 0

Corollary 4.1.2. If K is a subsemiring of L, then xx(A) > xr(A4). In
paricular,
(1) 1{] 2 k’ then X By 2 XBj»
(2) xz+ 2 xz,Xxz 2 xp and xp > xr for any subring, P, of the reals
with identity and

(3) xz+ > xp+ and xp+ > xp+ for any subring with identity, P*, of
R*.

Corollary 4.1.3. Let S be an anti-negative semiring with multiplicative
identity 1. Then xp,(A) < xs(A) for all matrices A € M, »(S). In partic-
ular, if A is any (0,1) matrix, then xp,(A) < xs(A).
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Proof. The mapping € : S — B; defined by

0 ifa=0,
f@={] |
1 ifa#0
is a semiring homomorphism. The proof is similar to Corollary 3.1.3. g

Corollary 4.1.4. Let a and b be intgers with a,b > 2. Suppose thet A is a
matrix with entries in {0,1,2,--- ,a—1}. Then xz,(A) < xz,,(4) < xz(4).

Proof. The mapping 1 : Z — Z, and ¢ : Z,p — Z, of a ring into a factor

ring are homomorphisms. a

4.2. The Case of Equality in Column Rank

Theorem 4.2.1. Suppose that C; and C, are chain semirings and that C,

is a subsemiring of Cy. If A € M,,, ,(Cy), then x¢,(A) = xc,(A).
Proof. The proof is similar to the proof of Theorem 3.2.1. a

Theorem 4.2.2. Suppose that j > k, so that B; C Bi. If A € M, 2(B;),
then xp; (A) = xB,(4).

Proof. Since B; and B are chain semirings which Bj is a subsemiring of

By, from above theorem, xp, (A) = x5, (A4). O

Corollary 4.2.3. For any (0,1) matrix A, any chain semiring C which con-
tains 0 and 1, and any integer k with k > 1, we have xp,(A) = xp,(4) =
xc(A4) = xr(A).

Suppose that K is a subsemiring of L (or that there exists a semiring

homomorphism from K into L).
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Let X(K, L, m,n) denote the maximum integer j such that there exists a
matrix in M,, »(K) with xx(A4) < j we have xx(A) = x1L(A). Note that
X > 0, since for any semiring S, xs(A) = 0 if and only if A is the zero ma-
trix. Using this notation, we have established the following equalities x g, =
xB, for any j <k, and x¢, = xc¢, for any chain semirings C; and C, with
C; C C;. Further, from the results in the preceding section, we have shown

that for any matrix A € M,, ,(R*),

x8,(A) < xp+(A) (4.1)

and that
XR < XR+, (4.2)
Xr+ < Xz+- (4.3)

We will show that equality does not hold in general for any of (4.1)-
(4.3). Our approach will be to investigate the values of X(K, L, m,n) for

appropriate semirings K and L.

01 1

Example 4.2.4. Let M = |1 0 1. The Boolean column space of M is
1 11
0 1

spanned by the vectors | 1| and | 0], so that xp,(M) = 2, by definition
1 1

of column rank, while xp, (M) = 3. Consequenty, M provides us with an
example to show that strict inequality can hold in part of (1).

The theorem below follows from from Example 4.2.4 and Proposition 2.5.
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Theorem 4.2.5. Suppose that A € M, o(B1). If min(m,n) < 2 then
xB,(A) = xr+(A). On the other hand, if m,n > 3, there is a matrix M €
M, o(By) such that xp, (M) < xp+(M).

Example 4.2.6. Let N = [2 3]. The second column of N is 3 times the
first, so x g+ (A) = 2. However, no integer multiple of the first column equals

the second, and visa versa, so we see that xz+(N) =2 > xp+(N).
The Example above will help us establish the following.

Theorem 4.2.7. We have that X(Z* R*,m,n) = 1.

Proof. We observe that any nonzero matrix has at least column rank 1.
From Example 4.2.6 and Proposition 2.1, we always have a matrix N €
Mo o(ZF) with xg+(N) = 1 and xz+(N) = 2, whenever n > 2. There-
fore X(Z*, Rt m,n) < 1, since for any 4 € M,, o(Z1) with xz+(4) =
1, xp+(A) = L. ]

Suppose that A € M,,, »(R*); xr(A) =1 implies that each column of 4
is a multiple of the first nonzero column of A. Consequently, each column of

A is a nonnegative multiple of that column, and hence xg+(A) = 1 as well.

Thus X(Rt,R,m,n) > 1.
Theorem 4.2.8. Let A € M,, ,(R%). If xr(A) =2, then xg+(A) = 2.

Proof. Suppose that A € M,, ,(R*). We will show that xr(A) = 2 implies
xr+(A) = 2 by using induction on n. Certainly the statement holds for
n = 2. So suppose that it holds for some n > 2. If A € M, n41(RY) and
xr(A) = 2 and let the columns of A be c1,¢2, -+, €n41, and let B =

[ev | e2 | -+ | c¢nl). I xr(B) =1, then certainly any column of A
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can be written as a linear combination over R* of ¢,41 and a nonzero column
of B, so that xg+(A) = 2. If xr(B) = 2, then xg+(B) = 2 by the induction
step. Hence three are columns ¢; and c; of A such that each of ¢;,¢,,-- , ¢,
can be written as a linear combination over Rt of ¢; and c;. Further, since
xr(A) = 2, we have zc, 41 +yc; + z¢c; = 0 for some z,y, 2z € R. The ¢’s have
nonnegative entries, so one of r,y and z is positive while another is negative.
It follows that that there are numbers a and 3 in R such that one of the
following equality holds ¢, 1 = ac;+f¢j;¢; = acut1+8¢j;¢; = acpt1+8c;.
In the first case, ¢; and ¢ span the column space of A over R*. In the second

case, €p41 and c¢; span that space, and in the third case, ch,4+1 and ¢; span

the space, which completes the induction. d
1 0 0 1
1 100 .

Example 4.2.9. Let M = 011 0l Then xr(M) = 3 since a; +
0 01 1

a3 — a; = a4, where aj,aj, a3 and a4 are columns of A by turns. But

xr+(M) = 4. Therefore xg(M) < xr+(A).

Using Theorem 4.2.8, Example 4.2.9 and Proposition 2.5, the following

corollary can be proved.
Corollary 4.2.10. We have that

1 if min(m,n) =1,
XRYR,m,n)={ 2 if min(m,n) = 2

3 otherwise.

)
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V. The Comparisons of Maximal Column Rank

5.1. Maximal Column Rank Inequalities

Suppose that K, L are semirings and that £ : K — L is a semiring ho-
momorphisms. We identify an m x n matrix A = [a;;] whose entries lie in
K, with the m x n matrix Z(4) whose (i, j)th entry equals to £(a;;). Thus
= My a(K) = Mp o(L) and A € M,, 4(K) and so Z(4) € M, (L). A

homomorphism does not increase the maximal column rank.

Theorem 5.1.1. Let K and L be semirings and £ : K — L be a semiring
homomophism. Then yx(A) > ¥ (A) for every matrix A € M, 2 (K).

Proof. Let x(A) = p and let A = [a;]|az| --]a,], where for each i =
1,2,--- n, a; i1s a column vector of A. Then there exists the maximal number
p of linearly independent column vectors of A. Therefore we assume that the
first p columns aj,ag, --- , a, are the largest linearly independent columns

of A, without loss of generality.

Put Z(A) = [Z(a;) | Z(a2) | - | Z(an)], where each Z(a;) is
represented as the image of a; by £. We will show that the largest number
of linearly independent columns of Z(A) is at most p. To show this, let us
choose any number ¢ with ¢ > p. Then for a;,a,, - - ,ap,a;, there exists at
least one ax among a;,ag, -, a,, a; such that ay = rja;+ -+ +ri_jar_1 +

Tk+18k+1 + - +71pap + ria;, where rj € K, by the maximality of p.
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Since £ is a semiring homomorphisms, so is =. Thus
Z(ak) =Z(rma; + -+ +rp_jak_1 + Tkt+18k+1 + - + 1rpap + rja;)

=Z(may) + - + Z(rk-18k-1) + Z(re+12841)

+ oo 4 E(rpap) + E(riai)

={(r)=(an) + -+ + €(re-1)=(ak-1) + €(re+1)=(ar41)

+ oo+ E8(rp)=(ap) + E(ri)E(a)).
Therefore since {(r) € L, for any ¢ with ¢ > p, {Z(a1), -+, Z(ak—1), Z(ak+1),
Z(ai)} is the linearly dependent set over L and so this set has at most p
linearly independent set. Continue to consider another number j with j > p
and j # . Then {Z(a;), -+ ,Z(a;,),=(ai),=(a;)} is also linearly dependent
set similarly over L and has at most p linearly independent set. Consequent-
ly, continuing in this manner, for all 1,2,--- | n, {Z(a;),Z(az), -+ ,=Z(a,)}
has at most p linearly independent set. The largest number of linearly in-

dependent columns of Z(A) is not larger than p. Therefore we have that
Yk (A) 2 ¢L(A). O
If K is a subsemiring of L, then the canonical injection of K into L is a

homomorphism, and hence by Theorem 5.1.1, ¥k (A4) > 1 (Z(A)) for each
matrix A € My, o(K). In this case, we abbreviate the above to ¥ > ¥y,.

Corollary 5.1.2. IfK is a subsemiring of L, then v > .
In particular,
(1) if j > k then pp, > v,
(2) Yz+ 2 9z,92z > Yp,vp > Yg for any subring, P, of the reals with
identity and
(3) ¥z+ > p+ for any subseming with identity, Pt of R.
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Let the entries of the matrix A be in a semiring S. We define the Pattern
of A to be the m x n matrix A = [a;;] where @;; = 0 if a;; = 0, a;; equals to

the multiplicative identity of S, otherwise.

Corollary 5.1.3. Let S be an anti-negative semiring with multiplicative
identity 1. Then ¢g (A) < ¢s(A) for all matrces € M o(S). In particular,
if A is any (0,1) marrix, then ¥ p, (A) < ¥s(4).

Proof. The mapping € : S — B defined by £(a) = 0 if a = 0 and {(a) =1,
otherwise, is a semiring homomorphism. Therefore from Theorem 5.1.1, it

is complete. O

1 3 5

N —_ Rt —
Example 5.1.4. Let S=R™ and let A = [2 i 6

].Then S(A) = A=

1
1?/)31 (A)

[1 i ” and therefore 1 p+(A) = 2 while 4, (A) = 1. Hence Pre(4) >

Corollary 5.1.5. Let A and B be integers with a,b and a,b > 2. Suppose
A is a matrix with entries in {0,1,2,--- a — 1}. Then ¢¥z,(A) <z, (A) <

Yz(A).

Proof. Consider the canonical mappings n : Z — Zg and ( : Zay — Z,
and, of ring into a factoring are homomorphisms. The corollary follows from

Theorem 5.1.1. O

5.2. The Case of Equality in Maximal Column Rank

Theorem 5.2.1. Suppose that C; and C, are chain semirings and that C,
is a subsemiring of C,. If A € M, »(Cy), then ¥¢,(A) = ¥, (A).
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Proof. Since C; C C,, we have ¢¢,(A) > ¥c,(A). Let C(A) be the chain
semiring consisting of 0, 1 and the entries in A. Then C(A4) C C;. Using the
process of the proof of Theorem 3.2.1, it is clear that ¢, (A) = ¥c(a)(A) =
Ve, (A). O

Theorem 5.2.2. Suppose that j < k, so that B; C Bx. If A € M a(Bj),
then I/JBj (A) = Ika(A).

Proof. Since B; C By, ¥g; > ¥p,. Let C(A) be the chain semiring generat-
ed by the entries of A, 0 (empty set ) and 1(universal set). Then C(4) C B;.
Thus ¥c(ay(A) > ¢p,(A). By the analagous manner with Theorem 5.2.1,
¥, (A) = ¥p,(A). 0

Corollary 5.2.3. For any (0,1) matrix A, any chain semiring C which con-
tains 0 and 1, any nteger with k > 1, we have ¢, (A) = vp,(A) = ¥c(A) =
Yr(A).

Suppose that K is a subsemiring of L. Let ¥(K, L, m,n) denote the max-
imum integer j such that there exists a matrix in M, »(K) with maximum
column rank j and for every A € My, o(K) with ¢¥x(4) < j, we have
Yk(A) = Yr(A). Note that ¥ > 0, since for any semiring S, s(A) =
0 if and only if A is the zero matrix. Using this notation, we have es-
tablished the following equality ; Yp, = ¥, forany 3 < k. and ¢, =.
Y., for any semirings C; and C, with C; C C,. Further, from the results in

the preceding section, we have shown that for any matrix 4 € Moo (RY),

Y8, < YRr+ (5.1)
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and that

1/)R g d)R‘*‘v (52)

Yr+ < YPz+. (5.3)

We will show that equality does not hold in general for any of (5.1)-(5.3).
Our approach will be to investigate the values of ¥ for appropriate anti-

negative semirings K and L. First we will look at (5.1).

1 0 1
Example 5.2.4. Let A= |1 1 0. Then ¢p,(A) = 2 since the second
1 1 1

and the third column generate the first. Thus the largest number of linearly
independent columns is 2, while ) g+(A) = 3 since three columns are linearly

independent over R*. Thus g, (A) < dp+(A).

The following Theorem is easily established from Example 5.2.4 and Propo-

sition 2.5.

Theorem 5.2.5. Suppose that A € My, ,(By). If min(m,n) < 2, then
¥B,(A) = Yr+(A). Otherwise, there is a matrix A € M,, o(B1) such that
¥p,(A) < Yr+(A).

Proof. When either m or n is 1, it is clear. Suppose that n = 2 and let
A = [a)]|az] be a m x 2 matrix where a; and a, are the first and second
columns of A, respectively. If g, (A) = 1, then since the entries of A is in
Boolean algebra B, a; = a; and both nonzero columns. Hence )g+(A) = 1.
If B, (A) = 2, then there exists at least one positive integer j such that either
aj1; = 0 and aj; = 1 or, a;; = 1 and aj; = 0. Then clearly ¢ g+(A) = 2.

Consider the converse. Now note that ¢ g, (A4) < g+ (A) since there exists a
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semiring homomorphism £ of R* into By, by Corollary 5.1.2. If ¢p+(A4) = 1
then ¥, (A) = 1 since ¥, (A) < Ygr+(A) = 1 and ¢, (A) # 0. Similarly
if Yp+(A) = 2 then ¥p,(A) < Pr+(A) = 2. Then clearly vp,(4) = 2
(if ¥p,(A) = 1 then ¥gr+(A) = 1, contradiction to the assumption that
Yr+(A) = 2).

On the other hand, suppose that m = 2 and let A = [a;]|az] - |a,] be a
2 x n matrix, where each a; is a column vector of A. Since each entry of A

1s either 0 or 1, the columns of A are the only forms of [(1)] , [(1)] , [i] and

[8] . Thus the maximul column rank of A on R% is at most 2. Therefore,

if B, (A) = 2, then A has at least two columns among three columns [?},

0 1
Yr+(A) =1 as the preceding proof.

Conversely, if ¥ g+ (A) = 1, then v 5,(A4) = 1 since ¢, (A) < Yr+(4) =1
and ¥p, (A) # 0. Also if Yp+(A4) = 2, then ¥p,(4) = 2 since ¥p, (4) <
Yr+(A) = 2 and B, (A) is nether 0 nor 1. Therefore the first case holds.

1] and [1] . Then clearly ¢y g+(A) is also 2. Also if ¢, (4) = 1 then

Now for min(m,n) > 3, from Example 3.2.4 and Proposition 2.5, there exists

M in My, »(B,) such that ¢p, (M) < Yg+(A). 0
Therefore the following corollary is true.
Corollary 5.2.6. If A € M,, ,(B,), then

1 if min(m,n) =1,
YR, B, m,n)={ 2 if min(m,n) = 2,
3 if mn2>3.

Proof. Case 1 and Case 2 hold immediatly from Theorem 5.2.5.



27

Case 3. Let min(m,n) > 3. If A € M, »(B1) with ¢g+(A) = 3, then
Yr+(A) = ¢¥B,(A) = 3 since ¥, (A) < Yr+(A) =3 but g, (4) #0,1 and
2 from Theorem 5.4. By definition of ¥, Case 3 holds. a

The following example enables us to have the comparison of the maximal

column rank between Nonnegative integer and Nonnegative real.

Example 5.2.7. Let A = [3, 4]. The second column of A is % times the
first, thus ¥ r+o(A) = 1. However, no integer multiple of the first column

equals to the second, and vise versa, so we see that 1z+(A4) =2 > Yg+(A).

Thus the below theorem is easily proved from Example 5.2.7 and Propo-

sition 2.5.
Theorem 5.2.8. We have that ¥(Z*, R, m, n) = 1.

Proof. From Example 5.2.7 and Proposition 2.5, we always have a matrix

A€ My, o(Z7) with Yp+(A) =1 and ¥z+(A) = 2 whenever n > 2. O

Suppose that 4 € M, .(R*") ;i ¥r(A) =1, then each column of A is a
multiple of the first nonzero column of A. Consequently, each column of A is
a nonnegaive multiple of that column, and hence ¢ g+(A4) =1 as well. Thus
we have ¥(R*, R, m, n) > L.

The next result establishes the more.
Theorem 5.2.9. Let A € M, o(R"). If yp(A) = 2, then Yp+(A) = 2.

Proof. Suppose that ¥g(A) = 2. Then the largest number of linearly inde-
pendent columns is 2 over R. That is, for any three columns of A, a;, a;
and ax, ra; + ya; + zax = 0 for some z, y, and z in R. Since a,;, a;, and

ax are over R1, all 2,y and z are not the same signs. Let z be positive
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and let the others be negative. Then a; = (—%)a; + (—Z)ax. Since —¥
and —Z is positive, a;, aj and aj are linearly dependent over R*. In oth-
er case, 1t holds similarly. Thus three arbitrary columns in A are linear-
ly dependent. Now extend to four columns in A, say a;, a;, ax and ay.
In the above manner, for a;, a; and ay, put a; = rja; + rpax for some
r1,72 € RT and for aj, ax and aj),aj = rzay + rqa; for some r3,ry € Rt.
Then a; = ri(rsakx + rya)) + rax = (rirs + rp)ag + rirqa). Thus these four
columns a;, a;, ax and a; are generated by two columns a; and a; over R¥.
In other case, it holds clearly. Continuing in this process, for the columns of
A more than four, they have two generating columns over R*. Thus we can

obtain that ¥ g+(A4) = 2. a

Now we shall see that there exists for v'r(A) > 3 the case when does not

hold the above theorem.

1 0 0 1
1 1 0 0O .

Example 5.2.10. Let A = 0ril=i 04 Then »g = 3 since a; + ag—
|75 A Fe IR |

az = a4, where aj,az, ag and a4 are the columns of A by turns. From

Corollary 5.1.2, 4 =g, (A) < ¥g+(A). Hence Y r(A) < thp+(A).
Lemma 5.2.11. Let F be a field. If min(m,n) = k and A € M, ,(F), then
Yr(A) < k.

Proof. In a field, all kinds of ranks are the same. That is, column, row,
factor and maximal column rank are all the same. Thus ¥r(A) is equal to

or smallar than k. O

Using Theorem 5.2.9, Lemma 5.2.11, Proposition 2.5 and Example 5.2.10,
the following corollary holds.
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Corollary 5.2.12. We have that
1 if min(m,n) =1,

Y(RY, R, m,n)=<{ 2 if min(m,n) =2,

3 otherwise.

Proof. Case 1. If min(m,n) = 1, then ¥g(A) has the one of 0 and 1 by
Lemma 5.2.11. Further, ¥)g(A4) = 1 if and only if g+ (A) = 1, and yr(A) =
0 if and only if ¥ 5+ (A) = 0. The first case holds.

Case 2. Suppose that min(m,n) = 2. By Lemma 5.2.11, ¥g(A4) < 2. We
must show that for all A € M,,, ,(R") with g+ (A) < 2,¢¥r(A) = Yr+(4).
Since from case 1 for all 4 € M,, ,(R") with ¥g+(A4) < 1, 9¥r(4) =
Y+ (A), it is suffices to show that for any A with Y+ (A) = 2, Yr(4) = 2.
Put ¥g+(A4) = 2. Since Yr(A) < p+(A), Yvr(A) < 2. But ¢ r(A) is neither
0 nor 1. Thus ¥r(A) = 2 and so the case holds.

Case 3. From case 1 and case 2, it suffices to show that for any A €
Mo n(RH) with s (4) = 3,pr(4) = vigs (4). Put g+ (4) = 3 and then
Yr(A) < 3 since i p(A) < p+(A). But none of 0,1 and 2 can be the value
of Yr(A). For ¥'g(A) is 0 and 1 if and only if ' g+(A) is 0 and 1, respec-
tively. And if ¥ r(A) = 2 then ¥'g+(A) = 2, by Theorem 5.2.9. Thus
wr(A) # 0,1, and 2. Thus yYr(A4) = 3. Therefore for any A € M,, .(RY)
with Y r+(A) < 3, we have Yr(A) = g+ (A). Further Example 5.2.10 and
Proposition 2.5 imply that there exists M such that Yr+(M) > yYr(M).
Hence ¥(R*,R,m,n) = 3. a
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< Abstract >

On Comparison of Maximal Column

Rank of Anti-Negative Matrices

For a given matrix A over a semiring S, the maximal column rank of A,
1s(A), is the largest number of linearly independent columns of A over the
given semiring. The maximal column rank is the same as the column rank
over the field, but over general semiring two concepts have different mean
each other.

In this thesis, we studied the maximal column rank of a matrix 4 when
A could be considered as a matrix over two related semirings. For two
semiring of which one is a subsemiring of the other, the maximal colum
rank of the smaller semiring is equal to or larger than that of the larger
semiring. Also, we obtain the maximum value of maximal column rank such
that two maximal column ranks coincide each other. As a result, over the
chain semirings or the general Boolean algebras, two maximal column rank
are always the same, while over anti-negative real and real, the maximum

value is at most 3.



32

a A2 =

TTe ENEEAM PE FPE ¥l EHINAA @S HE ANxg 2
W2 = AT A9} 97t & A¥AAE dohg 253 Ao Qe GA A4S
AT At HHPBIVE BuUn =FE 277 B 8L FA2 o] T F2
FEA BAHE =34

BA AE /M 2 olAl Bola] gt A JxA7} S E A 93 S 59
EPUTh 222 =T L PEE FAL oMt BHA AR, HPE BAF
FHE A9dA ZAE =RASUTh dEY A FS Yol YT ZHL B E 3
FO BAL 359, ¥92 25d, A¥F ad, 128 asd, ¥5Y 254dA
FAE =Y =8 AN HES FA2 YAE AFY ¥19 a5da 983
2adA A EPUTE =80 234G S AUEA 2970 £8X 259 AL
E =34t

DL A FFAAA EET VTE B2 AALBNLED Fuld SolAE gALS
=Ytk o3 239 FAAMGES Huid g0 JlE I} AFFol FALE =26 9
qxof A+t 2VAE JuidA Fol AAE =Yt mA e s uigle] AFHBAIY
s AT F Ry QUL FN, de] Qe ALY a3 FHSAA
ZAHE =2 o] 1WE B SRS UTCh

U

1995Q 124



	표제면
	Abstract(Korean)
	I. Introduction
	II. Definition and Preliminaries
	III. The Comparisons of Factor Rank
	3.1 Factor Rank Inequalities
	3.2 The Case of Equality in Factor Rank

	IV. The Comparisons of Column Rank
	4.1 Column Rank Inequalities
	4.2 The Case of Equality in Column Rank

	V. The Comparisons of Maximal Column Rank
	5.1 Maximal Column Rank Inequalities
	5.2 The Case of Equality in Maximal Column Rank

	References
	Abstract(English)

